HYDROGEN-RATED SYSTEM FOR IN VITRO STUDIES AT PRESSURE: OPERATING PROCEDURES AND EMERGENCY PROCEDURES

H. J. Moore
J. S. Colton
W. Long
K. Miller
G. Imbert

Naval Medical Research and Development Command
Bethesda, Maryland 20889-5606

Department of the Navy
Naval Medical Command
Washington, DC 20372-5210

Approved for public release; distribution is unlimited
NOTICES

The opinions and assertions contained herein are the private ones of the writer and are not to be construed as official or reflecting the views of the naval service at large.

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Naval Medical Research Institute. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

TECHNICAL REVIEW AND APPROVAL
NMRI 93-14

The experiments reported herein were conducted according to the principles set forth in the current edition of the "Guide for the Care and Use of Laboratory Animals," Institute of Laboratory Animal Resources, National Research Council.

This technical report has been reviewed by the NMRI scientific and public affairs staff and is approved for publication. It is releasable to the National Technical Information Service where it will be available to the general public, including foreign nations.

ROBERT G. WALTER
CAPT, DC, USN
Commanding Officer
Naval Medical Research Institute
A special apparatus was constructed to study the neurophysiologic effect of high pressure and the pharmacology of various gaseous agents using the isolated nerve terminal (synaptosome) tissue preparation. Design features were incorporated to permit investigations using H₂, among other gases. Detailed operating procedures and emergency procedures for the use of H₂ were established. These procedures are memorialized by this report. The theory of operation of the device and a pertinent overview of safety considerations are covered.
ACKNOWLEDGEMENTS

The authors deeply appreciate the technical assistance and support provided by the following individuals: LT Gregory S. Lang, CEC, USN; Mr. Jerry W. Morris, Hyperbaric Engineering Division Head; Mr. George Goehring, Instrumentation Branch Head; and Mr. C. Blake Sajonia, Senior Engineer, Geo-Centers, Inc.

This study was supported by Naval Medical Research and Development Command, Work Unit Number MR04101.001-1056 entitled "Neurophysiologic effects of high pressure exposure." The views, opinions and/or findings contained herein are those of the authors and should not be construed as official or reflecting the views and policies of the Navy Department or the naval service at large.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Theory of Operation</td>
<td>3</td>
</tr>
<tr>
<td>Safety</td>
<td>7</td>
</tr>
<tr>
<td>Discussion</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
</tbody>
</table>

APPENDICES

- Appendix A. Operating Procedures Involving Hydrogen Gas A-1
- Appendix B. Emergency Procedures Involving Hydrogen Gas B-1
- Appendix C. Checklist for Non-Hydrogen Dives C-1
- Appendix D. System Photographs: Controls Nomenclature and Actions ... D-1
- Appendix E. Compression Schedules .. E-1

LIST OF FIGURES

- Figure 1. Pressure and flow control circuitry 4
- Figure A. Helium Supply Wall Panel D-3
- Figure B. Milton Roy Pump D-5
- Figure C. Mix Gas Bottles and Manifold: Bottles D-7
- Figure D. Mix Gas Bottles and Manifold: Manifold D-9
- Figure E. Chamber Control Panel D-13
- Figure F. Top and Left Side Chamber D-15
Figure G. Synaptosome Perfusion Device D-17
Figure H. Right Side Chamber D-19
Figure I. Electrical Equipment D-21
INTRODUCTION

Synaptosomes are isolated nerve terminal endings which maintain many of the functional properties of the intact presynaptic neuron. As such, the synaptosome preparation is a useful model for study of presynaptic physiology. Synaptosomes have been used to investigate the effects of high pressure on nerve terminal Ca^{2+} uptake (1) and on K\(^+\)-depolarized (2-10), A23187 Ca\(^{2+}\) ionophore stimulated (11), and compression induced (12) neurotransmitter release.

The motivation for such studies would include as a goal the delineation of how pressure affects the central nervous system (CNS) to cause the high pressure nervous syndrome (HPNS). This is a debilitating condition that can impair the performance and threaten the safety of human divers at depths greater than 600 feet sea water (fsw), manifested by tremor, arousal deficits, and EEG changes (13,14). In animals exposed to even greater pressures, HPNS progresses to convulsions and death.

Many narcotic/anesthetic drugs ameliorate HPNS (15). Included among these are a number of gaseous agents. The potency of some of these gases is such that the pharmacologic activity becomes apparent only under hyperbaric conditions. N\(_2\), the predominant constituent of air, is a noteworthy example. The addition of 5-10% N\(_2\) to breathing mixture has been used as a countermeasure to HPNS in attaining record depths in human diving (16). The pharmacology of breathing gases is thus most relevant to the problem of high pressure effects on the CNS.
There has been a resurgence of interest in the utility of H₂ as a component of breathing mix for deep diving (17). Low density and other considerations confer practical advantages to the use H₂. Moreover, hyperbaric H₂ produces narcosis and ameliorates HPNS, intermediate in potency between He and N₂ (18,19). Human experiments confirm the utility of H₂ in alleviating HPNS (20, 21), but potentially adverse occurrences including apneic episodes have been observed (22). Consequently, the CNS action of hyperbaric H₂ becomes an object of intense scrutiny.

In order to investigate the pharmacology of various hyperbaric gases, Imbert and colleagues (23) designed a special apparatus to saturate liquids with defined gas mixtures at high pressure. These solutions are used as perfusion media for a tissue preparation, so that the tissue is exposed to dissolved gas at the partial pressure of each component in the gas mixture. The design includes safety features which permit utilization of H₂ as well as other gases.

The apparatus was constructed with a specific intent for utilization with the synaptosome preparation. Two separate gas-saturated physiologic electrolyte solutions are used for perfusing the synaptosomes. These solutions contain low K⁺ and high K⁺ respectively. Switching perfusion from the low K⁺ to the high K⁺ solution causes depolarization of the synaptosome membranes, inducing neurotransmitter release. Thereby, the time course of neurotransmitter release can be observed, subject to experimental manipulations of pressure and gas mixture.
While the principles of the device are straightforward, operation is complicated by stringent requirements for safety. This report memorializes the approved operating procedures (OP's) and emergency procedures (EP's) that have been worked out. The appendices contain the specific checklists for operation of the hyperbaric chamber and the equipment, both for \(\text{H}_2 \) and for less stringent non-\(\text{H}_2 \) dives. Photographs are included to define the nomenclature for the various panels, valves, and controls. Useful compression schedules are also appended.

THEORY OF OPERATION

Figure 1 is a schematic showing a liquid-containing vessel (hereafter referred to as the saturator vessel, saturator, or bubbler) inside a boundary which symbolizes a compression chamber (the hyperbaric chamber or chamber). The hyperbaric chamber is compressed with He through a tracking regulator and valve system (Compression) and decompressed through an exhaust valve (Decompression). He for compression is provided from laboratory supply lines and panel.

Pressure inside the saturator vessel is maintained differentially higher than the chamber pressure. Instrumentation to monitor this pressure difference is shown schematically as ΔP. A desired gas or mixture of gases (Gas) is bubbled through the liquid contained in the saturator. Flow rate of Gas is controlled by a tracking regulator (TR) and fine metering valve (FMV), and indicated on a ball flowmeter (BF). The bubbling action inside the
Figure 1. Pressure and flow control circuitry. The saturator is flushed with a gas mixture of selected composition via a tracking regulator (TR) and a fine metering valve (FMV). The gas bubbles through the liquid contained in the saturator. Gas flow is read on a ball flowmeter (BF), while a back pressure regulator (BPR) controls a preset positive difference in saturator pressure (ΔP) read on a differential pressure gauge. Pressure provides the driving force for the liquid to be delivered to the tissue preparation. Liquid flow can be shut off by a quarter turn valve (QTV) to service Prep. A dual fine metering valve (DFMV) controls the perfusion flow rate. A high pressure pump (P) allows refilling of the saturator with liquid as required. A pressure relief valve (RV) and a non-return valve (NR) protect the saturator from excessive positive or negative ΔP. For picture clarity, stop valves are not represented. Reproduced from (23), with permission.
saturator vessel presents Gas to the liquid, so that the liquid ultimately becomes saturated with dissolved gases at the partial pressure of each component of the Gas mixture. Temperature of liquid in the bubbler is thermostatically controlled.

Liquid from the bubbler perfuses the tissue preparation (Prep). Thus, Prep is exposed to Gas, which saturates the perfusion liquid. Secretory products that are released by Prep are carried onward in the stream of perfusate. This stream is brought across the pressure boundary for collection by the experimenter (Sample) to be analyzed for such secretory products. Perfusion flow rate is controlled by a dual ganged fine metering valve (DFMV). Outflow from the bubbler can be shut off by a quarter turn valve (QTV) so that Prep can be serviced. In practice, duplicate saturator vessels are used to contain low K⁺ and high K⁺ solutions respectively. The choice of solution for perfusing Prep is selected by a valve. Liquid in the bubblers is replenished by a high pressure pump (P).

