This paper presents results from an image compression scheme based on iterated transforms. Results are examined as a function of several encoding parameters including maximum allowed scale factor, number of domains, resolution of scale and offset values, minimum range size, and target fidelity. The performance of the algorithm, evaluated by means of fidelity versus the amount of compression, is compared with an adaptive discrete cosine transform image compression method over a wide range of compressions.

<table>
<thead>
<tr>
<th>21a. NAME OF RESPONSIBLE INDIVIDUAL</th>
<th>21b. TELEPHONE (INCLUDING AREA CODE)</th>
<th>21c. OFFICE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. W. Jacobs</td>
<td>(619) 553-1614</td>
<td>Code 573</td>
</tr>
</tbody>
</table>
Image compression: A study of the iterated transform method

E.W. Jacobs, Y. Fisher and R.D. Boss

Naval Ocean Systems Center, Code 573, San Diego, CA 92152-5000, USA

Received 28 June 1991
Revised 24 October 1991 and 31 March 1992

Abstract. This paper presents results from an image compression scheme based on iterated transforms. Results are examined as a function of several encoding parameters including maximum allowed scale factor, number of domains, resolution of scale and offset values, minimum range size, and target fidelity. The performance of the algorithm, evaluated by means of fidelity versus the amount of compression, is compared with an adaptive discrete cosine transform image compression method over a wide range of compressions.


Résumé. Cet article présente des résultats concernant une méthode de compression d'image basée sur les transformées. Ces résultats sont examinés en fonction de différents paramètres d'encodage incluant le facteur d'échelle maximum autorisé, le nombre de domaines, la précision des valeurs d'échelle et d'offset, la taille minimum d'intervalle et l'objectif de qualité. La performance de l'algorithme, évaluée au moyen du rapport de la qualité en fonction de la compression, est comparée à un schéma de compression basé sur la transformée en cosinus adaptative sur une large gamme de débits.

Keywords. Image compression; fractals; iterated transformations.

1. Introduction

Because of the increasing use of digital imagery, there is currently considerable interest in the image compression problem. This interest has led to the establishment by the Joint Photographic Experts Group of an image compression standard based on discrete cosine transforms. Although the use of this standard is becoming common, there are alternative methods for compressing images. One such alternative, iterated transformations, has been presented by Jacquin [6-8]. This method has its foundation in the theory of iterated function systems (IFSs), developed by Hutchinson [5] and Barnsley [1], and recurrent iterated function systems (RIFS) [2]. For a description of the basic iterated transform method, refer to [6-8]. This method has been extended to include individual transforms which are not contractive [4]. Because this is a relatively new method, little information is currently available on its performance. In writing even a simple iterated transform encoder, there are a host of parameters which can be varied. Currently, there is no information available on the dependence of system performance on such parameters. The purpose of this paper is to present results on the dependence of compression, fidelity and encoding time, on several pertinent system parameters. For the purpose of
defining the parameters of interest in this paper, a brief summary of the method is presented in the following paragraphs. A more detailed description of the method in the notation used in this correspondence, and a description of the basic implementation used here can be found in [4].

1.1. Theoretical background

The image is encoded in the form of an iterative system (a space and a map from the space to itself) \( W : F \rightarrow F \). The space \( F \) is a complete metric space of images, and the mapping \( W \) (or some iterate of \( W \)) is a contraction. The constructive mapping fixed point theorem ensures convergence to a fixed point upon iteration of \( W \). The goal is to construct the mapping \( W \) with fixed point 'close' (based on a properly chosen metric \( \delta(f, g) \)) to a given image that is to be encoded, and such that \( W \) can be stored compactly. The collage theorem provides motivation that a good mapping can be found [1].

Decoding then consists of iterating the mapping \( W \) from any initial image until the iterates converge to the fixed point.

