A NUMERICAL SIMULATIONS OF ADSORPTION ONTO A CRYSTALLINE SURFACE

by

J. A. Hernando * and L. Blum**

Prepared for Publication in the J. Phys. C.

*Comisión Nacional de Energía Atómica,
Buenos Aires, Argentina

and

**Department of Physics, University of Puerto Rico
P.O. Box 23343
Rio Piedras, P.R. 00931-3343, USA

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of Document Control Data - DD Form 1473. Copies of form available from cognizant contract administrator.
A particular model for the adsorption of a dense fluid onto a crystalline surface has been studied (L. Blum and D.A. Huckaby, J. Chem. Phys. 94, 6887 (1991). The fluid is arbitrary and the crystalline surface is modelled by a hard wall decorated with a triangular lattice of sticky sites. This model can be mapped on a lattice gas model with interaction potentials related to the particle distribution functions of the smooth (undecorated) wall problem. Approximate adsorption isotherms in the \(\theta-p \) plane (fraction of occupied sites vs. bulk density) have also been drawn. However, the effect that the three particle distribution function has on the critical point has also been estimated (D.A. Huckaby and L. Blum, submitted) and it is quite important. Here we have performed Monte Carlo simulations of a model system inspired on this work. It is a 2D system interacting via a hard sphere plus a triangular well potential and immersed in an external field described by a triangular lattice of sticky sites. We have studied its phase diagram paying some attention also to its behavior in the limit of infinitesimally small sticky adhesion.
A Numerical Simulation of Adsorption onto a Crystalline Surface

J.A. Hernando and L. Blum

"Depto de Física, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires, Argentina
Dept. of Physics, University of Puerto Rico, Rio Piedras, PR 00931-3343

The sticky site model (SSM) has been recently introduced as a simplified but not too unrealistic model of a structured solid-liquid interface [1]. Here we focus our attention on the adsorbed layer onto a surface that is modelled as a smooth plane surface with sticky points on it. These sticky points form a crystalline lattice representing the adsorption sites and the adsorbed layer feels them as an external potential. This potential \(u(r) \) can be represented by its Boltzmann factor

\[
\exp(-\beta u(r)) = 1 + \sum_{n_1,n_2} \lambda \delta(r - n_1 a_1 - n_2 a_2)
\]

Here \(a_1, a_2 \) describe the lattice, the stickiness parameter \(\lambda \) represents the fugacity of an adsorbed atom and \(\beta = 1/kT \).

We have performed MC simulations on a system of 196 particles that interact between themselves with the hard sphere-triangular well potential

\[
v(r) = \begin{cases}
\infty & r \leq 1 \\
V_{1/2} & 1 < r \leq r_0 \\
0 & r > r_0
\end{cases}
\]

the sticky sites form a triangular lattice of constant \(a = r_0 \) and are modelled by the potential.
\[u(r) = \begin{cases}
U_\star & r \leq \delta \\
0 & r > \delta
\end{cases} \]

with \(r_0 = 1.30 \), \(\delta = 0.15 \). There also are 196 sticky sites, the density is \(\eta = \pi N/(4V) = 0.53 \) (close packing is \(\eta = 0.5 \)) and the parameters that vary are \(T, V_\star \) and \(U_\star \). Several data sets were considered and the runs' length was typically between 20 and 30 \(10^6 \) MC steps. In Fig. 1a, b, c, d, we show results for \(U_\star - V_\star = -50, T = 15, 25, 40 \) and in Fig. 1e, f we plot adsorption isotherms as a function of \(\eta \) and adsorption as a function of \(\eta \) with \(U_\star \). Tabulating the curves; \(V_\star = -50 \) always. It is seen that the system undergoes a first order phase transition liquid-solid, that the solid commensurates with the lattice of sticky sites and that the upswing in adsorption coincides with \(g_2(r) \) developing shoulders corresponding to the triangular lattice peaks.
References

Figure Captions

Figure 1. a) Stuck particles probability distribution function for $U_r = V_r = -50$, $T=15,25,40$ (solid, dot and dashed lines); b) pair distribution function for $T=15$ and triangular lattice peak positions (solid and dashed); c) idem as b) with $T=25$; d) idem as b) with $T=40$; e) adsorption isotherm as a function of U_r for $T=15,25,40$; f) adsorption as a function of T for $U_r = -70,-50,-30$.