Gas is introduced to the saturator vessels and exhausted through lines that are isolated from the ambient chamber atmosphere. The gas volume within this internal system is small. Thus the amount of Gas inside the hyperbaric chamber -- as for example containing H₂ -- is minimized. An inerting line (not shown on the schematic) is incorporated in the exhaust system for addition of He to dilute the exhaust to a nonflammable level.

During compression or decompression of the chamber, the differential pressure ΔP inside the bubblers is maintained by a back pressure regulator (BPR). Note the reference line that
connects BPR to the chamber, by which ΔP is regulated with respect to the prevailing chamber pressure (similar reference lines connect to the tracking regulators). Fine adjustments to ΔP during compression are made by adjustment of BPR. Fine adjustments to Gas flow rate, as indicated on BF, are made by adjustment of FMV.

A relief valve (RV) and non-return valve (NR) are provided to prevent bursting or crushing of the bubblers in the event of loss of control of ΔP. These valves are set at 75 psi (RV) and 10 psi (NR). The exhaust of RV inside the chamber vents through water in a beaker that is visible to the chamber operator. The absence of bubbles at this orifice provides visual confirmation that gas inside the saturators is not leaking through to the ambient chamber atmosphere. Ability to maintain ΔP inside the saturators when Gas mixture supply and exhaust are shut off at the chamber stop valves (not depicted on the schematic) indicates the gas tight integrity of the internal system.

The supply of Gas is from a high pressure bottle ("K" bottle) connected to the system at a bottle manifold. Any of several Gas mixtures from different bottles may be selected at the manifold. One-way valves in the circuitry prevent inadvertent mixture from one source to another in the event of procedural error. The circuitry also provides means to flood the lines and the saturators with He from the laboratory supply to inert the system and remove any potentially explosive conditions.
SAFETY

H₂ is a colorless odorless gas that readily combines with O₂ to burn with an intensely hot invisible flame. The energy required to ignite H₂ is an order of magnitude lower than that required for ignition of gasoline (24). For example, a H₂ fire can be initiated by static electricity discharges or by minimal friction from mechanical sources (25). An H₂-O₂ mixture that is ignited in a confined space will likely cause an explosion.

As the smallest gas molecule, H₂ has a high propensity to leak from valves, joints, and fittings. Fittings therefore always pose a hazard as a potential originating point of a flame that can not be seen by an operator (25). Hook-up and disconnection of H₂ fittings and whips can be particularly hazardous. If the lines should contain H₂, an immediate source of ignition can arise from the mechanical friction of the moving coupling parts while H₂ is venting and mixing with air. Potential for burns or injury is great. Accordingly, flame proof gloves must be worn whenever H₂ fittings are handled. Tools should be made of low sparking copper-beryllium alloy.

Special care must be taken to ensure that connections do not leak (26). After connections are made, gas tight integrity of pressure fittings must be verified by using soap suds solution as a leak detector.

Adiabatic heating is another potential source of ignition when lines are charged with H₂. Lines and fittings must be purged with
inert gas to remove O_2 prior to introducing H_2. Prudence would also suggest that lines should be brought up to pressure in a slow deliberate fashion, rather than jammed up by sudden valve opening.

As a gas that is lighter than air, there is a potential for H_2 to collect in overhead pockets and crevices. This is preventable by adequate exhaust ventilation and by reasonable measures to circulate room air (26). For this purpose, a large exhaust hood and blower is installed in the laboratory above the pressure chamber to collect any escaped gas.

It is important that H_2 fires, should they occur, be brought under control by securing the H_2 at its source (26). The use of fire extinguishers on an H_2 flame can be dangerous because, although the fire may be put out, the continuing leak of H_2 can set the stage for an explosion.

Risk is also minimized by limiting the total quantity of compressed H_2 present in the laboratory. As a practical matter, no more than one "K" bottle of compressed H_2 mixture need be in the laboratory at any given time. Special hook-up hardware is installed to prevent improper connection, and only one H_2 connector is provided for the apparatus. Bottles should be maintained in outdoor open air storage when not in actual use in the laboratory. These practices conform to NFPA 50A, the relevant National Fire Protection Association standard (27).

Notwithstanding the propensity of H_2 to vigorously oxidize, atmospheres that contain less 4% H_2 and/or less than 4% O_2 will not
support H\textsubscript{2} combustion (28,29). This fact is exploited in order to use H\textsubscript{2} safely. For example, purging lines and inerting exhausts with He reduces the fractional concentration of O\textsubscript{2} or H\textsubscript{2} to safe levels. The exhaust line of the system is instrumented to indicate percent O\textsubscript{2} in the gas stream. By this means, a purging procedure or inerting procedure can be monitored to maintain O\textsubscript{2} at safe levels. OP's for the system are set forth in a way that causes the appropriate purges to occur prior to introduction of H\textsubscript{2} gas. Similarly, the room exhaust hood above the hyperbaric chamber is equipped with an alarmed H\textsubscript{2} detector to forewarn of leak conditions before reaching the lower flammability limit.

H\textsubscript{2} experiments typically employ hydrox mixtures in order to concurrently provide the required O\textsubscript{2} for tissue preparation viability. Of course, such mixtures must contain less than 4% O\textsubscript{2} to be nonexplosive. A typical hydrox mixture would be 2% O\textsubscript{2}, balance H\textsubscript{2}. At 10 atmospheres absolute pressure (ATA), this fractional concentration of O\textsubscript{2} provides a PO\textsubscript{2} of 0.2 ATA, roughly approximating the PO\textsubscript{2} of air. Thus, the aerobic requirements for tissue can be met, even when using a 2% hydrox mix, at a pressure of 10 ATA (roughly 300 fsw) or greater.

In similar vein, compression of the air-filled hyperbaric chamber from sea level to 300 fsw using He reduces the fractional concentration of the ambient chamber atmosphere to about 2%. Therefore, even in the event of catastrophic failure that permits H\textsubscript{2} to invade the chamber atmosphere, explosive conditions do not
A typical H₂ dive is initiated using a non-H₂ mix on the surface which has a high fractional O₂ concentration, e.g. 21%. A switch to the hydrox mixture is then effected from the gas bottle manifold as the chamber passes 300 fsw. Prior to the H₂ switch, the system must be purged by switching to a low O₂ gas mix. When the O₂ fraction indicated in the exhaust stream falls to a safe level, the switch to hydrox can be safely performed.

DISCUSSION

The system was designed to permit safe neurophysiologic experiments with H₂ and other gases at pressures up to 2000 fsw. The appended OP's and EP's were carefully constructed so that the logic of the design for safety purposes is captured in the execution of the sequential checklist. Notwithstanding, there is no substitute for an appreciation of the operating principles of the system and the various potential hazards. On the basis of such understanding, and together with the procedural checklists, the system has been successfully and safely utilized to conduct the kinds of experiments for which it was built.
REFERENCES

14. Halsey, M.J., "Effects of high pressure on the central nervous

APPENDIX A
OPERATING PROCEDURES INVOLVING HYDROGEN GAS

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval</td>
<td>A-2</td>
</tr>
<tr>
<td>General Safety Rules</td>
<td>A-3</td>
</tr>
<tr>
<td>Preliminary Checks and Valve Lineup</td>
<td>A-4</td>
</tr>
<tr>
<td>Drain and Refill Saturators; Check Gas Tight Integrity</td>
<td>A-6</td>
</tr>
<tr>
<td>Connect Mix Gas Bottles and Check Pressures</td>
<td>A-8</td>
</tr>
<tr>
<td>Establish Mix Gas Flow to Saturators</td>
<td>A-11</td>
</tr>
<tr>
<td>Predive Checks</td>
<td>A-12</td>
</tr>
<tr>
<td>Dive the Chamber</td>
<td>A-13</td>
</tr>
<tr>
<td>Decompression</td>
<td>A-16</td>
</tr>
<tr>
<td>Shutdown</td>
<td>A-17</td>
</tr>
</tbody>
</table>

A-1
HYDROGEN-RATED SYSTEM FOR "IN VITRO" STUDIES AT PRESSURE

OPERATING PROCEDURES AND EMERGENCY PROCEDURES

Revised May 1992

SUBMITTED:

CDR Homer J. Moore, MC, USN
High Pressure Molecular and Cellular Neurobiology Group

APPROVED:

G. Goehring
Instrumentation Branch Head

Jerry W. Morris
Hyperbaric Engineering Division Head

LT Gregory S. Lang, CEC, USN
Certification Officer
Synaptosome Chamber Dive Checklist

OPERATING PROCEDURES INVOLVING HYDROGEN GAS

Date: _________________________
Supervisor: _____________________
Chamber operator: __________________

GENERAL SAFETY RULES:

GAS BOTTLES CONTAINING HYDROGEN WILL BE STORED IN THE OUTDOOR COMPOUND WHEN NOT IN USE. A SINGLE BOTTLE MAY BE BROUGHT INTO THE LABORATORY AND PLACED UNDER THE HOOD AFTER PROCEDURE 1 IS COMPLETED.

