ANALYSIS OF CONSTANT PHASE CONTOURS OF EVAPORATION DUCT MODE FUNCTIONS FOR WAVEGUIDE MODE PROPAGATION

by

Jen-Peng Che

September 1992

Thesis Advisor: Hung-Mou Lee

Approved for public release; distribution is unlimited.
The M-Layer program tracks the constant phase lines $\text{Im}\{D(q)\} = 0$ and looks for their intersections with the lines $\text{Re}\{D(q)\} = 0$ for the locations of the zeros of the mode function $D(q)$. These two types of constant phase lines are tracked and plotted over a search region which contains modes having a range attenuation rate of no more than 5 dB per km. Several new parameters for use in mode search are deduced from the results and some old ones are verified. Future studies in waveguide mode propagation theory pertaining to atmospheric ducts may benefit from this work. An improved mode search strategy is also proposed.
ANALYSIS OF CONSTANT PHASE CONTOURS OF EVAPORATION DUCT MODE FUNCTIONS FOR WAVEGUIDE MODE PROPAGATION

by

Jen-Peng Che
Lieutenant Commander, Taiwan Navy
B.S., Chinese Naval Academy, 1980

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: Jen-Peng Che

Approved by: Hung-Mou Lee, Thesis Advisor

Lawrence J. Ziemek, Second Reader

Michael A. Morgan, Chairman
Department of Electrical and Computer Engineering
ABSTRACT

The M-Layer program tracks the constant phase lines \(\text{Im}(\mathbf{D}(q)) = 0 \) and looks for their intersections with the lines \(\text{Re}(\mathbf{D}(q)) = 0 \) for the locations of the zeros of the mode function \(\mathbf{D}(q) \). These two types of constant phase lines are tracked and plotted over a search region which contains modes having a range attenuation rate of no more than 5 dB per km. Several new parameters for use in mode search are deduced from the results and some old ones are verified. Future studies in waveguide mode propagation theory pertaining to atmospheric ducts may benefit from this work. An improved mode search strategy is also proposed.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. THE WAVEGUIDE MODE THEORY OF PROPAGATION 2
 B. MODE SEARCH PRINCIPLE .. 7

II. MODE FUNCTION IN THE COMPLEX q_{11}/t_1 PLANE 11
 A. MODE LOCATIONS .. 11
 B. PHASE LINE TRACKING .. 13
 1. Downward Tracking ... 13
 2. Upward Tracking ... 18

III. ANALYSIS AND CONCLUSIONS ... 21
 A. MODE SEARCH PARAMETERS 21
 B. MODE SEARCH STRATEGY .. 24
 1. Track Termination .. 24
 2. Search Termination ... 25
 3. Track Duplication Avoidance 27

APPENDIX A: MODE LOCATIONS IN THE COMPLEX q_{11}/t_1 PLANE ... 28
APPENDIX B: SUBROUTINE FNDMOD AND FZEROX 49

APPENDIX C: CONSTANT PHASE LINE TRACKING FLOW CHARTS 61

APPENDIX D: CONSTANT PHASE LINES IN THE COMPLEX q_{11}/t_1
PLANE .. 66

APPENDIX E: SEPARATION OF $\text{Im}(D(q))=0$ LINES 75

APPENDIX F: DIFFERENCE BETWEEN CONSECUTIVE $\text{Re}(q_{m}/t_1)$ VALUES 84

LIST OF REFERENCES ... 93

INITIAL DISTRIBUTION LIST ... 94
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Hung-Mou Lee for his professional guidance, assistance and support throughout the thesis preparation period. I thank my second reader Dr. Lawrence J. Ziomek for his careful review and constructive suggestions to the thesis work.

Special thanks to my wife Mei-Ying Huang and my son Yu-Heng Che for their love and unending support which allowed me to successfully complete my graduate education.
I. INTRODUCTION

The M-Layer program developed by NOSC (Naval Ocean System Center) was documented by Yeoh [Ref. 1] at NPS. It was later extensively revised by Lee and Han [Ref. 2] for improved accuracy and speed. The new FORTRAN code is now identified as the NPS version [Ref. 3] under the auspices of NRaD (Naval Command, Control and Ocean Surveillance Center, RDT&E Division), the current name for NOSC. In this version, the logical structures and numerical algorithms for following the constant phase lines of the mode function and for computing the mode locations were almost completely rewritten. The overall plan to first partition the search region into rectangular areas and then circulate around these rectangles to search for the modes, i.e., the mode search protocol, was left unchanged. Lee and Han [Ref. 2] recommended that a more direct mode search protocol should be devised to locate the modes more expediently. If possible, such an approach should locate the modes in the order of ascending range attenuation rates.

