Gulf Stream Recirculation Experiment – Part II

by

C.M. Wooding, W. B. Owens, M.E. Zemanovic and J. E. Valdes

September 1989

Technical Report

Funding was provided by the National Science Foundation under Grant Numbers OCE 81-09145 and OCE 81-17467

Approved for public release; distribution unlimited.
Gulf Stream Recirculation Experiment – Part II

by

C. M. Wooding, W.B. Owens, M.E. Zemanovic, and J.R. Valdes

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

September 1989

Technical Report

Funding was provided by the National Science Foundation under Grant Numbers OCE 81-09145 and OCE 81-17467

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-89-37.

Approved for publication; distribution unlimited.

Approved for Distribution:

Robert C. Beardsley, Chairman
Department of Physical Oceanography
Gulf Stream Recirculation Experiment — Part II

Christine M. Wooding
W. Brechner Owens
Marguerite E. Zemanovic
and
James R. Valdes

June 13, 1989
Abstract

This report presents trajectories and time series of velocity, pressure, and temperature for twelve neutrally-buoyant floats launched during the Gulf Stream Recirculation EXperiment (GUSREX) and two from earlier experiments, that continued to operate after May 1982. These float data were obtained from Autonomous Listening Stations (ALSs) deployed from May 1982 to August 1985.
Table of Contents

Abstract ... i
Table of Contents ... ii
List of Tables .. iii
List of Figures .. iii
1 Background ... 1
2 Instrumentation ... 10
3 Processing ... 10
4 General Information for Individual Float Plots 11
Acknowledgements ... 16
References ... 17
Appendix A — Individual Float Plots 19
Appendix B — Publications Using GUSREX Float Data 303
Appendix C — Calendar Conversion Tables 304
List of Tables

1 Float information. .. 7

List of Figures

1 ALS tracking arrays. .. 2
2 700-meter float trajectories reported here. 3
3 2000-meter float trajectories reported here. 4
4 All 700-meter GUSREX float trajectories. 5
5 All 2000-meter GUSREX float trajectories. 6
6 Total duration of floats reported here. 9
7 700-meter float duration — all GUSREX floats. 12
8 2000-meter float duration — all GUSREX floats. 13
9 700-meter displacement diagram. 14
10 2000-meter displacement diagram. 15
1 Background

Twelve neutrally-buoyant, SOund Fixing And Ranging (SOFAR) floats launched between April 1980 and August 1981 as part of the Gulf Stream Recirculation EXperiment (GUSREX) continued to work after the first two years of the experiment reported by Kennelly and McKee (1984). In addition, two floats, one launched in October 1976 over the Nares Abyssal Plain as part of POLYMODE and another launched in June 1979 as part of an earlier Gulf Stream experiment also were heard after May 1982. This report presents the trajectories and time series of temperature, pressure, and velocity for these fourteen floats. GUSREX part II coverage of the Northwest Atlantic Ocean lasted for 33 months and then was supplemented by an array of five ALSs deployed to track SOFAR floats launched in the close vicinity of 34°N, 70°W (Site L, Price et al., 1987) (Figure 1).

The GUSREX program, including the Site L coverage, lasted nearly five-and-a-half years. GUSREX was a joint program of Woods Hole Oceanographic Institution and the University of Rhode Island. It focused on the recirculation of the Gulf Stream, addressing such questions as the size and structure of the recirculation south of the Gulf Stream as proposed by Worthington (1976) and the interconnection of the Gulf Stream and the North Atlantic Current at the tail of the Grand Banks (Worthington, 1976; Clarke et al., 1980). As part of GUSREX, a total of forty-three floats was launched along 55°W from 24 to 44°N during two cruises in April–May 1980 and July–August 1981 (Kennelly and McKee, 1984). Except for one case, these floats were launched in pairs with one float ballasted to 700 m and the other to 2000 m (see Figures 2, 3, 4 and 5). Twelve of these floats, five shallow and seven deep, are presented in this report. Table I shows the duration and start and end locations for each float.
Figure 1: ALS tracking arrays for duration of GUSREX Site L Experiment.
Figure 2: Composite 700-meter trajectories for floats covered in this report. Arrowheads mark every thirtieth day.
Figure 3: Composite 2000-meter trajectories for floats covered in this report. Arrowheads mark every thirtieth day.
Figure 4: Composite 700-meter trajectories for floats covered in this report and earlier Gulf Stream floats. Arrowheads mark every thirtieth day.
Figure 5: Composite 2000-meter trajectories for floats covered in this report and earlier Gulf Stream floats. Arrowheads mark every thirtieth day.
~

Z

W-40tQO@Ot%000%0%'%O'

t- t

t-

t-

%t

40

wwV-4

I

I I~00

-

0

-

(4'l
C4"M(
U5V 0

>4

V

)l

%M M

-VCIc

.