Let \( I = [0, 1] \) and \( I^m \) be the \( m \)-fold Cartesian product of \( I \) with itself. Let \( F \) be the space consisting of all graphs of real Lebesgue measurable functions \( z = f(x, y) \) with \((x, y, f(x, y)) \in I^3 \). Let \( D_1, \ldots, D_n \) and \( R_1, \ldots, R_m \) be subsets of \( I^2 \) and \( w_1, \ldots, w_n : I^3 \rightarrow I^3 \) be some collection of maps. Define \( w \) as the restriction

\[
w_i = w|_{D_i \times I}.
\]

The maps \( w_1, \ldots, w_n \) are said to tile \( I^2 \) if for all \( f \in F, \bigcup_{i=1}^{n} w_i(f) \in F \). This means the following: for any image \( f \in F \), each \( D_i \) defines a part of the image \( f \cap (D_i \times I) \) to which \( w_i \) is restricted. When \( w_i \) is applied to this part, the result must be a graph of a function over \( R_i \), and \( I^2 = \bigcup_{i=1}^{n} R_i \). This is illustrated in Fig. 1. This means that the union \( \bigcup_{i=1}^{n} w_i(f) \) yields a graph of a function over \( I^2 \), and that the \( R_i \)'s are disjoint. The map \( W \) is defined as

\[
W = \bigcup_{i=1}^{n} w_i.
\]

Since the goal is to limit the memory required to specify \( W, I^2 \) is partitioned by geometrically simple sets \( R_i \) with \( \bigcup_{i=1}^{n} R_i = I^2 \). For each \( R_i \), a \( D_i \subset I^2 \) and \( w_i : D_i \times I \rightarrow I^2 \) is sought such that \( w_i(f) \) is as close to \( f \cap (R_i \times I) \) as possible; that is,

\[
\delta(f \cap (R_i \times I), w_i(f))
\]

is minimized. The motivation for minimizing expression (2) is provided by the collage theorem [1].

Those initiated to IFS theory may find it surprising that when the transformations \( w_i \) are constructed, it is not necessary to impose any contractivity conditions on the individual transforms. The necessary contractivity requirement is that \( W \) be eventually contractive [4]. A map \( W : F \rightarrow F \) is eventually contractive if there exists a positive integer \( m \) such that the \( m \)th iterate of \( W \) \( (W^m) \) is contractive (as measured by an appropriate metric). All contractive maps are eventually contractive, but not vice versa.

A brief explanation of how a transformation \( W : F \rightarrow F \) can be eventually contractive but not contractive is in order. The map \( W \) is composed of a union of maps \( w_i \), operating on disjoint parts of an image. If any of the \( w_i \) are not contractive, then \( W \) will also not be contractive. The iterated transform \( W^m \) is composed of a union of compositions of the form

\[
w_m = w_n \circ \cdots \circ w_1.
\]

Since the product of the contractivities bounds the contractivity of the compositions, the compositions may be contractive if each contains sufficiently contractive \( w_i \). Thus \( W \) will be eventually contractive if it contains sufficient 'mixing' so that the contractive \( w_i \) eventually dominate the expansive ones.

1.2. Implementation

For \( 256 \times 256 \) pixel 8 bit per pixel (bpp) images the model was scaled to \([0, 255] \times [0, 255] \times [0, 255] \). (For other image sizes, appropriate scaling can be employed.) To limit the
memory required to specify \( w_i \), only maps of the form

\[
\begin{bmatrix}
    x \\
    y \\
    z
\end{bmatrix}
= \begin{bmatrix}
    a_i & b_i & 0 \\
    c_i & d_i & 0 \\
    0 & 0 & s_i
\end{bmatrix}
\begin{bmatrix}
    x \\
    y \\
    z
\end{bmatrix}
+ \begin{bmatrix}
    e_i \\
    f_i \\
    o_i
\end{bmatrix}
\]

(3)