To design a more efficient mode search protocol, a better understanding of the mode function beyond the known locations of the modes is required. In this thesis, the analytical property of the mode function is investigated. Programs are written to track and plot the constant phase lines along which the mode function is either real or purely imaginary. From the results, a new strategy to locate the modes is recommended.
In the remainder of this chapter, the background theory and some of the notations used in this thesis are introduced. The basic theory presented in Sections A and B follows Ref. 3 closely. The results of this research are presented in Chapter II. In Chapter III, a new mode search protocol is proposed based on the findings of this thesis. The relevant parameters for use in this new approach are also discussed.

A. THE WAVEGUIDE MODE THEORY OF PROPAGATION

Trapping of electromagnetic (EM) waves in the modes supported by a duct is the dominating factor in over-the-horizon propagation. The computer program M-Layer searches for these modes and computes the electric field from the Hertz vector. Assume a vertical electric dipole

\[\mathbf{J} = 4\pi z \delta(x) \delta(y) \delta(z - z_T) \]

at a height \(z = z_T \) above the surface of the earth. Following Freehafer [Ref. 4], the Hertz vector of the EM fields can be written, in the cylindrical coordinates \((\rho, \phi, z)\), as a sum of contributions from individual modes [Ref. 1]:

\[
\Pi(\rho, z) = -\pi j \sum_m H_0^{(2)}(\beta_m \rho) g_m(z_T) g_m(z) \tag{1}
\]

where \(\beta_m \) is the wavenumber of the \(m \)-th mode and is independent of the coordinates; \(z_T \) is the height of the transmitter above the ground, \(H_0^{(2)} \) is the Hankel function of the second kind, which represents an outgoing wave in the radial direction when the time...
dependence $e^{j\omega t}$ is adopted, and g_m is the height-gain function of the m-th mode, normalized so that the integral of its square over all heights equals unity when either an electric or a magnetic dipole source is used. The height-gain function satisfies the equation

$$\left(\frac{d^2}{dz^2} + k^2 m^2(z) - \beta_m^2 \right) g_m(z) = 0$$ \hspace{1cm} (2)

where k is the free-space wavenumber, $m(z)$ is the modified index of refraction, and $m^2(z)$ is approximated with a continuous, piecewise linear profile having I layers:

$$m^2(z) = m_i^2 + \alpha_i (z - z_i) \quad z_i \leq z \leq z_{i+1}, \quad 1 \leq i \leq I. \hspace{1cm} (3)$$

In practice, $m(z)$ deviates only slightly from unity in the troposphere. The modified refractivity $M(z) = [m(z)-1] \times 10^6$, as shown in Fig. 1, is commonly used. The slope of $M(z)$ is approximately $a_i \times 10^6/2$.

In the i-th layer, the height-gain function is given by

$$g_m(z) = B_i(\beta_m) [C_i(\beta_m) k_1(q_m) + k_2(q_m)] \quad z_i \leq z \leq z_{i+1} \hspace{1cm} (4)$$

where q_m is a dimensionless linear function of height z with k, β_m, m_i, and α_i as parameters:
Figure 1. Typical modified refractivity $M(z)$ profile.
The functions \(k_1(q_m) \) and \(k_2(q_m) \) are given in terms of the Airy function \(\text{Ai} \):

\[
k_1(q_m) = -j2(12)^{1/6} \text{Ai}(-q_m e^{2\pi/3})
\]

and

\[
k_2(q_m) = 2(12)^{1/6} \text{Ai}(-q_m)
\]

For \(z > z_{I+1} \), \(m^2(z) \) is extended continuously upward at a constant slope commensurate with the effective radius of the earth. This slope equals \(2.36 \times 10^{-7} \, (\text{m}^{-1}) \) for the four-thirds effective earth radius model. Thus, the height-gain function \(g_m \) is again given by Eqs. (4) through (7) for \(z > z_{I+1} \), with the constant \(C_{i+1} \) set to \(e^{j4\pi/3} \) to represent an upward going wave as \(z \) becomes large. Beneath the "flattened" earth surface where \(z < z_1 = 0 \), \(m^2(z) \) is deduced from the dielectric constant and the conductivity of sea water, which are set to 80.8869 and 4.64 (Si/m) respectively. Here the Hertz vector is represented by a downward propagating plane wave in this region.

