PLANAR STRONGLY WELL-COVERED GRAPHS

Michael R. Pinter *
Belmont University Nashville, Tennessee 37212 USA

Introduction.

Plummer [11] introduced the concept of a well-covered graph in 1970. A graph is well-covered if every maximal independent set (with respect to set inclusion) in the graph is also a maximum independent set. Various subclasses of well-covered graphs have been studied (see, for example, [1] - [7], [10], and [12] - [14]). We consider the subclass which we call strongly well-covered graphs. A strongly well-covered graph G is a well-covered graph with the additional property that $G-e$ is also well-covered for every edge e in G. By making use of (i) structural characteristics of strongly well-covered graphs and (ii) the theory of Euler contributions (for planar graphs), we show that there are only four planar strongly well-covered graphs.

Preliminaries.

From the definition, strongly well-covered graphs remain well-covered upon deletion of any edge. Well-covered graphs which remain well-covered upon deletion of any vertex (called 1-well-covered) have previously been studied by several authors (see [10], [13] and [14]). It is interesting to note that a strongly well-covered graph fails to remain well-covered if any vertex is deleted. The following theorem is proved in [10].

Theorem 1. If $G (G \neq K_1$ or $K_2)$ is strongly well-covered, then for all vertices v in G the graph $G-v$ is not well-covered.

Two structural characteristics which we need are stated in the following two theorems. The proof of 3-connectedness proceeds by induction on the independence number. See [9] or [10] for proofs.

Theorem 2. If G is strongly well-covered, $G \epsilon \{K_1,K_2,C_4\}$, then $\delta \geq 4$.

Theorem 3. Suppose G is strongly well-covered, $G \epsilon \{K_1,K_2,C_4\}$. Then G is 3-connected.

Next we state a lemma which we will frequently use later. See [91 or [10] for the proof.

* work partially supported by ONR Contracts #N00014-85-K-0488 and #N00014-91-J-1142.
Lemma 4. Suppose G is well-covered. Also suppose that S is an independent set and x is a point in G such that (i) $x \in S$ and $x \sim v$ for exactly one v in S, and (ii) S dominates $N[x]$, the closed neighborhood of x. Then $G-e$ is not well-covered, where $e = vx$.

Let G_v be the subgraph of G obtained from G by deleting a vertex v and all its neighbors. The next lemma states that if the vertex a is isolated in the graph G_v, then the vertices a and v must have the same set of neighbors in G. The proof is by induction on the independence number; see [9] or [10].

Lemma 5. Suppose G is connected and strongly well-covered and v is a point in G such that G_v has an isolated point a. Then $N_G(a) = N_G(v)$.

Planar Strongly Well-covered Graphs.

For the remainder of this paper, we restrict ourselves to planar strongly well-covered graphs. For graphs drawn in the plane, we say two faces are adjacent if they share an edge. If a face F contains vertex v, we say F is incident to v. The size of a face is the number of vertices it contains. We refer to the order and sizes of the faces incident to a vertex v as the face configuration at v.

In the next two lemmas, we consider points of degree four and five, respectively, in planar strongly well-covered graphs.

Lemma 6. Suppose G is strongly well-covered planar and 3-connected. If G has a point of degree four which is on a triangular face, then G is the octahedron graph (see Figure 1).

![Figure 1](image-url)
Proof. Suppose v is a point of degree four in G and v is on a triangular face. Let $N(v) = \{u_1, u_2, u_3, u_4\}$. Note that $\delta \geq 4$ by Theorem 2.

Case 1. Suppose the face configuration at v is $(3,3,3,3)$. Let $u_1u_2v, u_2u_3v, u_3u_4v$ and u_4u_1v be the faces.

If $u_1 \sim u_3$, then $\{u_1\}$ dominates $N[v]$. By Lemma 4, the graph $G-vu_1$ is not well-covered. This contradicts the assumption that G is strongly well-covered. So u_1 is not adjacent to u_3.

