A MODELING STUDY OF THE TPC-C BENCHMARK

Scott T. Leutenegger
Daniel Dias

NASA Contract Nos. NAS1-19480 and NAS1-18605
March 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001
A Modeling Study of the TPC-C Benchmark

Scott T. Leutenegger *
ICASE: Institute for Computer Applications
in Science and Engineering
Mail Stop 132c
NASA Langley Research Center
Hampton, VA 23681-0001
leut@icase.edu

Daniel Dias
IBM Research Division
T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598
dias@watson.ibm.com

Abstract

The TPC-C benchmark is a new benchmark approved by the TPC council intended for comparing database platforms running a medium complexity transaction processing workload. Some key aspects in which this new benchmark differs from the TPC-A benchmark are in having several transaction types, some of which are more complex than that in TPC-A, and in having data access skew. In this paper we present results from a modelling study of the TPC-C benchmark for both single node and distributed database management systems. We simulate the TPC-C workload to determine expected buffer miss rates assuming an LRU buffer management policy. These miss rates are then used as inputs to a throughput model. From these models we show the following: (i) We quantify the data access skew as specified in the benchmark and show what fraction of the accesses go to what fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation as a function of buffer size. (iii) We show that close to linear scale-up (about 3% from the ideal) can be achieved in a distributed system, assuming replication of a read-only table. (iv) We examine the effect of packing hot tuples into pages and show that significant price/performance benefit can be thus achieved. (v) Finally, by coupling the buffer simulations with the throughput model, we examine typical disk/memory configurations that maximize the overall price/performance.

* A significant portion of this work was done while Leutenegger was a Post-Doctoral Researcher at IBM T. J. Watson Research Center. Support for Leutenegger was also provided by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-18605 and NAS1-19480 while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
1 Introduction

The TPC Benchmark C (TPC-C) [7, 9] is intended to model a medium complexity online transaction processing (OLTP) workload. It is patterned after an order-entry workload, with multiple transaction types ranging from simple transactions that are comparable to the simple debit-credit workload in the TPC-A/B benchmarks [6], to medium complexity transactions that have two to fifty times the number of calls of the simple transactions.

An important aspect of the workload is that it specifies skewed (i.e. non-uniform) access within individual data types/relations. By contrast, the TPC-A benchmark assumes uniform access within each relation/data type. The skewed access, which is typical for many OLTP workloads [4] allows better use of the main memory database buffer by allowing it to capture the hot data items.

The benchmark specifies a non-uniform random number generation function to be used for generation of tuple-ids. We provide insight into the distribution of this skew by simulating this function as specified by the benchmark. The output of this simulation specifies the skew at the tuple level, yet most typical DBMS's access and store data in pages. Therefore, to estimate the skew at the page level we also simulate the function assuming tuples are packed sequentially into pages. These results provide insight into the workload and help explain the miss rate results obtained in our buffer simulations. In addition we use the distribution obtained from this simulation to guide us in packing tuples into pages so that all tuples of similar "hotness" will be in the same page.

We assume the use of the LRU buffer replacement policy for the database buffer and simulate the buffer pool to determine the expected miss rates for each relation. We use the miss rates obtained from our buffer simulations as inputs to a throughput model. Using this model, we explore optimal buffer sizes to minimize hardware costs. Finally, we consider the impact of running the benchmark on a clustered/distributed database system, examining the impact of replicating one of the read-only relations.

We focus only on the access patterns and processing requirements of the benchmark. We do not consider terminal emulation, ACID properties, or pricing. When we present price/performance curves we will only consider hypothetical costs of hardware and do not include considerations such as terminal emulation or software maintenance costs as outlined in the TPC-C specification [9]. We describe the benchmark transactions only in the level of detail required to model the workload, primarily in terms of the access patterns and the number of database calls per transaction. Readers interested in details such as which fields are retrieved and updated are referred to the benchmark specification.

The rest of the paper is organized as follows. In Section 2 we provide a synopsis of the TPC-C workload, so that the paper is reasonably self contained. In Section 3 we present simulation results.
for the non-uniform random number generation routines to determine the degree of access skew. A description of our buffer model simulation including model results is contained in Section 4. A throughput model and price/performance results for both a single and a distributed system are given in Section 5. Concluding remarks appear in Section 6.

2 TPC-C Workload Synopsis

This section gives a summary of the TPC-C workload. For a more thorough treatment see the TPC C specification [9] and overview [7]. In this paper, we focus only on the access patterns and processing requirements of the benchmark. For concreteness, we will assume a relational database model, though most of the development is applicable to other data models. We first give an overview of all five transaction types in the benchmark and then give a more detailed account of each of the transactions in the following section.

2.1 TPC-C Overview

The TPC-C benchmark is intended to represent a generic wholesale supplier workload. The workload is primarily a transaction processing workload with multiple SQL calls per transaction, but also has two aggregates, one non-unique select, and a join. The workload specifies skew (i.e. non-uniform access) at the tuple level for three of the relations.

Figure 1 shows the Business Environment Hierarchy of the TPC-C workload. This figure is a reproduction of that found in the TPC-C benchmark specification [9]. The overall database consists of a number of warehouses. Each warehouse is composed of ten districts where each district has 3,000 (3K) customers. There are 100K items that are stocked by each warehouse. The stock level for each item at each warehouse is maintained in the Stock relation. Customers place orders that are maintained in three relations: in the Order relation a permanent record of each order is maintained; in the New-Order relation, pending orders are maintained and later deleted by a Delivery transaction; in the Order-Line relation, an entry is made for each item ordered. A history of the payment transaction is appended to the History relation.

The logical database design is composed of 9 relations as listed in table 1 and shown in Figure 2. In the table, W represents the number of warehouses. We make the assumption that only integral units of tuples fit per page. The cardinality of the Warehouse, District, Customer, and Stock relations scale with the number of warehouses. This is similar to the TPC-A benchmark where the cardinality of the Branch, Teller, and Account relations scale with the number of branches. The Item relation
Table 1: Summary of Logical Database

<table>
<thead>
<tr>
<th>Relation Name</th>
<th>Cardinality</th>
<th>Tuple Length</th>
<th>Tuples Per 4K Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>warehouse</td>
<td>W</td>
<td>89 bytes</td>
<td>46</td>
</tr>
<tr>
<td>district</td>
<td>W * 10</td>
<td>95 bytes</td>
<td>43</td>
</tr>
<tr>
<td>customer</td>
<td>W * 30K</td>
<td>655 bytes</td>
<td>6</td>
</tr>
<tr>
<td>stock</td>
<td>W * 100K</td>
<td>306 bytes</td>
<td>13</td>
</tr>
<tr>
<td>item</td>
<td>100K</td>
<td>82 bytes</td>
<td>49</td>
</tr>
<tr>
<td>order</td>
<td></td>
<td>24 bytes</td>
<td>170</td>
</tr>
<tr>
<td>new-order</td>
<td></td>
<td>8 bytes</td>
<td>512</td>
</tr>
<tr>
<td>order-line</td>
<td></td>
<td>54 bytes</td>
<td>75</td>
</tr>
<tr>
<td>history</td>
<td></td>
<td>46 bytes</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 2: Summary of Transactions

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Minimum %</th>
<th>Assumed %</th>
<th>Selects</th>
<th>Updates</th>
<th>Inserts</th>
<th>Deletes</th>
<th>Non-Unique Select</th>
<th>Join</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Order</td>
<td>*</td>
<td>43</td>
<td>23</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Payment</td>
<td>43</td>
<td>44</td>
<td>4.2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>Order Status</td>
<td>4</td>
<td>4</td>
<td>11.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>Delivery</td>
<td>4</td>
<td>5</td>
<td>130</td>
<td>120</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stock Level</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

does not scale with the number of warehouses. The Order, Order-Line, and History relations grow indefinitely as orders are processed.