The conditions that the tangential components of the electric and magnetic fields are continuous across the layer boundaries determine the coefficients \(C_i \). Starting from the top layer down, or "integration-down" [Ref. 1], every \(C_i \) is uniquely determined by \(C_{i+1} \) at \(z = z_{i+1} \). Thus, a set of all \(C_i \) coefficients is determined without considering the boundary conditions at \(z = z_1 \). On the other hand, starting from the lowest boundary at
$z = z_1$ up to $z = z_l$, or "integration-up", a second set of C_i coefficients is determined without applying the boundary conditions at $z = z_{l+1}$. That these two sets of C_i coefficients are identical is a manifestation that β_m is the wavenumber of a mode. Mathematically, this consistency condition, sometimes called the guidance condition [Ref. 5], can be expressed as the vanishing of a determinant D called the mode function [Ref. 6]. The elements of this determinant consist of linear combinations of $k_1(q_{m1})$ and $k_2(q_{m1})$ and their derivatives with respect to height at the boundaries. The M-Layer program searches for the zeros of the mode function to find the wavenumbers. Once a wavenumber is obtained, the height-gain function of the corresponding mode can be computed. Note that the normalization condition on g_m and the boundary conditions, together with the C_i coefficients, determine the B_i coefficients to within an overall sign. This sign need not be resolved because only products in the form of $g_m(z)g_m(z_T)$ from each mode contribute to the Hertz vector.

Since the mode function D depends on the wavenumber β_m only through the values of q_{m1} at the layer boundaries, it is more convenient to consider D as a function of the variable q given by

$$q = \sqrt[3]{\left(\frac{k}{\alpha_1}\right)^2 \left(m_1^2 - \frac{\beta^2}{k^2}\right)}$$

and to search for the zeros of $D(q)$ in the complex q plane. The m-th zero is designated as q_m and is called a q-eigenvalue and β_m is then deduced from q_m by inverting Eq. (8).
for \(\beta \). In the NPS version, \(q_m \) is ordered in ascending attenuation rate of the mode, which is approximately proportional to the imaginary part of \(\beta_m \).

B. MODE SEARCH PRINCIPLE

M-Layer searches for modes which have attenuation rates below a specified value. At ground ranges more than several wavelengths away, this attenuation rate is proportional to the imaginary part of the wavenumber \(\beta_m \) as can be seen from Eq. (1). In the upper complex \(q \) plane, for values of \(q \) such that

\[
\left| q \left(\frac{k}{\alpha_1} \right)^{-2p} \right| = \left| m_1^2 - \frac{\beta^2}{k^2} \right| \ll 1,
\]

(9)

\(m_1 - \beta/k \) is approximately proportional to \(q \) because the absolute value of \(m_1 \) and, hence, that of \(\beta/k \), are both nearly unity. Thus, the limit on attenuation rate imposed on the imaginary part of \(\beta \) can be translated approximately into an upper bound \(^1\) on the imaginary part of \(q \) which defines a strip in the complex \(q \) plane called the search region. This region is covered with layers of identical square meshes whose sides are parallel to the imaginary \(q \) axis and have a length equivalent to an attenuation rate of \(1/32 \text{ dB}^2 \) per

\(^1\) Since the absorption is small in air, the modified index of refraction \(m(z) \), and hence \(\alpha_1 \), are considered as real quantities in the following discussions. In the actual FORTRAN code, they are declared as complex variables.

\(^2\) This is the default value of the NPS version which can be adjusted through editing the variable "dmesh" in an ASCII input file.
kilometer. The lower edges of the meshes in the lowest layer sit along the real q axis\(^3\). The meshes in the layer just below the top one contain the upper bound of the search region, with the top layer providing some allowance for numerical inaccuracy. The program tests each mesh square for the presence of zeros of the mode function \(D(q)\).