Thus, there exists $w \sim u_1$ such that $w \notin \{u_2, u_3, u_4, v\}$.

If w is not adjacent to u_3, then $\{w, u_3\}$ dominates $N[v]$, w is not adjacent to v and $u_3 \sim v$. This leads to a contradiction via Lemma 4. So $w \sim u_3$.

Let $z \sim u_2$ such that $z \notin \{u_1, u_3, u_4, v\}$. If $z \neq w$, then $\{z, u_4\}$ is independent and dominates $N[v]$. z is not adjacent to v and $u_4 \sim v$. By Lemma 4, this is a contradiction. Thus $z = w$; that is, $w \sim u_2$ and $\deg(u_2) = 4$. Similarly, $w \sim u_4$ and $\deg(u_4) = 4$. It then follows that $\deg(u_1) = 4 = \deg(u_3)$. Hence, G is the graph given in Figure 1.

Case 2. Suppose the face configuration at v is $(3,3,3,n)$, $n \geq 4$.

Assume the triangular faces are u_2u_3v, u_3u_4v and u_4u_1v. Since G is 3-connected, then u_1 is not adjacent to u_2.

If $u_1 \sim u_3$, then $\{u_3\}$ dominates $N[v]$, a contradiction by Lemma 4. So u_1 is not adjacent to u_3.

Since $\deg(u_1) \geq 4$, there exist points a and b adjacent to u_1 such that $\{a, b\} \cap \{v, u_2, u_3, u_4\} = \emptyset$.

If a is not adjacent to u_3, then $\{a, u_3\}$ is independent and dominates $N[v]$, a is not adjacent to v and $u_3 \sim v$. By Lemma 4, we have a contradiction. So $a \sim u_3$ and, by symmetry, $b \sim u_3$.

Since $\deg(u_2) \geq 4$, there exists $z \sim u_2$ such that $z \notin \{v, u_3, b\}$.

Since G is planar, $\{z, u_4\}$ is independent. Then $\{z, u_4\}$ dominates $N[v]$, $u_4 \sim v$ and z is not adjacent to v, a contradiction by Lemma 4.

Thus, the face configuration $(3,3,3,n)$, $n \geq 4$, cannot occur.

Case 3. Suppose the cyclic face configuration is $(3,3,m,n)$, $m, n \geq 4$.

Assume the triangular faces are u_2u_3v and u_3u_4v. Since G is 3-connected, then u_1 is not adjacent to u_2 and u_1 is not adjacent to u_4.

If $u_1 \sim u_3$, then $\{u_3\}$ dominates $N[v]$, a contradiction by Lemma 4. So u_1 is not adjacent to u_3.

Thus, let $N(u_1) \supseteq \{v, a, b, c\}$, where $\{a, b, c\} \cap \{u_2, u_3, u_4\} = \emptyset$.

If a is not adjacent to u_3, then $\{a, u_3\}$ is independent and dominates $N[v]$, a is not adjacent to v and $u_3 \sim v$. We obtain a contradiction via Lemma 4. So $a \sim u_3$; by symmetry, $b \sim u_3$, $c \sim u_3$.

3
Without loss of generality, we can assume that b is on the "outside" of cycle $au_1vu_4u_3$ and on the "outside" of cycle $u_1cu_3u_2v$ (see Figure 2). Since $\deg(u_2) \geq 4$, there exists $t - u_2$ such that $t \in \{v,c,u_3\}$. But then $\{b,t,u_4\}$ is independent and dominates $N[v]$, $u_4 \sim v$ and neither b nor t is adjacent to v. So by Lemma 4, we obtain a contradiction.

![Figure 2]

Hence, the cyclic face configuration $(3,3,m,n)$, $m,n \geq 4$, cannot occur.

Case 4. Suppose the cyclic face configuration at v is $(3,m,3,n)$, $m,n \geq 4$, with triangular faces u_1u_2v and u_3u_4v. Since G is 3-connected, then u_1 is not adjacent to u_4 and u_2 is not adjacent to u_3.