are considered, where \( w_i \) is restricted to \( D_i \times I \). In terms of an image, \( x \) and \( y \) represent the pixel coordinates, and \( z \) represents the pixel intensity. The pixel intensities are clipped when \( w_i \) maps outside the allowed intensity range. For the transformation \( w_i \) to be compactly specified, \( R_i \) and \( D_i \) must be compactly specified. This can be done by choosing \( R_i \) and \( D_i \) from a small set of potential candidates. Also, many of the computations are simplified if \( R_i \) and \( D_i \) are geometrically simple. Let \( \mathcal{R} \) be the collection of subsets of \( I^2 \) from which the \( R_i \) are chosen, and let \( \mathcal{D} \) be the collection of subsets of \( I^2 \) from which the \( D_i \) are chosen. The set \( \mathcal{R} \) was chosen to consist of \( 4 \times 4, 8 \times 8, 16 \times 16 \) and \( 32 \times 32 \) non-overlapping subsquares of \( [0, 255] \times [0, 255] \) (i.e., squares of size \( s \times s \) have their upper left corners at integer multiples of \( s \)). The collection \( D \) consisted of \( 8 \times 8, 16 \times 16, 32 \times 32 \) and \( 64 \times 64 \) subsquares with sides parallel to or slanted at \( 45^\circ \) angles from the natural edges of the image. Although the \( D_i \)'s and \( R_i \)'s are not strictly the domains and ranges of the \( w_i \)'s, the terminology will be used because it is descriptive. Domain squares of size \( s \times s \) were restricted to have corners on a lattice with vertical and horizontal spacing of \( s/2 \). This choice of \( D \) will be called \( D^3 \). It is clear then that the size and position of \( R_i \), the size, position and orientation (i.e., \( 0^\circ \) or \( 45^\circ \)) of \( D_i \), and which one of the eight possible symmetries (rotation and flip operator \( v_i \)) for mapping one square onto another, uniquely define the coefficients \( a_i, b_i, c_i, d_i, e_i, \) and \( f_i \) in (3). In this implementation, only domains with side length twice that of the range are allowed, resulting in contraction in the \( xy \) plane. Therefore, each range pixel corresponds to a two by two pixel area in the corresponding domain. The average of the four domain pixel intensities are mapped to the area of the range pixel when computing \( w_i(f) \). When \( D_i \) is oriented at \( 45^\circ \), the averaging of pixels is more complicated, the details of which are not very significant. What is significant is that the method for averaging pixels in the encoding and decoding procedures are consistent.

Insisting that \( w_i \) map (the graph above) \( D_i \) to (a graph above) \( R_i \), while minimizing expression (2) determines \( s_i \) and \( o_i \). In this way \( w_i \) is determined uniquely for a chosen metric. In this paper, the root mean square (rms) error \( \delta_{\text{rms}} \) was chosen as the metric. For further comment on this choice of the metric, see [4]. Because \( s_i \) and \( o_i \) must be stored with a fixed number of bits (\( n_i \), and \( n_o \), respectively), they must be discretized. The values for \( s_i \) were
restricted to the range \( s_{\text{max}} \geq |s| \geq (s_{\text{max}}/10) \) and \( s_i = 0 \), where \( s_{\text{max}} \) was the maximum allowable \( s \). The distribution of the discretized \( s \)'s was chosen such that any desired scale factor could be represented within some fixed percentage (i.e., a logarithmic scale). The minimum and maximum possible values for \( o \), are restricted by the value of the corresponding \( s \). Given \( n \), the discretized values for \( o \) were distributed linearly over this interval. Only the discretized values of \( s \) and \( o \) are used when calculating the values of \( s \) and \( o \), which minimizes expression (2).

Once the choice of \( R \) and \( D \) has been made, the encoding problem is reduced to choosing a set \( \{ R_i \} \subseteq R \), and the corresponding set \( \{ D_i \} \subseteq D \), such that good compression and an accurate encoding of the image results. To take advantage of local ‘flatness’ in the image and to reduce the error in regions of high variability, a recursive quadtree partitioning method was used to allow the range squares to vary in size.

The method used to find the \( D \)'s determines how much computation time the encoding takes. A search through all of \( D \) would clearly result in the choice that would best minimize expression (2), but for applications for which encoding time is a consideration, such a search may require too much computation time. Therefore a classification scheme was used to reduce the amount of computation needed to find a good covering. The strategy of the classification scheme is important, although the fine details of the implementation method are not critical. The following paragraph reviews the important aspects of the classification scheme used.

The classification scheme used was based on the simple ideas that good covers would have matching regions of bright and dark and that any strong edges (variations in intensity) should also match. The classification scheme in [6] was generally based on these ideas. The classification scheme began by computing the average intensity for each quadrant of the (range or domain) square. Then a symmetry operation was applied to force the square into an orientation with its brightest quadrant in the upper left quadrant, and to put the second brightest quadrant into the upper right quadrant (or the third brightest if the second brightest could not be so oriented). This process divided the squares into three main classes (and defined a symmetry operation for each square). Each of these three main classes was then subdivided by determining the amount of the variation of the average brightness of the sub-quadrants for each quadrant of the square. The quadrants of the square were thereby ordered from first to fourth by the amount of variation within each quadrant. There are 24 possible permutations for the order of the relative brightness variations. This results in a total number of 72 classes. The symmetry operations determined in this classification for a given \( R \) and \( D \), defined the rotation and flip operation \( v \), for mapping \( D \) to \( R \), further increasing the time saved during encoding.