There are five transaction types in TPCC as listed in table 2. Further details of the specific relations accessed and the access skew are given in Sections 2.2 and 3. The New Order transaction places an order for 10 items from a warehouse, inserts the order, and for each item updates the corresponding stock level. The Payment transaction processes a payment for a customer and updates balances and other data in the Warehouse, District and Customer relations. The customer can be specified either by a unique customer-id, or by a name. In the latter case, on the average three customers qualify from which one is selected. When specified by customer-id, this transaction is of comparable complexity to the TPC-A transaction. The Order Status transaction returns the status of a customer's last order. As in the Payment transaction, the customer may be specified by the customer-id or by name. Each item in the last customer order is examined. The Delivery transaction processes orders corresponding to 10 pending orders, one for each district, with 10 items per order. The corresponding entry in the New-Order relation is deleted. Finally, the Stock Level transaction examines the quantity of stock for the items ordered by each of the last 20 orders in a district.

Table 2 summarizes the transactions based on the percent of the workload each transaction comprises, and the number of selects, updates, inserts, deletes, non-unique selects, and joins for a
relational model. There is a column for minimum percent of workload and a column for assumed percent of workload. The benchmark specifies a minimum percent for all the transaction types except the New Order transaction. The benchmark metric is the number of New Order transactions processed per minute, hence, it is desirable to set the percent New Order as high as possible (45%) taking into account that the size of the New-Order relation will grow without bound unless the relative rate of Delivery transactions is sufficient to delete the entries in the New-Order relation at the same rate that the New-Order transaction inserts them. The third column in the table is the percent of the workload mix that we have assumed for all studies in this paper. We have assumed the percent of Delivery transaction is 5% to ensure that the size of the New-Order relation remains small since our simulations must maintain the contents of the relation as the simulation proceeds. Note, the percent New-Order versus Delivery is a key parameter of this benchmark and should be tuned carefully to achieve the maximum New-Order transactions per second. If the percent New-Order is 15% and the percent Delivery is 4% then the New-Order relation will grow without bound causing more misses on the New-Order relation to occur and a need for more storage. The join is an equi-join, where the two relations involved each have at most 200 tuples that meet the selection predicate. Further description of each of these transactions is found in section 2.2.

2.2 Transaction Access Patterns

In this section we summarize the access patterns for each database call of each transaction. For each transaction we first list how the random variables are generated, and then list the database operations made by that transaction in a simplified pseudocode. Although our pseudocode is not in SQL it succinctly conveys the function of each transaction. The TPC-C specification includes sample code [9] for each transaction. In the description of how the input data is generated many of the tuple-ids are generated from the NU() function. We define and simulate this function in section 3, for now just view this as a non-uniform distribution.

New Order Transaction

This transaction places an order that consists of an average of 10 items. The input is generated as follows:

- House-id: uniform
- Dist-id: uniform
- Customer-id: NU(1023,1,3000)
- Number of items: uniform(5,10)
- Item-id: NU(8191,1,100000)

The benchmark specifies that there are 10 districts per warehouse, and each district has one terminal. All transactions initiated by a terminal use that terminal's district and warehouse number. Since we are not explicitly modelling the terminals, we assume the house-id and dist-id are uniformly
distributed. This assumption is reasonable since each terminal is submitting requests at the same rate.

Below we list the simplified format of the New-Order transaction:

1. Select(whouse-id) from Warehouse
2. Select(dist-id, whouse-id) from District
3. Update(dist-id, whouse-id) in District
4. Select(customer-id, dist-id, whouse-id) from Customer
5. Insert into Order
6. Insert into New-Order
7. For each item (10 items):
 (a) Select(item-id) from Item
 (b) Select(item-id, whouse-id) from Stock
 (c) Update(item-id, whouse-id) in Stock
 (d) Insert into Order-Line
8. Commit

In the benchmark, a district is associated with a specific warehouse, hence, the key used to uniquely identify a district tuple is composed of two fields: (dist-id, whouse-id). Similarly, the key used to uniquely identify a customer tuple is composed of three fields: (customer-id, dist-id, whouse-id). In the benchmark the number of items ordered is uniformly distributed between 5 and 15. We assume all transaction have a fixed number of items ordered equal to 10. This assumption also has no effect on our results since we only report mean miss rates and throughputs. For each of the 10 items ordered, the supplying warehouse is the local warehouse 99% of the time and uniformly distributed among all the other warehouses 1% of the time. The implication of a having a remote warehouse involved is that the tuple retrieved from the stock relation may be on a different node if the warehouse is remote and the database is configured across a distributed system. We will assume that calls to remote warehouses located on the same node incur the same overhead as a call to the local warehouse. To uniquely identify a stock tuple the key has two fields: (item-id, whouse-id). A specific Stock tuple contains the number of that particular item in stock at that particular warehouse. In addition, the benchmark specifies that 1% of the transactions should be rolled back to simulate entry errors. We ignore this aspect.

Payment Transaction

This transaction processes a payment by one of the customers. There are two cases. In the first case, which occurs 40% of the time, the customer is selected by customer-id. In the second case,
which occurs 60% of the time, the customer is selected by last name. Due to the method specified by the benchmark for the population of the database (each district has 3000 customers but only 1000 names), on average three customers will have the same last name, the actual customer chosen is determined by selecting all customers with that name, sorting on the first name, and taking the middle one. To define the accesses to the relation we will assume that this non-unique select has the same overhead as 3 selects.

Regardless of the method used for selecting the customer, 15% of the transactions assume the customer is paying through a warehouse other than the customer’s home warehouse. The input is generated as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>whouse-id</td>
<td>uniform</td>
<td></td>
</tr>
<tr>
<td>dist-id</td>
<td>uniform</td>
<td></td>
</tr>
<tr>
<td>case 1</td>
<td>customer-id</td>
<td>NU(1023,1,3000)</td>
</tr>
<tr>
<td>case 2</td>
<td>customer-name</td>
<td>NU(255,lbound,ubound)</td>
</tr>
</tbody>
</table>

Note that, in case two, the customer name is drawn from the NU function from lbound to ubound. We assume one of three (lbound,ubound) pairs are chosen with equal probability as (1,1000), (1001,2000), (2001,3000). In actuality there are 1000 unique names per district and the remaining 2000 names are uniformly drawn from these 1000 names. Hence, when a customer is specified by name on average three tuples satisfy the predicate and are distributed across the 3000 tuples in some manner similar to above. We have chosen the distribution above to keep the simulations simple. Below we list the SQL calls made by the transaction in a simplified format.

1. Select(whouse-id) from Warehouse
2. Select(dist-id,whouse-id) from District
3. (a) Case 1: Select(customer-id,dist-id,whouse-id) from Customer
 (b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer
4. Update(whouse-id) in Warehouse
5. Update(dist-id,whouse-id) in District
6. Update(customer-id,dist-id,whouse-id) in Customer
7. Insert into History
8. Commit

Order Status Transaction

This transaction determines the status of a customer’s last order, returning information about the customer, and a summary of the order. The customer is determined as in the Payment transaction, i.e. 60% of the time by name and 40% by customer id.
whouse-id uniform
dist-id uniform
case 1: customer-id NU(1023,1,3000)
case 2 customer-name NU(255,1bound,ubound)

1. (a) Case 1: Select(customer-id,dist-id,whouse-id) from Customer
 (b) Case 2: Non-Unique Select(customer-name,dist-id,whouse-id) from Customer
2. Select(Max(order-id),customer-id) from Order
3. for each item in the order:
 (a) Select(order-id) from Order-Line
4. Commit

The database call "Select(Max(order-id),customer-id) from Order" is the selection of the tuple in the Order relation that is the most recent order placed by the customer. This could be implemented as a max aggregate, or an order by descending order-id and return only the first tuple. Since the Order relation keeps on growing without bound, both of these approaches could be expensive. This could be implemented using an ordered multi-keyed index so that correct tuple can be fetched in just one index look up. Hence, in our studies we assume this requires the overhead of a single select.

