Light-Activated Solid-State Opening Switch

Mark W. Heyse

Wright Laboratory, Armament Directorate
Analysis and Strategic Defense Division
Electromagnetic Launcher Technology Branch
101 W. Eglin Blvd., Ste 219
Eglin Air Force Base FL 32542-6810

George I. Kachen, Rodney A. Petr,
James P. Reilly, Raymond B. Schaefer

W. J. Schafer Associates, Inc.
321 Billerica Road
Chelmsford MA 01824-4191

JANUARY 1993

FINAL PAPER FOR PERIOD APRIL 1990 - MARCH 1992

Approved for public release; distribution is unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise as in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical paper has been reviewed and is approved for publication.

The Public Affairs Office has reviewed this paper, and it is releasable to the National Technical Information Service (NTIS), where it will be available to the general public, including foreign nationals.

FOR THE COMMANDER

Even though this paper may contain special release rights held by the controlling office, please do not request copies from the Wright Laboratory, Armament Directorate. If you qualify as a recipient, release approval will be obtained from the originating activity by DTIC. Address your request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria VA 22304-6145

If your address has changed, if you wish to be removed from our mailing list, or if your organization no longer employs the addressee, please notify WL/MNSH, Eglin AFB FL 32542-6810, to help us maintain a current mailing list.

Do not return copies of this paper unless contractual obligations or notice on a specific document requires that it be returned.
Title and Subtitle: Light-Activated Solid-State Opening Switch

Authors:
- Mark W. Heyse, WL/MNSH
- Rodney A. Petr, George I. Kachen, James P. Reilly, and Raymond B. Schaefer, W.J. Schafer Associates
- WL Program Manager: Mark W. Heyse (WL/MNSH)

Abstract:
Light-activated solid-state opening switches are shown to be a viable approach for switching inductive circuits. Measured photoswitch performance indicates that light-activated opening switches have the power density ratings needed to develop compact inductive power systems.

Subject Terms:
- High Current Opening Switch
- Solid State Switches
- Cryogenic Silicon Switches
- Photoconductor Switches
PREFACE

This report documents research conducted on solid-state opening/closing switches for inductive energy store. This technical report was presented at the 6th Electromagnetic Launcher Conference in Austin TX on 28 Apr to 1 May 92.

This work was funded by the Electromagnetic Launcher Technology Branch (WL/MNSH) of the Analysis & Strategic Defense Division of the Air Force Wright Laboratory at Eglin AFB FL under the Kinetic Energy Weapons Program of the Strategic Defense Initiative. Mr. Mark W. Heyse from WL/MNSH and personnel from W.J. Schafer Associates (WJSA) in Chelmsford MA performed the work during the period of Apr 90 to Mar 92 at WJSA in Chelmsford MA.
Abstract — Light-activated solid-state opening switches are shown to be a viable approach for switching inductive circuits. Measured photoswitch performance indicates that light-activated opening switches have the power density ratings needed to develop compact inductive power systems.

I. Introduction

Inductive energy storage is an attractive approach for compact power systems, but has been hindered by the lack of fast and reliable opening switches that can handle high commutation voltage and current. Early efforts at developing opening switches (i.e. mechanical, explosive, and plasma opening switches) have shown the need for solid-state devices to achieve fast switching characteristics with long lifetime and high reliability. Conventional solid-state opening switches like GTOs, mosfets, and IGBTs have proven too bulky and costly for compact systems, so that alternate solid-state opening switch approaches are needed in order to make inductive power systems practical.

This paper describes the development of light-activated silicon opening switches for high power inductive storage circuits. Light-activated switches employ optical trigger power to inject photocarriers in the switch in a controlled manner (both spatially and temporally). This is a key advantage because carrier injection determines both voltage and current distribution in the device, so optical trigger control can be used to avoid avalanche breakdown and current constriction during commutation. As discussed below, high average power operation has also been demonstrated. Thus light-activated switches have the power density rating and commutation control needed for compact inductive opening switch applications.

II. Light-Activated Opening Switch Approach

A light-activated opening switch is a bulk semiconductor material with heavily-doped contact electrodes, as illustrated in Figure 1. Illuminating the bulk region generates photocarriers that carry external circuit current. The device is turned off (or opened) by removing the optical trigger source, which allows the carriers to either recombine in the bulk, or to be swept out to the contact regions where they recombine. For a uniform carrier distribution in the substrate, and a bulk carrier lifetime τ_c less than a carrier transit time, the on-state resistance of the photoswitch is:

$$R_s = \frac{x^2 E_p \eta}{\eta P_o \tau_c \mu} \quad (1)$$

where x is contact separation, E_p is bandgap separation, η is photon/carrier conversion efficiency, P_o is optical power, and μ is carrier mobility. Equation 1 assumes that switch thickness is approximately one optical absorption depth ($1/\alpha$) of the light trigger pulse and the optical window has an anti-reflection coating.