The encoding process proceeded as follows. Initially, the range squares \( R \) were chosen to be 64 subsquares of size \( 32 \times 32 \). The first \( 32 \times 32 \) range square was classified using the same classification procedure as the domains. A search was then performed for the domain square (with side length twice that of the range square) in the same class (or similar classes) which best minimized expression (2). If this best domain square and its corresponding \( w \) resulted in an error (given by expression (2)) less than a predetermined tolerance \( (e) \), \( w \) (and \( D \)) was stored and the process was repeated for the next range square. If the predetermined tolerance was not satisfied, the range square was subdivided into four equal squares. This quadtreeing process was repeated until the tolerance condition was satisfied, or a range square of a predetermined minimum size \( r_{\text{min}} \) was reached.

For range squares of size \( r_{\text{max}} \), the best \( w \) was stored whether or not \( e \) was satisfied. The process was continued until the entire image was encoded. The average storage requirement for a single \( w \) was about 30 bits, and was dependent on several factors. The rotation and flip operator \( v \) required 3 bits, and for most encodings presented here \( n \), and \( n \), were stored with a total of 12 bits. The position
of \( R_i \) was inferred from the ordering. Approximately 15 bits were required to identify the size of \( R_i \) and the location (and orientation) of \( D_i \), this number being dependent on both the choice of \( D \) and the level in the quadtree. When \( s_i = 0 \), only \( o_i \) and the size of \( R_i \) are required, so the transformation can be stored more compactly. The compressions quoted in this paper were computed from the actual size of the compressed data files.

Clearly this encoding method has many parameters which influence the compression, accuracy and speed of the encoding. How these parameters effect the encoding is not a priori obvious. The following discussion will consider how varying the number of possible domains effects the encoding accuracy, compression and speed. The following assumes that one encoding, call it \( W' \), uses a given set of possible domains \( D' \), while the other \( W'' \) uses a domain set \( D'' \) such that \( D'' \subseteq D' \). First, it is clear that for any given range square, the best covering (in the sense of minimizing expression (2)) from \( D'' \) must be as good as or better than the best covering taken from \( D' \). However, this does not guarantee an improved encoding within the quadtree method. It is possible that some large range which was subdivided in \( W'' \) (and then covered very well) will not be subdivided in \( W'' \), resulting in a less accurate encoding. Second, since \( D'' \) contains \( D' \), the individual \( w_i \) transforms of \( W'' \) require more bits to store than the \( w_i \)'s of \( W'' \). However, this does not mean that \( W'' \) must have a poorer compression than \( W'' \). If a large block is covered, rather than subdivided, then only one transform (instead of at least four) needs to be stored, resulting in a net savings in the total number of required bits. Finally, although the construction of \( W'' \) requires searching through a bigger domain pool than the construction of \( W'' \), it does not follow that the encoding process must take more time. When a large block is covered the four smaller ranges do not need to be covered, thus saving time.

This paper describes the dependence of the performance of the encoding scheme on the following parameters: (1) the number of bits used to store the scale factor \( (n_s) \) and offset \( (n_o) \), (2) the maximum allowed \( s_i (s_{max}) \), (3) the number of possible domains, (4) the criterion used to decide if a covering is acceptable \( (e_i) \), (5) the minimum range size in the quadtree subdivision \( (r_{min}) \), and (6) the number of domain classes searched \( (n_c) \). It is not obvious how adjusting these parameters effects the performance of the encoding method, since for each of these parameters it is possible to construct arguments similar to that given previously for the total number of possible domains.

Before presenting results, a tutorial example is given to better illustrate how the method works. Let values of \( z = 0 \) be represented as black, \( z = 1 \) as white, with intermediate values as shades of gray. Consider the image in Fig. 2, and the sixteen transformations given in Table 1, where the first eight transformations are restricted to act on the region \( \{(x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 1\} \), and the second eight transformations are restricted to act on the region \( \{(x, y) \mid 1 \leq x \leq 1, 0 \leq y \leq 1\} \). The map \( W \) is defined as the union of these 16 \( w_i \)'s and encodes the image shown. This can be easily demonstrated. The starting point of the iteration is arbitrarily chosen as \( z = 0.5 \) for \( \{(x, y) \mid 0 \leq x \leq 1, 0 \leq y \leq 1\} \). The first six iterates, and the fixed point are shown in Fig. 3. In practice, the values of \( x \), \( y \) and \( z \) are discretized. When the image in this example is discretized as 128 \( \times \) 128 pixels, and 8 bits per pixel, the encoder
A study of iterated transforms