Case 4.1. Suppose $u_1 \sim u_3$. If there exists $x \sim u_4$ $(x \not\in \{v,u_3\})$ such that x is not adjacent to u_1, then $\{x,u_1\}$ is independent and dominates $N[v]$, x is not adjacent to v and $u_1 \sim v$. By Lemma 4, we have a contradiction. Thus, $N(u_1) \supseteq N(u_4)$. Similarly, $N(u_3) \supseteq N(u_2)$. By Lemma 5, it follows that $N(u_1) = N(u_4)$ and $N(u_3) = N(u_2)$. Since $u_1 \sim u_3$ and G is planar, then u_2 is not adjacent to u_4. But $u_3 \sim u_4$, and so $N(u_3) \neq N(u_2)$, a contradiction.

Hence, u_1 is not adjacent to u_3. By symmetry, u_2 is not adjacent to u_4. Thus, there exist points a and b such that a and b are neighbors of u_1 and $\{a,b\} \cap \{v,u_2,u_3,u_4\} = \emptyset$.

Case 4.2. Suppose $a \sim u_2$. If a is not adjacent to u_3, then $\{a,u_3\}$ is independent and dominates $N[v]$, a contradiction by Lemma 4. So $a \sim u_3$ and, similarly, $a \sim u_4$. By Lemma 5, it follows that $N(a) = N(v)$, and so $\deg(a) = 4$.

4
Since \(\delta \geq 4 \) and \(G \) is planar, then \(\{u_1, u_4\} \) is a cutset for \(G \). Since \(G \) is 3-connected, we have a contradiction.

Hence, \(a \) is not adjacent to \(u_2 \). More generally, if \(x \sim u_1, x \neq v \), then \(x \) is not adjacent to \(u_2 \). By symmetry, if \(y \sim u_2, y \neq v \), then \(y \) is not adjacent to \(u_1 \). Since \(\deg(u_i) \geq 4 \) for all \(i \), there exist neighbors \(c \) and \(d \) of \(u_2 \) such that \(\{c, d\} \cap \{v, u_1\} = \emptyset \), and by the preceding sentence we note that \(\{a, b\} \cap \{c, d\} = \emptyset \).

Since \(G \) is planar, then \(x \) is not adjacent to \(y \) for some \(x \in \{a, b\}, y \in \{c, d\} \). Without loss of generality, suppose \(b \) is not adjacent to \(c \).

Case 4.3. Suppose \(c \sim u_3 \).

Case 4.3.1. If \(c \sim u_4 \), then \(\{c, u_1\} \) is independent and dominates \(N[v] \), a contradiction by Lemma 4. So \(c \) is not adjacent to \(u_4 \).

Case 4.3.2. If \(b \) is not adjacent to \(u_4 \), then \(\{b, c, u_4\} \) is independent and dominates \(N[v] \), a contradiction. So \(b \sim u_4 \).

Case 4.3.3. If \(b \sim u_3 \), then \(\{b, u_2\} \) dominates \(N[v] \), a contradiction. Thus, \(b \) is not adjacent to \(u_3 \).

Case 4.3.4. Suppose \(u_4 \sim x \) for all \(x \in N(u_1) \cup u_2 \). Then \(\{u_2, u_4\} \) is independent and dominates \(N[v] \), a contradiction by Lemma 4. So there exists \(x \sim u_1, x \neq u_2 \), such that \(x \) is not adjacent to \(u_4 \).

If \(x \) is not adjacent to \(c \), then \(\{c, x, u_4\} \) is independent and dominates \(N[v] \), a contradiction. So \(x \sim c \).

By symmetry of the points \(u_1 \) and \(u_2 \), there exists \(y \sim u_2, y \neq u_1 \), such that \(y \) is not adjacent to \(u_3 \). Since \(x \sim c \), then \(\{b, y, u_3\} \) is independent. Since \(\{b, y, u_3\} \) dominates \(N[v] \), we arrive at a contradiction via Lemma 4.

