Parasitic Arthropods of Sympatric Meadow Voles and White-Footed Mice at Fort Detrick, Maryland

LANCE A. DURDEN

Department of Arboviral Entomology, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702

ABSTRACT Twelve species of parasitic arthropods (one sucking louse, two fleas, one tick, and eight mites) were recovered from 51 meadow voles, Microtus pennsylvanicus (Ord); whereas nine species (one sucking louse, one hot, three fleas, one tick, and three mites) were collected from 48 white-footed mice, Peromyscus leucopus (Rafinesque), live-trapped on the grounds of Fort Detrick, Frederick County, Md., during 1990 and 1991. The most commonly collected arthropods from M. pennsylvanicus were the fur mite, Listrophorus mexicanus Fain (~2,720 specimens); the tropical rat mite, Ornithonyssus bacoti (Hirst) (987); the laelapid mites, Laelaps kochi Oudemans (733) and Androlaelaps fahrenholzi (Berlese) (322); the sucking louse, Hoplopleura acanthopus (Burmeister) (121); the tick, Dermacentor variabilis (Say) (47); and the chigger mite, Neotrombicula whartoni (Ewing) (45). Arthropod densities were lower on P. leucopus, from which the most frequently recorded species were the sucking louse, Hoplopleura hesperomydis (Osborn) (98 specimens); the fleas, Epitedia wenmanni (Rothschild) (85) and Orchopeas leucopus (Baker) (61); and the mite, A. fahrenholzi (83). Although six species of arthropods parasitized both species of rodents, only two of these, A. fahrenholzi and D. variabilis, were relatively common on both hosts. Therefore, although the habitats of both host species partially overlap, their associated parasitic arthropods remain principally host specific. The potential significance of these findings with respect to vector-borne disease transmission is discussed.

KEY WORDS Arthropoda, parasites, small mammals, Maryland

The meadow vole, Microtus pennsylvanicus (Ord), and the white-footed mouse, Peromyscus leucopus (Rafinesque), are two of the most abundant and widespread small mammals in North America. Although M. pennsylvanicus is a typical denizen of meadows and fields, and P. leucopus most frequently occurs in woodland, both species occur in the ectone between these two habitats (Burt & Grossenheider 1976). Each mammal typically supports a characteristic community of parasitic arthropods (Whitaker 1968, Whitaker & Wilson 1974, Timm 1985) which may, in part, be related to the host habitat. This paper documents the arthropod communities associated with M. pennsylvanicus and P. leucopus from meadow–woodland ecotonal habitats in western Maryland. Comparisons and interpretations are made between the species compositions and relative abundances of the various arthropods that were collected.

In addition to documenting and comparing the parasitic arthropod faunas of these two rodents in western Maryland, this study has potential significance in relation to zoonotic disease cycles. Both host species have been implicated as reservoirs of pathogens that are known or suspected to be transmitted to rodents and humans by parasitic arthropods. Both can harbor the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner; and the agent of human babesiosis, Babesia microti Franca, although P. leucopus is a more competent reservoir host for both of these organisms (Spielman et al. 1985, Spielman 1988). The deer tick, Ixodes dammmini Spielman, Clifford, Priesman & Corwin, is the principal vector for these two zoonoses in the northeastern United States (Spielman et al. 1985, Spielman 1988). Prospect Hill virus, a member of the genus Hantavirus (Family Bunyaviridae), was first reported from meadow voles in Frederick, Md. (Lee et al. 1982), and specific antibody against this virus has been reported from mammals residing elsewhere in North America (Yanagihara et al. 1984). Because other hantaviruses including Hantaan virus (the etiologic agent of Korean hemorrhagic fever) may be transmitted by blood-feeding mites (Zhuge et al. 1987), the possibility that mites may also be involved in the transmission of Prospect Hill virus should not be overlooked. The grounds at Fort Detrick are frequently used for recreational and training purposes and it...
Table 1. Parasitic arthropods collected from sympatric P. leucopus and M. pennsylvanicus at Fort Detrick, Frederick, Maryland, 1990–1991

