FINAL REPORT
JULY 1992

REPORT NO. 92-23

TESTING OF
LOCALLY-FABRICATED
TIEDOWN FITTINGS

Prepared for:
U.S. Army Defense Ammunition
Center and School
ATTN: SMCAC-DET
Savanna, IL 61074-9639

Distribution Unlimited

93-11963
U.S. ARMY
ARMAMENT
MUNITIONS
CHEMICAL COMMAND
U.S. ARMY DEFENSE AMMUNITION
CENTER AND SCHOOL

VALIDATION ENGINEERING DIVISION
SAVANNA, ILLINOIS 61074-9639
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center and School, ATTN: SMCAC-DEV, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
During the Ammunition Hotwash Conference, 26 March 1991, held at Ramstein Air Base, GE, it was pointed out that the "Mickey Mouse" and "Bigfoot" tiedown fittings were neither affordable nor available for transportation companies. These fittings are used to tiedown loads on M871 and M872 trailers with web straps. As a result, the transportation companies resorted to fabricating their own fittings.

As a result of the field expedient locally-fabricated tiedown fittings collected from Southwest Asia (SWA) support, the U.S. Army Defense Ammunition Center and School (USADACS), Transportation Engineering Division (SMCAC-DET), requested the USADACS, Validation Engineering Division (SMCAC-DEV), test, measure and draw each type of fitting. Each fitting was pull tested to determine its maximum working strength. (continued)
Based on MIL-STD-209H, Military Standard Slinging and Tiedown Provisions for Lifting and Tying Down Military Equipment, these fittings are class 4 and must hold a 10,000-pound load without deformation or breakage. As a result of testing, all tiedown fixtures either broke or were deformed before reaching the 10,000-pound pull requirement.
U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL
VALIDATION ENGINEERING DIVISION
SAVANNA, IL 61074-9639

REPORT NUMBER 92-23

TESTING OF LOCALLY-FABRICATED TIEDOWN FITTINGS
SEPTEMBER 1992

TABLE OF CONTENTS

PART PAGE NO.
1. INTRODUCTION ...1-1
 A. BACKGROUND ..1-1
 B. AUTHORITY ..1-1
 C. OBJECTIVE..1-1
 D. CONCLUSION ..1-1
 E. RECOMMENDATION ..1-2

2. ATTENDEES ..2-1

3. TEST PROCEDURES ...3-1

4. TEST EQUIPMENT ...4-1

5. TEST SETUP ..5-1

6. TEST DATA AND RESULTS ..6-1

7. PHOTOGRAPHS ..7-1
PART 1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SMCAC-DEV), was tasked by USADACS, Transportation Engineering Division (SMCAC-DET), to test locally-fabricated tiedown fittings that were collected from samples used to transport ammunition over European highways to support Operations Desert Shield/Desert Storm. In order to accomplish their mission, units resorted to having local welding and fabrication shops construct a tiedown provision for immediate use and at minimal expense. The delay/nonavailability and higher cost in obtaining the tie-downs through the government supply system makes local fabrication of the provisions the only option for the units.

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by the U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL.

C. OBJECTIVE. The objective of these tests was to assess the capability of the locally-fabricated tiedown fittings to meet U.S. Army (USA) functional and operational requirements of MIL-STD-209H.

D. CONCLUSION. Although test sample no. 1 was found to have the greatest tensile strength of the six different types of samples, testing also caused significant damage to it. This report also establishes that there was substantial weld failure experienced throughout the testing. It should be noted that most of the bending and deformation was due to the weaknesses of the materials used to form these tiedown fittings. Thus, this report concludes that all six of the locally-fabricated tiedown fittings that did not damage retention test fixtures, failed at less than 10,000 pounds.
E. **RECOMMENDATION.** Some of the fitting designs could be salvaged by using stronger materials to replace those used in these test samples. There were also many weld failures experienced during the testing. The design should be changed placing less stress on welds while using heavier materials. This would resolve the problems and result in an acceptable product. Based upon the test results contained herein, drawings detailing tiedown fitting fabrication should be developed for test samples 4 and 5, limitations be stated thereon, and a memorandum of approval/results be provided to the 200th Theater Army Materiel Management Center (TAMMC) for future European theater use and application.
PART 2