Thus, \(c \) is not adjacent to \(u_3 \) and, by symmetry, \(b \) is not adjacent to \(u_4 \).

If \(c \sim u_4 \), then \(\{b, c, u_3\} \) is independent and dominates \(N[v] \), a contradiction by Lemma 4. So \(c \) is not adjacent to \(u_4 \). By symmetry, \(b \) is not adjacent to \(u_3 \). Thus, \(\{b, c, u_3\} \) is independent and dominates \(N[v] \). We obtain a contradiction from Lemma 4.

Hence, the cyclic face configuration \((3, m, 3, n), m, n \geq 4\), cannot occur.

From Cases 1 through 4, we see that the only other possibility is that \(v \) has exactly one triangle in its face configuration.

Case 5. Suppose \(v \) has face configuration \((3, l, m, n), l, m, n \geq 4\), with \(u_1 u_2 v \) as the face triangle at \(v \). Since \(G \) is 3-connected, \(u_2 \) is not adjacent to \(u_3 \), \(u_3 \) is not adjacent to \(u_4 \) and \(u_4 \) is not adjacent to \(u_1 \).

Suppose \(u_1 \sim u_3 \). As in Case 4.1, we have \(N(u_1) \supseteq N(u_4) \).

Then by Lemma 5, it follows that \(N(u_1) = N(u_4) \). But \(u_1 \sim u_3 \) and \(u_4 \)
is not adjacent to \(u_3 \), a contradiction. Thus, \(u_1 \) is not adjacent to \(u_3 \). By symmetry, \(u_2 \) is not adjacent to \(u_4 \).

Let \(w \sim u_3 \) with \(w \in \{ v, u_1, u_2, u_4 \} \). Suppose \(w \sim u_4 \). If \(w \) is not adjacent to \(u_1 \), then \(\{ w, u_1 \} \) is independent and dominates \(N[v] \), a contradiction. So \(w \sim u_1 \) and, by symmetry, \(w \sim u_2 \). Thus, \(N(w) = N(v) \) by Lemma 5. Since \(\delta \geq 4 \) by Theorem 2, then \(\{ u_1, u_4 \} \) is a cutset for \(G \), contradicting 3-connectedness.

Hence, \(w \) is not adjacent to \(u_4 \) and so \(N(u_3) \cap N(u_4) = \{ v \} \).

Since \(G \) is planar and \(\delta \geq 4 \), then there exist points \(x \) and \(y \) such that \(x \sim u_3 \), \(y \sim u_4 \) and \(x \) is not adjacent to \(y \), where \(v \notin \{ x, y \} \). Suppose \(y \sim u_2 \). If \(y \) is not adjacent to \(u_1 \), then \(\{ x, y, u_1 \} \) is independent and dominates \(N[v] \), a contradiction. So \(y \sim u_1 \). But then \(\{ y, u_3 \} \) is independent and dominates \(N[v] \), a contradiction. So \(y \) is not adjacent to \(u_3 \). By symmetry, \(x \) is not adjacent to \(u_1 \).

If \(y \) is not adjacent to \(u_1 \), then \(\{ x, y, u_1 \} \) is independent and dominates \(N[v] \), a contradiction. So \(y \sim u_1 \) and, by symmetry, \(x \sim u_2 \).

Suppose \(z \in N(u_2) \) implies \(z \sim u_3 \). Then \(\{ u_1, u_3 \} \) dominates \(N[u_2] \), \(u_1 \sim u_2 \) and \(u_3 \) is not adjacent to \(u_2 \). By Lemma 4, we obtain a contradiction. So there exists \(z \in N(u_2) \) such that \(z \) is not adjacent to \(u_3 \).