<table>
<thead>
<tr>
<th>Arthropod Family</th>
<th>Species</th>
<th>Prevalence (%)</th>
<th>Mean intensity</th>
<th>Range</th>
<th>No. collected(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoplura:</td>
<td>Hoplopleura acanthopus</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Hoplopleura hesperomysidis</td>
<td>44</td>
<td>4.7</td>
<td>1-54</td>
<td>16M,77F,5N</td>
</tr>
<tr>
<td>Diptera:</td>
<td>Cuterebra fontinella</td>
<td>8</td>
<td>1.0</td>
<td>1</td>
<td>4L</td>
</tr>
<tr>
<td>Siphonaptera:</td>
<td>Ctenophthalmus pseudagyrtes</td>
<td>4</td>
<td>1.0</td>
<td>1</td>
<td>1M,1F</td>
</tr>
<tr>
<td></td>
<td>Epitedia wenmanni</td>
<td>31</td>
<td>5.7</td>
<td>1-31</td>
<td>34M,51F</td>
</tr>
<tr>
<td></td>
<td>Orchopeas leucopus</td>
<td>50</td>
<td>2.5</td>
<td>1-17</td>
<td>18M,43F</td>
</tr>
<tr>
<td>Acari:</td>
<td>Androlaelaps casalis</td>
<td>2</td>
<td>2.0</td>
<td>2</td>
<td>1F,1N</td>
</tr>
<tr>
<td></td>
<td>Androlaelaps fahrenholzi</td>
<td>50</td>
<td>3.5</td>
<td>1-11</td>
<td>3M,67F,13N</td>
</tr>
<tr>
<td></td>
<td>Dermacentor variabilis</td>
<td>19</td>
<td>1.2</td>
<td>1-2</td>
<td>10L,1N</td>
</tr>
<tr>
<td></td>
<td>Haemogamasus lignonoides</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Laelaps alaskensis</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Laelaps kochi</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Listrophorus mexicanus</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Neotrombicula oikus</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Orithonyssus bacoti</td>
<td>6</td>
<td>2.0</td>
<td>1-3</td>
<td>4F,2N</td>
</tr>
</tbody>
</table>

\(^a\) M, male(s); F, female(s); N, nymph(s); L, larva(e).

Results

A total of 104 small mammals was live-trapped during this study. 51 M. pennsylvanicus (30 males, 21 females), and 48 P. leucopus (20 males, 28 females) were captured. This equates to a trapping success rate of 65%.

Infestation parameters (prevalence, mean intensity, infestation range, and number collected) for the various species of arthropods collected from M. pennsylvanicus and P. leucopus during this study are presented in Table 1. Prevalence figures represent the percentage of rodents that were infested, whereas mean intensity values represent the mean number of arthropods per infested animal (Margolis et al. 1982).

Nine species of arthropods were recovered from P. leucopus: one sucking louse (Anoplura), one bot (Diptera, Cuterebridae), three fleas (Siphonaptera), three mites, and one tick (Acari). The sucking louse *Hoplopleura hesperomysidis* (Osborn) (98 specimens) was the most frequently collected arthropod from *P. leucopus*, but the fleas, *Epitedia wenmanni* (Rothschild) (85 specimens) and *Orchopeas leucopus* (Baker) (61 specimens), and the laelapid mite *Androlaelaps fahrenholzi* (Berlese) (83 specimens) were also relatively common ectoparasites of this host.

In total, 12 species of arthropods were recovered from *M. pennsylvanicus*: one sucking louse, two fleas, eight mites, and one tick. Arthropod infestation intensities were generally much higher on *M. pennsylvanicus* than on *P. leucopus*. The listrophorid fur mite *Listrophorus mexi-
icanus Fain (=2,720 specimens) was the arthropod that occurred most frequently on M. pennsylvanicus. However, the sucking louse Hophlopleura acanthopus (Burmeister) (121 specimens); the laelapid mites A. fahrenholzi (322 specimens) and Laelaps kochi Oudemans (733 specimens); the macronyssid mite Ornithonyssus bacoti (Hirst) (1987 specimens); the chigger mite Neotrombicula whartoni (Ewing) (45 specimens); and the tick Dermacentor variabilis (Say) (47 specimens) were also relatively common on this host.