Table 1
A set of 16 transformations that encode the image in Fig. 2

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.75</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.75</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.50</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.0</td>
<td>0.75</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
<td>-0.25</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.5</td>
<td>-0.25</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>0.0</td>
<td>-0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.25</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The peak-signal-to-noise ratio (PSNR) was used to determine image fidelity. PSNR is defined as

\[
\text{PSNR} = -20 \log_{10} \left( \frac{\text{rms}}{2^n - 1} \right),
\]

where \( \text{rms} \) is the root mean square error of the reconstructed image and \( n \) is the number of bits per pixel of the image.

Figure 4 shows PSNR versus compression as a function of \( n \), and \( n_s \), the number of bits used to store values for \( s \) and \( o \), respectively. This data results from encodings of the 512 x 512 pixel resolution, 8-bpp image of Lena. For these encodings, the full set \( D^1 \) as described in Section 1 was used. The other parameters used for these encodings were: minimum range size of 4 x 4 pixels \( (r_{\text{min}} = 4) \), maximum allowed scale factor set to 1.0 \( (s_{\text{max}} = 1.0) \), root mean square error tolerance \( (e_c) \) set to 8.0, and number of classes searched equal to 4 \( (n_c = 4) \). Results for \( n_s \) and \( n_o \) equal to 3, 4, 5, 6, 7 and 8 are shown. The curves connect the data points with the same value of \( n_s \). The different symbols indicate the value of \( n_o \). By connecting the similar diagrams in this paper automatically encodes this image (using an equivalent set of 16 transformations) with the resulting compression equal to 356:1. Note that \( s_{\text{max}} = 2.0 \) for this encoding. The encoder, when constrained to have \( s_s < 1 \) requires 520 transformations to encode this image, with a resulting compression of less than 10:1.

Fig. 3. The starting image, the first six iterates, and the fixed point for the map composed of the 16 transformations in Table 1.

Signal Processing
symbols, one can visualize the curves of constant $n_o$.

The lack of contractivity condition on $s$, is reflected in Figs. 5 and 6 where data from encodings with $s_{\text{max}}$ as high as 2.0 are presented. Figure 5 shows the distribution of the scale factors used in three different encodings of 256 x 256 pixel resolution, 8-bpp Lena. The values of $s_{\text{max}}$ for these encodings were 2.0, 1.0 and 0.5 in Figs. 5(a), 5(b) and 5(c), respectively. Other parameters were $N = 5, n_0 = 7$, with all other parameters the same as in Fig. 4.

In Fig. 6 PSNR versus compression is plotted for different values of $s_{\text{max}}$. The curve at lower compression is for 256 x 256 'tank farm', the curve at higher compression for 256 x 256 Lena. The values of $s_{\text{max}} = 0.5, 0.8, 1.0, 1.2, 1.5$ and 2.0 are denoted by $\triangle$, $\triangle$, $\square$, $\bullet$, $\circ$ and $\circ$, respectively. Other parameters were $n_0 = 72$, with others the same as Fig. 5.
classes, and only a predetermined number of classes \((n_c)\) were searched during encoding. Therefore, increasing \(n_c\) effectively increased the number of possible domains. Figure 8 shows data for \(n_c = 1\) (connected by solid line), 4 (dashed) and 12 (dotted) for each of the domain sets. The open symbols are for cases in which no diagonal domains are allowed \((D^1 \subset D^2\) and \(D^8\)), while the solid symbols include diagonal domains \((D^1 \text{ and } D^4)\). The circles indicate domain lattice spacing of \(s/2\) \((D^1\) and \(D^2\)), while the squares indicate lattice spacing of \(s\) \((D^4\) and \(D^8\)).