NO BOTTLE CONTAINING HYDROGEN SHALL BE VENTED OR OPENED PRECEDING WHIP HOOKUP.

AFTER CONNECTION TO THE WHIP, A GAS BOTTLE CONTAINING HYDROGEN WILL REMAIN CONNECTED UNTIL READY FOR REMOVAL FROM THE LABORATORY.

SYSTEM AND CHAMBER MUST BE PURGED WITH INERT GAS CONTAINING ≤ 2% O₂ BEFORE AND AFTER INTRODUCING HYDROGEN.

HYDROGEN MUST NOT BE INTRODUCED TO THE CHAMBER AT DEPTHS LESS THAN 330 FSW.

A GAS BOTTLE CONTAINING HYDROGEN WILL BE DISCONNECTED FROM ITS WHIP USING PROCEDURE 8.

FOR ANY MALFUNCTION OR ABORT, FIRST STEP IS TO SECURE HYDROX BOTTLE VALVE. SEE EMERGENCY PROCEDURES.

FLAME PROOF GLOVES MUST BE WORN WHEN HANDLING HYDROX BOTTLE VALVE, CONNECTOR, OR WHIP.

BEWARE!!! HYDROGEN BURNS WITH INVISIBLE FLAME.

MONITOR ROOM H₂ LED DISPLAY AT ALL TIMES AFTER CONNECTING HYDROX BOTTLE, MUST BE < 25% LFL.

First dive of day is executed starting from Procedure 1. Subsequent dives are executed starting from Procedure 4. Shutdown after last dive is executed as Procedure 8.

For each procedure, chamber operator will initial each item as performed. Mark NR if step is determined not required by supervisor. For any discrepancies, do not proceed further until corrected or unless given permission by supervisor. Record discrepancies in chamber dive log and notify MA04.
1. PROCEDURE: Preliminary Checks and Valve Lineup

The purpose of this procedure is to ensure that high pressure is not inadvertently in the lines, that electrical connections for the thermostatic controllers are satisfactory, that gas detection and monitoring equipment is operating correctly, that the exhaust system is operating, and that all valves are in the correct initial position.

Notify gas farm 5-5910 to supply lab helium

Helium Supply Wall Panel
- All valves closed (4 valves)
- Regulator unloaded (blue knob CCW)
- Upstream pressure 1,200 ± 100 psig (gauge 1)
- Delivery pressure 0 (gauge 2)

Milton Roy Pump
- Pump off
- Pump flush valves closed (2 valves)
- Pump select valves to drain (2 valves)

Mix Gas Bottles and Manifold
- All gas bottles secured (hydrox bottle not present)
- All gas bottle valves closed
- All mix valves closed (2 green, 1 red)
- Inerting valve closed
- Bleed off valve closed
- Gauge calibration port capped and valve open, turns freely
- Manifold pressure gauge 0

Chamber Control Panel
- Helium source valve closed (black)
- Mix source valve closed (red)
- All pressure gauges 0 (6 gauges)
- Depth LED display illuminated, reads 0 ± 1 fsw
- LED displays for exhaust O₂ and room H₂ are illuminated
- Differential pressure LED display on, indicating 0 ± 0.2 psi
- Mix flow vernier open, turns freely
- Gauge calibration port capped and valve open, turns freely
- Gauge bleed off valve closed (black)
- Shunt valve closed (red)
- Bleed off valves closed (red, 2 valves)
- Compression valves closed (2 valves, X = coarse, black = fine)
- Decompression valves closed (2 valves, X = coarse, black = fine)
- Inerting valve closed (black)
- Flow meter valve open, turns freely (black)

Top Chamber
- Fast decompression line closed (2 quarter turn valves, both closed)

Left Side Chamber
- Analysis valve closed
- Depth gauge valve open
- Reference valve open
Decompression valve open
Compression valve open
Mix in valve open
Mix out valve open
Buffer 2 valve open
Buffer 1 valve open

Synaptosome Perfusion Device (Inside Chamber)
- Electrical connectors installed (3 Cannon connectors interface to chamber)
- Temperature sensors (3 phono plugs) and heater elements (3 Jones plugs) connected
- Quick disconnect fittings installed (3 reds = mix in, 3 greens = mix out from top of water trap, mix out from each saturator, 2 violets = buffer 1 to R saturator, buffer 2 to L saturator)
- Temperature sensor installed in synaptosome heater block
- Bubbler outlet valves closed (2 valves, tagged yellow)
- Fill beaker at relief valve exhaust with water to a level above the exhaust outlet

Right Side Chamber
- Sample valve closed
- Ganged sample verniers open, turn freely (2 valves)

Electrical Equipment
- Turn on hydrogen hood exhaust fan, check that streamers are streamlining
- Sensidyne hydrogen monitor unit P (power) lamp is on and H,L,F (high,low,fail) lamps are off; mode switch is in "operate" position; LED display reads between 00 and 25 (not flashing, not -0) and corresponds to room H_2 LED display on chamber control panel
- Switch Teledyne oxygen monitor to HIGH range; meter indication should correspond to exhaust O_2 LED display on chamber control panel
- Turn on heater power supplies (3 each)
- Turn on temperature controllers (3 each) and check setting 37°
- Ensure that temperature controllers are cycling and that heating elements on perfusion device are not overheating
2. PROCEDURE: **Drain and Refill Saturators; Check Gas Tight Integrity of Saturators**

The purpose of this procedure is to drain and refill liquid from the bubblers and to check that the bubblers will hold pressure.

2A. Drain saturators

Helium Supply Wall Panel
- Provide helium supply. Open bypass valve, note pressure rise on delivery supply gauge

Chamber Control Panel
- Open helium source valve, note pressure rise on helium pressure gauges (2 gauges, upper gauge shows supply pressure; lower gauge reflects loading of helium tracking regulator)
- Open shunt valve, note pressure rise on mix pressure gauges (2 gauges, upper and lower gauge indications as above)
- Establish pressure in saturators. Adjust back pressure regulator to about 10 psi (no more than 20 psi) on differential pressure LED display, check for flow in flowmeter as pressure builds up, visually check saturators for bubbling
- Adjust mix flow vernier for flow rate 2 on flowmeter

Milton Roy Pump
- Drain the saturators. Open pump flush valves (2 valves), visually check for effluent in drain lines
- When saturators are drained, close pump flush valves (2 valves)

Synaptosome Perfusion Device
- Rigged for effluent to sampling line
- Open bubbler outlet valves (2 valves, tagged yellow)

Right Side Chamber
- Open sample valve, beaker for collecting effluent under sampling line
- Bubbler select valve in either position 1 or 2
- When saturator is drained, switch bubbler select valve to other saturator, allowing it to drain
- When draining is completed, close sample valve, reposition bubbler select valve as desired

Left Side Chamber
- System gas-tight integrity check. Simultaneously close mix in valve and mix out valve
- Note differential pressure on LED display
- Note differential pressure after 1 min, allowable pressure drop ≤ 1 psi
- Open mix in and mix out valves simultaneously

Chamber Control Panel
- Close shunt valve
2B. Fill Saturators

Milton Roy Pump

- Prime Milton Roy pump. Turn on pump and prime with solutions of choice, adjusting pump vernier controls as required (2 knobs); pump select valves in drain position (2 valves); effluent flowing in drain lines
- Refill saturators. After pump is primed, switch pump select valves to bubbler position (2 valves)
- Visually monitor saturators to prevent overfilling
- When saturators are filled, turn off Milton Roy pump
3. PROCEDURE: Connect Mix Gas Bottles and Check Pressures

The purpose of this procedure is to connect and determine the pressures of the mix gas bottles.

Bottles containing high O_2 (up to 25%) may be connected to whip #1.

Only bottles that contain $\leq 2\%$ O_2 in inert gas may be connected to whip #2.

Bottles containing hydrox must be connected only to whip #3.

Bottle pressures (psig) must be $0.5 \times$ depth of intended use (fsw) + 200 psi.

Bottles in standby condition should be closed at the bottle valve.