Six species of ectoparasites were shared by both P. leucopus and M. pennsylvanicus: the fleas Ctenophthalmus pseudagyrtes Baker and O. leucopus; the mites Androlaelaps casalis (Berlese), A. fahrenholzi, and O. bacoti; and the tick, D. variabilis. However, Table 1 shows that C. pseudagyrtes and A. casalis were rare on both species of hosts, O. leucopus was rare on M. pennsylvanicus, and O. bacoti was rare on P. leucopus. Arthropods collected only from P. leucopus were H. hesperomydis, E. wenmanni, and the subdermally parasitic bot, Cuterebra fontinella (Xia & Millar 1990, Munger & Karasov 1991). However, Table 1 shows that Third-instar C. fontinella botfly larvae were only recorded from P. leucopus, which represents a typical host for this parasite (Sabrosky 1986). Reasons for host specificity in this case are less obvious, because C. fontinella eggs are attached to vegetation by ovipositing female flies (Xia & Millar 1990, Munger & Karasov 1991). Presumably, voles as well as mice could be infested with these eggs. Perhaps atypical hosts do not provide egg hatching or larval skin penetration cues, or developing cuterebrid larvae fail to mature in these animals.

Three species of fleas were collected from P. leucopus and two species from M. pennsylvanicus. A total of 148 fleas was collected from P. leucopus but only two fleas were recovered from M. pennsylvanicus. Most previous studies have similarly reported low numbers of fleas from M. pennsylvanicus. Amin (1976) recorded seven fleas (belonging to four species) from 17 M. pennsylvanicus in Wisconsin, Gyorkos & Hilton (1982) removed seven fleas (three species) from 30 M. pennsylvanicus in Quebec, Whitaker (1982) recorded 15 fleas (three species) from 91 M. pennsylvanicus in Indiana, and Whitaker & Lukoschus (1982) reported two fleas (one species) from 19 M. pennsylvanicus in Pennsylvania. Furthermore, neither of the two fleas collected from M. pennsylvanicus in this study is a specific parasite of that host. Ctenophthalmus pseudagyrtes is a generalist rodent–insectivore flea with no clear host preferences and O. leucopus is a fairly specific associate of Peromyscus spp. (Durden & Wilson 1991). The latter flea may have accidentally parasitized M. pennsylvanicus in this study because it shared habitat with P. leucopus. Epitedia wenmanni is another flea that typically parasitizes P. leucopus (Amin 1976, Whitaker 1982, Durden & Wilson 1991).

Both species of sucking lice recorded were highly host specific, with H. acanthopus confined to M. pennsylvanicus and H. hesperomydis to P. leucopus. Sucking lice are permanent ectoparasites that typically are very host specific and transfer from host to host usually during intimate physical contact (Durden 1983). The infestation prevalence and mean intensity figures (35% and 6.7) reported here for H. acanthopus on M. pennsylvanicus are similar to those for some previous studies. Cook & Beer (1958) reported comparable figures of 67% and 19.0 for Minnesotta, Whitaker (1982) gave values of 29% and 8.8 for Indiana, and Whitaker & Lukoschus (1982) presented figures of 26% and 6.0 for Pennsylvania. However, the figures of 44% and 4.7 reported here for H. hesperomydis infestation of P. leucopus are higher than values found in previous studies. For this louse–host association, Basolo & Funk (1974) gave comparable figures of 30% and 4.3 for Illinois, Whitaker (1982) reported 5% and 1.9 for Indiana, Whitaker & Lukoschus (1982) documented 11% and 1.8 for Pennsylvania, and Durden & Wilson (1991) reported 23% and 2.6 for Tennessee. Interestingly, Florschutz & Darsie (1960) collected two species of sucking lice, H. acanthopus and Polyplax alaskensis Ewing, from M. pennsylvanicus, but none from P. leucopus in Delaware.

Discussion

All species of arthropods collected from M. pennsylvanicus and P. leucopus in this study were previously reported from these small mammals (Whitaker 1968, Whitaker & Wilson 1974, Timm 1985). However, most species exhibited differential host preferences for the two host species.