![Fig. 1. Light-activated opening switch geometry.](image-url)
WJSA has been actively involved with Eglin AFB in developing light-activated silicon opening switches. The goals of the opening switch program, along with demonstrated switch performance to date, are listed in Table 1. Commutation power density goals are approximately 3-5 times higher than conventional GTO specifications[4], so that a major technology thrust was to develop highly compact photoswitch structures. A significant number of switch goals were accomplished, and technology paths have been identified for achieving performance improvements that can meet or exceed all switch requirements. For example, optical trigger characteristics, as well as substrate carrier lifetime and contact doping profiles, are key design parameters for optimizing opening switch performance[2]. Space-charge formation at the contact/semiconductor interface was the primary factor that limited device performance below program goals. Photoswitch database and computer models indicate that Table 1 opening switch goals can be accomplished through careful design of the optical trigger and window system, as well as the silicon switch contact structure.

Table 1. Eglin Solid-State Opening Switch Program.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Device Goals</th>
<th>Demonstrated at Device Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Current Density</td>
<td>150A/cm²</td>
<td>75A/cm²</td>
</tr>
<tr>
<td>Off-state Blocking Voltage</td>
<td>5kV</td>
<td>5kV</td>
</tr>
<tr>
<td>Turn-off Commutation Voltage</td>
<td>5kV</td>
<td>500V</td>
</tr>
<tr>
<td>Forward Voltage Drop</td>
<td>2V</td>
<td><1.5V</td>
</tr>
<tr>
<td>Rep-Rate</td>
<td>10Hz</td>
<td>>10Hz</td>
</tr>
<tr>
<td>Turn-on Time</td>
<td>20µS</td>
<td>20µS</td>
</tr>
<tr>
<td>Turn-off Time</td>
<td>75µS</td>
<td>20µS</td>
</tr>
<tr>
<td>Timing Jitter</td>
<td><1µS</td>
<td><50ns</td>
</tr>
<tr>
<td>Life</td>
<td>10⁹ shots</td>
<td>10⁹ shots</td>
</tr>
<tr>
<td>Switch Conduction Time</td>
<td>variable</td>
<td>up to 5 sec</td>
</tr>
</tbody>
</table>

Figure 2 shows a schematic cross-section of a photoswitch module that was tested during the opening switch program. The module contained 3 parallel switches that were flashlamp triggered, which was operated at liquid nitrogen temperature for enhanced steady-state switch thermal properties at long on-times (5 sec). Cryogenic temperature operation also minimized bulk silicon thermal runaway issues for Eglin switching requirements. The switches were able to support greater than 200V dc for more than 5 sec, and calculations show they can support 5kV for 10ms off-state times. Anti-reflection coatings on the photoswitch windows were not utilized due to the broad-band optical spectrum of the flashlamp trigger source.

The switches were thin silicon substrates mounted in a low inductance electrode configuration, and the total switch inductance for a 250kA system was less than 20nH. Figure 3 shows the laboratory hardware for the 250kA switch system. The 250kA switch assembly housed 12 parallel opening switch modules, and measured 9ft by 3ft by 4ft. The switch assembly was designed purely for laboratory use, and can be made significantly smaller for fieldable systems. The photoswitch modules contained 3-parallel opening switch substrates, and measured 12in long by 5in wide by 7in deep (including flashlamp and reflector housing).
Photoswitch commutation waveforms operating at 77°K are presented in Figure 4, and show current interruption times of approximately 20μS for flashlamp-triggered devices. The demonstrated 75A/cm² device current at less than 1.5V on-state voltage indicates that light-activated opening switches can be designed to meet compact high power inductive pulser applications. Technology development paths for achieving room-temperature switch operation with further volume reduction have been identified. For example, μ-channel cooling techniques combined with 1μm laser diode trigger sources, and graded pn junction structures will provide a high power density switch package. Thus light-activated opening switches have the power density ratings to be a viable solid-state opening switch technology for compact inductive power systems.

Fig. 3. (a) Opening switch module containing 3 parallel photoswitch substrates. (b) 250kA switch assembly designed to house 12 opening switch modules.

Fig. 4. Light-activated opening switch turn-off characteristics.
III. Summary

Light-activated cryogenic silicon opening switches were designed and tested in an inductive power circuit. Current interruption times of 20μs at current densities of 75A/cm² were demonstrated with flashlamp optical sources at 77K. Photoswitch measurements and modeling show that electrical contacts, optical trigger, and window design are critical parameters in optimizing opening switch on-state current and voltage commutation. Technology paths have been identified for increasing photoswitch power ratings, and include room-temperature operation using laser diode arrays. The demonstrated high average power operation and power density capability of light-activated opening switches make them a viable switch technology for developing compact inductive power systems.