Chamber Control Panel
 - Mix source valve closed

Mix Gas Bottles and Manifold
 - Mix valves closed (3 valves), manifold pressure gauge 0

3A. Whip #1
 - Bottles containing high O_2 (up to 25%) may be connected to whip #1.
 - Name/composition of mix
 - Open #1 bottle valve
 - Open mix #1 valve
 - Record manifold pressure, must be 300 psig minimum
 - Close #1 bottle valve
 - "Bleeding down!" Open bleed off valve to bleed down, then close
 - Close mix #1 valve

3B. Whip #2
 - Only bottles that contain $\leq 2\%$ O_2 in inert gas may be connected to whip #2.
 - Name/composition of mix
 - Open #2 bottle valve
 - Open mix #2 valve
 - Record manifold pressure, must be 1200 psig minimum
 - Close #2 bottle valve
 - "Bleeding down!" Open bleed off valve to bleed down, then close
 - Close mix #2 valve
3C. Whip #3: FOR HYDROX

SYSTEM MUST BE PURGED (≤ 2% O₂) BEFORE AND AFTER INTRODUCING HYDROGEN.

FOR ANY MALFUNCTION OR ABORT, FIRST STEP IS TO SECURE HYDROX BOTTLE VALVE. SEE EMERGENCY PROCEDURES.

FLAME PROOF GLOVES MUST BE WORN WHEN HANDLING HYDROX BOTTLE VALVE, CONNECTOR, OR WHIP.

BEWARE!!! HYDROGEN BURNS WITH INVISIBLE FLAME.

NO BOTTLE CONTAINING HYDROGEN SHALL BE VENTED OR OPENED PRECEDING WHIP HOOKUP.

BOTTLE CONTAINING HYDROGEN MUST BE CONNECTED TO WHIP #3 ONLY.

AFTER CONNECTION TO THE WHIP, A GAS BOTTLE CONTAINING HYDROGEN WILL REMAIN CONNECTED UNTIL READY FOR REMOVAL FROM THE LABORATORY.

MONITOR ROOM H₂ LED DISPLAY AT ALL TIMES AFTER CONNECTING HYDROX BOTTLE, MUST BE < 25% LFL.

A GAS BOTTLE CONTAINING HYDROGEN WILL BE DISCONNECTED FROM ITS WHIP USING PROCEDURE 8.

Chamber Control Panel
____ Helium source valve open, pressure indication on helium gauges
____ Inerting line gauge 120 psig, adjust inverting line regulator as necessary
____ Mix source valve closed
____ Shunt valve closed

Mix Gas Bottles and Manifold
______ Composition/hydrox, must be ≤ 2% O₂
____ Mix #1 and mix #2 valves closed
____ Open mix #3 valve
____ "Bleeding down!" Open inverting valve
____ Open bleed off valve
____ Attach whip #3 to hydrox bottle

Chamber Control Panel
____ Monitor exhaust O₂ LED display until ≤ 2%

Electrical Equipment
____ Switch Teledyne oxygen monitor to LOW range

Chamber Control Panel
____ Monitor exhaust O₂ LED display until ≤ 50 (NOTE: LED is 20 X actual % when Teledyne is in LOW range, e.g. LED 50 ⇒ 2.5% actual O₂)
Mix Gas Bottles and Manifold

- Close inerting valve
- Close bleed off valve
- USING FLAME PROOF GLOVES, SLOWLY open #3 (hydrox) bottle valve, KEEP SAFE DISTANCE!
- Check whip connector for leaks with Snoop (soap suds) solution
- Open mix #3 valve
- Record manifold pressure, must be 1200 psig minimum
- USING FLAME PROOF GLOVES, close #3 (hydrox) bottle valve
- "Bleeding down!" Open bleed off valve
- Open inerting valve for 1 min, then close
- Close bleed off valve
- Close mix #3 valve

Electrical Equipment

- Switch Teledyne oxygen monitor to HIGH range
4. PROCEDURE: Establish Mix Gas Flow to Saturators

The purpose of this procedure is to provide high O_2 mix gas from bottle #1 to the bubblers.

Electrical Equipment
- Teledyne oxygen monitor on HIGH

Mix Gas Bottles and Manifold
- Provide mix gas supply. Open #1 mix gas bottle valve
- Open mix #1 valve, observe pressure rise on manifold gauge

Chamber Control Panel
- Shunt valve closed
- Open mix source valve, observe pressure rise on mix source gauges
- Adjust mix flow vernier to establish flow rate 2 on flowmeter, monitor differential pressure readout for excessive pressure buildup, visually check saturators for bubbling
- Load back pressure regulator to 10 psi on differential pressure readout, check for resumption of flow on flowmeter as pressure builds up (adjust mix flow vernier if necessary), visually check saturators for continued bubbling
5. PROCEDURE: Predive Checks

The purpose of this procedures is to confirm that the system is ready prior to high pressure compression.

Supply pressures (psig) must be \(0.5 \times \text{depth of intended use (fsw)} + 200\).

Electrical Equipment
- Hydrogen hood fan on, streamliners are streaming
- Bubbler select valve positioned as desired
- Sample valve positioned as desired
- Ganged sample verniers adjusted for desired flow rate

Synaptosome Perfusion Device
- Synaptosome filter assembly installed as desired
- Temperature probe installed in synaptosome heater block, heater block not overheating, verify that temperature controller is cycling
- Bubbler outlet valves positioned as desired (2 valves)
- Bleed water trap
- Beaker at relief valve exhaust is filled with water to a level above the exhaust outlet
- Close and secure pressure chamber door

Chamber Control Panel
- Helium source valve open, pressure sufficient to attain desired depth
- Inerting line gauge 120 psig
- Mix source valve open, pressure sufficient to attain desired depth
- Shunt valve closed
- Saturator differential pressure LED display \(10 \pm 1 \text{ psi}\), adjust back pressure regulator as necessary
- Flowmeter mix gas flow rate 2, adjust flow vernier as necessary
- Adequate fluid level in saturators, good bubbling
- Room \(\text{H}_2\) LED display < 25\% LFL

Mix Gas Bottles and Manifold
- Mix #1 valve open
- Mix #2 and #3 valves closed
6. PROCEDURE: Dive the Chamber

The purpose of this procedure is to compress the chamber to high pressure.

Predive Notes
Compression valves are opened as necessary for travel according to compression schedule.

Monitor chamber ambient temperature. Synaptosome heater block power supply may be turned off during compression in which case the temperature controller meter will show chamber ambient temperature. Synaptosome heater block power supply may be manually cycled on and off if the ambient temperature during compression is not sufficient to maintain the warmth of the preparation. Power supply should be turned on again at completion of compression.

Ventilate with compression and decompression valves as needed to maintain chamber ambient temperature < 37°C.

Monitor perfusion flow rate and adjust ganged verniers as needed.

Monitor fluid level in saturators and switch on Milton Roy pump as needed to replenish to desired level.

Monitor differential pressure indicator during travel to ensure that saturator pressure does not build up over 10 psi, adjust back pressure regulator as required.

Anticipate increase mix gas flow rate during travel, adjust mix flow vernier for desired flow rate.

For hydrogen dives, check through view port during travel that relief valve exhaust in beaker is not bubbling, i.e., relief valve is seated, prior to switch to hydrox.

Anticipate mix gas switches during travel:
 Switch to 2% heliox or trimix at 230 FSW (Procedure 6A).
 Switch to hydrox at 340 FSW (Procedure 6B).

Monitor exhaust O₂ LED display at all times when hydrogen is in the system, must be ≤ 50 (Teledyne oxygen monitor in LOW setting; LED display indication is 20 X actual %).

Monitor room H₂ LED display at all times, must be < 25% LFL. If not, activate Emergency Procedure.

Mix gas will be secured immediately on completion of the experiment and prior to decompression by closing the respective bottle valve (Procedure 7). This is especially important for hydrox.
6A. **Switch to Mix Gas Bottle #2 (≤ 2% O₂), passing 230 FSW**

The purpose of this procedure is to switch to mix gas on whip #2 (O₂ ≤ 2% in inert gas). Provides system purge prior to switch to hydrox.

Chamber Control Panel
- Close mix source valve

Mix Gas Bottles and Manifold
- Close #1 bottle valve
- "Bleeding down!" Open bleed off valve to bleed down, then close
- Close mix #1 valve
- Open #2 bottle valve
- Open mix #2 valve

Chamber Control Panel
- Open mix source valve
6B. Switch to Mix Gas Bottle #3 (HYDROX), passing 340 FSW

The purpose of this procedure is to introduce mix gas containing hydrogen to the bubbler saturators.

HYDROGEN MUST NOT BE INTRODUCED UNTIL PASSING DEPTH 330 FSW.

SYSTEM MUST BE PURGED WITH MIX GAS CONTAINING ≤2% O₂ PRIOR TO INTRODUCING HYDROGEN.