Delivery Transaction

This transaction processes a delivery. The transaction assumes that during a delivery the oldest order not yet delivered for each district within a warehouse is processed. Hence, there are really 10 deliveries per delivery transaction. The benchmark specifies that this transaction has less stringent response time constraints and can be executed in batch mode, i.e. deferred execution. The only input to the transaction is the whouse-id which is uniformly distributed. The transaction proceeds as follows:

1. For each district within the warehouse (i.e. ten times):
 (a) Select(Min(order-id),whouse-id,dist-id) from New-Order
 (b) Delete(order-id) from New-Order
 (c) Select(order-id) from Order
 (d) Update(order-id) Order
 (e) For each item in the order (i.e. ten times):
 i. Select(order-id) from Order-Line
 ii. Update(order-id) Order-Line
 (f) Select(customer-id) from Customer
 (g) Update(customer-id) Customer
2. Commit
The database call "Select(Min(order-id), warehouse-id, dist-id) from New Order" is the selection of
the tuple in the New-Order relation that is the oldest order for that district and warehouse in the
New-Order relation. As in the Max select in the Order Status transaction, this could be implemented
using a multi-keyed index so that the correct tuple can be fetched in just one call. The customer id
used in the Select from Customer is obtained from the tuple in the Order relation.

Stock Level Transaction

This transaction determines the number of items sold by orders from the last 20 orders of a
specific district that have a stock level below a certain threshold. The inputs are the dist-id, which
is uniformly distributed, and the threshold. Below we quote the sample SQL code directly from the
tpcr document [9] so that we do not confuse the query by oversimplification.

```
SELECT d.next-o.id INTO :oid
FROM District
WHERE d.w.id = :w.id AND d.id = :d.id :

SELECT COUNT(DISTINCT (s.i.id)) INTO :stock.count
FROM Order-Line, Stock
WHERE
  oL.w.id = :w.id AND
  oL.d.id = :d.id AND oL.o.id < :oid AND
  oL.o.id > (:oid - 20) s.w.id = :w.id AND
  s.i.id = oL.i.id AND s.quantity < :threshold :n
```

In the above query, oL.d.id specifies the dist-id attribute of a tuple in the orderline relation, oid is
the order-id attribute, iid is the item attribute, and w.id is the warehouse attribute. The first select
acquires the current order number for the district and places it in the variable :oid, which stands
for order-id. Having obtained the current order-id for that district, the query computes a join of the
Order-Line and Stock relations to find the number of distinct items ordered in the district's last 20
orders which have a stock quantity below the specified threshold.

Assuming an index on the order-id field of the Order-Line relation and a two keyed index on the
warehouse-id and item-id of the stock relation, the query results in an average of 200 Order-Line and
Stock tuples each being fetched.

To summarize the access patterns of the five transaction we list the number of accesses to each
relation for each transaction type and the average number of accesses per transaction in Table 3; the
latter assumes the percentages for each transaction listed in Table 2. Within the table, the notation
$U(x)$ signifies that x tuples are chosen Uniformly from the relation, $NU(x)$ denotes NonUniform
random selection of x tuples using the NU function, $A(x)$ denotes x tuples are Appended to the
relation, and $P(x)$ denotes x tuples are chosen where the tuples chosen were recently accesses by
Past behavior (in other words there is a form of temporal locality). Note that the tuples accessed
Table 3: Summary of Relation Accesses

<table>
<thead>
<tr>
<th>Relation</th>
<th>New Order</th>
<th>Payment</th>
<th>Order Status</th>
<th>Delivery</th>
<th>Stock Level</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>warehouse</td>
<td>U(1)</td>
<td>U(1)</td>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
</tr>
<tr>
<td>district</td>
<td>U(1)</td>
<td>U(1)</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>customer</td>
<td>NU(1)</td>
<td>NU(2.2)</td>
<td>NU(2.2)</td>
<td>P(10)</td>
<td></td>
<td>1.524</td>
</tr>
<tr>
<td>stock</td>
<td>NU(10)</td>
<td></td>
<td></td>
<td>P(200)</td>
<td></td>
<td>12.4</td>
</tr>
<tr>
<td>item</td>
<td>NU(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>order</td>
<td>A(1)</td>
<td></td>
<td>P(1)</td>
<td>P(10)</td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>new-order</td>
<td>A(1)</td>
<td></td>
<td></td>
<td>P(10)</td>
<td></td>
<td>0.49</td>
</tr>
<tr>
<td>order-line</td>
<td>A(10)</td>
<td></td>
<td>P(10)</td>
<td>P(100)</td>
<td>P(200)</td>
<td>13.3</td>
</tr>
<tr>
<td>history</td>
<td>A(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43</td>
</tr>
</tbody>
</table>

by the Order-Status, Delivery, and Stock-Level transactions are more likely to be buffer pool hits since they are for tuples that have been recently put in the buffer pool by the New-Order transaction. Many of the tuple-ids are generated from the NU() function. We define and simulate this function in the next section.

3 Analysis of Data Access Skew in TPC-C

The TPC-C benchmark assumes access to the tuples are skewed, i.e. within a relation some tuples are referenced more frequently than others. In this section we define and simulate the non uniform random number function, as specified by the TPC-C documents, used for the generation of tuple id's. The non-uniform random number generating function, NU(), which we paraphrase from the benchmark specification [9], is defined as follows:

\[NU(A, x, y) = (\{rand(0, A) \mid rand(x, y)\} + C) \% (y - x) + x \]

where:

- \(\text{rand}(x, y) \) denotes a uniformly distributed integer random number in the closed interval \([x..y]\).
- \(C \) is a constant within \([0..A]\).
- \(A \) is a constant chosen according to the size of the range \([x..y]\).
- \(N \% M \) stands for \(N \) modulo \(M \).
- \(N \mid M \) stands for the bitwise logical OR of \(N \) and \(M \).
For the remainder of this paper we assume C equals zero (the TPCC standard document allows an arbitrary choice of C within [0, A]). We choose A and y according to the specifications for the tuple id being generated.

First we consider accesses to the stock and item relations. All tuple id’s for accessing these relations are drawn from the NU(8191,1,100000) distribution. In Figure 3 we plot the probability mass function (PMF) for this distribution as obtained from simulating one billion samples. The plot shows the non-uniformity in access and the periodicity of the access probability in the first parameter (8191) of the NU function above. The number of cycles equals the (floor of the) third parameter divided by the first parameter of the NU function, or 12 cycles for this case. In the Appendix we show that if the third parameter of the NU function is a power of two, then these cycles are exact, and we derive a closed form expression for the resulting PMF. Figure 3 is hard to interpret because of the large number (100,000) of points; hence, we plot the same distribution for tuples 1 to 10,000 in Figure 4. In this figure, the non-uniformity within a cycle (8191 points) is clear.

While the non-uniformity of access is apparent in Figure 4, the degree of skew is not clear. Let \(\alpha_i \) be the probability of accessing tuple \(i \). Let \(\beta_i \) be the fraction of the relation represented by that tuple. Note \(\beta_i = \beta_j \) \(\forall i,j \) for stock tuples. In Figure 5 we order the tuples by increasing order of \(\alpha \) (increasing order of hotness) and plot \(\sum \alpha_i \) versus \(\sum \beta_i \), i.e. the cumulative probability of access versus the cumulative fraction of the relation. If a relation has no skew the curve would be linear, hence the more convex the curve is, the more skew there is. For the moment ignore the top two curves, and focus on the lower curve which represents the access skew at the tuple level. The graph shows that 16% of the accesses go to about 80% of the tuples, or alternatively, 84% of the accesses go to about 20% of the tuples. There is even more skew in the tail of the distribution, so that about 71% of the accesses go to about 10% of the (hottest) tuples and about 39% of the accesses go to about 2% of the (hottest) tuples.

In most typical databases data is stored in pages, hence we need to determine the skew at the page level. We first assume tuples are packed into pages in sequential order with the maximum number of whole tuples that fit per page. We assume the remainder of the page is wasted. For the stock relation 13 (26) tuples fit in each 4K (8K) page.