Let \(a \) and \(b \) be neighbors of \(u_4 \) such that \(\{ a, b \} \cap \{ v, y \} = \emptyset \), and let \(c \) and \(d \) be neighbors of \(u_3 \) such that \(\{ c, d \} \cap \{ v, x \} = \emptyset \). From above, we know that \(\{ a, b, y \} \cap \{ c, d, x \} = \emptyset \) (see Figure 3).

![Figure 3](image-url)
Suppose \(a = z \) (that is, \(a \sim u_2 \)). Also suppose \(a \sim u_1 \). Since
\[N(u_3) \cap N(u_4) = \{ v \}, \]
then \(\{ a,u_3 \} \) is independent. Also, \(\{ a,u_3 \} \)
dominates \(N[v] \). We obtain a contradiction via Lemma 4.

So \(a \) is not adjacent to \(u_1 \). Suppose \(a \sim t \) for all \(t \in N(u_3) - v \).
Then \(\{ a,v \} \) dominates \(N[u_3] \), a contradiction. So there exists some \(t \sim u_3 \), \(t \neq v \), such that \(t \) is not adjacent to \(a \). Since \(G \) is planar, then
\(\{ a,t,u_1 \} \) is independent. Since also \(\{ a,t,u_1 \} \) dominates \(N[v] \), we
obtain a contradiction via Lemma 4.

Thus, \(a \neq z \) and, by symmetry, \(b \neq z \).

Suppose there exists \(s \in \{ a,b \} \) such that \(s \sim u_1 \). Since \(G \) is
planar, then either \(s \) is not adjacent to \(z \) or \(y \) is not adjacent to \(z \). Say \(s \)
is not adjacent to \(z \). Then \(\{ s,z,u_3 \} \) is independent and dominates
\(N[v] \), a contradiction. If \(y \) is not adjacent to \(z \), then we obtain a
similar contradiction.

Thus, \(\{ s,z,u_3 \} \) implies \(s \) is not adjacent to \(u_1 \). Likewise,
\(\{ t,c,d \} \) implies \(t \) is not adjacent to \(u_2 \).

If \(y \sim c \) or \(y \sim d \), then \(x \) is not adjacent to \(a \). Then \(\{ a,x,u_1 \} \) is
independent and dominates \(N[v] \), a contradiction. So \(y \) is adjacent to
neither \(c \) nor \(d \). But then \(\{ c,y,u_2 \} \) is independent and dominates
\(N[v] \), a contradiction by Lemma 4.

Therefore, the face configuration \((3,l,m,n) \), \(l, m, n \geq 4 \), is not
possible.

Hence if \(G \) has a point of degree four which is on a triangular
face, then \(G \) is the octahedron graph given in Figure 1.

Lemma 7. Suppose \(G \) is strongly well-covered planar and 3-
connected. Then \(G \) cannot have a point of degree five with face
configuration \((3,3,3,3,n) \), \(n = 3, 4, \) or \(5 \).

Proof. Suppose \(G \) has a point \(v \) with \(\deg(v) = 5 \) and face
configuration \((3,3,3,3,n) \), \(n = 3, 4, \) or \(5 \). Let \(N(v) = \{ u_1,u_2,u_3,u_4,u_5 \} \). Let \(U_i = N(u_i) - N[v] \), for \(i = 1, ..., 5 \). Since \(u_i \) is
in a triangle for all \(i \), then it follows from Lemma 6 that \(\deg(u_i) \geq 5 \) for
all \(i \).

Case 1. Suppose \(n = 3 \). Suppose \(u_1 \sim u_3 \). If \(u_1 \sim u_4 \), then \(\{ u_1 \}
dominates \(N[v] \). By Lemma 4, we obtain a contradiction. So \(u_1 \)
is not adjacent to \(u_4 \).