JULY 1992

ATTENDEES

A.C. McIntosh
Test Engineer
DSN 585-8989
815-273-8989

Jeremy F. Hook
Engineering Technician
DSN 585-8093
815-273-8093

Steven L. Von Thun
Engineering Draftsman
DSN 585-8093
815-273-8093

Director
U.S. Army Defense Ammunition Center
and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U.S. Army Defense Ammunition Center
and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U.S. Army Defense Ammunition Center
and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639
PART 3

TEST PROCEDURES

A. Test Requirements. MIL-STD-209H, Military Standard Slinging and Tiedown Provisions for Lifting and Tying Down Military Equipment, identifies these locally-fabricated tiedown fittings as class 4 cargo tiedown provisions. The load rating for a class 4 fitting is dependent on the load capacity of the hauling vehicle. The "Mickey Mouse" fitting, which these devices are intended to be used in place of, was mounted on vehicles with more than 10,000-pound load-carrying capacity. Thus, these units are required to withstand 10,000 pounds without deforming with tensile loads applied vertically, horizontally, and laterally. For this testing performed in the laboratory, all fittings were pulled vertically.

B. Equipment Setup. The Ormond Tension-Compression tester has a 5- by 5-foot flat plate test surface with threaded holes in the center of its top and bottom sections, used for mounting test fixtures. A 50,000-pound load cell was mounted to the fixed bottom plate with the sample test fitting above it. An eyebolt was then mounted to the top plate with a clevis that provided an interface to attach to the test samples. There also was a displacement gauge mounted to the fixed table of the tester, which provided a measure of the separation between the plates. The load cell and displacement gauge outputs were recorded electronically.

C. Test Procedures.

1. Mount the test sample in the test fixture.

2. Start the data recording equipment.

3. Slowly apply tension to the test sample until failure or until the tension exceeds 15,000 pounds, the ultimate load.

4. Save the recorded data and note mode of sample failure.

3-1
PART 4

TEST EQUIPMENT

A. COMPRESSION TESTER.
 a. Manufacturer: Ormond Manufacturing
 b. Platform: 60 inches by 60 inches
 c. Compression Limit: 50,000 pounds
 d. Tension Limit: 50,000 pounds

B. LOAD CELL.
 a. Manufacturer: Toroid Corporation
 b. Capacity: 50,000 pounds
 c. Model: 45 132 BKF
 d. Serial Number: 44755

C. PORTABLE DATA ACQUISITION SYSTEM.
 a. Manufacturer: Pacific Instruments
 b. Model: 5700

D. DISPLACEMENT GAGE.
 a. Manufacturer: Celesco Incorporated
 b. Model: PT-101-20A
 c. Serial Number: 0953822
PART 5

TEST SETUP

The Toroid Corporation load cell was secured to the Ormond Manufacturing Compression/Tension tester fixed platform with a threaded coupler. The locally-fabricated trailer side rail simulator was then screwed into the top of the load cell. A threaded eye bolt was attached to the movable compression/tension tester platform.

The test couple was placed into the simulated trailer tiedown fitting and secured to the eye bolt with a bolt-type clevis.

A displacement gauge was connected between the compression/tension tester platform.

Both transducers were connected to different channels on data acquisition systems.