Again, we order the pages by frequency of access and plot the cumulative probability of access versus the cumulative fraction of the database in Figure 5 (top two curves). The top curve is for an 8KByte page size and the second curve is for a 4KByte page size. For a 4KByte page size, we see that 25% of the access go to 80% of the data, or viewed the other way 75% of the accesses go to 20% of the data. This is similar to the so called “80-20” rule where 80% of the accesses go to 20% of the data. Again, there is a more skew in the tail of the distribution and about 59% of the accesses go to about 10% of the hottest pages, and about 28% of the accesses go to about 2% of the pages. The smaller page size results in more skew than the larger page size since there is less of a chance to
spread out the hot tuples among the pages

The milder skew at the page level leads to the question of whether the tuple level skew can be obtained at the page level. Packing tuples into pages in sequential order spreads out hot tuples among all the pages of the relation. A simple optimization is to first sort the tuples from hottest to coldest and then pack them into pages in that order. Since the distribution parameters for TPC-C are known a priori and are static in time, this could be done. (In this context we note that the TPC-C standard (Clause 1.4.1) allows clustering of tuples within pages.) This technique would also work for any workload where we know the distribution of accessing tuples within the relations of the database, and where the distribution does not vary with time. (We note, however, that in many real workloads, while there is considerable skew in data access, the access distribution is often not static in time.) The bottom curve in Figure 5 is the resultant skew when this optimized packing of tuples is used, and is virtually indistinguishable from the tuple level skew. Hence, the optimized packing results in more skew at the page level which should result in lower miss rates in the buffer pool. As a further note, this optimized tuple to page packing approach was insensitive to page size.

Accesses to the item relation exhibits a similar skew except there is less skew for the non-optimized packing approach since 49 (99) tuples fit per 4K (8K) page.

Access to the customer relation is less skewed than the stock and item relations since tuples are accessed by both tuple-id and customer-name. Hence, there are two different access patterns which are superimposed upon the relation. If the customer-id is used as the selection key, one tuple is selected from the NU(1023,1,3000) distribution. If the customer-name is used, we make the simplifying assumption that the customer name is selected from one of the NU(255,1,1000), NU(255,1001,2000) and NU(255,2001,3000) distributions with equal probability. Hence, as can be derived from the transaction access patterns as specified in section 2.2, 41.86% of the accesses to the customer relation use the NU(1023,1,3000) distribution and 58.14% are divided equally among NU(255,1,1000), NU(255,1001,2000), and NU(2001,3000) distributions. In Figure 6 we plot the PMF for the customer relation and in Figure 7 we plot the $\sum \alpha_i$ versus $\sum \beta_i$. We note that there is considerably less skew for the customer relation than for the Stock relation.

4 LRU Buffer Simulation

In this section we outline our buffer simulation model and present miss rates obtained from our model. We simulated the buffer pool for the TPC-C benchmark assuming an LRU replacement policy. We hypothesize that more sophisticated replacement policies could result in an even larger difference between optimized packing of tuples and non-optimized packing of tuples since they should be able to capitalize more on the access skew. In our simulations we collected confidence intervals using batch means with 30 batches per simulation and a batchsize of 100,000 samples. All results (i.e. the miss
rates of each relation) have confidence intervals of 5% or less at a 90% confidence level.

In the buffer model, we simulate transactions entering the system sequentially, and do not consider the case where multiple transactions may be in the system at the same time. The presence of concurrent transactions does not change the buffer hit ratio significantly because the fraction of pages accessed by any transaction is small compared to the buffer size. We include concurrent transactions in the throughput model in Section 5.1. When a transaction enters it is chosen as one of the five types according to the distribution for each type. Each transaction generates tuple requests and inserts as specified in Section 2.2. The simulation keeps track of the last order placed by each customer, the last 20 orders for each district, and which tuples are in the New-Order relation. This information is used by the the Order-Status, Delivery, and Stock-Level transactions. The output from the simulation is the miss rates for each relation summed over all transaction types, and also the miss rates for the accesses by the Order-Status, Delivery, and Stock-Level transactions in isolation to be used as inputs for the throughput model.

In Figure 8 we plot the miss rates versus the buffer size for the Stock, Customer, and Item relations. The other relations all have significantly lower miss rates. We include curves for both the sequential packing of tuples into pages and the optimized packing of tuples. The curves are, from top to bottom, the Customer relation, Stock relation, and Item relation. For each of the relations, the optimized packing of tuples results in significantly lower miss rates. There are two reasons why the Customer relation exhibits a larger miss rate than the Stock relation even though the Customer relation is the smaller of the two. The first is that the customer relation has less skew as shown in Section 3. The second is that the stock relation is accessed more frequently as shown in Table 3. The Item relation has a much lower miss rate since the relation is much smaller than the stock and customer relations due to the fact that the item relation does not scale with the number of warehouses.

The optimal packing approach results in significantly lower miss rates than the sequential packing approach. For example, the miss rate for the stock relation for a buffer size of 52M is 30% lower in absolute terms for the optimized packing approach than for the sequential approach. The miss rate for the stock relation averaged over all buffer sizes considered is 13% lower in absolute terms for the optimized packing approach than for the sequential approach. This significantly lower miss rate translates directly to a lower I/O rate, and hence better performance. Similar improvements are seen for the Customer relation miss rates and to a lesser extent for the Item relation.

We assume 20 Warehouses at a node. The reason for choosing the case of 20 Warehouses relates to the throughput model in Section 6, where it is estimated that about 20 Warehouses could be supported by a 10 MIPS processor. Beyond a sufficiently large number of warehouses, the buffer hit characteristics approximately scale with the number of Warehouses. The reason that the scaling is not exact is that the Item relation does not scale with the number of Warehouses, but it's effect diminishes with an increase in the number of Warehouses. The Warehouse and District relations are sufficiently small that they fit in the buffer (miss rate 0%) for all simulations considered.
Table 4: Throughput Model Summary: Single Node

<table>
<thead>
<tr>
<th>resource</th>
<th>parameter</th>
<th>n</th>
<th>overhead</th>
<th>NewOrder</th>
<th>Payment</th>
<th>Status</th>
<th>Delivery</th>
<th>Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>select</td>
<td>1</td>
<td>20K</td>
<td>23</td>
<td>4.2</td>
<td>13.2</td>
<td>130</td>
<td>1</td>
</tr>
<tr>
<td>CPU</td>
<td>update</td>
<td>2</td>
<td>20K</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>insert</td>
<td>3</td>
<td>20K</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>commit</td>
<td>4</td>
<td>20K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>initIO</td>
<td>5</td>
<td>40K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CPU</td>
<td>application</td>
<td>6</td>
<td>5K</td>
<td>$1 + n_v^c + 10(n_d + n_s)$</td>
<td>$1 + 2.2(mc)$</td>
<td>$2.2(mc)$</td>
<td>$1 + 10(n_d + n_s)$</td>
<td>$1 + 130(ml)$</td>
</tr>
<tr>
<td>CPU</td>
<td>send/receive</td>
<td>8</td>
<td>15K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>prepCommit</td>
<td>9</td>
<td>40K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>initTransaction</td>
<td>10</td>
<td>50K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>releaseLocks</td>
<td>11</td>
<td>35K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>non-unique-select</td>
<td>12</td>
<td>50K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CPU</td>
<td>join</td>
<td>13</td>
<td>2000K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>disk</td>
<td>IO</td>
<td>14</td>
<td>25ms</td>
<td>$mc + 10(n_d + n_s)$</td>
<td>$2.2(mc)$</td>
<td>$2.2(mc)$</td>
<td>$10(mc + n_d + n_s)$</td>
<td>$1 + 130(ml)$</td>
</tr>
</tbody>
</table>

5 System Model and Performance Estimates

5.1 Throughput Model Description

In this section we describe our throughput model. The parameter values used in the model are similar to those in [3, 5]; they do not reflect any particular system, but are intended to be somewhat representative. The objective is to identify trends rather than providing specific throughput or price-performance estimates. Our model incorporates both the CPU and the data disks. We assume that the system is configured with a sufficient number of disk arms to ensure disk arm utilization remains below 50% and hence the CPU is the bottleneck. To calculate CPU utilization the model sums the average CPU demand per transaction, divides by the MIPS rating of the processor, and then multiplies by the throughput. Our primary metric is maximum throughput which we obtain by fixing the CPU utilization and calculating the throughput. To calculate the disk utilization we sum the average disk demand per transaction in milliseconds, divide by the number of disk arms, and then multiply by the system throughput. We assume that there is a separate log disk.