Suppose there exists \(x \sim u_4 \) such that \(x \) is not adjacent to \(u_1 \).
Then \(\{ x,u_1 \} \) is independent and dominates \(N[v] \), \(u_1 \sim v \) and \(x \) is not
adjacent to \(v \). By Lemma 4, we obtain a contradiction.
Thus, \(N(u_1) \supseteq N(u_4) \). It follows from Lemma 5 that \(N(u_1) = N(u_4) \). Since \(u_1 \sim u_3 \) and \(G \) is planar, then \(u_2 \) is not adjacent to \(u_4 \). But \(u_1 \sim u_2 \) implies \(N(u_1) \neq N(u_4) \), a contradiction.

So \(u_1 \) is not adjacent to \(u_3 \). By symmetry, \(u_1 \) is not adjacent to \(u_4 \), \(u_2 \) is not adjacent to \(u_5 \), \(u_2 \) is not adjacent to \(u_4 \), and \(u_3 \) is not adjacent to \(u_5 \).

Case 1. Suppose \(U_3 \cap U_4 \neq \emptyset \). Let \(a \in U_3 \cap U_4 \). If \(a \) is not adjacent to \(u_1 \), then \(\{a, u_1\} \) is independent and dominates \(N[v] \), a contradiction. So \(a \sim u_1 \).

Case 1.1. Suppose \(a \sim u_2 \). If \(a \) is not adjacent to \(u_5 \), then \(\{a, u_5\} \) is independent and dominates \(N[v] \), a contradiction; so \(a \sim u_5 \).

Suppose \(x \in U_3 \) implies \(x \sim u_4 \) (that is, \(U_4 \supseteq U_3 \)). Then \(\{u_1, u_4\} \) dominates \(N[u_3] \), \(u_1 \) is not adjacent to \(u_3 \) and \(u_4 \sim u_3 \). By Lemma 4, we obtain a contradiction. Thus, there exists \(x \in U_3 \) such that \(x \) is not adjacent to \(u_4 \). Similarly, there exists \(y \in U_4 \) such that \(y \) is not adjacent to \(u_3 \).

If \(y \) is not adjacent to \(x \), then \(\{x, y, u_1\} \) is independent and dominates \(N[v] \), a contradiction. So \(y \sim x \) (see Figure 4). Since \(\deg(u_2) \geq 5 \), there exists \(t \sim u_2 \) such that \(t \in \{u_1, u_3, a, v\} \). In particular, \(\{t, x, u_5\} \) is independent. Since \(\{t, x, u_5\} \) also dominates \(N[v] \), we obtain a contradiction by Lemma 4.

![Figure 4](image_url)

Case 1.1.2. Thus, \(a \) is not adjacent to \(u_2 \). By symmetry, \(a \) is not adjacent to \(u_5 \). Suppose \(x \in U_2 \) implies \(x \sim a \). Then \(\{a, v\} \) dominates
N[u_2], v \sim u_2 and a is not adjacent to u_2. By Lemma 4, we obtain a contradiction.

Thus, there exists x \in U_2 such that x is not adjacent to a. But then \{a,x,u_3\} is independent and dominates N[v], a contradiction.

Case 1.2. Hence, U_3 \cap U_4 = \emptyset. By symmetry, U_j \cap U_{j+1} = \emptyset, for all i (addition mod 5). Since G is planar and deg(u_i) \geq 5 for all i, then there exist x \sim u_4 and y \sim u_3 such that x is not adjacent to y.
Suppose x \sim u_1. If x \sim z for all z \in U_5, then \{x,v\} is independent and dominates N[u_5], v \sim u_5 and x is not adjacent to u_5. By Lemma 4, we obtain a contradiction. Thus, there exists z \in U_5 such that x is not adjacent to z. But then \{x,z,u_3\} is independent and dominates N[v], a contradiction.

So x is not adjacent to u_1. By symmetry, y is not adjacent to u_1. Thus, \{x,y,u_1\} is independent and dominates N[v], a contradiction.

So n = 3 is not possible.