Left Side Chamber
____ Check relief valve exhaust through view port, no bubbling

Chamber Control Panel
____ Exhaust O₂ LED display ≤ 2%
____ Shunt valve closed

Electrical Equipment
____ Switch Teledyne oxygen monitor to LOW

Chamber Control Panel
____ Exhaust O₂ LED display ≤ 50 (reading is 20 X actual % when Teledyne is in LOW setting)

Mix Gas Bottles and Manifold
____ #1 bottle valve closed
____ Mix #1 valve closed
____ Mix #2 valve open
____ Mix #3 valve closed
____ Close #2 bottle valve
____ Close mix #2 valve
____ USING FLAME PROOF GLOVES, SLOWLY open #3 (hydrox) bottle valve, KEEP SAFE DISTANCE!
____ Open mix #3 valve

Chamber Control Panel
____ Check differential pressure LED display 10 ± 1 psi, adjust back pressure regulator as necessary
____ Check flowmeter mix gas flow rate, adjust flow vernier as necessary
____ Check relief valve exhaust through view port, no bubbling
____ Monitor exhaust O₂ LED display, must be ≤ 50 (Teledyne in LOW setting) until completion of decompression
____ Monitor room H₂ LED display, must be < 25% LFL

A-15
7. PROCEDURE: Decompression

The purpose of this procedure is to secure mix gas and to decompress the chamber.

HYDROX IS SECURED AT THE MANIFOLD IMMEDIATELY UPON COMPLETION OF THE EXPERIMENT.

FOLLOWING A HYDROGEN DIVE, MONITOR EXHAUST O₂ LED DISPLAY (≤ 50 when Teledyne in LOW range) AND ROOM H₂ LED DISPLAY (< 25% LFL) UNTIL DECOMPRESSION HAS BEEN COMPLETED AND CHAMBER DOOR IS OPEN.

Mix Gas Bottles and Manifold
- Close bottle valve in use on completion of the experiment.
- FLAME PROOF GLOVES must be used if closing #3 (hydrox) bottle valve

Chamber Control Panel
- "Bleeding down!" Open decompression valves as necessary
- Unload back pressure regulator, turn slotted screw full CCW

Following 6 steps must be performed following any hydrogen dive

Chamber Control Panel
- Close mix source valve
- Open shunt valve, adjust flow vernier as necessary for flow rate 2 on flowmeter
- Exhaust O₂ LED display < 50 (Teledyne in LOW range)

Mix Gas Bottles and Manifold
- "Bleeding down!" Open bleed off valve
- Close inerting valve for 10 s, then close
- Close mix #3 valve
- Open mix #2 valve to bleed down, then close
- Close bleed off valve

On arrival at surface

Chamber Control Panel
- Close shunt valve if open
- Close mix source valve if open
- Close decompression valves

Mix Gas Bottles and Manifold
- Close mix #1 or mix #2 valve if open

Electrical Equipment
- Switch Teledyne oxygen monitor to HIGH range
8. PROCEDURE: Shutdown

The purpose of this procedure is to disconnect the hydrox bottle from the system and secure the system.

FLAME PROOF GLOVES MUST BE WORN WHEN HANDLING HYDROX BOTTLE VALVE, CONNECTOR, OR WHIP. BEWARE!!! HYDROGEN BURNS WITH INVISIBLE FLAME.

Electrical Equipment
- Turn off heater power supplies 3 (each)
- Turn off temperature controllers (3 each)
- Turn off Teledyne oxygen monitor

Chamber Control Panel
- Mix source valve closed
- Shunt valve closed

Mix Gas Bottles and Manifold
- All mix valves closed (3 valves), manifold pressure gauge 0
- All bottle valves closed
- USING FLAME PROOF GLOVES, disconnect whip #3 from hydrox bottle, replace plastic insert in valve orifice, replace protective cap over bottle valve, and remove bottle to outdoor storage area.
- Turn off hydroge, add exhaust fan
- Drain saturators, use Procedure 2A
- Refill saturators with distilled water, use Procedure 2B
- Drain water trap

Helium Supply Wall Panel
- Close bypass valve

Chamber Control Panel
- Open bleed off valves (2 valves)
- "Bleeding down!" Open shunt valve to bleed off helium pressure, then close
- Close bleed off valves (2 valves)
- Close helium source valve
- All pressure gauges 0 (6 gauges)
- Differential pressure LED display 0 ± 0.2 psi

Helium Supply Wall Panel
- Delivery pressure 0 (gauge 2)
- Notify gas farm 5-5910 or duty diver 5-1839 to secure lab helium

A-17
APPENDIX B

EMERGENCY PROCEDURES INVOLVING HYDROGEN GAS

Contents

<table>
<thead>
<tr>
<th>Issue</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Safety Rules</td>
<td>B-2</td>
</tr>
<tr>
<td>Fire or Explosion</td>
<td>B-3</td>
</tr>
<tr>
<td>Hydrogen Gas Leak</td>
<td>B-4</td>
</tr>
<tr>
<td>Excess Oxygen Level During Hydrogen Use</td>
<td>B-5</td>
</tr>
<tr>
<td>Hydrogen Leak into Compression Chamber</td>
<td>B-6</td>
</tr>
<tr>
<td>Abort Dive</td>
<td>B-7</td>
</tr>
<tr>
<td>Uncontrolled Chamber Pressure Increase</td>
<td>B-8</td>
</tr>
</tbody>
</table>

B-1
EMERGENCY PROCEDURES INVOLVING HYDROGEN GAS

GENERAL SAFETY RULES:

FOR ANY MALFUNCTION OR ABORT, FIRST STEP IS TO SECURE HYDROX BOTTLE VALVE, IF POSSIBLE.

FLAME PROOF GLOVES MUST BE WORN WHEN HANDLING HYDROX BOTTLE VALVE, CONNECTOR, OR WHIP.

BEWARE!!! HYDROGEN BURNS WITH INVISIBLE FLAME.

EMERGENCY PROCEDURES ARE PERFORMED BY THE CHAMBER OPERATOR WITH BACKUP BY THE SUPERVISOR.
1. FIRE OR EXPLOSION

If possible, close hydrox bottle valve using flame proof gloves.
If time permits, attempt to isolate hydrogen source by closing
#3 mix valve on manifold panel and/or mix source valve on
chamber control panel.
DO NOT use fire extinguisher (may create explosive condition).
Evacuate lab.
Activate fire alarm system.
Evacuate building.
2. HYDROGEN GAS LEAK

This could be indicated by LFL > 25% on room H₂ LED display, by audible alarm and/or illumination of H or L light on Sensidyne unit, or by operator suspicion.

Close hydrox bottle valve using flame proof gloves.
Close #3 mix valve.
Close mix source valve.
Open inerting valve on chamber control panel.
Check hydrogen hood exhaust fan on, streamers streamlining.
If chamber is pressurized, open shunt valve, open decompression valve, unload back pressure regulator.
When chamber on the surface, open shunt valve (if not already open), bleed off valves on chamber control panel (2 valves), and bleed off valve on manifold panel. Then open #3 mix valve and inerting valve on manifold panel.
3. **EXCESS OXYGEN LEVEL DURING HYDROGEN USE**

This could be indicated by $O_2 > 50$ on exhaust O_2 LED display (reading is 20X actual % when Teledyne oxygen monitor is in LOW setting) or by operator suspicion.

Close hydrox bottle valve using flame proof gloves.
Close #3 mix valve.
Close mix source valve.
Open inerting valve on chamber control panel.
Open shunt valve.
Open decompression valve.
Unload back pressure regulator, slotted screw full CCW.
Monitor exhaust O_2 LED display to maintain $O_2 \leq 50$ (Teledyne in LOW range).

When chamber reaches surface, open bleed off valves on chamber control panel (2 valves) and bleed off valve on manifold panel. Then open #3 mix valve and inerting valve on manifold panel.

Continue system purge to maintain $O_2 \leq 50$ (Teledyne in LOW range), 10 minute minimum.

Secure operations until cause of malfunction is determined and corrected.
4. FAILURE OF GAS TIGHT INTEGRITY OF BUBBLER SYSTEM WITH HYDROGEN LEAK INTO COMPRESSION CHAMBER

This could be indicated by loss or inability to maintain differential pressure in bubblers, by bubbling into beaker at the bubbler relief valve exhaust, or by operator suspicion.