Finally, Fig. 9 shows PSNR versus compression data of \(512 \times 512\) Lena for \(e_c = 5.0, 8.0\) and 11.0. The open symbols represent data for \(r_{min} = 4\). Data is shown for \(n_c = 1\) \((\bigcirc\), 4 \((\bigcirc)\) and 12 \((\triangle)\). The value of \(e_c\) separates the data into three widely spaced clusters, \(e_c = 5.0\) for the cluster with the highest PSNR, and \(e_c = 11.0\) for the cluster with the lowest PSNR. The solid symbols represent the same set of data, but with \(r_{min} = 8\). Other parameters were set as follows: \(s_{max} = 1.2\), \(n_c = 5\) and \(n_c = 7\). The original image of Lena and the decoded image with \(r_{min}, e_c\) and \(n_c\) equal to \((8, 8, 72)\), respectively, are shown in Fig. 10. The set of domains \(D^1\)
3. Discussion

In order to compare the relative merits of various sets of parameters it is necessary to be able to decide what it means to say that one encoding is ‘better’ than another. For images encoded using the method described in this correspondence, it has been observed that the PSNR is a reasonable measure of the visual quality of the images (i.e., given two encodings, the one with the larger PSNR looks better). It is clear that the best possible encoding would have both maximum compression and maximum fidelity. In practice this is usually not possible, since adjusting a parameter to improve the compression almost always results in a degradation in the fidelity. Consequently it is difficult to compare two encodings if one is more accurate with poorer compression.

The following observation suggests how such a comparison can be made. Varying the target fidelity ($e_c$) for a particular set of encoding parameters moves an encoding along an empirical barrier by trading compression for accuracy in a roughly linear way (see Fig. 9). An encoding resulting from a
different choice of parameters is better if it has a higher compression than the barrier for the same fidelity or better fidelity for the same compression. It is not practical to compute a barrier for each encoding, so that the better encoding is chosen using an estimate of the barrier. In the results presented below, this is what is meant when one combination of parameters is described as superior to another. An inclusion of the encoding time further complicates the issue and will be neglected, except where specifically indicated.

Figure 9 illustrates these points. Note that in the three data points with \( r_{\text{min}} = 8 \) and \( n_c = 1 \), increasing \( e_c \) resulted in a marked improvement in compression with a corresponding decrease in PSNR. The curve obtained by connecting these data points represents the empirical barrier. By increasing \( n_c \) to 4 and 72, both the compression and the PSNR were improved, resulting in an improved performance barrier. This improvement was achieved at the cost of increased encoding time. The set of data with \( r_{\text{min}} = 4 \) shows similar behavior with some notable differences. The slopes of the empirical barriers for the \( r_{\text{min}} = 4 \) data are steeper than those of the data with \( r_{\text{min}} = 8 \). The data with \( e_c = 11.0 \) indicates that increasing \( n_c \) resulted in an increase in compression and a decrease in PSNR. Therefore it is not obvious that increasing \( n_c \) improved the encoding. In light of the discussion in the previous paragraph, the slope of the empirical performance barriers for the \( r_{\text{min}} = 4 \) data is steep enough that one can conclude that increasing \( n_c \) did result in better encodings (i.e., the improvement in compression more than compensated for the decrease in fidelity).

In Fig. 4 a grid of data is presented with different combinations of \( n_c \) and \( n_s \). The data is plotted in this way so that one can choose the ‘best’ combination for \( n_c \) and \( n_s \). By comparing these data with slope of the barrier in Fig. 9 (for \( r_{\text{min}} = 4 \)) one can see that the combination \( n_c = 5 \), \( n_s = 7 \) is the best. Extensive comparisons (a few hundred encodings of several images at various values of \( e_c \) and \( r_{\text{min}} \)) has shown that plots equivalent to Fig. 4 do not all yield the same best combination. Nonetheless the combination \( n_c = 5 \), \( n_s = 7 \) is the best (compromise) choice for the entire set. Consequently, all

other results are given for encodings using \( n_c = 5 \), \( n_s = 7 \).

The data in Fig. 5 show the relative number of each scale factor used to encode Lena (encodings of other images resulted in similar data). Concentrating on Fig. 5(b) \( (s_{\text{max}} = 1.0) \), because the larger scale factors seem to be preferred, one might hypothesize that a distribution of \( s \)’s with more large values and less small values might yield improved encodings. Experiments with both linear and inverse logarithmic distributions for allowed values of \( s \) resulted in no improvement to the results presented here. In addition, the minimum allowed nonzero \( s \) can be changed. Initial data indicates that the values used were good.