Both species of sucking lice recorded were highly host specific, with H. acanthopus confined to M. pennsylvanicus and H. hesperomydis to P. leucopus. Sucking lice are permanent ectoparasites that typically are very host specific and transfer from host to host usually during intimate physical contact (Durden 1983). The infestation prevalence and mean intensity figures (35% and 6.7) reported here for H. acanthopus on M. pennsylvanicus are similar to those for some previous studies. Cook & Beer (1958) reported comparable figures of 67% and 19.0 for Minnesotta, Whitaker (1982) gave values of 29% and 8.8 for Indiana, and Whitaker & Lukoschus (1982) presented figures of 26% and 6.0 for Pennsylvania. However, the figures of 44% and 4.7 reported here for H. hesperomydis infestation of P. leucopus are higher than values found in previous studies. For this louse–host association, Basolo & Funk (1974) gave comparable figures of 30% and 4.3 for Illinois, Whitaker (1982) reported 5% and 1.9 for Indiana, Whitaker & Lukoschus (1982) documented 11% and 1.8 for Pennsylvania, and Durden & Wilson (1991) reported 23% and 2.6 for Tennessee. Interestingly, Florschutz & Darsie (1960) collected two species of sucking lice, H. acanthopus and Polyplax alaskensis Ewing, from M. pennsylvanicus, but none from P. leucopus in Delaware.
in Wisconsin (Amin 1976), 21% and 2.4 in Indiana (Whitaker 1982), 11% and 2.0 in Pennsylvania (Whitaker & Lukoschus 1982), 10% and 1.0 in Tennessee (Durden & Wilson 1991), and 34% and 1.6 in Ontario (Lindsay et al. 1991). All of these prevalence figures and most of the intensity values are appreciably lower than the 50% and 2.5 obtained in this study. Similarly, the following comparable infestation data were previously reported for E. wemmanni infestations of P. leucopus: 12% and 1.3 in Illinois (Basolo & Funk 1974), 38% and 1.1 in Indiana (Whitaker 1982), 13% and 1.0 in Tennessee (Durden & Wilson 1991), and 11% and 1.2 for Quebec (Lindsay et al. 1991). Except for the Indiana infestation prevalence, these figures are appreciably lower than values of 31% and 5.7 reported here.

Table 1 clearly shows that mites (Acari) dominated the ectoparasite community of M. pennsylvanicus in this study. Eight species of mites were collected from this host compared with just three species from P. leucopus. Infestation prevalences and intensities also were higher on M. pennsylvanicus for almost all species of mites. All three species of mites that were recorded from P. leucopus also were collected from M. pennsylvanicus. Two species were laelapids belonging to the genus Androlaelaps. A. casalis was an infrequent ectoparasite of both rodents; this was expected because this mite apparently is a facultative parasite more frequently found in the nest of the host (Evans et al. 1961), although Durden & Wilson (1991) collected 34 specimens from 56 P. leucopus in Tennessee. However, A. fahrenholzi was common on both Microtus and Peromyscus to the extent that it was the only arthropod species that occurred in fairly large numbers on both host species. A. fahrenholzi is a widespread mammal-associated mite with little host specificity (Florschutz & Darsie 1960, Whitaker & Wilson 1974, Whitaker 1982). In this study, it was more common on M. pennsylvanicus (prevalence, 75%; mean intensity, 8.5) than on P. leucopus (50%, 3.5). The figures for M. pennsylvanicus are generally higher than previously recorded comparable values of 26% and 3.9 for Indiana (Whitaker 1982), 62% and 2.9 for New Brunswick (Whitaker & French 1982), and 53% and 104.2 for Pennsylvania (Whitaker & Lukoschus 1982). Similarly, the figures for P. leucopus are generally higher than comparable, previously reported figures of 32% and 2.6 for Illinois (Basolo & Funk 1974), 22% and 2.6 for Indiana (Whitaker 1982), 19% and 3.6 for Pennsylvania (Whitaker & Lukoschus 1982), and 17% and 1.0 for Tennessee (Durden & Wilson 1991).