In table 4 we summarize the assumed parameter values and visit counts for each transaction type for a single node system. The column label n is the subscript of the parameter. In the equations below we will use o_n to denote the overhead for a parameter n call. We define visit count as the number of times a transaction requires a certain operation per transaction type. The visit counts are in the columns heading $V_1 \ldots V_5$. We define $V_{i,j}$ to be the visit count for transaction i to operation j.

Most of the parameters in the table are self evident from the names with the following possible exceptions. The parameter application is for application code between SQL calls, the parameter send/receive is for the CPU overhead at one node to send and receive a message across the network.
the parameter releaseLocks is for the release lock portion of the commit phase, prepCommit is for the
prepare to commit portion of a 2 phase commit, and initIO is the CPU overhead for initiating
an I/O. The overhead for releasing locks is obtained by summing the overhead to release read locks
and write-locks times the number of locks held by each transaction type weighted by the percent of
the workload comprised by each transaction type. We assume an overhead of 1K instructions for
releasing each lock.

The parameters mc, mi, ms, mo, and ml found in V_{1,6} and V_{1,14}, i \in 1, \ldots, 5, are the miss rates
for the Customer, Item, Stock, Order, and OrderLine relations respectively. These miss rates are
obtained from the buffer model. Note that for completeness we could have also included the miss
rates for the Warehouse, District and New-Order relations in the performance estimates, but these
miss rates are always negligibly small and hence are omitted from the table.

The overhead for the non-unique select is based on the fact that on average three values are
returned and need to be sorted. The overhead for the join is estimated as follows. On average there
are 200 items ordered by the last 20 order transactions and hence a range scan returning an average
of 200 items is invoked to create a temporary table for the outer relation. Each one of these tuples
will join with exactly one tuple from the inner relation. Assuming that appropriate indexes exists on
the inner relation, each outer relation tuple requires an indexed select on the inner relation. Finally,
the result must be sorted to eliminate duplicate items. We assume the overhead for the range scan is
5K per tuple, the overhead for the indexed select is 5K instructions per tuple, and the overhead for
the final sort is 40K resulting in a total CPU overhead of 2040K instructions.

In table 6 we summarize the visit counts which differ from the single node case for a distributed
environment when the Item relation is replicated across all nodes, i.e. we include remote calls and
distributed commits. In table 7 we summarize the visit counts assuming the Item relation is not
replicated. The visit counts for the Payment transaction are the same for both replication and no
replication since the Payment transaction does not access the Item relation. Note that only the New-
Order and Payment transactions differ from the single node case since the other transaction only
access local warehouses as specified by the benchmark.

The notation found in tables 6 and 7 is defined in table 5. The values for these terms are derived in
Appendix 1.

We first explain the terms when the Item relation is replicated, i.e. table 6. In this case all
accesses to the Item relation are local because the relation is accessed read only. We assume that
the distributed Concurrency Control (CC) protocol allows retention of read locks across transactions,
and only requires a broadcast/semicast when acquiring an exclusive lock. 2

2Such a distributed CC protocol is optimized for read-only sharing of replicated data, and fares poorly when there
is significant write sharing. Many distributed CC protocols with replication are optimized for significant write sharing,
and consequently are worse for read-only sharing. See [1, 2] for a good summary of distributed CC protocols and [3] for
Table 5: Definition of Notation

<table>
<thead>
<tr>
<th>symbol</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC_{stock}</td>
<td>expected number of calls for obtaining and updating stock tuples</td>
</tr>
<tr>
<td>RC_{cust}</td>
<td>expected number of calls for obtaining and updating customer tuples</td>
</tr>
<tr>
<td>RC_{item}</td>
<td>expected number of calls for obtaining and updating item tuples</td>
</tr>
<tr>
<td>U_{stock}</td>
<td>expected number of unique remote sites that supply stock tuples</td>
</tr>
<tr>
<td>U_{cust}</td>
<td>expected number of unique remote sites that supply customer tuples</td>
</tr>
<tr>
<td>U_{item}</td>
<td>expected number of unique remote sites that supply item tuples</td>
</tr>
<tr>
<td>$U_{item+stock}$</td>
<td>expected number of unique remote sites that supply item or stock tuples</td>
</tr>
<tr>
<td>L_{stock}</td>
<td>probability that all stock tuples are supplied from the local warehouse</td>
</tr>
</tbody>
</table>

The visit counts for four parameters change: commit, send/receive, prepCommit, and initIO. Although portions of these overheads actually occur at the other nodes, all the other nodes will be using the modeled node for remote calls, so by symmetry we can sum the overhead at the modeled node.

We first consider the NewOrder transaction. The only remote calls are for retrieving and updating stock tuples. The number of remote nodes involved in a 2 phase commit is U_{stock}. The visit counts for commit and initIO are each increased by U_{stock} since a commit must be done at each node involved. The count for prepCommit is changed from zero to $U_{stock} + 1 - L_{stock}$ since the prepare portion of the two phase commit must be done at every site plus the coordinator minus the probability that the transaction is purely local. The count for send/receive is change from zero to $4 U_{stock} + 2 RC_{stock}$ since we assume 2 round trip messages must be sent to each unique remote node involved in the 2 phase commit, and one round trip message for each remote call for retrieving or updating a stock tuple. Note the multiplier is 4 for U_{stock} (2 for RC_{stock}) not 2 (1) since we model the overhead at all nodes involved on the coordinator by symmetry arguments.

For the Payment transaction the only remote calls are for obtaining and updating customer tuples. The number of unique remote sites involved in a two phase commit for the Payment transaction is U_{cust}. The new visit counts for the payment transaction are found in table 6 and are expressed in terms of the expectations expressed above.

We now explain the terms when the Item relation is not replicated, i.e. table 7. The visit counts for the Payment transaction are the same as for the replicated case since the Payment transaction does not access the Item relation. The visit counts for the NewOrder transaction differ since the 10 retrievals of the item tuples may require a remote call in addition to the remote calls for stock tuples. The item tuples are accessed read only, hence a 2 phase commit is need only for those nodes supplying a stock tuple. The number of remote nodes involved in the 2 phase commit is U_{stock}. Thus, the visit counts for initIO and prepCommit are the same as when the item relation is replicated. A 1 phase commit is necessary at each node that supplies an item tuple but no stock tuples. Hence, the number of nodes involved in a 1 phase commit is $U_{item} = U_{stock} + U_{item} - U_{stock}$. Relative to the replicated case, an analytical comparison of distributed CC with data replication.

15
Table 6: Throughput Model Summary: Multi Node with Replication

<table>
<thead>
<tr>
<th>resource</th>
<th>parameter</th>
<th>n</th>
<th>overhead</th>
<th>NewOrder V_i</th>
<th>Payment V_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>commit</td>
<td>5</td>
<td>30K</td>
<td>$1 + U_{stock}$</td>
<td>$1 + U_{cust}$</td>
</tr>
<tr>
<td>CPU</td>
<td>initIO</td>
<td>6</td>
<td>5K</td>
<td>$1 + mc + 10(mi + ms) + U_{stock}$</td>
<td>$1 + 2.2 mc + U_{cust} + U_{cust}$</td>
</tr>
<tr>
<td>CPU</td>
<td>send/receive</td>
<td>8</td>
<td>10K</td>
<td>$4 U_{stock} + 2 RC_{stock}$</td>
<td>$2 RC_{cust} + 4 U_{cust}$</td>
</tr>
<tr>
<td>CPU</td>
<td>prepCommit</td>
<td>9</td>
<td>15K</td>
<td>$U_{stock} + 1 - L_{stock}$</td>
<td>U_{cust}</td>
</tr>
</tbody>
</table>

The visit count for send/receive is increased by RC_{item} for obtaining item tuples and by $2U_{item}$ for the round trip message necessary for each node that participates in a one phase commit. The visit count for commit is changed to include commit overhead at all remote nodes $U_{stock} + U_{item}$, whether they be involved in a 1 phase or 2 phase commit.