IV. Acknowledgements

This work was supported under Eglin Solid-State Opening Switch Contract No. F08635-90-C-0243.

V. References

[1]. GE Static Power Components Catalog, Malvern, PA.

Defense Tech Info Center
Attn: DTIC-DDAC
Cameron Station
Alexandria VA 22304-6145
1

AUL/LSE
Maxwell AFB AL 36112-5564
1

AFSAA/SAI
The Pentagon, Room 1D363
Washington DC 20330-5420
1

DARPA/TTO
Tactical Technology Office
Attn: Mr. Peter Kemmy
3701 N. Fairfax Drive
Arlington VA 22203-1714
1

Naval Surface Weapons Center
Attn: Mr. P. T. Adams, Code G-35
Dahlgren VA 22448
1

Office of Naval Research
Attn: Code 1132P (Dr. Gabriel Roy)
800 N. Quincy Street
Arlington VA 22217-5000
1

SDIO/TNC
Attn: Mr. Mick Blackledge
Washington DC 20301-7100
1

SDIO/TNI
Attn: Dr. Dwight Duston and
Lt Col Pedro Rustan
Washington DC 20301-7100
1

AFOSR
Attn: NR (Dr. Barker)
Bolling AFB DC 20332-6448
1

HQ DNA
Attn: OTA (Messrs. D. Lewis and
A. Fahey)
6801 Telegraph Road
Alexandria VA 22310-3398
1

Distribution
WL-TP-92-011

Eglin AFB offices:

WL/CA-N
WL/CA-N
WL/MNOI (STINFO Facility)
WL/MNS
WL/MNSH
1 1

WL/FLIES/SURVIAC
Wright-Patterson AFB OH 45433-6553
1

HQ USAFE/INATW
APO NY 09012-5001
1

U.S. Army Strategic Defense Command
Attn: DASD-H-Q (Lt Col Steven Kee)
P.O. Box 1500
Huntsville AL 35807-3801
1

U.S. Army Strategic Defense Command
Attn: CSSD-AT-E (Mr. Dimitrios Lianos)
P.O. Box 1500
Huntsville AL 35807-3801
1

U.S. Army, ARDEC
SMCAR-FSE, Bldg 329
Attn: Mr. Tom Coradeschi and
Dr. Thaddeus Gora
Picatinny Arsenal NJ 07806-5000
1

U.S. Army Ballistic Research Laboratory
SLCBR-TB-EP
Attn: Dr. John Powell and
Mr. Alex Zielinski
Aberdeen Proving Ground MD 21005
1

WL/POOC
Attn: Dr. Alan Garscadden
Wright-Patterson AFB OH 45433-6553
1

HQ USAF
Attn: SAF/AQT (Mr. Michael Flynn)
The Pentagon, Room BE939
Washington DC 20330-5425
1
Auburn Research Foundation
Office of the Vice Pres. for Research
202 Samford Hall
Auburn University AL 36849-5112

Institute of Advanced Technology
The University of Texas at Austin
Attn: Dr. Harry D. Fair
4030-2 West Braker Lane, Suite 200
Austin TX 78759

University of Tennessee
Space Inst/Library
Tullahoma TN 37388-8897

Lawrence Livermore National Lab.
P.O. Box 808
Livermore CA 94550

Los Alamos National Laboratory
Attn: Mr. Jack Carter, Report Librarian and Dr. Jerald V. Parker
P.O. Box 1633, MS-P364
Los Alamos NM 87545

Maxwell Laboratories
8888 Balboa
San Diego CA 92123

System Planning Corporation
1500 Wilson Blvd.
Arlington VA 22209

Parker Kinetic Designs
Attn: Messrs. Cliff Drummond and Jim Weldon
8303 Mopac, Suite 240C
Austin TX 78759

General Research Corporation
P.O. Box 6770
Santa Barbara CA 93160-6770

SAIC Advanced Concepts Division
1519 Johnson Ferry Rd., Suite 300
Marietta GA 30062

SAIC
1427 N. Eglin Parkway
Shalimar FL 32579

Sandia National Laboratory
P.O. Box 5800
Albuquerque NM 87185

University of Texas
Center for Electromechanics
Balcones Research Center
P.O. Box 200668
Austin TX 78720-0668

Technical Library EE-5
P.O. Box 3499
Sunnyvale CA 94088-3499

GA Technologies, Inc.
P.O. Box 85608
San Diego CA 92138

Parker Kinetic Designs
Attn: Messrs. Cliff Drummond and Jim Weldon
8303 Mopac, Suite 240C
Austin TX 78759