To search through all the meshes, the program first divides the mesh covering the search region into "contour rectangles" with equally spaced vertical lines parallel to the imaginary q axis. These vertical lines contain the edges of stacked square meshes and are separated by a distance 160 times the side of a mesh. The search commences at the top left corner and moves counterclockwise around each "contour rectangle" and begins with the one whose left edge is defined by

\[
\text{Re} \left[q \left(\frac{k}{\alpha_1} \right)^{-2/3} \right] = \text{Re} \left(m_1^2 - m_{\text{min}}^2 \right) = 2 \times 10^{-6} \text{Re} \left(M_j - M_{\text{min}} \right) = 2 \times 10^{-6} d_{\text{min}}.
\]

where \(m_{\text{min}}\) is the minimum value of the modified index of refraction profile and \(d_{\text{min}}\) is shown in Fig. 1. The justification for this choice to begin the mode search is as follows: From Eq. (5) and optics, for a wave to propagate freely in space, the dispersion relation of the Maxwell equations requires that \(k^2 m^2(z) > \beta_m^2\), assuming that both quantities are real. Thus, the smallest \(\beta_m^2\) to support a trapped wave will occur when

\[^3\text{The NOSC version extends the lower edge slightly below the real q-axis. This causes problems in some situations [Ref. 2].}\]
\(\beta_m^2 \) just exceeds the minimum of \(m^2(z)^4 \). It is not surprising that an argument based on optics works within a waveguide mode formulation which is low frequency in principle. Lee [Ref. 7] has demonstrated that the earth-flattening approximation actually links Mie's low frequency oriented spherical harmonics to Fock's high frequency diffraction theory through the uniform asymptotics. The mere introduction of an unlimited ground range into the Maxwell differential equations incorporates the global feature of the radius of the earth into the local equations.

After the search over the initial rectangle is completed, the program goes on to search the neighboring rectangle to the left. If a specified number\(^5\) of consecutive rectangles of decreasing real \(q \) values have been searched without turning up any zero of \(D(q) \), the program changes direction and starts to search the rectangles to the right of the initial "contour rectangle" one by one, with increasing real part of \(q \). After failing consecutively to locate any \(q \)-eigenvalue again over the specified number of rectangles, the program assumes that no more zeros of \(D(q) \) exists in the search region. The mode search is considered complete and the procedure is terminated. If the array for storing the \(q \)-eigenvalues is filled up before the search is completed, the search is terminated with an error message.

\(^4\) Note that assuming the same real part, an imaginary component of \(\beta_m \) reduces the real part of \(\beta_m^2 \) which may enable the wave to propagate in the \(z \)-direction.

\(^5\) This number of consecutive rectangles is an adjustable input variable "nstop" in the NPS version. The default value is 2.
The search for zeros of $D(q)$ makes use of the fact that a real valued function changes sign when it crosses a simple zero. Since a zero of the complex valued function $D(q)$ is where both its real part and imaginary part vanish, a necessary condition for a point q_m to be a zero is that it is the intersection of two curves defined by $\text{Im}(D(q)) = 0$ and $\text{Re}(D(q)) = 0$. M-Layer moves along each side of a "contour rectangle" while searching for a sign change in $\text{Im}(D(q))$ across an edge of a mesh bordering the side of this rectangle to determine that a line of $\text{Im}(D(q)) = 0$ has been encountered. The search then follows this line into the meshes within the "contour rectangle", checking each mesh to see if a curve $\text{Re}(D(q)) = 0$ enters the mesh being inspected. All these steps make use of the assumption that the zeros of $D(q)$ are simple. Once both the curve $\text{Im}(D(q)) = 0$ and the curve $\text{Re}(D(q)) = 0$ are found to be present within a mesh, the locations of their possible intersections are estimated.

The rule for sign change becomes inconclusive if a zero of $\text{Im}(D(q)) = 0$ or if $\text{Re}(D(q)) = 0$ happens to fall on a corner of a mesh, and a remedy is required. In the NPS version, whenever the real part or the imaginary part of $D(q)$ vanishes on a corner of a mesh, the phase angle of $D(q)$ is rotated by 2^{-52} radians. This maneuver effectively shifts q by a small amount to resolve the sign ambiguity.