The tropical rat mite, O. bacoti, was the only other species of mite that was collected from both rodents. Unexpectedly, this mite was very common on M. pennsylvanicus during the warmer months. O. bacoti is a typical ectoparasite of domestic rats and mice and has previously been reported only in small numbers from M. pennsylvanicus by Drummond (1957) in Maryland and Whitaker (1982) in Indiana. However, Buckner & Gleason (1974) collected 3,468 O. bacoti from 150 prairie voles, Microtus ochrogaster (Wagner), in Kentucky. The high intensities of O. bacoti on M. pennsylvanicus in this study may have been related to the presence of Norway rats, Rattus norvegicus (Berkenhout), in barns adjacent to the study sites. It is fascinating to note that although O. bacoti also was recovered from P. leucopus in this survey, it was recorded in small numbers from that host. The reason for this strong host preference by O. bacoti was not ascertained.

The remaining five species of mites were collected only from M. pennsylvanicus. Two mites, the laelapid L. kochi and the listrophorid L. mexicanus, were generally abundant on the voles. Both mites are typically associated with voles, especially M. pennsylvanicus. Previously reported infestation prevalences and mean intensities for L. kochi on M. pennsylvanicus are 50% and 6.0 in Indiana (Whitaker 1982), 69% and 4.1 in New Brunswick (Whitaker & French 1982), and 95% and 5.0 in Pennsylvania (Whitaker & Lukoschus 1982). These infestation prevalences are in the same range as the figure of 82% obtained in this study, but the mean intensity of 17.0 reported here is appreciably higher than previously documented figures. M. pennsylvanicus was the only host recorded for L. kochi by Florschutz & Darsie (1960) in Delaware. For the mite L. mexicanus infesting M. pennsylvanicus, Whitaker (1982) reported a prevalence of 47% and a mean intensity of 399.3 in Indiana, whereas Whitaker & French (1982) gave comparable figures of 46% and 852.8 for New Brunswick, and Whitaker & Lukoschus (1982) presented figures of 94% and 987.9 for Pennsylvania. These figures are higher than those recorded in this study (25% and 209.2).

The remaining three species of mites collected from M. pennsylvanicus were present in low numbers (the laelapids H. liponyssoides and L. alaskensis) or infested few voles (the chigger N. whartonii). None of these mites is a specific parasite of voles (Whitaker & Wilson 1974, Whitaker 1982, Timm 1985). H. liponyssoides appears to show a host preference for insectivores, whereas L. kochi is often collected from microtines, and N. whartonii is a general mammalian ectoparasite with little apparent host specificity (Whitaker & Wilson 1974, Whitaker 1982).

The tick D. variabilis was the only other arthropod collected from M. pennsylvanicus and P. leucopus in notable numbers. This parasite showed no obvious host preference for either rodent; the higher mean intensity recorded for P. leucopus resulted largely from one vole that was parasitized by 28 ticks. D. variabilis is a common ectoparasite of both of these rodents (Sonenshine...
et al. 1965, Carroll & Nichols 1986, Smart & Caccamise 1988, Carroll et al. 1989, Durden & Wilson 1991, Lindsay et al. 1991). Bimodal population peaks for immature *D. variabilis* on *P. leucopus* were noted, whereas only one peak (in July-August) was apparent on *M. pennsylvanicus*. Few voles were trapped during April and May, so the earlier *D. variabilis* peak could have been missed. Some previous surveys also demonstrated bimodal annual population peaks for this tick (Carroll & Nichols 1986, Smart & Caccamise 1988, Carroll et al. 1989, Durden & Wilson 1991).

Whitaker (1982) reported an infestation prevalence of 3% and a mean intensity of 2.3 for *D. variabilis* parasitizing *M. pennsylvanicus* in Indiana; these figures are much lower than values of 20% and 4.7 presented here. However, previously reported prevalences of 67% in Virginia (Sonenshine et al. 1965), 59% (for male voles), and 55% (for female voles) for Maryland (Carroll & Nichols 1986), and 30% in New Jersey (Smart & Caccamise 1988) for this host–parasite association are all higher than values for this study. This is not surprising because vole-trapping efforts in previous studies were concentrated during periods of known activity for *D. variabilis*. Similarly, comparable infestation figures previously reported for *D. variabilis* parasitism of *P. leucopus* include 10% and 3.3 in Indiana (Whitaker 1982), 37% and 3.8 in Tennessee (Zimmerman et al. 1987), 58% and 5.2 in Maryland (Carroll et al. 1989), 57% and 12.8 again in Tennessee (Durden & Wilson 1991), and 27% and 3.2 (for larvae only) in Ontario (Lindsay et al. 1991). Except for the infestation prevalence recorded for Indiana, these figures are higher than values of 19% and 1.2 obtained in this study. Again, this is probably a result of more intensive trapping efforts during known tick activity periods in most previous surveys.