Close hydrox bottle valve using flame proof gloves.
Close #3 mix valve.
Close mix source valve.
Open shunt valve.
Open decompression valve.
Open compression valve to ventillate chamber, monitoring depth to assure continued decompression.
Unload back pressure regulator, slotted screw full CCW.
When chamber reaches surface, open bleed off valves on chamber control panel (2 valves) and bleed off valve on manifold panel. Then open #3 mix valve and inerting valve on manifold panel.
Continue ventilation of chamber for 30 min after reaching surface prior to opening chamber door.
Secure operations until cause of malfunction is determined and corrected.
5. **ABORT DIVE**

Close hydrox bottle valve using flame proof gloves.
Close #3 mix valve.
Close mix source valve.
Open shunt valve.
Open decompression valve.
Unload back pressure regulator, slotted screw full CCW.
When chamber reaches surface, open bleed off valves on chamber control panel (2 valves) and bleed off valve on manifold panel. Then open #3 mix valve and inerting valve on manifold panel.
Secure operations until cause of malfunction is determined and corrected.
6. UNCONTROLLED CHAMBER PRESSURE INCREASE

Close hydrox bottle valve using flame proof gloves.
Close compression stop valve left side of chamber.
Close mix in stop valve left side of chamber.
Close helium source valve chamber control panel.
Close mix source valve chamber control panel.
Close all mix valves on manifold panel.
Close all valves on helium supply wall panel.
APPENDIX C

CHECKLIST FOR NON-HYDROGEN DIVES

Contents

<table>
<thead>
<tr>
<th>Activity</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Checks</td>
<td>C-2</td>
</tr>
<tr>
<td>Valve Lineup</td>
<td>C-2</td>
</tr>
<tr>
<td>Fill Saturators</td>
<td>C-3</td>
</tr>
<tr>
<td>Establish Mix Gas Flow</td>
<td>C-4</td>
</tr>
<tr>
<td>Predive Checks</td>
<td>C-5</td>
</tr>
<tr>
<td>Dive the Chamber</td>
<td>C-5</td>
</tr>
</tbody>
</table>
Synaptosome Chamber Dive Checklist (Rev Mar 91)

NOT TO BE USED FOR PROCEDURES INVOLVING HYDROGEN GAS

Date: ____________________________
Person in charge: ____________________________
Persons assisting, if any: ____________________________

Check off each item as performed.
Mark NR if step is determined not required by person in charge
Note any discrepancies

1. Preliminary Checks

Helium Supply Wall Panel
___ All valves closed (4 valves)
___ Regulator unloaded (blue knob CCW)
___ Upstream pressure 1,200 +/- 100 psi (gauge 1)
___ Delivery pressure 0 (gauge 2)

Saturation Mix Gas Bottles and Manifold
___ All gas bottles secured
___ All gas bottle valves off
___ All manifold valves off
___ Manifold pressure gauge 0

Chamber Control Panel
___ Helium source valve closed
___ Mix source valve closed
___ All pressure gauges 0 (6 gauges)

Synaptosome Perfusion Device
___ Electrical connectors installed (3 connectors interface to chamber)
___ Temperature sensors and heater elements plugged in (3 of each)
___ Quick disconnect fittings installed (red = mix in, 3 greens = mix out from top of water trap, mix out from each saturator, 2 violets = buffer 1 to R saturator, buffer 2 to L saturator)
___ Temperature sensor installed in synaptosome heat block

2. Valve Lineup

Helium Supply Wall Panel
___ Recheck 4 valves closed and delivery supply pressure 0

Saturation Mix Gas Bottles and Manifold
___ Recheck gas bottle valves closed, manifold valves closed, and manifold pressure gauge 0

Milton Roy Pump
___ Pump off
___ Pump vernier controls 0 (2 knobs, full CCW)
___ Pump flush valves closed (2 valves)
___ Pump select valves to drain (2 valves)

Chamber Control Panel
___ Recheck all pressure gauges 0 (6 gauges)
___ Differential pressure readout on, indicating 0 +/- 0.2 psi
--- Gauge calibration port capped and valve closed
--- Gauge bleed off valve closed (black)
--- Helium source valve closed (black)
--- Mix source valve closed (red)
--- Shunt valve closed (red)
--- Bleed off valves closed (red, 2 valves)
--- Mix flow vernier closed
--- Back pressure regulator unloaded (set screw full CCW)
--- Compression valves closed (2 valves, X = coarse, black = fine)
--- Decompression valves closed (2 valves, X = coarse, black = fine)
--- Inerting valve closed (black)
--- Flow meter valve closed (black)

Top Chamber
--- Fast decompression line closed (2 quarter turn valves, both closed)

Left Side Chamber
--- Analysis valve closed
--- Depth gauge valve open
--- Reference valve open
--- Decompression valve open
--- Compression valve open
--- Mix in valve open
--- Mix out valve open
--- Buffer 1 valve open
--- Buffer 2 valve open

Synaptosome Perfusion Device
--- perfusion valves closed (2 valves, tagged yellow)

Right Side Chamber
--- Sample valve off
--- Ganged sample verniers open, turn freely (2 valves)
--- Bubbler select valve off

3. **Fill Saturators**

Electrical Equipment
--- Turn on heater power supplies (3 each)
--- Turn on temperature controllers (3 each) and check setting 37°

Helium Supply Wall Panel
--- Provide helium supply. Open bypass valve, note pressure rise on delivery supply gauge

Chamber Control Panel
--- Open helium source valve, note pressure rise on helium pressure gauges (2 gauges, upper gauge shows supply pressure; lower gauge reflects loading of helium tracking regulator)
--- Open shunt valve, note pressure rise on mix pressure gauges (2 gauges, upper and lower gauge indications as above)
--- Establish gas flow through saturators. Open mix flow vernier for flow rate 2 on flowmeter, monitor differential pressure readout for excessive pressure buildup, visually check saturators for bubbling
--- Establish pressure in saturators. Load back pressure regulator to 25 psi on differential pressure readout, check for resumption of flow in flowmeter as pressure builds up (adjust mix flow vernier if necessary), visually check saturators for
continued bubbling

Milton Roy Pump

- Drain the saturators. Open pump flush valves (2 valves), visually check for effluent in drain lines
- When saturators are drained, close pump flush valves (2 valves)
- Prime Milton Roy pump. Turn on pump and prime with solutions of choice, adjusting pump vernier controls as required (2 knobs); check pump select valves in drain position (2 valves) and effluent flowing in drain lines
- Refill saturators. After pump is primed, switch pump select valves to bubbler position
- Visually monitor saturators to prevent overfilling
- When saturators are filled, turn off Milton Roy pump and return pump vernier controls to 0 (2 knobs)

Electrical Equipment

- Ensure that temperature controllers are cycling and that heating elements on perfusion device are not overheating

Chamber Control Panel

- Secure gas flow through saturators. Unload back pressure regulator, turn slotted screw full CCW, observe pressure drop on differential pressure indicator
- Close mix flow vernier
- Close helium source valve
- Vent control panel lines. Open bleed off valves (2 valves), note pressure drop on all helium and mix pressure gauges (4 gauges), close both bleed off valves when venting is complete
- Close shunt valve

4. **Establish Mix Gas Flow to Saturators**

- Check and record tank pressures of each mix gas to be used on the dive

<table>
<thead>
<tr>
<th>Saturation Mix Gas Bottles and Manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank #1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition (e.g. 21% HeO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Tank valve</td>
</tr>
<tr>
<td>Open Manifold valve</td>
</tr>
<tr>
<td>Record manifold pressure, must be sufficient to provide gas flow at the depth pressure at which mix will be used</td>
</tr>
<tr>
<td>Close manifold valve (tank valve stays open)</td>
</tr>
</tbody>
</table>

Chamber Control Panel

<table>
<thead>
<tr>
<th>Open mix supply valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open upper bleed off valve to vent the line, and close when vent complete</td>
</tr>
<tr>
<td>Close mix supply valve</td>
</tr>
</tbody>
</table>

Saturation Mix Gas Bottles and Manifold

<table>
<thead>
<tr>
<th>Provide mix gas supply. Open manifold valve for selected mix gas, observe pressure rise on manifold gauge</th>
</tr>
</thead>
</table>

Chamber Control Panel

<table>
<thead>
<tr>
<th>Open mix source valve, observe pressure rise on mix source gauges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open mix flow vernier to establish flow rate 2 on flowmeter,</td>
</tr>
</tbody>
</table>
monitor differential pressure readout for excessive pressure buildup, visually check saturators for bubbling

Load back pressure regulator to 10 psi on differential pressure readout, check for resumption of flow on flowmeter as pressure builds up (adjust mix flow vernier if necessary), visually check saturators for continued bubbling

5. Predive Checks
 - Bubbler select valve positioned as desired
 - Synaptosome filter assembly installed as desired
 - Temperature probe installed in synaptosome heating block, heating block not overheating, reverify that temperature controller is cycling
 - Saturator perfusion outlet valves positioned as desired (2 valves)
 - Sample valve positioned as desired
 - Ganged sample verniers adjusted for desired flow rate
 - Close and secure pressure chamber door