% n%

VV

VtM

0

4(N C44
0*4M

k o

I

II~-~I

VI

0Y40C0

4NI
i

ý V

-14

1T 0I09~
C
en
*4~9-

0

"

4C

WV

0M%

0

h-ON

0

IV v v

M 4(

wO

I0%rl

en en en M M

IV 40
N
(
-.
-

)

4MC

:

knV

n(

o0

- 0M(

k

C%

"W

-0

4Me

t-C

4"Vt

M(

"%C% C

v M
IT

%VQt-% 0

IT M en v en (n

4 O

en M

etM V % V)M 0 W M

en en M M
IV

en M M M P4 q ((

V4ONOW)V0%ONMC 0
t-knCG nM- 4
4a0(
40
4V1
V40000-

Mw"(

-

4e

II

n(

4e

O
Kw0wC

V"C

wjWnW

q M oe
-

4 nO N M

Vt

Ve

nt

0

n%

nM%

00

4a0000V4000000000nW
VVMVW

4"

)W

%40"MMNN
CrOA
O -V-0"0MOntCkn 1.0 N

)0wtO

Nk

ae

nW

c;W

-

)%

QW

;W
)W

%

CW

:W .

0

4%

ct

n%

4MIV-

4MW

4w0 b %
W
o
WV)

4MW)C
W)0

1

;1
n%

;0*t
C1

-t

0s

-V10(VM0MN4NV"W(, -t
3NV0VM0Q N%
OOe

- -

-

%

Vt -nG
4W
NV00 o%
0O 4%
0t V()ý 4 In%
4t 4VN
00 o0 0wwwww wwwww

'0t-0wMO

0 4W

v W)a-,04O)s"M

-

4 .- . -

0

I

t

00000

A qNe

V

nV44%4

i

W4O

t-II1O
-Mt %W
n1 et.0 o41
P 01-%MN
40r -%
VV
V%

W

I4
I
I00
I

4N0%4
Q
0 0 ý

M.

O~

t-

4

W

Wet-In ft n

'0 '0 '04

-~
-

7

(ýON

'0%QN'N0C'
.- a,..

Table 1: Table of float information.

-V

~-ý
-

M N t- W

'%c
'0

0ý%0

--

"0a -,- "4

N

-

%00'' t-0''
'0

t-(

"0 -

--

oN

4-'-C-

4et

ý%


segment. The initial and average values for temperature and pressure are shown (dash indicates absence of data).

Another float still operating in May 1982 was PL12 which was launched on October 4, 1976, at 24.4°N, 69.0°W, as part of a pilot study for POLYMODE called Pre-LDE (Spain et al., 1980; McKee, 1986). This float was launched by Riser and Rossby (1983) in an isolated eddy of warm, saline Mediterranean water in the Nares Abyssal Plain. It was ballasted to approximately 900 m depth in order to track the “meddy”. PL12 is the longest operating SOFAR float (Owens et al., 1988). In figures where the floats are divided by depth, PL12 is included with the 700-meter floats.

The other non-GUSREX float covered in this report is GS72B, launched on June 6, 1979, at 38.4°N, 67.9°W, near but south of the axis of the Gulf Stream (Kennelly and McKee, 1984). This float had a nominal depth of 700 m.

Figure 6 is a histogram of total durations. Excluding PL12 because it had such a different history, the average duration for all the Gulf Stream floats is 1.45 years (1.65 if floats with reused batteries aren’t included). The average duration of the 13 floats reported here (without PL12) is 2.8 years, which could be lower than the actual value, since five floats (see plus signs on Figure 6) appeared to still be in operation when the last ALS array was retrieved. Of these, four were deep and one shallow, which agrees with earlier observations that the 700-meter floats were more prone to sudden failure (Kennelly and McKee, 1984). In addition, five other floats were fading at the end of their data records. For at least four of these, moving out of range appears to be a sufficient cause of the decreased signal power. GU120, on the other hand, looks like its lithium batteries, reused from an earlier experiment, were giving out. Alkaline-powered floats tend to die abruptly, as GU113 and GU116 did (Kennelly and McKee, 1984).
Figure 6: Total duration of floats covered in this report.
2 Instrumentation

SOFAR floats are freely drifting, neutrally-buoyant subsurface instruments. Every eight hours each instrument transmits a low-frequency acoustic signal which, under optimal conditions, can be heard by an ALS at distances on the order of 2500 km. Forty-eight-hour averages of pressure and temperature are transmitted on alternate days. The ALSs are vertical arrays of hydrophones deployed on a subsurface mooring. A microprocessor-controlled detection system records the times of arrival of the four strongest float signals during each ten-minute interval. During the GUSREX experiment, the ALSs were renewed annually.

