"Spectroscopic and Structural Properties of Binuclear Platinum-Terpyridine Complexes"

by

J. A. Bailey, V. M. Miskowski, and H. B. Gray

To be published in Inorganic Chemistry

California Institute of Technology
Division of Chemistry
Pasadena, CA. 91125

August 1992

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

This document has been approved for public releases and sale: its distribution is unlimited.
Spectroscopic and Structural Properties of Binuclear Platinum-Terpyridine Complexes.

J. A. Bailey, V. M. Miskowski, and H. B. Gray

Division of Chemistry
California Institute of Technology
Pasadena, CA. 91125

Office of Naval Research
Chemistry Division
800 N. Quincy Street
Arlington, VA. 22217-5000

This document has been approved for public release and sale: its distribution is unlimited.

Abstract

Binuclear platinum-terpyridine (tpy) complexes have been prepared with a variety of bridging ligands resulting in a range of metal-metal distances (2.998(2) to 3.342(3) Å). The energy of an intense visible absorption is strongly dependent on this metal-metal separation and is assigned to a dσ*(Pt2)→π*(tpy) transition.
Synopsis

Binuclear platinum-terpyridine (tpy) complexes have been prepared with a variety of bridging ligands resulting in a range of metal-metal distances (2.998(2) to 3.342(3) Å). The energy of an intense visible absorption is strongly dependent on this metal-metal separation and is assigned to a $\sigma^*(\text{Pt}_2)\rightarrow \pi^*(\text{tpy})$ transition.
SPECTROSCOPIC AND STRUCTURAL PROPERTIES OF BINUCLEAR PLATINUM-TERPYRIDINE COMPLEXES.

James A. Bailey, Vincent M. Miskowski, and Harry B. Gray*

Contribution No. 8696 from the Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91125

Abstract.

Binuclear complexes of the platinum(terpyridine) fragment have been prepared with a variety of bridging ligands to form the cationic species \([\text{Pt(tpy)}]_2(\mu-\text{L})\)\(^3^+\) (tpy = 2,2'-6,2'-terpyridine; LH = pyrazole 1, azaindole 2, diphenylformamidine 3). These complexes, along with the previously reported arginine-bridged species 4 (Kostic et al., Inorg. Chem. 1990, 29, 918), have been characterized spectroscopically. The lowest energy electronic absorption is assigned to a \(d\sigma^* \rightarrow \pi^*(\text{tpy})\) (metal-to-ligand charge transfer, MLCT) transition; the transition energy decreases with decreasing Pt–Pt distance, according to 1 (430; 3.432) > 2 (460; 3.13) > 3 (490; 3.049) > 4 (488 nm; 2.998Å). Emission is observed from the \(3(d\sigma^*\pi^*)\) state of complexes 2, 3, and 4. Low-temperature glassy solutions of complex 1 also exhibit \(3(d\sigma^*\pi^*)\) emission in pure acetonitrile; however, DMF solutions of 1 show terpyridine-localized \(3(\pi\pi^*)\) emission. Terpyridine vibrations in the 1300 to 1700 cm\(^{-1}\) range are enhanced in the resonance Raman spectra of complexes 1 - 4, thereby confirming the \(\pi^*(\text{tpy})\) participation in the low energy transition.
Square planar d8 complexes show a pronounced tendency to aggregate as weakly metal-metal-bonded oligomers.1 The most thoroughly investigated materials include infinite-chain Pt(CN)$_4^{2-}$ species2 and several luminescent binuclear complexes (e.g., Pt$_2$(P$_2$O$_5$H$_2$)$_4^{4-}$ and [LL'lr(μ-pz)]$_2$ (LL' = (CO)$_2$: (CO)(PR$_3$): 1,5-cyclooctadiene); pzH = pyrazolc) that possess metal-metal-bonded dσ$^*(d_{z^2})$pσ(p$_z$) excited states.3 Mononuclear α-diimine complexes of Pt(II) (e.g., Pt(bpy)(CN)$_2$ (bpy = bipyridine)) tend to crystallize as linear chains, and the highly luminescent solid materials are more intensely colored than the monomers.4 These complexes exhibit luminescence spectra that occur at lower energy and have much different emission profiles than those for the Pt(CN)$_4^{2-}$ chains. It has been suggested4 that the solid-state emission of this type of complex is attributable to a (dσ*$\rightarrow$$\pi^*(\alpha$-diimine)) excited state.