6. Dive the Chamber

Predive Notes
Open and adjust compression valves as necessary for travel
Record synaptosome temperature every minute
Ventilate with decompression valves as needed to maintain temperature < 39.5°
Monitor differential pressure indicator during travel to ensure that saturator negative pressure does not build up over 25 psi
Monitor perfusion flow rate and adjust ganged verniers as needed to keep rate constant
Anticipate mix gas switch during travel
Anticipate increase mix gas flow rate during travel
Record above two items respectively in 6a and 6b and flag in travel schedule

6a. Mix Gas Switch
 - Depth passing for mix gas switch
 - Saturation Mix Gas Bottles and Manifold
 - Close manifold valve of mix gas tank presently in use
 - Observe pressure drop in manifold gauge
 - When manifold pressure drops below recorded pressure of mix gas to be used next, open its manifold valve

6b. Mix Gas Flow Rate Increase
 - Depth passing for mix gas flow rate increase
 - Chamber Control Panel
 - Open flow rate vernier to increase flow rate to 10 on accessory flowmeter scale

6. Commence Dive
 - Chamber Control Panel
 - Open helium supply valve, note pressure rise on gauges (2 gauges)
 - COMPRESSION
APPENDIX D

SYSTEM PHOTOGRAPHS: CONTROLS NOMENCLATURE AND ACTIONS

Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium Supply Wall Panel</td>
<td>D-2</td>
</tr>
<tr>
<td>Milton Roy Pump</td>
<td>D-4</td>
</tr>
<tr>
<td>Mix Gas Bottles and Manifold: Bottles</td>
<td>D-6</td>
</tr>
<tr>
<td>Mix Gas Bottles and Manifold: Manifold</td>
<td>D-8</td>
</tr>
<tr>
<td>Chamber Control Panel</td>
<td>D-10</td>
</tr>
<tr>
<td>Top Chamber</td>
<td>D-14</td>
</tr>
<tr>
<td>Left Side Chamber</td>
<td>D-14</td>
</tr>
<tr>
<td>Synaptosome Perfusion Device</td>
<td>D-16</td>
</tr>
<tr>
<td>Right Side Chamber</td>
<td>D-18</td>
</tr>
<tr>
<td>Electrical Equipment</td>
<td>D-20</td>
</tr>
</tbody>
</table>

D-1
Helium Supply Wall Panel

Provides high pressure He service to the laboratory.

A1. Bypass valve. Bypasses the regulator to provide unregulated high pressure He service.

A2. Gauge 2, delivery pressure gauge. Indicates the pressure of the He service provided.

A3. Gauge 1, upstream pressure gauge. Indicates the source pressure of He supply that is piped to the laboratory.

A4. Regulated gas supply valve. Introduces He from the regulator for laboratory service.

A5. Regulator. Controls pressure from the He supply source to provide adjustable pressure for laboratory service.

A6. Supply valve. Introduces high pressure He from the source that is piped to the laboratory to the regulator.

A7. Vent valve. Permits bleeding down laboratory service lines to relieve pressure following use.

A8. Capped connector. Auxiliary connector for He service.
Milton Roy Pump

A ganged dual high pressure liquid pump to replenish solutions contained in the saturator vessels of the perfusion apparatus inside the compression chamber. Associated circuitry permits draining the saturators. Drainage is driven by pressurization of the saturators.

B3. Pump 2 selector valve. Introduces output of pump 2 to bubbler 2 or alternatively shunts pump 2 to drain. Shunt allows lines to be primed with a physiologic solution or to dump when only the ganged mating pump is being used.

B4. Pump 1 selector valve. See item B3.

B5. Pump 2 stroke control. Selects stroke volume of pump 2 from 0-100%.

B6. Pump 1 stroke control. See item B5.
Mix Gas Bottles and Manifold: Bottles

Source of gas mixtures used to bubble saturate the perfusion media that bathes the tissue preparation.

C1. Gas bottle #1, connected to whip #1. This position is used for mixtures not containing H₂, typically with O₂ fractions up to 25%.

C2. Gas bottle #2, connected to whip #2. This position is reserved for mixtures not containing H₂ and with O₂ fractions 2% or less. This mixture is used as an intermediate flush prior to introducing H₂ mixtures to the system.

C3. Gas bottle #3, connected to whip #3. The position is reserved exclusively for mixtures containing H₂.

C4. Gas bottle valves.
Mix Gas Bottles and Manifold: Manifold

Common distribution point for any of three different gas mixtures that can be selected to bubble the perfusion media. Circuitry contains no-backflow check valves to prevent contamination of the various gas sources from the other sources.

D1. Mix 1 manifold valve (green color). Introduces gas from whip #1 to the system. See item C1.

D2. Mix 2 manifold valve (green color). Introduces gas from whip #2 to the system. See item C2.

D3. Mix 3 manifold valve, for H₂ mixtures (red color). Introduces gas from whip #3 to the system. See item C3.

D4. Bleed off valve. Permits bleeding down manifold to relieve pressure following use. The inerting valve may be concurrently opened to purge H₂ if needed. See item D6.

D5. Manifold pressure gauge. Displays pressure in the gas mixture manifold.

D6. Inerting valve. Introduces He from service supply to whip #3. Permits purging the H₂ whip during connection/disconnection.

D7. Gauge calibration port and valve. Capped port for access to calibrate the manifold pressure gauge.
Chamber Control Panel

System controls for diving the compression chamber and adjusting pressures and flows in the bubble saturators

E1. Master depth gauge. Indicates depth of the chamber in fsw.

E2. Auxiliary depth gauge. LED readout of chamber depth is fsw.

E3. Gauge bleed off valve. Permits bleeding down master depth gauge lines to relieve pressure following calibration or at other times when gauge is isolated from system.

E4. Ball flowmeter. Indicates gas flow rate through saturator vessels.

E5. Flowmeter valve. Introduces gas from the exhaust of the saturator vessels to the flowmeter.

E6. Exhaust O₂ LED display. Slaved to Teledyne O₂ monitor in the electrical equipment rack. Displays % scale reading of the Teledyne meter. Directly reads %O₂ in the exhaust stream when Teledyne is in the LOW setting. When Teledyne is in the HIGH setting, LED 50 = 2.5% O₂ in the exhaust stream. The exhaust contains gas mixture from the saturator vessels, decompression gas from the chamber, and any added inerting gas.

E7. Room H₂ LED display. Slaved to Sensidyne H₂ monitor in the electrical equipment rack. Displays %LFL (lower flammability limit) H₂ sensed in room air passing into the forced air ventilation hood above the chamber control panel.

E8. Chamber temperature LED display.

E9. Gauge calibration port and valve. Capped port for access to calibrate the master depth gauge.

E10. Helium source valve (black color). Introduces He from the laboratory service supply to the system for chamber compression and inerting usage.

E11. Helium delivery supply gauge. Indicates pressure of laboratory service He provided to the system.

E12. Helium tracking regulator adjustment access. He for chamber compression is supplied through a tracking regulator which is referenced to the ambient chamber pressure. The regulated supply pressure relative to chamber pressure is set by hex screw adjustment of the tracking regulator through this access hole.
E13. Helium compression tracking-regulated supply gauge. Indicates loading of the tracking regulator to supply He for compressing at pressure that is referenced to current chamber pressure. See item E12.

E14. Compression valve, coarse (X handle). Compresses the chamber.

E15. Compression valve, fine (black color). Fine adjustment to chamber compression downward.

E16. Shunt valve (red color). Connects laboratory service He supply to saturator vessel system. Used to purge the system with He. May also be used for convenience to pressurize the saturator vessels, e.g., to drain liquids. Circuitry contains no-backflow check valves to prevent contamination of He service supply by mixed gas.

E17. Mix source valve (red color). Introduces gas from the mix gas manifold to the saturator vessel system.

E18. Mix source supply gauge. Indicates pressure supplied from the mix gas manifold to the saturator vessel system.

E19. Mix gas tracking regulator adjustment access. Gas mixture for the saturator vessel system is supplied through a tracking regulator which is referenced to the ambient chamber pressure. The regulated supply pressure for mix gas relative to chamber pressure is set by hex screw adjustment of the tracking regulator through this access hole.

E20. Mix gas tracking-regulated supply gauge. Indicates loading of the tracking regulator to supply gas mixture for the saturator vessel system at pressure that is referenced to current chamber pressure. See item E19.

E21. Bleed off valves (2 valves, red color). Permits bleeding down system lines to relieve pressure following use.

E22. Back pressure regulator. Regulates pressure in the exhaust stream from the saturator vessels referenced to the ambient pressure of the chamber so that a differential pressure is maintained in the saturators above the chamber pressure. Adjustment of the differential pressure in the saturator vessels is set by the slotted screw.