Case 2. Suppose n = 4. Let the 4-face at v be vu_4au_5. If a is not adjacent to u_2, then \{a,u_2\} is independent and dominates N[v], a contradiction. So a \sim u_2.

Suppose a \sim u_1. If a is not adjacent to u_3, then \{a,u_3\} is independent and dominates N[v], a contradiction. So a \sim u_3. Since deg(u_i) \geq 5 for all i, there exist x \sim u_4 such that x \in \{a,v,u_3\} and y \sim u_5 such that y \in \{a,v,u_1\}. Then \{x,y,u_2\} is independent and dominates N[v], a contradiction. Thus, a is not adjacent to u_1. By symmetry, a is not adjacent to u_3.

Suppose x \in U_3 implies x \sim a. Then \{a,v\} dominates N[u_3], v \sim u_3 and a is not adjacent to u_3. By Lemma 4, we have a contradiction. So there exists x \in U_3 such that x is not adjacent to a. But then \{a,x,u_1\} is independent (since G is planar) and dominates N[v], a contradiction.

Hence, n = 4 is not possible.

Case 3. Suppose n = 5. Let the 5-face at v be vu_4abu_5. Since G is 3-connected, then u_4 is not adjacent to u_5, b is not adjacent to u_4 and a is not adjacent to u_5.

Suppose u_4 and u_5 have a common neighbor w, w \neq v. If w is not adjacent to u_2, then \{w,u_2\} is independent and dominates N[v], a contradiction. So w \sim u_2. Since deg(u_3) \geq 5, there exists x \in U_3 such that x \neq w. Since G is planar, \{a,x,u_1\} is independent. Thus, \{a,x,u_1\} is independent and dominates N[v], a contradiction.

Hence, u_4 and u_5 don't have a common neighbor w, w \neq v.
Suppose \(u_1 \sim u_3 \). If \(u_1 \) is not adjacent to \(a \), then \(\{a,u_1\} \) is independent and dominates \(N[v] \), a contradiction. So \(u_1 \sim a \). But then \(\{b,u_3\} \) is independent and dominates \(N[v] \), a contradiction. Thus, \(u_1 \) is not adjacent to \(u_3 \).

Suppose \(a \sim u_2 \). Then \(\{b,u_3\} \) is independent. If \(b \sim u_1 \), then \(\{b,u_3\} \) dominates \(N[v] \), a contradiction. So \(b \) is not adjacent to \(u_1 \).

Suppose \(x \in U_1 \) implies \(x \sim b \). Then \(\{b,v\} \) dominates \(N[u_1] \), \(v \sim u_1 \) and \(b \) is not adjacent to \(u_1 \). By Lemma 4, we obtain a contradiction. Thus, there exists \(x \in U_1 \) such that \(x \) is not adjacent to \(b \). But then \(\{b,x,u_3\} \) is independent and dominates \(N[v] \), a contradiction.

Hence, \(a \) is not adjacent to \(u_2 \); by symmetry, \(b \) is not adjacent to \(u_2 \).

Suppose \(u_2 \sim u_4 \). If \(b \) is not adjacent to \(u_2 \), then \(\{b,u_2\} \) is independent and dominates \(N[v] \), a contradiction. So \(b \sim u_2 \). Let \(z \sim u_3 \) such that \(z \notin \{u_2,u_4,v\} \). Since \(G \) is planar, then \(\{a,z,u_1\} \) is independent. Since \(\{a,z,u_1\} \) dominates \(N[v] \), we arrive at a contradiction via Lemma 4.

So \(u_2 \) is not adjacent to \(u_4 \); by symmetry, \(u_2 \) is not adjacent to \(u_5 \).

Suppose \(x \in N(u_4) - a \) implies \(x \sim u_2 \). Then \(\{a,u_2\} \) dominates \(N[u_4] \), \(a \sim u_4 \) and \(u_2 \) is not adjacent to \(u_4 \). By Lemma 4, we obtain a contradiction. So there exists \(x \sim u_4 \), \(x \neq a \), such that \(x \) is not adjacent to \(u_2 \). Similarly, there exists \(y \sim u_5 \), \(y \neq b \), such that \(y \) is not adjacent to \(u_2 \). From above, \(x \neq y \). See Figure 5.

