REPORT NO. EVT 14-90

RAIL IMPACT TEST
OF
ROTARY TOWED SWEEPER

Prepared for:
U.S. Army Tank-Automotive Command
ATTN: AMSTA-ISFC
Warren, MI 48397-5000

Distribution Unlimited

_VALIDATION ENGINEERING DIVISION
SAVANNA, ILLINOIS 61074-9639
AVAILABILITY NOTICE

A copy of this report will be furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center and School, ATTN: SMCAC-DEV, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

***

Citation of trade names in this report does not constitute an official endorsement.

***

The information contained herein will not be used for advertising purposes.
The U. S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SMCAC-DEV), was tasked by the U. S. Army Tank-Automotive Command to rail impact test per MIL-STD-810D, Military Standard Environmental Test Methods and Engineering Guidelines, the rotary towed sweeper, manufactured by M-B Company, Incorporated, New Holstein, WI. Two MIL-STD-810D rail impact tests were performed on the rotary towed sweeper. While tying down the rotary towed sweeper for the first test, the forward tiedown provision bent. This was a failure of the provision. The sweeper was sent back to the factory and returned to USADACS on 20 August 1990 for retesting. The sweeper was tied to a flatcar with wire rope and subjected to 4, 6, and 8 mph impacts in one direction, and then the flatcar was turned 180 degrees and singly impacted at 8 mph. Cable tensions were monitored during this test. Tiedown provisions were also statically loaded to verify (continued)
conformance with MIL-STD-209G, Military Standard Slinging and Tiedown Provisions for Lifting and Tying Down Military Equipment. Results of these tests are included in this report. The rotary towed sweeper passed all rail impact tests.
RAIL IMPACT TEST OF ROTARY TOWED SWEEPER

AUGUST 1990

TABLE OF CONTENTS

PART PAGE NO.
1. INTRODUCTION .................................................................................. 1-1
   A. BACKGROUND .................................................................................. 1-1
   B. AUTHORITY .................................................................................. 1-1
   C. OBJECTIVE .................................................................................. 1-1
   D. CONCLUSION ................................................................................ 1-1
2. ATTENDEES ................................................................................. 2-1
3. TEST PROCEDURES ......................................................................... 3-1
4. TEST RESULTS ................................................................................ 4-1
5. PHOTOGRAPHS ........................................................................... 5-1
6. TEST DATA ................................................................................... 6-1
PART 1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center and School (USADACS), Validation Engineering Division (SMCAC-DEV), was tasked by the U.S. Army Tank-Automotive Command to rail impact test the rotary towed sweeper, manufactured by M-B Company, Incorporated, New Holstein, WI. Two MIL-STD-810D, Military Standard Environmental Test Methods and Engineering Guidelines, rail impact tests were performed on the rotary towed sweeper. While tying down the sweeper for the first test, the forward tiedown provision bent. This was a failure of the provision. The sweeper was sent back to the factory and returned to USADACS on 20 August 1990 for retesting. The sweeper was tied to a flatcar with wire rope and subjected to 4, 6, and 8 mph impacts in one direction, and then the flatcar was turned 180 degrees and singly impacted at 8 mph. Cable tensions were monitored during this test. Tiedown provisions were also statically loaded to verify conformance with MIL-STD-209G, Military Standard Slinging and Tiedown Provisions for Lifting and Tying Down Military Equipment.

B. AUTHORITY. This test was conducted IAW mission responsibilities delegated by U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL 61299-6000. Reference is made to Change 4, 4 October 1974, to AR 740-1, 23 April 1971, Storage and Supply Operations; AMCCOMR 10-17, 13 January 1986, Mission and Major Functions of U.S. Army Defense Ammunition Center and School.