3 Processing

In general, the floats discussed in this report were tracked using the methods which are standard at W.H.O.I. (Owens and McKee, 1989). Because of the long duration of some of these floats, special care had to be taken in calculating clock drifts. The data after May 1982 were the first floats tracked at W.H.O.I. The earlier data had initially been tracked at the University of Rhode Island (see Spain et al., 1980, for technique), but were later retracted at W.H.O.I. for consistency.

Analysis on Site L floats (Price et al., 1987, p.13) suggests that the precision of float positions is approximately 2 km.

Temperatures or pressures that drifted outside the range of the sensors have been deleted, as have values that were not associated with a position.

Trajectories having gaps greater than ten days were broken into subfiles and labelled A, B, C, etc. This was necessary for all floats being tracked in May 1983, since the first setting ALSs ran out of tape before the next ALSs could be deployed. Gaps of less than ten days in position, temperature, or pressure were
linearly interpolated to the eight-hour interval. See Figures 7 and 8 for times covered by each float. See Figures 9 and 10 for distance traveled by each float, by segment.

These interpolated series were then filtered using a seven point, one-day-half-width Gaussian filter. Finally, a cubic spline was fitted to the filtered positions to produce one location per day, and east and north components of velocity were calculated.

4 General Information for Individual Float Plots

A trajectory plot and a group of time series plots are presented for each float in Appendix A. The order of the time series plots is: “stick diagram” (u–v vectors), u and v velocity component overplot, and temperature and pressure overplot (where data are available). These plots were created with the objective of presenting the data for a particular float; thus the scales vary between floats. The time axis is consistent throughout, with 200 days per page. The time axis is annotated with the last four digits of the Julian day and with the calendar date. Data points are plotted at daily intervals.

The stick plots show a velocity vector for each day, with the stick length proportional to the speed in centimeters per second. North is toward the top of the page. The separate components on the u and v time series are plotted at the same scale.

Temperature and pressure are overplotted, temperature on a centigrade scale marked on the lefthand axis, pressure in decibars on the righthand axis. Pressure is plotted with deeper values at the bottom of the scale.

A trajectory for each float is plotted on a Mercator projection. Open circles denote the first float position, small dots mark the daily positions, large dots every
Figure 7: Float duration for all 700-meter GUSREX floats as a time line. + means reused from previous experiment.
Figure 8: Float duration for all 2000-meter GUSREX floats as a time line. + means reused from previous experiment.
Figure 9: Total displacement of 700-meter floats covered in this report, by segment. Arrows mark final locations.
Figure 10: Total displacement of 2000-meter floats covered in this report, by segment. Arrows mark final locations.
tenth day, and every twentieth day is annotated with the last four digits of the Julian day. Refer to Appendix C to convert Julian day to calendar date.

Acknowledgements

This research was made possible with funds provided by the National Science Foundation (OCE81-09145 and OCE81-17467). Principal investigators were W. B. Owens, J. F. Price, and P. L. Richardson. Technical support was provided by the float operations group. R. A. Goldsmith developed many of the programs for analyzing float data. B. Gaffron and T. K. McKee made helpful editorial remarks and M. A. Lucas typed the manuscript.
References

APPENDIX A: Individual Float Plots
GUSREX 115C

TEMPERATURE [°C]

PRESSURE [mbar]

JULIAN DAY

NOVEMBER 1982 DECEMBER JANUARY 1983 FEBRUARY MARCH APRIL
GUSREX 118A

N. E. C.

LATITUDE

LONGITUDE ° W

34 33 32 31 30 29

-58 -57 -56 -55 -54 -53
GUSREX 118B

TEMPERATURE [°C]

PRESSURE [db]

JULIAN DAY

APRIL 1983

MAY

JUNE

JULY

AUGUST

SEPTEMBER

OCTOBER
GUSREX 118C

TEMPERATURE [°C] vs JULIAN DAY

AUGUST 1984 to JANUARY 1985

PRESSURE [Å] vs JULIAN DAY

5890 5910 5930 5950 5970 5990 6010 6030 6050 6070 6090
PRESSURE [kPa]