In Fig. 5, note that for smaller \( s_{\text{max}} \), a disproportionate number of \( s \)'s at the extremes of the allowed range of \( s \) are used. Therefore one might hypothesize that increasing \( s_{\text{max}} \) will result in improved encodings. In Fig. 6, this is shown to be the case. The data in this figure for both Lena and ‘tank farm’ show similar results. The encodings with \( s_{\text{max}} = 0.5 \) and 0.8 yielded the poorest results. The encodings improved with increasing \( s_{\text{max}} \) up to \( s_{\text{max}} = 1.5 \). The \( s_{\text{max}} = 2.0 \) case yielded a result marginally worse than the \( s_{\text{max}} = 1.5 \) encoding. Results for a variety of other images and encoding parameters indicate that \( s_{\text{max}} = 1.2 \) or 1.5 usually yields the best PSNR versus compression results. These results are particularly interesting because they show that it is possible to find an iterative system with a fixed point which is closer to a target by allowing some of the individual transforms to be non-contractive.

It is of interest that every one of the encodings with \( s_{\text{max}} \geq 1.0 \) (numerous images and several hundred separate encodings) converged to a fixed point. In a few cases (with \( s_{\text{max}} = 2.0 \)) a mapping took more than ten iterations to converge, but in all cases with \( s_{\text{max}} \leq 1.2 \), ten iterations were sufficient. Since in practice it is desirable to perform only a small number of decoding iterations, \( s_{\text{max}} = 1.0 \) or 1.2 were used for all other encodings in this correspondence. The question of contractivity is important, and is very much dependent on the metric
which is used. For instance, the following procedure can be used to check if a mapping \( W = \bigcup_i w_i \) is eventually contractive for the metric \( \delta_{\sup}(f, g) = \sup_{(x, y) \in D} |f(x, y) - g(x, y)| \). Begin with an image \( f \) such that \( f(x, y) = 1.0 \). Define \( w_i \) as \( w_i \) with \( o_i = 0 \), and \( W' = \bigcup_i w_i \). Then

\[
\sup_{(x, y) \in D} \{ W'^{\infty}(f(x, y)) \}
\]

will be the contractivity \( \sigma \) of \( W'^{\infty} \). To check if \( W \) is eventually contractive, iterate \( W' \) until \( \sigma < 1 \). This test only determines eventual contractivity after an encoding has been made. A similar procedure for the rms metric is not known to the authors. It is relevant to note that a mapping \( W \) which is contractive for \( \delta_{\sup} \) may only be eventually contractive for \( \delta_{\rms} \). Unlike the sup metric, the condition \( a < 1.0 \) is not sufficient to ensure contractivity for the rms metric. However, this condition is sufficient to ensure eventual contractivity for the rms metric.

Unlike the parameters investigated in Figs. 4 - 6 and 9, the number of available domains more directly affects the encoding time. This is important to keep in mind when examining the data in Fig. 8. The data indicate that increasing \( n_c \) typically resulted in a moderate increase in the PSNR with a marked increase in the compression. Conversely, including diagonals typically resulted in little change in the compression, but in a marked increase in the PSNR. Decreasing the lattice spacing (increasing the number of domains) resulted in increases in both PSNR and compression. This means that for all of these different ways of increasing the number of domains, the performance improved. Continuing studies are underway to determine at what point an increase in the number of domains results in decreased performance.

In Table 2, the relative encoding times for several encodings are presented. The data indicate the relative encoding time as a function of \( n_c, e_c, r_{\min} \) and the image size. On an HP-Apollo 400t workstation, the relative time units used in Table 2 are equal to approximately 1170 cpu seconds. This code has not been optimized for speed.

Finally, returning to Fig. 9, data using the domain set \( D^4, n_c = 5, n_r = 7 \) and \( s_{\max} = 1.2 \), are presented over a wide range of compressions. The resulting compression was varied by the choice of \( e_c \) and \( r_{\min} \). As in Fig. 8, it is shown that (at the cost of speed) the encodings can be improved by increasing \( n_c \). Figure 9 and Table 2 indicate the trade off between encoding time and PSNR when varying \( n_r \), and give an indication of the efficiency of the classification method. For comparison, results are also shown for an ADCT algorithm similar to that described in [3]. The ADCT data shown is as good as the JPEG standard at lower compression, and better than the JPEG standard at higher compression [9]. The PSNR versus compression performance of the current iterated transform method is comparable to, but not as good as, the ADCT algorithm.