C. OBJECTIVE. The objective of this test was to determine if the rotary towed sweeper meets the test requirements of MIL-STD-810D and MIL-STD-209G.
D. CONCLUSION. The rotary towed sweeper was tested twice. The first rail impact test resulted in a deformed tiedown provision. For the second test with a redesigned tiedown provision, the rotary towed sweeper passed the MIL-STD-810D rail impact test and the test requirements of MIL-STD-209G.
PART 2

ATTENDEES

1 AND 21 AUGUST 1990

A. C. McIntosh
General Engineer
DSN 585-8989
815-273-8989

Jerome H. Krohn
Supervisory General Engineer
DSN 585-8908
815-273-8908

Quinn D. Hartman
General Engineer
DSN 585-8992
815-273-8992

William R. Meyer
General Engineer
DSN 585-8090
815-273-8090

Ralph Arnold
Industrial Engineering Technician
DSN 585-8073
815-273-8073

Mike Cochrane
DSN 927-4046
804-599-4046

Director
U. S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U. S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U. S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U. S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Director
U. S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639

Commander
Military Traffic Management Command,
Transportation Engineering Agency
ATTN: MTTE-TRV
Newport News, VA 23606-0276
Rick Sauer
414-898-4203
M-B Company, Incorporated
1615 Wisconsin Avenue
P.O. Box 200
New Holstein, WI 53601

Ken Schneider
414-898-4203
M-B Company, Incorporated
1615 Wisconsin Avenue
P.O. Box 200
New Holstein, WI 53601
PART 3

TEST PROCEDURES

A. Rail Impact Test.

1. Test Load (specimen). The rotary towed sweeper test load was prepared for rail testing IAW manufacturer’s instructions. The sweeper was then loaded onto the railroad flatcar and, using the blocking and bracing methods specified in the outloading procedures in figures 1 and 2, secured to the flatcar. The railcar used in the test was inspected to ensure its adequacy for transportation.

2. Rail Impact Procedure. The test load was positioned on a railcar. Equipment needed to perform the test included the specimen (hammer) car, five empty railroad cars connected together to serve as the anvil, and a railroad locomotive (figure 3). These anvil cars were positioned on a level section of track with air and hand brakes set and with the draft gears compressed. The locomotive unit pulled the specimen car several hundred yards away from the anvil cars, then pushed the specimen car toward the anvil at a predetermined speed, and disconnected from the specimen car approximately 50 yards away from the anvil cars. This allowed the specimen car to roll freely along the track until it struck the anvil. This constituted an impact. Impacting is accomplished at speeds of 4, 6, and 8 mph in one direction and at a speed of 8 mph in the opposite direction. The 4 and 6 mph impact speeds are approximate; the 8 mph speed is a minimum. Impact speeds are to be determined by using an electronic counter to measure the time required for the specimen car to traverse an 11-foot distance immediately prior to contact with the anvil cars.
KEY NUMBERS

1. CHOCK BLOCK (6 REQUIRED). 24" LONG BY 6" WIDE BY 8" HIGH. LOCATE 45 DEGREE END OF BLOCK AGAINST WHEEL. NAIL THROUGH HEEL OF BLOCK W/3-40d NAILS AND 2-60d NAILS. NAIL EACH SIDE TO THE CAR FLOOR W/2-40d NAILS.

2. ANTI-CHAFING WATER-PROOF PAPER OF A SUFFICIENT SIZE TO POSITION UNDER AND EXTEND 2" ABOVE PIECE MARKED 3.

3. RUBBING STRIP, 2" BY 6" BY 30" (4 REQUIRED). POSITION ON EDGE AND NAIL TO LOWER PIECE MARKED 4 W/1-12d NAIL EVERY 8".

4. SIDE BLOCKING, 2" BY 4" BY 30" (TRIPLED) (4 REQUIRED). NAIL FIRST PIECE TO CAR FLOOR W/1-20d NAILS, EVERY 8". NAIL EACH ADDITIONAL PIECE IN THE SAME MANNER.

5. THIMBLE, STANDARD, SIZE 3/8" (8 REQUIRED). USE ONE PER STAKE POCKET AND ONE PER LADING TIE-DOWN AND/OR LIFTING DEVICE.

6. FRONT TIEDOWN, 3/8" DIAMETER STEEL WIRE ROPE, 24'-0" LONG (2 REQUIRED). INSTALL THE CABLE ANGULARLY, AS SHOWN, TO FORM A COMPLETE LOOP FROM THE STAKE POCKET ON THE CAR TO THE LADING TIEDOWN DEVICE AND BACK TO THE STAKE POCKET.