Once a test sample was secured in the test fixture, and the slack was taken out of the coupling, the data acquisition equipment was started and displacement and applied load was recorded for the duration of the test. The results were then graphed.
PART 6

TEST DATA AND RESULTS

TEST SAMPLE NO. 1:

Explanation of Failure. Test sample no. 1 was the strongest of the six different designs, yielding at 13,110 pounds. Due to the design of the tiedown fitting, the outside corner of the steel angle piece of the fitting damaged the simulated trailer side rail. This test sample was deformed in such a way that the rod forming the tiedown eye tore away from the steel angle piece and out of its weld until it had been bent a total of 62 degrees away from its original vertical position (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #1

R .69

SEE NOTE 2

SEE NOTE 1

TYP

1.00

4.38

4.19

.38

5.38

FOR INFORMATION ONLY

1. STEEL, STRUCTURAL, ANGLE, L2-1/2" X 2-1/2" X 1/4" X 4-3/8" LONG
 PER ASTM A36, FSC 9520
2. STEEL, BAR, ROUND, HOT ROLLED, 1/2" DIA X 10-1/2" LONG
 1018, PER ASTM A36, FSC 9520
3. ALL DIMENSIONS ARE IN INCHES

NOTE:

VALIDATION ENGINEERING DIVISION

92-023-0-T00074

SHEET 1 OF 1
TEST SAMPLE NO. 2A:

Explanation of Failure. Test sample no. 2a was placed so that its points of contact in the simulated trailer side rail were at distances of 2 inches from the vertical axis of the tiedown. This simulated the weakest possible orientation. This test sample reached a load of 2,710 pounds when the welds that hold the bottom rod to the rest of the tiedown fitting began to break, while the rod itself was bent to an angle of 8 degrees from horizontal (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #2

SEE NOTE 1

SEE NOTE 3

1.38

2.31

6.00

R .25 TYP

6.50

4.75

3.25

.50

FOR INFORMATION ONLY

NOTE:

1. STEEL, BAR, ROUND, HOT ROLLED, 1/4" DIA X 7-1/2" LONG
 1018, PER ASTM A36, FSC 9520
2. STEEL, BAR, ROUND, HOT ROLLED, 1/2" DIA X 6" LONG
 1018, PER ASTM A36, FSC 9520
3. STEEL, BAR, STRIP, HOT ROLLED, 1/8" X 1-3/8" WIDE X 4-1/4" LONG
4. ALL DIMENSIONS ARE IN INCHES

92-023-0-T00075
Tiedown Sample #2a
Tested July 23, 1992

Displacement - inches

Pull Force - pounds (thousands)
LOAD1 TRIGGER OCCURRED 50.607000 SECONDS AFTER START

LEGEND:
LOAD1

Time= 65.402504 Lbs =-2709.960938
TEST SAMPLE NO. 2B:

Explanation of Failure. Test sample no. 2b was placed so that its points of contact were located at distances of 1-1/2 inches from its vertical axis. This simulated a stronger orientation than test sample no. 2a experienced. Test sample no. 2b yielded at 4,200 pounds and deformed in a similar manner to test sample no. 2a. It experienced bending in the lower bar of 5 degrees from its original horizontal position and failure in the welds holding the lower bar to the rest of the fitting (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #2

SEE NOTE 1

SEE NOTE 3

NOTE:
1. STEEL, BAR, ROUND, HOT ROLLED, 1/4" DIA X 7-1/2" LONG
 1018, PER ASTM A36, FSC 9520
2. STEEL, BAR, ROUND, HOT ROLLED, 1/2" DIA X 6" LONG
 1018, PER ASTM A36, FSC 9520
3. STEEL, BAR, STRIP, HOT ROLLED, 1/8" X 1-3/8" WIDE X 4-1/4" LONG
4. ALL DIMENSIONS ARE IN INCHES

FOR INFORMATION ONLY

92-023-0-T00075
LOAD1 TRIGGER OCCURRED 10.981500 SECONDS AFTER START
Hook 2b

Time: 96.861511 Lbs = -4199.218750
TEST SAMPLE NO. 3:

Explanation of Failure. Test sample no. 3 was placed in the trailer side rail fixture so that the points of contact were at distances of 2 inches from its vertical axis. This simulated the weakest orientation possible.