We have begun an investigation of the photophysics of dσ*π* excited states in discrete binuclear d8-d8 complexes containing polypyridyl ligands. Kostic has characterized {[Pt(tpy)]$_2$(μ-can)}(PF$_6$)$_3$ (tpy = terpyridine; can = canaverine),5 and we have prepared related complexes with a variety of anionic N—N bridging ligands (Table I).6 The colors of the compounds range from light orange (1) to deep red (3, 4). In addition to UV absorptions attributable predominantly to ππ* transitions, there are new visible absorption bands that, along with emission maxima, move to lower energy with decreasing Pt–Pt separation (Figure 1).7 The solid-state luminescence spectra at ambient temperature for all these complexes exhibit featureless bands (Figure 1) that blue shift slightly at 77K (Table I); the excited-state lifetimes fall between 1 and 2.5 μs. The 77K glassy solutions of 2, 3, 4 show similar luminescence profiles. Terpyridine vibrations (1300 to 1700 cm$^{-1}$) are enhanced in the resonance Raman spectra of 1 - 4, thereby confirming that a tpy orbital is involved in the low-energy electronic transition.8

The emission spectra of the pyrazolyl-bridged complex (1) in a frozen acetonitrile solution and in the solid state are similar in appearance (λ_{max} 592 nm); however, in frozen DMF (DMF = dimethylformamide) solution or a 10:10:1 EtOH:MeOH:DMF glass, the emission blue shifts and is highly structured (Figure 2). Since similarly structured
emission bands are observed for \(\text{Pt}(\text{tpy})(\text{NH}_3)^{2+} \), \(\text{Zn}(\text{tpy})\text{Cl}_2 \), \(\text{Ir}(\text{tpy})_2^{3+} \), \(\text{Zn}(\text{tpy})\text{Cl}_2 \), \(\text{Ir}(\text{tpy})_2^{3+} \), \(\text{Zn}(\text{tpy})\text{Cl}_2 \), \(\text{Ir}(\text{tpy})_2^{3+} \), and \(\text{terpyridine} \) itself, this feature is attributed to a tpy-localized \(^3(\pi\pi^*) \) transition. The striking result is that very small changes in solvent composition can cause the observed emission to change from the broad, poorly structured \(^3(d\sigma^*\pi^*) \) to the highly structured \(^3(\pi\pi^*) \) system. Apparently, the energy of the \(^3(d\sigma^*\pi^*) \) state depends strongly on the nature of the solvent, as expected for a state with MLCT character.

The fluid solutions of these new complexes in EtOH/MeOH/DMF do not show any significant emission intensity at room temperature, and there is essentially complete quenching of otherwise highly emissive glassy solutions when they are warmed through their glass transition temperature. This constitutes yet another distinction from the \(d\sigma^*\pi^* \) excited states of compounds such as \(\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4 \), which are relatively long-lived in fluid solution.

It is apparent that the orbital configuration of the lowest energy electronic excited state in complexes 1 - 4 depends on the metal-metal separation. For shorter Pt–Pt distances, the lowest state is \(^3(d\sigma^*\pi^*) \); as the distance between the platinum atoms increases, the \(^3(d\sigma^*\pi^*) \) energy increases. At sufficiently large Pt–Pt separations, the \(^3(d\sigma^*\pi^*) \) state will move above \(^3(\pi\pi^*) \). Interestingly, the \(\mu\text{-pyrazolyl} \) complex 1, which displays both \(d\sigma^*\pi^* \) and \(\pi\pi^* \) emission spectra, is very near this crossover.