GUSREX 120A

TEMPERATURE [°C]
GUSREX 163B

EAST [cm/s] vs JULIAN DAY

NORTH [cm/s] vs JULIAN DAY

SEPTEMBER 1985 OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY 1986
GUSREX 165B

U & V cm/s

JULIAN DAY

NOVEMBER 1981 DECEMBER 1981 JANUARY 1982 FEBRUARY MARCH APRIL
GUSREX 165C

TEMPERATURE (°C)
GUSREX 165°C

TEMPERATURE [°C]

JULIAN DAY

AUGUST 1982 SEPTEMBER OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY 1983
NORTH [cm/s]

EAST [cm/s]

JULIAN DAY

GUSREX 165D

1985

1986

181
GUSREX 169C

NORTH

s/m [0] cm's

JULIAN DAY

EAST s/m [x] cm's

JANUARY 1985

MARCH

APRIL

MAY

JUNE

6040 6060 6080 6100 6120 6140 6160 6180 6200 6220 6240

240
NORTH

GUSREX 170A

251
GUSREX

NORTH

EAST
APPENDIX B: Publications Using GUSREX Float Data

APPENDIX C: Calendar Conversion Tables —
1981 to 1986

These tables give the year-day and truncated Julian day for each calendar
date for the years 1981 through 1986. The truncated Julian days range from 4606
to 6796. To convert to true Julian day, add 2440000.5 to these numbers.
<table>
<thead>
<tr>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>MON</td>
<td>TUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>183</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>MON</td>
<td>TUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4879</td>
<td>4880</td>
<td>4881</td>
</tr>
<tr>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>太阳</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUL</td>
<td>AUG</td>
<td>SEP</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>SUN</td>
<td>MON</td>
<td>TUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>183</td>
<td>184</td>
</tr>
<tr>
<td>5152</td>
<td>5153</td>
<td>5154</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>185</td>
<td>186</td>
<td>187</td>
</tr>
<tr>
<td>5155</td>
<td>5156</td>
<td>5157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td>277</td>
<td>278</td>
</tr>
<tr>
<td>5244</td>
<td>5245</td>
<td>5246</td>
</tr>
<tr>
<td>5253</td>
<td>5254</td>
<td>5255</td>
</tr>
</tbody>
</table>