Let $V_{i,n}$ equal the visit count of a type i transaction to the CPU as a type n request. The values of $V_{i,n}$ are obtained from tables 4, 6, or 7 depending on whether the system being modeled is a single node system, distributed system with the Item relation replicated, or a distributed system without replication of the Item relation. Let λ equal the system throughput and α, denote the fraction of the workload from transactions of type i. The utilization of the CPU is calculated as:

$$
Util_{CPU} = \frac{\lambda \left(\sum_{i=1}^{5} \sum_{n=1}^{13} \alpha_i \cdot V_{i,n} \cdot \alpha_n \right)}{MIPS}
$$

Let DA = the number of disk arms. The utilization of the disk is calculated as:

$$
Util_{disk} = \lambda \left(\frac{\sum_{i=1}^{5} \alpha_i \cdot V_{i,14} \cdot \alpha_{14}}{DA} \right)
$$

16
Table 7: Throughput Model Summary: Multi Node No Replication

<table>
<thead>
<tr>
<th>resource</th>
<th>parameter</th>
<th>n</th>
<th>overhead</th>
<th>NewOrder V_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>commit</td>
<td>5</td>
<td>30K</td>
<td>$1 + U_{stock} + \text{item}$</td>
</tr>
<tr>
<td>CPU</td>
<td>initIO</td>
<td>6</td>
<td>5K</td>
<td>$1 + mc + 10(mi + ms) + U_{stock}$</td>
</tr>
<tr>
<td>CPU</td>
<td>send/receive</td>
<td>8</td>
<td>10K</td>
<td>$2RC_{stock} + 2RC_{item} + 4U_{stock} + 2U_{item}$</td>
</tr>
<tr>
<td>CPU</td>
<td>prepCommit</td>
<td>9</td>
<td>15K</td>
<td>$U_{stock} + 1 - L_{stock}$</td>
</tr>
</tbody>
</table>

5.2 Single Node Performance Estimates

In this section we present our results for a single node system running the TPC-C benchmark, for the parameter values and assumptions given above. We assume the MIPS rating of the processor is 10 MIPS. We obtain the maximum throughput by fixing the maximum CPU utilization at 80% and calculating the throughput using the throughput model outlined above. We then obtain the number of disks needed by fixing the maximum disk utilization at 50% and finding the minimum number of disks such that disk utilization is less than or equal to 50%. Note that typical configurations are designed so that the average disk utilization is lower than the 50% we assume, so as to take into account variance in the disk load (for example see [8]). However, in a benchmark environment a higher disk utilization may be permissible because of a smaller variance in the disk load. All experiments assume a 4K page size.

In Figure 9 we plot the maximum throughput in new-order transactions per minute versus buffer size. The curves from top to bottom are for optimized packing of tuples into pages and non-optimized packing of tuples into pages.

The maximum percentage difference between the methods occurs at a buffer size of 44 megabytes where the optimized workload results in a 2.5% higher throughput relative to the non-optimized workload. The average throughput improvement (averaged over all 64 buffer sizes plotted in Figure 9 is 1.0% relative to the non-optimized workload. Hence, based on maximum throughput there is little incentive to pack all the hot tuples into separate pages versus just loading the database in sequential order.

In Figure 10 we plot the cost per transaction/minute versus buffer size, where we define cost as...
the cost of the memory, disks (including sufficient storage space for all relations), and the processor. We emphasize that this is not the cost as specified by the TPC-C benchmark since it does not include software cost, maintenance cost, terminal cost, etc. The intent is to estimate the optimal database memory buffer size in the trade-off between memory and disks. The storage cost is computed by summing the storage needs for the Warehouse, District, Customer, Stock, and Item relations as specified in Table 1. Assuming 20 warehouses per node (which leads to about 80% CPU utilization), the space required is 1.1 Gbytes. In addition, we must include sufficient storage for running the benchmark for 180 8 hour days as specified by the benchmark. Each NewOrder transaction inserts 1 order tuple, and 10 order-line tuples. In addition each Payment transaction inserts one History tuple. By multiplying the transaction rate times the number of bytes needed for these inserts we arrive at approximately 11 Gbytes of disk space per node needed for storing these three relations. This space requirement scales linearly with the throughput. We assume each 3 Gbyte disk costs $5000, the processor costs $10000, and memory costs $100 per megabyte. Although these hardware costs are debatable and will quickly be out of date, they enable us to present a methodology which can be used for determining the optimal price/performance point. This method is beneficial in determining how much memory versus disk arms the system should be configured with.

We first focus on the bottom two curves in Figure 10. These two curves do not include the storage capacity needed for maintaining the Order, Order-Line, and History relations. The top curve of these two is for a workload with sequential packing of tuples into pages, while the bottom curve is for the case of optimal packing of tuples into pages (we will refer to this as optimal packing). The jagged shape of the curves results from the adding of memory until the disk utilization drops sufficiently to configure the system with one less disk and still have a utilization of less than 50%. The lowest point on the y axis for each curve corresponds to the optimal cost/performance point and shows the corresponding amount of database buffer memory. (Note again that this is not the entire system cost.) The lowest points occur for a 154 Mbyte buffer with a value of about $139/tpm for sequential packing, and at 84 Mbytes with a value of about $107/tpm for the optimal packing case. Thus, the optimized packing of tuples results in about a 30% improvement of price performance relative to sequential packing.

The top two curves in Figure 10 include the storage capacity needed for maintaining the Order, Order-Line, and History relations. In this case, adding memory causes the disk utilization to drop sufficiently to configure the system with less disks, but the required storage capacity precludes removal of additional disks. A minimum of 4 disks are required for storage capacity requirements. The lowest points occur at a 52 Mbyte buffer with a value of about $167/tpm for sequential packing, and at 26 Mbytes with a value of about $154/tpm for the optimal packing case. Thus, the optimized packing of tuples results in about an 8% improvement of price performance relative to sequential packing. Put another way, the system is disk bandwidth bound for memory sizes less than 26 megabytes (52) for the optimized (non-optimized) case, and storage capacity bound for larger memory sizes. Hence,
there is no benefit obtained from adding additional memory beyond these points. Note, given the rate at which disk size is currently increasing the system will become disk bandwidth bound in the near future rather than storage capacity bound, in which case the cost/performance difference will become closer to the 30% predicted when storage costs are not included. For example, when a $5000 6 \text{Gbyte}$ disk is assumed the cost/performance improvement resulting form optimal packing is 20%. If a 12 Gbyte disk is assumed the entire database fits on one disk and the cost/performance improvement is 30%.

From this simple model, we conclude that depending on the disk bandwidth to storage capacity ratio, the (hardware cost)/performance ratio may be improved by up to 30% by careful loading of the database, i.e. packing all hot tuples into the same set of pages. Note, this does not take into consideration the cost of the software or software maintenance which when all lumped together will reduce the percent difference significantly.

5.3 Multiple Node System Estimates

In this section we present our results for a multiple node distributed system running the TPC-C benchmark. We assume each node contains 20 warehouses and all data pertaining to the node (except the item relation in the non-replicated case) is located at that node. We consider two cases. The first case is when the item relation is replicated across all sites. Since the item relation is read-only, replication protocols could be optimized for this case resulting in little/no overhead for replica management. Note that in a real database this would not be a trivial task if the Item relation can be changed. The second case assumes that the Item relation is not replicated, but rather partitioned equally among the nodes. In this case, all accesses to the item relation will incur a remote call with probability \(\frac{N-1}{N} \), where \(N \) is the number of nodes in the system. In addition a one-phase commit involving each node that supplies an item tuple is necessary.

In Figure 11 we plot the maximum throughput versus the number of nodes for a buffer size of 102 Mbytes. We only plot results for the optimized packing model; results for the non-optimized model are similar. The top curve is for comparison purposes only, and represents a perfectly linear growth in maximum throughput with the number of nodes. The second curve is for the case where the Item relation is replicated, and the third curve is for the case where the Item relation is not replicated.