To estimate the locations of zeros of $D(q)$ within a mesh, $D(q)$ is assumed to be well approximated in this mesh by its four-term Taylor series expansion. The unshifted values of $D(q)$ at the mesh corners determine this cubic polynomial uniquely. Cardan’s formulas [Ref. 8] are used to locate the zeros of this polynomial before retaining only those lying within the mesh.
II. MODE FUNCTION IN THE COMPLEX q_{11}/t_1 PLANE

A. MODE LOCATIONS

M-Layer searches for the zeros of the mode function $D(q)$ in the complex q plane by tracking the constant phase lines of $D(q)$ along which the mode function is either real or purely imaginary. The zeros found are called the q-eigenvalues as defined by Eq. (8) and are denoted as q_m. These eigenvalues are saved in an ASCII file and are utilized later for height-gain function computations. In order to design a strategy for locating these zeros, the mode locations are plotted.

It is clear from Eq. (8) that the variable q varies with α_1, the slope of $m^2(z)$ in the lowest (first) layer. Since α_1 depends on how the continuous, piecewise linear approximation to $m^2(z)$ is made, while both m_1 and β_m are, in principle, dependent only on the actual profile, q will vary strongly with α_1 and fail to provide information on the wavenumber of the mode directly. A more suitable variable to use is, from Eq. (8):

$$q\left(\frac{k}{\alpha_1}\right)^{2/3} = m_1^2 \frac{\beta^2}{k^2}.$$ \hspace{1cm} (11)

Since q is given the variable name of q_{11} and $(k/\alpha_1)^{2/3}$ is given the variable name of t_1 in the M-Layer FORTRAN code, this variable is identified as q_{11}/t_1 throughout this thesis. Since m_1 is real and both it and β/k deviate from unity only slightly for all cases
investigated, q_{11}/t_1 is approximately $2(m_1 - \beta/k)$. Thus, its imaginary part is directly proportional to $-\beta$, the attenuation rate of the mode. Furthermore, q_{11}/t_1 does not depend explicitly on α_1. Removing the t_1 factor from q_{11} makes it possible to compare results from different evaporation duct profiles meaningfully.

Plots of the q-eigenvalues as individual points in the complex q_{11}/t_1 plane are included in Appendix A. For the 20 meter duct, which will be used as the representative case for discussions in this thesis, a line linking all the eigenvalues in the order of increasing attenuation rate is shown in Fig. 2. Because of the long excursion between

![Figure 2. q-eigenvalues in the q_{11}/t_1 plane, connected in the order of ascending attenuation rate (20 m duct).](image)
many pairs of consecutive modes in the upper part of this figure, it appears that the
intuitive approach of starting with the mode of the lowest attenuation and continually
looking for the mode with the next higher attenuation rate may not be the most efficient
strategy. Furthermore, there seems to be a fork near the middle of the figure which
suggests that there can be more than one constant phase line passing through all the zeros
of the mode function. These problems suggest that, in order to design an efficient mode
search strategy, the behavior of the mode function in the complex q_{11}/t_1 plane has to be
investigated more thoroughly.

B. PHASE LINE TRACKING

The M-Layer program follows a line along which $\text{Im}(D(q)) = 0$ until a zero is
encountered at its intersection with another line along which $\text{Re}(D(q)) = 0$. Since there
is no way to determine the phase of the constant phase line linking two adjacent zeros a
priori, following these two types of somewhat arbitrary but easy to compute phase lines
which have constant phases of 0 or π, and $\pi/2$ or $3\pi/2$, respectively, are still the best way
to program a computer to locate the zeros systematically. It is thus necessary to find out
the actual distribution of these constant phase lines in the complex q_{11}/t_1 plane.