7. CLIP, SIZE 3/8" (16 REQUIRED). APPLY FOUR CLIPS PER CABLE JOINT.

8. REAR TIE-DOWN, 3/8" DIAMETER STEEL WIRE ROPE, 18'-0" LONG. SECURE IN THE SAME MANNER AS PIECE MARKED 6.

FIGURE 2
ASSOCIATION OF AMERICAN RAILROADS (AAR)
STANDARD TEST PLAN

5 BUFFER CARS (ANVIL) WITH DRAFT GEAR
COMPRASSED AND AIR BRAKES IN A SET
POSITION
ANVIL CARS TOTAL WT 250,000 LBS (APPROX)

SPECIMEN CAR
IS RELEASED BY
SWITCH ENGINE TO
ATTAIN: IMPACT NO. 1 @ 4 MPH
IMPACT NO. 2 @ 6 MPH
IMPACT NO. 3 @ 8 MPH
THEN THE CAR IS REVERSED AND
RELEASED BY SWITCH ENGINE TO
ATTAIN: IMPACT NO. 4 @ 8 MPH

FIGURE 3
B. Securing Provision Tests - MIL-STD-209G.

1. Tiedown Provisions. Class 2 provisions withstood 4.0 times the maximum shipping weight (MSW) in the fore-and-aft direction of the longitudinal axis of the equipment, 2.0 times the MSW in the downward direction of the vertical axis, and 1.5 times the MSW in each direction of the lateral axis. The force applied to each provision was its proportionate share of the MSW. Each load was maintained for a period of not less than 90 seconds. A suitable measuring device (dynamometer or load cell) was placed between the provision and the applied force.

2. Slinging Provisions. The MSW of the rotary towed sweeper is 2,170 pounds. A design load of 2.3 times the working load of each provision is required. The test load was applied to the lifting provision for a period of 90 seconds. A suitable measuring device (dynamometer or load cell) was placed between the provision and the applied force. Test load calculations are shown in figures 4 and 5.
M874 ROTARY TOWED SWEEPER
REAR LIFT PROVISION
DESIGN LOADS

1. DISTANCE FROM FRONT PROVISIONS TO REAR PROVISIONS ALONG CENTERLINE:

96.25 INCHES.

2. DISTANCE FROM FRONT PROVISIONS TO CENTER OF GRAVITY:

90.62 INCHES.

3. GROSS VEHICLE WEIGHT: 2,140 POUNDS.

4. VERTICAL FORCE COMPONENT AT REAR PROVISIONS:

\[ V_r = \frac{(90.62)(2,140 \text{ LBS.})}{(96.25)} = 2,024.24 \text{ POUNDS} \]

5. VERTICAL FORCE IS SHARED BY TWO PROVISIONS: \( 2,024.24/2 = 1,012.12 \text{ POUNDS} \).

6. RESULTANT FORCE COMPONENT AT 45 DEGREES:

\[ R_r = \frac{1,012.12}{\cos 45^\circ} = 1,431.35 \text{ POUNDS} \]

7. DESIGN LOAD = \( (1,431.35)(3.2) = 4,580.3 \text{ POUNDS} \).

8. EACH REAR PROVISION SHOULD BE PULLED AT 45 DEGREES AND HELD AT 4,580 POUNDS FOR 90 SECONDS.

FIGURE 4
\( S_f = 128.2 \) inches
\( S_r = 120.7 \) inches
Apex height = 117.1 inches from base of figure
\( \theta = 14.1 \) degrees
PART 4

TEST RESULTS

TEST SPECIMEN AND RESULTS

RAIL IMPACT DATA

Test No.: 1  Load No.:  Date: 1 August 1990

Specimen Load: Rotary Towed Sweeper

Flatcar No.: BN 603022  Lt. Wt.: 55,500 lbs.

Load Type: Rotary Towed Sweeper  Wt.: 2,150 lbs.

Total Specimen Wt.: 57,650 lbs.

Buffer Car (five cars) Wt.: 250,000 lbs.