![Figure 5](image)

Suppose \(x \sim y \). Since \(G \) is planar, then either \(x \) is not adjacent to \(b \) or \(y \) is not adjacent to \(a \). Without loss of generality, assume \(x \) is not
adjacent to b. Then \(\{b, x, u_2\} \) is independent and dominates \(N[v] \), a contradiction from Lemma 4.

Thus, \(x \) is not adjacent to \(y \). Then \(\{x, y, u_2\} \) is independent and dominates \(N[v] \), a contradiction via Lemma 4.

Hence, \(n = 5 \) is not possible.

Thus, \(G \) cannot have a point \(v \) with \(\deg(v) = 5 \) and face configuration \((3, 3, 3, 3, n)\), \(n = 3, 4 \) or 5.

Lebesgue [8] developed the theory of Euler contributions for planar graphs. The Euler contribution of a vertex \(v \), \(\phi(v) \), is defined as the quantity \(\phi(v) = 1 - \frac{1}{2}\deg(v) + \sum(1/x_i) \), where the sum is taken over all faces \(F_i \) incident to \(v \) and \(x_i \) is the size of \(F_i \). If \(|F(G)| \) denotes the number of faces in the plane graph \(G \), then it follows that

\[
\Sigma_v \phi(v) = |V(G)| - |E(G)| + |F(G)|.
\]

Here the sum is taken over all vertices \(v \) in \(G \). Since Euler's formula for plane graphs says \(|V(G)| - |E(G)| + |F(G)| = 2 \), then we have \(\Sigma_v \phi(v) = 2 \). Thus, \(\phi(v) \) must be positive for some \(v \) in \(G \). From the definition of \(\phi(v) \), it follows easily that \(\phi(v) \leq 0 \) whenever \(\deg(v) \geq 6 \). Thus, if \(\phi(v) > 0 \), then \(\deg(v) \leq 5 \).

As a consequence of the two previous lemmas and the theory of Euler contributions, we find all 3-connected planar strongly well-covered graphs in the following theorem.

Theorem 8. Suppose \(G \) is strongly well-covered planar and 3-connected. Then \(G \) is the octahedron graph shown in Figure 1.

Proof. From Theorem 2, \(\delta \geq 4 \). Suppose \(v \) is a point in \(G \) with positive Euler contribution; that is, \(\phi(v) > 0 \). Then \(\deg(v) = 4 \) or 5.

If \(\deg(v) = 4 \), then \(\phi(v) = 1 - (1/2)(4) + \sum(1/x_i) = -1 + \sum(1/x_i) \), where the sum is taken over all faces incident to \(v \). For \(\phi(v) \) to be positive, \(\sum(1/x_i) \) must be greater than 1. Thus, \(v \) must lie on a triangular face in order for \(\phi(v) \) to be positive. From Lemma 6, this can only occur if \(G \) is the graph given in Figure 1.

If \(\deg(v) = 5 \), then \(\phi(v) = 1 - (1/2)(5) + \sum(1/x_i) = -3/2 + \sum(1/x_i) \), where the sum is taken over all faces incident to \(v \). For \(\phi(v) \) to be positive in this case, \(\sum(1/x_i) \) must be greater than \(3/2 \). Thus, \(v \) must
have a face configuration of the form (3,3,3,3,n), n = 3, 4 or 5. But from Lemma 7, this cannot occur.

From Theorem 3, we know that all strongly well-covered graphs on more than four points are 3-connected. Thus, we conclude in the following corollary that there are exactly four planar strongly well-covered graphs.

Corollary 9. The only planar strongly well-covered graphs are K_1, K_2, C_4 and the octahedron graph shown in Figure 1.

References.