The benchmark scales almost linearly when the Item relation is replicated. This excellent scaleup occurs because only 10% of the New-Order transactions and 15% of the Payment transactions involve a remote warehouse. When the Item relation is not replicated the benchmark does not scale as well since each New-Order transaction must make \(10 \left(\frac{N-1}{N} \right) \) remote calls, one for each item ordered. The replicated case has a 10, 30, and 39% higher throughput than the non-replicated case for 2, 10, and 30 nodes respectively. Hence, if the benchmark is to be run on a distributed system, replication of the
Item relation will greatly improve system performance. We should emphasize that this assumes the use of a concurrency protocol (CC) which only requires remote access only when acquiring exclusive locks, i.e. the concurrency control (CC) protocol is optimized for read-only sharing so that no remote calls are made for CC for the replicated item relation. If a protocol optimized for write sharing were used, the performance would drop considerably. For instance if the primary copy protocol [2] were used for replication, there would be little performance gain over the non-replicated system since locks would have to be acquired remotely for each access.

The TPC-C benchmark specifies that for each item ordered in the New-Order transaction only 1% are stocked by a remote warehouse. In addition, the benchmark specifies that 15% of customers making payment via the Payment transaction are making the payment through a remote warehouse. These specifications result in a very low percentage of remote calls and hence the good scale-ups shown for the replicated case shown in Figure 11. We now examine the sensitivity of the results to this assumption. In Figure 12 we plot the maximum throughput versus the number of nodes for different probabilities of ordering items stocked by a remote warehouse in the new order transaction. We see that if the probability of remotely stocked items increases to 1.0, the scale-up decreases by about 44%. Note that even at a probability of remotely stocked items of 1.0, most of the accesses are still local since only 43% of the transactions are New-Order transactions, and of these only the ten stock tuples selected are remote; the warehouse, customer, district, and 10 item tuples selections are all local. The TPC-C benchmark favors distributed systems by having a very small percentage of remote calls.

6 Summary and Conclusion

In this paper we modelled the TPC-C benchmark for single node and multiple node distributed database systems. One key difference of the TPC-C benchmark, from the debit-credit benchmark of TPC-A, is that it includes significant skew (i.e., non-uniform access) within several key relations. By contrast, the TPC-A benchmark has uniform access within each relation, and in particular, each account in the large account relation is accessed with equal probability. As a consequence, in TPC-A each account tuple is accessed infrequently and it is not beneficial to hold them in a memory buffer. Therefore, one focus of this paper was to quantify the access skew in the TPC-C benchmark, and to examine its impact on the optimal system configuration, price-performance and scalability.

To this end, we first quantified the tuple data access skew as specified in the benchmark. Consider the stock relation as an example for quantifying the access skew. At the tuple level we found that about 84% of the accesses go to about 20% of the hottest stock tuples. There is even more skew in the tail of the distribution, so that about 39% of the accesses go to about 2% of the (hottest) tuples. Since the database buffer is typically organized as pages, we next examined the skew at the page level. If tuples are inserted sequentially by key (or randomly) then hot tuples are scattered among
the pages in the database. As a consequence, the skew at the page level is milder than that at the
tuple level. Specifically, about 75% of the accesses go to the hottest 20% of the pages. Again, there is
a more skew in the tail of the distribution and about 28% of the accesses go to about 2% of the
pages. We then considered clustering the hottest tuples into the same pages in an optimal manner. This
is possible for the TPC-C benchmark because the access probabilities are static in time and known
a-priori. If this were done, the resulting skew at the page level is about the same as that at the tuple
level, in terms of the fraction of accesses that go to any specific fraction of data.

Having quantified the access skew, we examined the buffer hit ratio versus buffer size character-
istic, assuming an LRU buffer replacement policy. We quantified this for each relation, both for the
case of sequential assignment of tuples to pages and for that with hot tuples clustered within pages.
Significant differences in the buffer hit ratio was found for these two cases. The specific hit ratios
and the difference for the two cases differs for different relations. In absolute terms it is largest for
the customer relation, but the higher frequency of access to the stock relation makes this relation
dominant.

The results of the buffer model were fed to a throughput model to examine the overall throughput
and optimal memory and disk configuration. The access skew makes the results rather different from
that for the TPC-A benchmark where, as outlined above, buffering any of the account tuples is of
little value. For the TPC-C case, almost all the item tuples, the hotter stock tuples, and some of
the customer tuples are buffered in the estimated optimal configurations. The optimal configurations
depend on the specific costs of disks and memory, specific estimates are given in Section 5.2.

We also found that depending on the disk bandwidth to disk storage capacity ratio, packing hot
tuples into pages may result in significant benefits in terms of price-performance. We note, however,
that this observation applies only to a workload where the access probabilities do not vary with time,
and where they are known a-priori. In this sense, the TPC-C benchmark is not quite representative
of many real workloads, where often neither of these conditions apply.

Finally, we examined the scalability of the TPC-C workload in terms of how the throughput
can be expected to grow with the number of nodes in a distributed database system. Like the
TPC-A benchmark, the TPC-C benchmark is largely partitionable, and close to linear scale-up in
the number of nodes can be obtained. This assumes that the read-only item relation is replicated
across all nodes, and that no remote communication is needed for concurrency control for access
to this read-only relation. Specifically, if the Item relation is replicated, there are few remote calls
in the workload. In the New-Order transaction on average 0.1 stock tuples accessed and updated
are from a remote warehouse. Since the New-Order transaction selects 23 tuples these 0.1 remote
calls comprise only 0.4% of the New-Order transaction workload. In the Payment transaction 0.33
(0.15 x 2.2) customer tuples accessed are from and updated are from a remote warehouse. Since the
Payment transaction selects 4.2 tuples these 0.33 remote calls comprise only 7.9% of the Payment
workload. The Order-Status, Delivery, and Stock-Level transactions access 11.4, 130, and 401 tuples.
respectively. Hence, once weighted by the percentage of the workload only 0.54% of the accesses are to remote data. This low fraction of remote access should be carefully considered when using the TPC-C benchmark to assess the performance of a distributed or clustered database system.

In a real environment, the item relations would be updated albeit infrequently, and provision would have to be made for this. If a general concurrency control protocol was used for this, e.g. the primary copy approach, or if the item relation is not replicated, then the scale-up as a function of the number of nodes is significantly lower, as we have quantified. Even so, the fraction of remote calls is rather small. While we have focussed on examining the TPC-C benchmark, the methodology we have used has more general applicability.

References

Appendix A Derivation of probabilities for throughput model

In this appendix we derive the expected number of remote requests and unique sites involved for a distributed system. These terms are used in Section 5.
We first derive the probabilities assuming the Item relation is replicated and then derive the probabilities assuming no replication.

Appendix A.1 Item relation is replicated

When the item relation is replicated requests for item tuples are always local. The only remote accesses possibly needed are for stock tuples by the NewOrder transaction and for customer tuples by the Payment transaction. We first consider the NewOrder transaction. The NewOrder transaction requests 10 stock tuples, each tuple belonging to a remote warehouse with probability 0.01 as specified by the benchmark. Assume there are \(N \) nodes in the system. Let \(P[S_j] \) be the probability that \(j \) of the 10 stock tuples accessed are remote.

\[
P[S_j] = \binom{10}{j} (P_S)^j (1 - P_S)^{10-j}
\]

where \(P_S = 0.01 \left(\frac{N-1}{N} \right) \), and \(N \) is the number of nodes in the system. The term 0.01 is the probability that an individual stock tuple is from a remote warehouse, and \(\frac{N-1}{N} \) is the probability that the remote warehouse is located on a remote node. We make the simplifying assumption that requests to remote warehouses located on the same node require the same overhead as a local request.

Let \(E[R_s] \) be the expected number of remote stock tuples retrieved made by the NewOrder transaction.

\[
E[R_s] = \sum_{j=0}^{10} j \cdot P[S_j]
\]

Each tuple retrieved is also update, hence the expected total number of remote calls by the NewOrder transaction for reading and writing stock tuples is

\[
RC_{stock} = 2 \times E[R_s]
\]

Let \(L_{stock} \) be the probability that all stock tuples are referenced locally.

\[
L_{stock} = (1 - P_S)^{10}
\]

The number of remote sites involved in the transaction is the number of unique sites from which stock tuples are obtained. We derive this expectation, \(U_{stock} \) in the following theorem.
Theorem:

\[U_{stock} = \sum_{j=0}^{10} P[S_j] (N - 1) \left[1 - \left(\frac{N-2}{N-1} \right)^j \right] \]

Proof:

Assume the system has \(N \) nodes, and that a site generates \(j \) remote requests. Without loss of generality, assume the originating site to be node 1.