<table>
<thead>
<tr>
<th>Impact</th>
<th>End Struck</th>
<th>Velocity (MPH)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Towed End</td>
<td>4.9</td>
<td>No load movement.</td>
</tr>
<tr>
<td>2</td>
<td>Towed End</td>
<td>6.46</td>
<td>Rear tiedown spread 1/4-inch.</td>
</tr>
<tr>
<td>3</td>
<td>Towed End</td>
<td>8.62</td>
<td>Rear tiedown spread an additional 1/8-inch.</td>
</tr>
<tr>
<td>4</td>
<td>Tank End</td>
<td>8.56</td>
<td>No additional damage.</td>
</tr>
</tbody>
</table>

The rotary towed sweeper failed rail impact testing. The rear tiedown provision deformed. It was recommended that the tiedown provision be strengthened.
TEST SPECIMEN AND RESULTS

RAIL IMPACT DATA

Test No.: 2  Load No.:  
Date: 21 August 1990

Specimen Load: Rotary Towed Sweeper

Flatcar No.: BN 603022  Lt. Wt.: 55,500 lbs.

Load Type: Rotary Towed Sweeper  Wt.: 2,150 lbs.

Total Specimen Wt.: 57,650 lbs.

Buffer Car (five cars) Wt.: 250,000 lbs.

<table>
<thead>
<tr>
<th>Impact</th>
<th>End Struck</th>
<th>(MPH)</th>
<th>Remarks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Towed End</td>
<td>4.15</td>
<td>No load movement.</td>
</tr>
<tr>
<td>2</td>
<td>Towed End</td>
<td>6.35</td>
<td>No load movement.</td>
</tr>
<tr>
<td>3</td>
<td>Towed End</td>
<td>8.62</td>
<td>No load movement.</td>
</tr>
<tr>
<td>4</td>
<td>Tank End</td>
<td>8.52</td>
<td>No load movement.</td>
</tr>
</tbody>
</table>

The rotary towed sweeper passed rail impact testing.

MIL-STD-209G pull test of rear provisions. Each provision was pulled to 5,000 pounds and held for a period of 90 seconds. No deformation to the tiedown provisions was observed.
The diagram shows a layout of the rotary towed sweeper positioned on a flatcar. Nos. 1 - 4 label each tiedown cable that secured the sweeper to the flatcar. Cable tension was measured after each impact and is recorded below.

<table>
<thead>
<tr>
<th>Impact/Cable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,600</td>
<td>2,000</td>
<td>1,250</td>
<td>1,300</td>
</tr>
<tr>
<td>1</td>
<td>1,350</td>
<td>1,220</td>
<td>1,120</td>
<td>1,110</td>
</tr>
<tr>
<td>2</td>
<td>1,100</td>
<td>1,050</td>
<td>1,040</td>
<td>1,070</td>
</tr>
<tr>
<td>3</td>
<td>1,050</td>
<td>1,100</td>
<td>880</td>
<td>950</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>800</td>
<td>950</td>
<td>1,060</td>
</tr>
</tbody>
</table>

Impact 0 is the tension on each cable before rail impacting the rotary towed sweeper. Impacts nos. 1 - 3 were in the towed direction, impact no. 4 was in the reverse direction. The decrease in cable tension with successive impacts was attributed to the cables cutting into the wooden flatcar deck from the jerk occurring with each impact.
PART 5

PHOTOGRAPHS
Photo No. A0317-SPN-90-328-3906. This photo shows the forward tiedown provisions on the towed end of the rotary towed sweeper. Note the deformation of the tiedown. Initial deformation occurred during equipment tie-down. Additional deformation occurred during rail impact testing.
This photo shows the rear tiedown fitting on the rotary towed sweeper. Note the wheel blocks and cable used to secure the sweeper to the railcar.
Photo No. A0317-SPN-90-328-3912. This photo shows the exhaust stack from the engine of the rotary towed sweeper. The water tank is to the rear. To access the engine compartment from this side, the metal panel through which the exhaust protrudes must be removed. The wires attached to the exhaust are for test instrumentation and are not a part of the sweeper.
Photo No. A0317-SPN-90-328-3914. This photo shows a top view of the rear tiedown provision on the rotary towed sweeper. A 3/8-inch cable is used to tie the sweeper to the railcar. Note the set hand brake at the left.
Photo No. A0317-SPN-90-328-3919. This photo shows the hydraulic power lines and method of securement at the rear of the broom shield. The chain is used to maintain the broom direction (sweep to the right or left) when in use.
Photo No. A0317-SCN-90-353-5220. This photo shows the cable configuration used in securing the rotary towed sweeper for rail transportation.
Photo No. A0317-SCN-90-353-5236. This photo shows a rear view of the rotary towed sweeper. Note the taut tiedown cables holding the sweeper to the railcar. Data recording instrumentation is in the foreground.
U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