It is interesting to compare the implementation presented here with that of [6]. Among several other differences, some major differences are that in [6] the restriction \( s_i \leq 1.0 \) was imposed, a Hausdorff metric as well as rms criteria was used during encoding, only 10 values for \( s \) were allowed, and the set of allowed domains was localized and small (about the same in number as \( D^{25} \)). Therefore, relative to any of the encodings presented here, more transformations requiring fewer bits each were used to encode the image. It is interesting that this different approach yields comparable results, although the implementation described in this correspondence (last encoding in Table 2) results in an improvement of 1.4 dB at the same bit-rate. In a later reference by the same author [8], 512 x 512 images were encoded with an algorithm similar to that of [6]. In Table 2, the 512 x 512 encoding with \( n_c = 1 \) indicates a 1.8 dB improvement in fidelity at slightly better compression. (Note that in [6-8] fidelity is computed as SNR, not PSNR.)

In the discussion of Fig. 4, it is specifically noted that in choosing 'best' values for \( n_r \) and \( n_c \), data from several images were considered. Data in Fig. 6 is presented for two images, and in Fig. 7 for one image. Results on several other images that have been encoded show qualitatively similar behavior.
Table 2
Relative time to encode Lena for various parameters

<table>
<thead>
<tr>
<th>$r_{max}$</th>
<th>$r_0$</th>
<th>$r_{min}$</th>
<th>$e_e$</th>
<th>Resolution</th>
<th>$r$(rel)</th>
<th>Compression</th>
<th>PSNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>512</td>
<td>1</td>
<td>15.95:1</td>
<td>33.13</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>512</td>
<td>3.1</td>
<td>17.04:1</td>
<td>33.19</td>
</tr>
<tr>
<td>1.2</td>
<td>72</td>
<td>4</td>
<td>8</td>
<td>512</td>
<td>35.5</td>
<td>17.87:1</td>
<td>33.40</td>
</tr>
<tr>
<td>1.0</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>512</td>
<td>3.1</td>
<td>16.74:1</td>
<td>33.30</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>512</td>
<td>5.3</td>
<td>10.49:1</td>
<td>35.92</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>512</td>
<td>2.0</td>
<td>24.62:1</td>
<td>30.85</td>
</tr>
<tr>
<td>1.2</td>
<td>72</td>
<td>8</td>
<td>8</td>
<td>512</td>
<td>7.5</td>
<td>36.78:1</td>
<td>30.71</td>
</tr>
<tr>
<td>1.2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>256</td>
<td>0.14</td>
<td>9.09:1</td>
<td>30.63</td>
</tr>
<tr>
<td>1.2</td>
<td>72</td>
<td>4</td>
<td>8</td>
<td>256</td>
<td>4.5</td>
<td>9.97:1</td>
<td>31.53</td>
</tr>
<tr>
<td>1.2</td>
<td>72</td>
<td>4</td>
<td>10</td>
<td>256</td>
<td>3.7</td>
<td>11.85:1</td>
<td>30.58</td>
</tr>
</tbody>
</table>

In reference to Fig. 9, the compression and PSNR obtained for a given set of encoding parameters depends on the image. Note that the resulting PSNR for the image is not necessarily close to $e_e$. Therefore it would be difficult to a priori choose parameters that will result in a target PSNR. An algorithm which accurately targets compression can be made by following some simple modifications to the encoding procedure described here. (Instead of quadtreeing based on $e_e$, the encoding process can be structured such that quadtreeing continues until a target number of transformations is reached.) In conclusion, it should be noted that because encoding an image is the interesting problem, decoding of images has only been briefly mentioned in this correspondence. The decoding of images using the iterated transform method is inherently fast (requiring an iteration which is computationally simpler than the inverse transform required for ADCT), an important advantage depending on the application. Even though vector quantization (VQ) methods have more in common with iterated transforms, ADCT has been used for comparison of data because the method is more standardized. In general, VQ methods might be expected to encode and decode faster than iterated transforms. Because VQ uses a fixed codebook and iterated transforms is self-referential, iterated transforms might be expected to work better for applications that require encoding of a wide variety of images.

Current work involves investigation of new classification schemes that maintain PSNR-compression performance while reducing encoding time; using linear combinations of domains; different image partitioning methods; and application to color images.

Acknowledgments

The authors thank the Office of Naval Research and NOSC Independent Exploratory Development for their support. Yuval Fisher would like to thank ASEE for Financial support; the Institute for Non-Linear Science at the University of California, San Diego; and Hassan Aref and the San Diego Supercomputing Facility.

References