E23. Differential pressure LED display. Indicates the differential pressure in the saturator vessels above chamber pressure. Indication is in psi. Differential pressure is limited to 10 psi when using H₂ to reduce chances for leaking from the saturators into the chamber. Inability to set or maintain differential pressure suggests leak of the closed saturator vessel system.
E24. Mix flow vernier. A fine metering valve which adjusts flow rate of mix gas through the saturator system, as indicated at the ball flowmeter. See item E4.

E25. Inerting line regulator. He for exhaust dilution to inert the exhaust stream when using H_2 is supplied from the He service supply. Regulation for the He to dilute the exhaust stream is set by the slotted screw adjustment of this regulator.

E26. Inerting line gauge. Shows regulated He pressure for diluting the exhaust stream. Set to 120 psi. See item E26.

E27. Inerting valve (black color). Opens the inerting line to dilute O_2 in the exhaust stream from the saturator vessel system and the chamber decompression. Used during H_2 operations. See item E7.

E28. Decompression valve, coarse (X handle). Decompresses the chamber.

E29. Decompression valve, fine (black color). Fine adjustment to chamber decompression upward.
Top Chamber

F1. Fast decompression line. Stop valve shown. Another valve is also located on the line.

Left Side Chamber

F2. Analysis valve. Stop valve, not connected.
F3. Depth gauge valve. Stop valve to depth gauge line.
F4. Reference valve. Stop valve to reference lines to tracking regulators and back pressure regulator.
F5. Decompression valve. Stop valve to decompression exhaust line.
F6. Compression valve. Stop valve to He compression supply.
F7. Mix in valve. Stop valve to mix gas supply for saturator vessels.
F8. Mix out valve. Stop valve to exhaust from saturator vessels. Gas tight integrity of saturator vessels is indicated when vessels maintain differential pressure above the ambient chamber pressure with mix in and mix out valves closed.
Synaptosome Perfusion Device

The device is located inside the chamber.

G1. Synaptosome heater block. Thermostated to maintain temperature of the tissue preparation.

G2. Bubbler outlet valve. Shuts off liquid flow from saturator vessel so that the tissue preparation may be serviced.
Right Side Chamber

H1. Sample valve. Shuts off flow of liquid from perfusion device.

H2. Ganged sample verniers. A dual fine metering valve to control flow rate of liquid from the perfusion device.

H3. Bubbler select valve. Controls a pneumatic valve on the perfusion device to select perfusion of the tissue preparation either from saturator vessel #1 or #2. Switching from low K solution in vessel #1 to high K solution in vessel #2 depolarizes the membranes of the nerve terminal preparation and stimulates neurotransmitter secretion.
Electrical Equipment

I1. Temperature controllers for saturator vessels. Monitor temperature of liquid in the bubblers and switches on power source for heating when low temp threshold is sensed.

I2. Temperature controller for synaptosome heater block. See Items G1 and I1.

I3. Teledyne O$_2$ sensor. Measures O$_2$ in the exhaust from the chamber and system. See item E7. Exhaust gas can not be ignited when O$_2$ is less that 2%.

I4. Sensidyne H$_2$ sensor. Measures H$_2$ in room air passing into the forced air ventilation hood above the chamber control panel. Indication is %LFL (lower flammability limit; LFL is 4% H$_2$). See item E6.

I5. Heater power supplies. Provide current for controlling temperature of the saturator vessels and the synaptosome heater block.
APPENDIX E

COMPRESSION SCHEDULES

Contents

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Compression to 64 ATA</td>
<td>E-2</td>
</tr>
<tr>
<td>Exponential Compression to 2000 fsw</td>
<td>E-3</td>
</tr>
<tr>
<td>Exponential Compression to 64 ATA, for H₂</td>
<td>E-4</td>
</tr>
</tbody>
</table>
Linear compression profile to 64 ATA

<table>
<thead>
<tr>
<th>time</th>
<th>fsw</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 sec</td>
<td>22</td>
</tr>
<tr>
<td>30 sec</td>
<td>43</td>
</tr>
<tr>
<td>45 sec</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>time</th>
<th>fsw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>563</td>
</tr>
<tr>
<td></td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>693</td>
</tr>
<tr>
<td></td>
<td>715</td>
</tr>
<tr>
<td></td>
<td>736</td>
</tr>
<tr>
<td></td>
<td>758</td>
</tr>
<tr>
<td></td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>801</td>
</tr>
<tr>
<td></td>
<td>823</td>
</tr>
<tr>
<td></td>
<td>845</td>
</tr>
</tbody>
</table>

E-2
Compression profile for synaptosomes to 2000 fsw

<table>
<thead>
<tr>
<th>time</th>
<th>fsw</th>
<th>time</th>
<th>fsw</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 sec</td>
<td>1</td>
<td>10</td>
<td>154</td>
</tr>
<tr>
<td>30 sec</td>
<td>3</td>
<td>15</td>
<td>162</td>
</tr>
<tr>
<td>45 sec</td>
<td>5</td>
<td>20</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>189</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>12</td>
<td>209</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>13</td>
<td>255</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>14</td>
<td>268</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>36</td>
<td>33</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>39</td>
<td>35</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>45</td>
<td>39</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>49</td>
<td>42</td>
<td></td>
<td>411</td>
</tr>
<tr>
<td>53</td>
<td>45</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>56</td>
<td>49</td>
<td></td>
<td>451</td>
</tr>
<tr>
<td>56</td>
<td>53</td>
<td></td>
<td>473</td>
</tr>
<tr>
<td>64</td>
<td>56</td>
<td>16</td>
<td>495</td>
</tr>
<tr>
<td>69</td>
<td>60</td>
<td>17</td>
<td>518</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>543</td>
</tr>
<tr>
<td>78</td>
<td>18</td>
<td></td>
<td>568</td>
</tr>
<tr>
<td>83</td>
<td>78</td>
<td></td>
<td>595</td>
</tr>
<tr>
<td>88</td>
<td>83</td>
<td></td>
<td>623</td>
</tr>
<tr>
<td>93</td>
<td>88</td>
<td></td>
<td>652</td>
</tr>
<tr>
<td>99</td>
<td>93</td>
<td></td>
<td>682</td>
</tr>
<tr>
<td>105</td>
<td>99</td>
<td>18</td>
<td>714</td>
</tr>
<tr>
<td>111</td>
<td>105</td>
<td>19</td>
<td>747</td>
</tr>
<tr>
<td>117</td>
<td>111</td>
<td></td>
<td>781</td>
</tr>
<tr>
<td>124</td>
<td>117</td>
<td></td>
<td>817</td>
</tr>
<tr>
<td>131</td>
<td>124</td>
<td>19</td>
<td>855</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td>894</td>
</tr>
<tr>
<td>146</td>
<td>138</td>
<td></td>
<td>935</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>978</td>
</tr>
</tbody>
</table>

E-3
Compression profile for synaptosomes to 64 ATA (2079 FSW)
(hydrox and trimix study)

<table>
<thead>
<tr>
<th>time</th>
<th>fsw</th>
<th>time</th>
<th>fsw</th>
<th>time</th>
<th>fsw</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 sec</td>
<td>1 21% O2</td>
<td>10</td>
<td>154 air 157</td>
<td>20</td>
<td>1023</td>
</tr>
<tr>
<td>30 sec</td>
<td>3</td>
<td></td>
<td>162</td>
<td></td>
<td>1070</td>
</tr>
<tr>
<td>45 sec</td>
<td>5</td>
<td></td>
<td>171</td>
<td></td>
<td>1119</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>189</td>
<td>21</td>
<td>1223</td>
</tr>
<tr>
<td>8</td>
<td>199</td>
<td>16</td>
<td>209</td>
<td>171</td>
<td>1336</td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>18</td>
<td></td>
<td>1397</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>12</td>
<td>231 2% HeO2</td>
<td>22</td>
<td>1460</td>
</tr>
<tr>
<td>16</td>
<td>243</td>
<td>18</td>
<td>255</td>
<td>1527</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>255</td>
<td>20</td>
<td>268</td>
<td>1596</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>1668</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>13</td>
<td>281</td>
<td>23</td>
<td>1743</td>
</tr>
<tr>
<td>25</td>
<td>295</td>
<td>24</td>
<td>309</td>
<td>1822</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>309</td>
<td>25</td>
<td>325</td>
<td>1904</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>33</td>
<td>14</td>
<td>340 N2 or H2</td>
<td>24</td>
<td>2079</td>
</tr>
<tr>
<td>36</td>
<td>357</td>
<td></td>
<td></td>
<td>Xperiment</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>374</td>
<td></td>
<td></td>
<td>Mix off!</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>392</td>
<td></td>
<td></td>
<td>Dcompress</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>15</td>
<td>411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>431</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>473</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>16</td>
<td>495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>543</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>568</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>17</td>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>623</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>652</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>18</td>
<td>714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>781</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>124</td>
<td>19</td>
<td>855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>894</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>978</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-4