Photo No. A0317-SCN-90-353-5242. This photo shows the rotary towed sweeper moving down the rails just prior to impact.
Photo No. A0317-SCN-90-353-5245. This photo shows a side view of the rotary towed sweeper. Note the wheel blocking and bracing.
Photo No. A0317-SCN-90-353-5249. This photo shows the method of securing the tiedown cables used during the rotary towed sweeper test. Note the condition of the floor of the flatcar.
Photo No. A0317-SPN-90-353-5279. This photo shows the rotary towed sweeper blocked, braced, and tied down to a flatcar ready for rail impact testing. What appears to be a half-filled water tank is the tank mold mark. The 250-gallon tank was empty during testing.
<table>
<thead>
<tr>
<th>U.S. ARMY DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. A0317-SPN-90-353-5276. This photo shows the wheel blocking and bracing used to keep the rotary towed sweeper from moving during rail transportation.</td>
</tr>
</tbody>
</table>
Photo No. A0317-SPN-90-353-5280. This photo shows a chain used in restraining the rotary towed sweeper broom. This chain remains free to move during transportation.
Photo No. A0317-SPN-90-353-5284. This photo shows a tiedown provision on the rear of the rotary towed sweeper with a cable securing it to a flatcar. Note the wheel chocks and side bracing with anti-scuff material.
Photo No. A0317-SPN-90-353-5293. This photo shows the front tie-downs used to secure the tandem towed sweeper to a flatcar for rail transportation. Note the front wheel chocks and side bracing. The towing tongue is secured under the brush.
Photo No. A0317-SPN-90-353-5302. This photo shows the procedure used to test the load capability of the slinging provisions on the rotary towed sweeper. Representatives from USADACS, MTMC-TEA, and the manufacturer are monitoring the test.
PART 6

TEST DATA
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1998
Impact 1: 4.15 MPH

Longitudinal Acceleration on Sill

Sample Time in Seconds
X 1,000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 1: 4.15 MPH

Sample Time in Seconds
X 1.0000

Lateral Acceleration on Stil
in G's X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1998
Impact 1: 4.15 MPH

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 1: 4.15 MPH

Vertical Acceleration on Frame
in G's x 1.0000

Sample Time in Seconds
x 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 2: 6.35 MPH

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 2: 6.35 MPH

Sample Time in Seconds
X 1.0000

Vertical Acceleration on Still
in G's X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1998
Impact 2: 6.35 MPH

Sample Time in Seconds
X 1.0000

Rail Coupler Force
in Pounds X 100000.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 2: 6.35 MPH
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 2: 6.35 MPH

Sample Time in Seconds
x 1,000

Lateral Acceleration on Frame
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1998
Impact 3: 8.62 MPH

Lateral Acceleration on Sill
in G/s x 1,00000

Sample Time in Seconds
x 1,00000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1998
Impact 3: 8.62 MPH

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 3: 8.62 MPH

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 3: 8.62 MPH

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 4: 8.52 MPH

Lateral Acceleration on Sill

Sample Time in Seconds
x 1.0000

in G's x 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 4: 8.52 MPH

Sample Time in Seconds
X 1.0000

Vertical Acceleration on Sill
In G's X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 4: 8.52 MPH

Rail Coupler Force
in Pounds X 100000.000

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 4: 8.52 MPH

Longitudinal Acceleration on Frame

in G's X 1.0000

Sample Time in Seconds
X 1.0000
Rail Impact Test of Rotary Towed Sweeper

Date: 21 August 1990
Impact 4: 8.52 MPH

Sample Time in Seconds

in G's x 1.0000

Lateral Acceleration on Frame
Rail Impact Test of Rotary Towed Sweeper
Date: 21 August 1990
Impact 4: 8.52 MPH

Vertical Acceleration on Frame

Sample Time in Seconds
X 1.0000