<p>| 31 | 304 | 5274 |</p>
<table>
<thead>
<tr>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN MON TUE WED THU FRI SAT</td>
<td>SUN MON TUE WED THU FRI SAT</td>
<td>SUN MON TUE WED THU FRI SAT</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>32 33</td>
<td>69 61</td>
</tr>
<tr>
<td>6067 6068 6069 6070 6071</td>
<td>6098 6099</td>
<td>6126 6127</td>
</tr>
<tr>
<td>6 7 8 9 10 11 12</td>
<td>3 4 5 6 7 8 9</td>
<td>3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>6 7 8 9 10 11 12</td>
<td>34 35 36 37 38 39 40</td>
<td>62 63 64 65 66 67 68</td>
</tr>
<tr>
<td>6072 6073 6074 6075 6076 6077 6078</td>
<td>6106 6107 6108 6109 6110 6111 6112</td>
<td>6128 6129 6130 6131 6132 6133 6134</td>
</tr>
<tr>
<td>13 14 15 16 17 18 19</td>
<td>19 20 21 22 23</td>
<td>16 17 18 19 20 21 22 23</td>
</tr>
<tr>
<td>13 14 15 16 17 18 19</td>
<td>41 42 43 44 45 46 47</td>
<td>69 70 71 72 73 74 75</td>
</tr>
<tr>
<td>6079 6080 6081 6082 6083 6084 6085</td>
<td>6107 6108 6109 6110 6111 6112 6113</td>
<td>6135 6136 6137 6138 6139 6140 6141</td>
</tr>
<tr>
<td>20 21 22 23 24 25 26</td>
<td>17 18 19 20 21 22 23</td>
<td>17 18 19 20 21 22 23</td>
</tr>
<tr>
<td>20 21 22 23 24 25 26</td>
<td>48 49 50 51 52 53 54</td>
<td>76 77 78 79 80 81 82</td>
</tr>
<tr>
<td>6066 6067 6068 6069 6091 6092</td>
<td>6114 6115 6116 6117 6118 6119 6120</td>
<td>6142 6143 6144 6145 6146 6147 6148</td>
</tr>
<tr>
<td>27 28 29 30 31</td>
<td>24 25 26 27 28 29</td>
<td>24 25 26 27 28 29 30</td>
</tr>
<tr>
<td>27 28 29 30 31</td>
<td>55 56 57 58 59 60</td>
<td>83 84 85 86 87 88 89</td>
</tr>
<tr>
<td>6093 6094 6095 6096 6097</td>
<td>6121 6122 6123 6124 6125 6126</td>
<td>6149 6150 6151 6152 6153 6154 6155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN MON TUE WED THU FRI SAT</td>
<td>SUN MON TUE WED THU FRI SAT</td>
<td>SUN MON TUE WED THU FRI SAT</td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4</td>
<td>1</td>
</tr>
<tr>
<td>91 92 93 94 95 96</td>
<td>121 122 123 124</td>
<td>152</td>
</tr>
<tr>
<td>6157 6158 6159 6160 6161 6162</td>
<td>6187 6188 6189 6190</td>
<td>6218</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
<td>5 6 7 8 9 10 11</td>
<td>153 154 155 156 157 158 159</td>
</tr>
<tr>
<td>97 98 99 100 101 102 103</td>
<td>125 126 127 128 129 130 131</td>
<td>6219 6220 6221 6222 6223 6224 6225</td>
</tr>
<tr>
<td>6163 6164 6165 6166 6167 6168 6169</td>
<td>6191 6192 6193 6194 6195 6196 6197</td>
<td>6226 6227 6228 6229 6230 6231 6232</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
<td>12 13 14 15 16 17 18</td>
<td>160 161 162 163 164 165 166</td>
</tr>
<tr>
<td>164 165 166 167 168 169 170</td>
<td>132 133 134 135 136 137 138</td>
<td>6228 6229 6230 6231 6232 6233 6234</td>
</tr>
<tr>
<td>6170 6171 6172 6173 6174 6175 6176</td>
<td>6198 6199 6200 6201 6202 6203 6204</td>
<td>6233 6234 6235 6236 6237 6238 6239</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
<td>19 20 21 22 23 24 25</td>
<td>16 17 18 19 20 21 22</td>
</tr>
<tr>
<td>111 112 113 114 115 116 117</td>
<td>139 140 141 142 143 144 145</td>
<td>167 168 169 170 171 172 173</td>
</tr>
<tr>
<td>6177 6178 6179 6180 6181 6182 6183</td>
<td>6205 6206 6207 6208 6209 6210 6211</td>
<td>6233 6234 6235 6236 6237 6238 6239</td>
</tr>
<tr>
<td>28 29 30</td>
<td>26 27 28 29 30 31</td>
<td>23 24 25 26 27 28 29</td>
</tr>
<tr>
<td>118 119 120</td>
<td>148 149 150 151</td>
<td>174 175 176 177 178 179 180</td>
</tr>
<tr>
<td>6184 6185 6186</td>
<td>6212 6213 6214 6215 6216 6217</td>
<td>6249 6250 6251 6252 6253 6254 6255</td>
</tr>
<tr>
<td>30</td>
<td>181</td>
<td>6247</td>
</tr>
<tr>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>SUN</td>
<td>MON</td>
<td>TUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>6432</td>
<td>6433</td>
<td>6434</td>
</tr>
<tr>
<td>6464</td>
<td>6465</td>
<td>6466</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>6500</td>
<td>6501</td>
<td>6502</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUN</td>
<td>MON</td>
<td>TUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>6522</td>
<td>6523</td>
<td>6524</td>
</tr>
<tr>
<td>6576</td>
<td>6577</td>
<td>6578</td>
</tr>
</tbody>
</table>
Distribution List for Technical Report Exchange

Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92039

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

Library
Physical Oceanographic Laboratory
Nova University
8000 N. Ocean Drive
Dania, FL 33304

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library
Skidaway Institute of Oceanography
P.O. Box 13687
Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Library
Chesapeake Bay Institute
4800 Atwell Road
Shady Side, MD 20876

MIT Libraries
Serial Journal Room 14E-210
Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory
Room 48-311
MIT
Cambridge, MA 02139

Marine Resources Information Center
Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological Observatory
Colombia University
Palisades, NY 10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Bay St. Louis
NSTL, MS 39522-5001

Marine Sciences Collection
Mayaguez Campus Library
University of Puerto Rico
Mayaguez, Puerto Rico 00708
This report presents trajectories and time series of velocity, pressure, and temperature for twelve neutrally-buoyant floats launched during the Gulf Stream Recirculation Experiment (GUSREX) and two from earlier experiments, that continued to operate after May 1982. These float data were obtained from Autonomous Listening Stations (ALSs) deployed from May 1982 to August 1985.