Overall, the parasitic arthropod faunas of *M. pennsylvanicus* and *P. leucopus* were very dissimilar, even though essentially sympatric rodent populations were sampled. Taxonomically, the two rodents are confamilial but each belongs to a different subfamily — *M. pennsylvanicus* to the Arvicolinae, and *P. leucopus* to the Sigmodontinae. Therefore, the host–parasite associations (for arthropods) that each rodent has developed during its phylogeny are generally much stronger than any current habitat-specific associations (at least in western Maryland). Most species of parasitic arthropods on these two rodent species showed moderate to high degrees of host specificity. Only 6 of 15 species of arthropods encountered were collected from both hosts: *C. pseudagyrtes, O. leucopus, A. casalis, A. fahrenholzi, O. bacoti,* and *D. variabilis*. Of these six species, *C. pseudagyrtes* and *A. casalis* occurred in low numbers on both rodents, *O. leucopus* was rare (one specimen) on *M. pennsylvanicus*, and *O. bacoti* was rare (six specimens) on *P. leuco-

This leaves just two species, *A. fahrenholzi* and *D. variabilis*, that were recorded in noteworthy numbers from both hosts. Furthermore, both *A. fahrenholzi* and *D. variabilis* are generalized terrestrial mammal ectoparasites with little apparent host specificity. These results differ from the related figures for sympatric *P. leucopus* and *M. ochrogaster* reported by Buckner & Gleason (1974) in Kentucky. These authors recorded 16 species of ectoparasites from each host species with 14 species shared by both hosts.

Although an impressive list of parasitic arthropod species was recorded during this study, the faunas seem impoverished when compared with some previous parasite surveys of these two rodents (Whitaker 1968, 1982; Buckner & Gleason 1974; Whitaker & Wilson 1974; Timm 1985). Additional ectoparasites may be expected to parasitize *M. pennsylvanicus* in western Maryland, and some may be more common in nests, at higher altitudes, in different habitats, or during the winter months. More intensive parasite collections of *M. pennsylvanicus* and *P. leucopus* that sample according to the above factors may produce some of these 'missing' species from western Maryland.

Some ectoparasites collected in this survey are known or suspected vectors of zoonotic pathogens. Because *I. dammini* appears to be absent from mice and voles at Fort Detrick (even though white-tailed deer, *Odocoileus virginianus* (Zimmermann), the principal host for adult *I. dammini*, are abundant) there appears to be little Lyme disease or babesiosis risk to humans. However, *D. variabilis* is the main vector of the rickettsial agent of Rocky Mountain spotted fever in the eastern United States (Sonenshine et al. 1965). Any potential Rocky Mountain spotted fever risk at Fort Detrick may be reduced because the Post is completely encircled by high chain-link fencing and then by residential neighborhoods. The previously mentioned potential involvement of hematophagous mites as vectors of hantaviruses that use small mammals as reservoirs represents an unquantified threat to humans.

Acknowledgment

Gratitude is extended to W. Dowler for permission to undertake the live-trapping program on Fort Detrick grounds. K. J. Lindhicum and T. M. Logan reviewed earlier versions of the manuscript. Capt. R. Traub and N. Wilson made helpful suggestions in connection with this study. The work was completed while the author was a recipient of a senior fellowship from the National Research Council, Washington, D.C. The views of the author do not purport to reflect the positions of the Department of the Army or the Department of Defense.

References Cited

Amin, O. M. 1976. Host associations and seasonal occurrence of fleas from southeastern Wisconsin.

Received for publication 31 October 1991; accepted 10 March 1992.