Let \(I_i, i \in (2 \ldots N) \) be an indicator variable for the event that node \(i \) supplies at least one tuple. A remote request is satisfied by one of the \(N - 1 \) nodes with equal probability, hence the probability that a node supplies at least one tuple (the probability that the indicator variable is 1) is

\[1 - \left(\frac{N-2}{N-1} \right)^j \]

The expected number of unique sites supplying tuples is

\[\sum_{i=2}^{N} I_i = (N - 1) \left[1 - \left(\frac{N-2}{N-1} \right)^j \right] \]

Unconditioning on the number of remote requests, \(j \), results in the expected number of unique sites:

\[U_{stock} = \sum_{j=0}^{10} P[S_j] (N - 1) \left[1 - \left(\frac{N-2}{N-1} \right)^j \right] \]

We now derive the expectations for the Payment transaction. The only remote accesses are for tuples from the customer relation. The customer is from a remote warehouse with probability 0.15. The customer is selected based on customer-id 40% of the time (hence one tuple is selected), and based on customer-name 60% of the time (hence three tuples are selected). In addition, once the tuple has been selected the update must be written back to the remote node. Hence, the expected number of remote calls for obtaining and updating customer tuples, \(RC_{cust} \), is:

\[RC_{cust} = 0.15 \left(\frac{N-1}{N} \right) \left[(0.4)(1) + (0.6)(3) + 1 \right] \] (8)

At most one remote site may be involved and hence the expected number of unique remote sites from which customer tuples are obtained, \(U_{cust} \), is:
Appendix A.2 Item relation not replicated

We now derive the expectations assuming the item relation is not replicated. The expectations for the Payment transaction are the same as for the replicated case since the Payment transaction does not access the Item relation.

For the NewOrder transaction the number of remote calls for stock tuples, \(RC_{stock} \), expected number of unique sites supplying stock tuples, \(U_{stock} \), and the probability that all stock tuples are supplied locally are the same as when the item relation is replicated. The difference from the replicated case is that the 10 item tuples retrieved may be remote since we assume the item relation is uniformly distributed among the \(N \) nodes.

Let \(P[I_j] \) be the probability that \(j \) of the 10 item tuples accesses are remote.

\[
P[I_j] = \binom{10}{j} (P_I)^j (1 - P_I)^{10-j}
\]

where \(P_I = \frac{N-1}{N} \) is the probability that an item tuple is located on a remote node, and \(N \) is the number of nodes in the system. Let \(E[R_I] \) be the expected number of remote item tuples retrieved made by the New-Order transaction.

\[
E[R_I] = \sum_{j=0}^{10} j P[I_j]
\]

The number of remote calls for item tuples, \(RC_{item} \), is equal to \(E[R_I] \) since the tuples are not updated.

Let \(U_{item} \) be the expected number of unique remote sites involved for fetching the remote item tuples. This expectation is derived as in theorem 1.

\[
U_{item} = \sum_{j=0}^{10} P[I_j] (N - 1) \left[1 - \left(\frac{N - 2}{N - 1} \right)^j \right]
\]

In addition to \(U_{stock} \) and \(U_{item} \) we need the expected total number of unique nodes referenced the NewOrder transaction, \(U_{stock+item} \). The expected number of unique sites given \(j \) stock tuple requests and \(k \) item tuple requests is equal to
(N - 1) \left[1 - \left(\frac{1}{\nabla_{n+1}} \right)^{j+k} \right].

Hence, upon unconditioning on j and k,

\[U_{stock\text{-}item} = \sum_{j=0}^{10} \sum_{k=0}^{10} P[I_j] P[S_k] (N - 1) \left[1 - \left(\frac{N - 2}{N - 1} \right)^{j+k} \right] \] (13)

Appendix A.3 Proof of Periodicity of the NURand Function

In this appendix we show that the NURand(x,0,y) function is periodic if both x and y are a power of 2, x ≤ y. Although the function is not exactly periodic when y is not a power of 2, we have observed it to be close to periodic.

\begin{align*}
NU\text{Rand}(x, 0, y) &= \left((\text{random}(0, x) \mid \text{random}(0, y)) \% y \right)
\end{align*}

where

random(x,y) denotes a uniformly distributed integer random number in the closed interval [x..y]

(N % M) stands for N modulo M

(N | M) stands for the bitwise logical OR of N and M

Let x = 2^a - 1 and y = 2^b - 1, b ≥ a

Let z = b - x,

Let A = A_{b-1} A_{b-2} \ldots A_0 be the binary representation of the number drawn from random(0,x).

Let B = B_{b-1} B_{b-2} \ldots B_0 be the binary representation of the number drawn from random(0,y).

Note that if X > 0, then the top z bits of A will all be zero.

Let P[A_i] denote the probability that bit A_i is set to one. Then,

\begin{align*}
P[A_i] &= \frac{1}{2}, i \in (0,1, \ldots (a-1)) \\
P[A_i] &= 0, i \geq a \\
P[B_i] &= \frac{1}{2}, i \in (0,1, \ldots (b-1))
\end{align*}

Let C = A \mid B = C_{b-1} C_{b-2} \ldots C_0. Since A_i and B_i are independent for all i, bit C_i is set if either A_i or B_i or both are set. Hence,
\[
P[C_i] = (P[A_i] \cdot P[B_i]) + ((1 - P[A_i]) \cdot P[B_i]) + (P[A_i] \cdot (1 - P[B_i]))
\]

\[
P[C'_i] = \frac{3}{4}, i \in (0, \ldots, (a - 1)) \quad P[C'_i] = \frac{1}{2}, i \in (a, \ldots, (b - 1))
\]

Thus, the probability of accessing a specific tuple-id generated from the NURand(x,0,y) function is \((\frac{3}{4})^i(\frac{1}{4})^j(\frac{1}{2})^z\) where i equal the number of non-zero bits in the low a bit, j is the number of zero bits in the low a bits, and z is as defined above. Hence, the probability mass function is periodic where the size of the period equals x, and the number of periods equals \(\lfloor \frac{x}{x} \rfloor\).
Figure 1: TPC-C Business Environment.
Reproduced with permission from the TPC.

Figure 2: TPC-C Entity/Relationship Diagram.
Reproduced with permission from the TPC.
Figure 3: Stock Relation PMF
Figure 4: Stock Relation PMF: only 10,000 tuples
Figure 5: Stock Relation CDF
Figure 6: Customer Relation PMF
Figure 7: Customer Relation CDF
Figure 8: Customer, Stock, and Item Miss Rates
Figure 9: Maximum Throughput
Figure 10: Price Performance
Figure 11: Scaleup of TPC-C
Figure 12: Sensitivity to Percent Remote
A MODELING STUDY OF THE TPC-C BENCHMARK

S. T. Leutenegger
Daniel Dias

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

To appear in SIGMOD '93

The TPC-C benchmark is a new benchmark approved by the TPC council intended for comparing database platforms running a medium complexity transaction processing workload. Some key aspects in which this new benchmark differs from the TPC-A benchmark are in having several transaction types, some of which are more complex than that in TPC-A, and in having data access skew. In this paper we present results from a modelling study of the TPC-C benchmark for both single node and distributed database management systems. We simulate the TPC-C workload to determine expected buffer miss rates assuming an LRU buffer management policy. These miss rates are then used as inputs to a throughput model. From these models we show the following: (i) We quantify the data access skew as specified in the benchmark and show what fraction of the accesses go to what fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation as a function of buffer size. (iii) We show that close to linear scale-up (about 3% from the ideal) can be achieved in a distributed system, assuming replication of a read-only table. (iv) We examine the effect of packing hot tuples into pages and show that significant price/performance benefit can be thus achieved. (v) Finally, by coupling the buffer simulations with the throughput model, we examine typical disk/memory configurations that maximize the overall price/performance.