Acknowledgment: We thank Virginia Houlding for measuring the solid-state lifetimes of compound 4 (Table I) and Chi-Ming Che for helpful discussions. JAB acknowledges an NSERC(Canada) Postdoctoral Fellowship. This work was supported by the National Science Foundation and the Office of Naval Research.

6. A related compound {[Pt(tpy)]_2(μ-guanidine)}(ClO_4)_3 has been reported: Kip, H.-K.; Che, C.-M.; Zhou, Z.-Y.; Mak, T.C.W. *J. Chem. Soc., Chem.Commun.* 1992, 1369-1371. The relationship between the Pt–Pt separation (3.090(1), 3.071(1)Å) and the absorption spectrum (λ_max 483 nm) of 5 accords with our findings. Kip, Che, and coworkers have observed weak emission (ϕ = 1.27x10^-4) for 5 in fluid CH_3CN solution. We also have found very weak emissions from 1-4 in CH_3CN solutions.

8. Unfortunately, attempts to determine ν(Pt_2) (expected to be well below 100 cm\(^{-1}\)) have thus far been unsuccessful.

TABLE I. Structural and spectroscopic data for [Pt(tpy)]$_2$(µ-L)$_3^{3+}$ complexes.

<table>
<thead>
<tr>
<th>Complex</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF solutions (CH$_3$CN solution for 3) at room temperature. Molar absorptivity in parentheses.</td>
<td>a</td>
</tr>
<tr>
<td>Lowest energy feature.</td>
<td>b</td>
</tr>
<tr>
<td>Monitor lowest energy emission.</td>
<td>c</td>
</tr>
<tr>
<td>DMSO solution at room temperature; 442 nm He/Cd laser.</td>
<td>d</td>
</tr>
<tr>
<td>Reference 6a.</td>
<td>e</td>
</tr>
<tr>
<td>Solid at room temperature.</td>
<td>f</td>
</tr>
<tr>
<td>Solid at 77 K.</td>
<td>g</td>
</tr>
<tr>
<td>CH$_3$CN solution at 77 K.</td>
<td>h</td>
</tr>
<tr>
<td>10:10:1 MeOH:EtOH:DMF glass at 77 K.</td>
<td>i</td>
</tr>
<tr>
<td>Reference 6b.</td>
<td>j</td>
</tr>
<tr>
<td>Reference 5.</td>
<td>k</td>
</tr>
</tbody>
</table>

FIGURE 1. Electronic spectra of 3: —— absorption at room temperature (CH$_3$CN solution); —— emission at 77 K (10:10:1 MeOH:EtOH:DMF); ——— excitation at 77 K (10:10:1 MeOH:EtOH:DMF).

FIGURE 2. Emission spectra of 1 at 77 K: —— CH$_3$CN solution; —— CH$_3$CN/1%DMF; ——— CH$_3$CN/1%MeOH.
<table>
<thead>
<tr>
<th>N—N</th>
<th>d(Pt–Pt) (Å)</th>
<th>Absorption λ_{max}(nm)a,b</th>
<th>Emission λ_{max}(nm)</th>
<th>Lifetime τ(µs)</th>
<th>Excitation λ_{max}(nm)b,c</th>
<th>Raman Δv(cm$^{-1}$)d</th>
</tr>
</thead>
</table>
| μ-pyrazole
(μ-pz) 1 | 3.432(3)c | 430(2520) | 630l 630g 592h 472j 513j 542j 585j | 1.1h | 410j | 1338 1480 |
| μ-azaindole
(μ-az) 2 | 3.13(2)k | 460(2050) | 690l 678g 639j | 2.50j | 497j | 1338 1481 1570 1606 |
| μ-diphenylformamidine
(μ-dpf) 3 | 3.049(3)k | 490(3390) | 712l 710g 670j | 2.51j | 515j | 1338 1482 1572 1606 |
| μ-arginine
(μ-can) 4 | 2.998(2)l | 488(3700) | 730l 715g 1.4(10 K)g 690l 2.34j | <0.02l | 520j | 1338 1486 1572 1606 |