When the load on test sample no. 3 reached 3,735 pounds the welds holding the bottom rod to the rest of the fitting began to break, while the rod itself was bent to an angle of 15 degrees below its original horizontal position (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #3

SEE NOTE 1

SEE NOTE 3

TYP

NOTE:
1. STEEL, BAR, ROUND, HOT ROLLED, 7/16" DIA X 7-1/2" LONG
 1018, PER ASTM A36 FSC 9520
2. STEEL, BAR, ROUND, HOT ROLLED, 7/16" DIA X 6" LONG
 1018, PER ASTM A36, FSC 9520
3. STEEL, BAR, STRIP, HOT ROLLED, 1/8" X 1-3/4" Wide X 4-3/4" LONG
4. ALL DIMENSIONS ARE IN INCHES

FOR INFORMATION ONLY

92-023-0-T00076

VALIDATION ENGINEERING DIVISION SHEET 1 OF 1
Tiedown Sample #3
Tested July 23, 1992

Pull Force - pounds (Thousands)

Displacement - inches
TEST SAMPLE NO. 4:

Explanation of Failure. Test sample no. 4 was also loaded to its weakest orientation with the points of contact at distances of 2 inches from the vertical axis of the tiedown fitting. The test sample was loaded to 7,200 pounds, which broke the bottom bar. It was also noted that the welds holding the bottom bar began to fracture at this point, and that the bar was bent to an angle of 2 degrees from horizontal before failure (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #4

SEE NOTE 1

SEE NOTE 3

NOTE:
1. STEEL, BAR, ROUND, HOT ROLLED, 3/8" DIA X 7-1/2" LONG

2. STEEL, BAR, ROUND, HOT ROLLED, 5/8" DIA X 6" LONG

3. STEEL, BAR, STRIP, HOT ROLLED, 1/8" X 1-3/4" WIDE X 4-3/4" LONG

4. ALL DIMENSIONS ARE IN INCHES

FOR INFORMATION ONLY

92-023-0-T00077

VALIDATION ENGINEERING DIVISION SHEET 1 OF 1
LOAD1 TRIGGER OCCURRED 6.290500 SECONDS AFTER START

LEGEND:
Hook 4a - broke ~7200

Time= 84.881004 Lbs = -2800.859375
TEST SAMPLE NO. 5:

Explanation of Failure. Test sample no. 5 was loaded in its weakest orientation. The points of contact between the simulated trailer rail and the tiedown bar were located at distances of 2 inches from the vertical axis of the tiedown fitting. This sample yielded at 7,861 pounds when the welds on the hexagonal-shaped bar began to break. It was also noted that the bar was bent 8 degrees from the horizontal position after testing (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #5

SEE NOTE 1

SEE NOTE 3

R .44

7.06

5.38

4.13

.63

6.00

NOTE:
1. STEEL, BAR, ROUND, HOT ROLLED, 7/16" DIA X 7-1/2" LONG
2. STEEL, BAR, HEXAGON, COLO ROLLED, 5/8" DIA X 6" LONG
3. STEEL, BAR, STRIP, HOT ROLLED, 1/8" X 1-3/4" WIDE X 3/4" LONG
4. ALL DIMENSIONS ARE IN INCHES

FOR INFORMATION ONLY

TESTING OF LOCALLY FABRICATED TIEDOWN FITTINGS, FITTING #5

92-023-0-T00078

VALIDATION ENGINEERING DIVISION SHEET 1 OF 1
TEST SAMPLE NO. 6A:

Explanation of Failure. Test sample no. 6a was loaded in its weakest possible orientation with the points of contact at distances of 2 inches from the vertical axis of the tiedown fitting. This test resulted in some major deformations of the test sample. The entire tiedown fitting was stretched out, including the top loop. This sample yielded at 3,735 pounds when one of the welds in the middle of the fitting failed (see photo). The bottom bar experienced an angle of deformation of 17 degrees from the horizontal position.
LOCALLY FABRICATED TIEDOWN FITTING #6

SEE NOTE 1

1.50

SEE NOTE 2

7.00

.38

6.00

2 PLACES

4 PLACES

R .63

.75

3.38

NOTE:

1. STEEL, BAR, ROUND, HOT ROLLED, 3/8" DIA X 20" LONG
1018, PER ASTM A36 FSC 9520

2. STEEL, BAR, ROUND, HOT ROLLED, 3/8" DIA X 6" LONG
1018, PER ASTM A-108

3. ALL DIMENSIONS ARE IN INCHES
Tiedown Sample #6a
Tested July 23, 1992

Pull Force - pounds (Thousands)

Displacement - inches
LOAD1 TRIGGER OCCURRED 12.625000 SECONDS AFTER START

LEGEND:
LOAD1

Time = 114.547012 Lbs = -3662.409375
LOAD1, TRIGGER OCURRED 5.431500 SECONDS AFTER START

LEGEND:
LOAD1

Time = 12.020000 Lbs = -3735.351563
TEST SAMPLE NO. 6B:

Explanation of Failure. Test sample no. 6b and 6a are of the same design configuration, however, test sample no. 6b was tested in a much stronger orientation than test sample no. 6a. The points of contact were located at distances of 1-inch from the tiedown fitting's vertical axis. The deformation of this fitting began with the top loop bending into an oval shape and continued with the bottom bars bending to an angle of 10 degrees from the horizontal position. When the load reached 7,592 pounds, the bottom bar failed and broke (see photo).
TEST SAMPLE NO. 6C:

Explanation of Failure. Test samples nos. 6a, 6b, and 6c are of the same design configuration. Test sample no. 6c was oriented in its weakest position, similar to test sample no. 6a, with the points of contact at distances of 2 inches from its vertical axis. This test sample sustained slight deformation to the top loop, and the bottom bar was bent to an angle of 10 degrees from the horizontal position. When this sample reached a load of 3,100 pounds, one of the welds in the middle of the fitting failed (see photo).
LOCALLY FABRICATED TIEDOWN FITTING #6

SEE NOTE 1

1.50

1.50

SEE NOTE 2

FOR INFORMATION ONLY

NOTE:
1. STEEL, BAR, ROUND, HOT ROLLED, 3/8" DIA X 20" LONG
 1018, PER ASTM A-36 FSC 9520
2. STEEL, BAR, ROUND, HOT ROLLED, 3/8" DIA X 6" LONG
 1018, PER ASTM A-108
3. ALL DIMENSIONS ARE IN INCHES

TESTING OF LOCALLY FABRICATED TIEDOWN FITTINGS. FITTING #6

VALIDATION ENGINEERING DIVISION SHEET 1 OF 1
TEST SAMPLE NO. 6D:

Explanation of Failure. Test samples nos. 6a, 6b, 6c, and 6d are of the same design configuration; however, test sample no. 6d was loaded so that one point of contact was located 1-inch from the vertical axis, while the other point of contact was at a distance of 3/4-inch. This test sample also experienced a lot of overall stretching including the top hook. When the test load reached 7,080 pounds, one of the welds in the middle section of the fitting failed, and it was also noted that the rod used in forming the tiedown fitting had passed its yielding point and was stretching apart (see photo).
Tiedown Sample #6d
Tested July 23, 1992

[Graph showing the relationship between pull force and displacement]
LOAD 1 TRIGGER OCCURRED 14.113000 SECONDS AFTER START
Load 1

Legend:

Time = 114.710007 Lbs = -5224.609375
PART 7

PHOTOGRAPHS

7-1
Photo No. AO317-SCN92-350-4733. Test sample No. 2a. This test sample failed at 2,700 pounds.
Photo No. AQ317-SCN92-350-4736. Test sample No. 4. This sample failed at 7,200 pounds. In addition to breaking the "T" bar, the top ring also deformed.
Photo No. AO317-SCN92-350-4737. Test sample No. 5. This sample failed at 7,860 pounds. In addition to weld separation of the "T" bar, the clip and banding loop also deformed.
Photo No. AO317-SCN92-350-4740. Test sample No. 6c. This tiedown sample failed at 3,100 pounds when a weld separated. The tie loop also deformed.
Photo No. AO317-SCN92-350-4741. Test sample No. 6d. This sample deformed at 2,600 pounds. The welds finally broke at 7,080 pounds. The tie loop was also deformed to a point where it would not accept 2-inch banding.