1. Downward Tracking

In the original design, along the real q axis, M-Layer divides the search region
into "contour rectangles," each of which spans 160 meshes horizontally. From the
observed locations of the modes, it is found desirable to track and plot the constant phase
lines along $\text{Im}(D(q)) = 0$ and $\text{Re}(D(q)) = 0$ over a little more than six "contour
rectangles", roughly three to the right and three to the left of the starting real q coordinate
given by Eq. (10), which is a variable called \(q_{\text{test}} \) in M-Layer. The subroutine FNDMOD
and FZEROX are modified to track these constant phase lines. A listing of these modified
routines for tracking the lines \(\text{Im}(D(q)) = 0 \) beginning from the top edge and moving
downwards into the search region is included in Appendix B. Their flow charts are given
in Appendix C. Only minor changes are required to track the type of lines \(\text{Re}(D(q)) = 0 \),
or to track these lines from the bottom of the search region upwards. The program first
searches for a sign change in \(\text{Im}(D(q)) \) or in \(\text{Re}(D(q)) \) along the top edge of the search
region, starting at the coordinate -512 mesh sizes from \(q_{\text{test}} \) until a distance of 1024
mesh sizes is covered. When a sign change is observed, a constant phase line is
recognized as passing through the particular mesh square and the program writes the
complex q value of the lower-left corner of this mesh square into an ASCII file identified
by whether the mode function is real or imaginary along the line, and the order this line
is found. The program then moves from the top edge downwards to follow this constant
phase line until it exits the search region. The q values of the lower-left corner of the
mesh squares along this phase line are also written into the same ASCII file to be plotted
later using MATLAB/386. The constant phase lines for the mode functions of the 2, 4,
6, 8, 10, 20, 30 and 40 meter evaporation ducts are obtained and plotted. They are
included in Appendix D. Tracking and plotting these constant phase lines are extremely
time consuming. The CPU time required to track the desired constant phase lines for each
duct using an Intel 80486 based PC running at a 33 MHz clock rate is listed in Table 1.
The time required to plot those lines for each duct using an Intel 80386 based PC running
at a 16 MHz clock rate is also listed.

TABLE 1

CPU Time for Tracking and Plotting Constant Phase Lines

<table>
<thead>
<tr>
<th>Duct Height (m)</th>
<th>Tracking $\text{Im}(D(q)) = 0$ (hr:min:sec)</th>
<th>Tracking $\text{Re}(D(q)) = 0$ (hr:min:sec)</th>
<th>Plotting Both Lines (hr:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3:43:54</td>
<td>3:45:11</td>
<td>0:25:42</td>
</tr>
<tr>
<td>8</td>
<td>4:25:49</td>
<td>4:23:41</td>
<td>0:29:34</td>
</tr>
<tr>
<td>10</td>
<td>6:08:14</td>
<td>6:11:03</td>
<td>0:32:25</td>
</tr>
<tr>
<td>20</td>
<td>8:26:58</td>
<td>8:24:22</td>
<td>0:34:21</td>
</tr>
<tr>
<td>30</td>
<td>9:08:14</td>
<td>9:06:45</td>
<td>0:36:49</td>
</tr>
<tr>
<td>40</td>
<td>8:39:04</td>
<td>8:37:54</td>
<td>0:36:53</td>
</tr>
<tr>
<td>Total</td>
<td>45:07:33</td>
<td>45:04:09</td>
<td>4:01:29</td>
</tr>
</tbody>
</table>

The constant phase line plot for the mode function of the 20 m evaporation duct is given in Fig. 3. The solid lines represent those having $\text{Im}(D(q)) = 0$; the dotted lines represent those having $\text{Re}(D(q)) = 0$. Every intersection of these two types of phase lines is the location of a q-eigenvalue scaled by t_1, thus indicating the presence of a mode. Note that every solid line intersects with a dotted line except for many of those running from the top through the bottom of the search region. None of the solid lines intersect with other solid lines, neither do the dotted lines. This is seen clearly in Fig. 4, which magnifies the lower center portion of Fig. 3. One feature that can be recognized
Figure 3. Constant phase lines in the q_{11}/t_{1} plane (20 m duct).
Figure 4: Magnified lower center portion of Fig. 3 showing no intersection of phase lines.

Constant phase lines in the q11/t1 plane for 20 m duct
immediately in all the plots in Appendix D is that the starting real q coordinate given by Eq. (10), which is marked by an "x" along the top edge of each plot, correlates very closely with the mode of minimum attenuation.

2. Upward Tracking

One mode of low attenuation rate is missing from Fig. 2 compared to those found in Ref. 2. Several of them are also missing from those cases of greater duct heights plotted in Appendix D. It is evident that tracking the constant phase lines from the real q_{11}/t_1 axis upwards is necessary. For the 10 meter and the 20 meter ducts, Fig. 5 shows several constant phase lines starting out of the lower limit of the search region and returning to the lower-half complex q_{11}/t_1 plane. Fig. 6 shows the presence of such lines for the 30 meter and the 40 meter ducts. These constant phase lines have not been observed in those cases of lower duct heights.
Figure 5. Upward going constant phase lines in the q_{11}/t_1 plane for the 10 meter (top) and 20 meter (bottom) ducts.
Figure 6. Upward going constant phase lines in the q_{11}/t_1 plane for the 30 meter (top) and 40 meter (bottom) ducts.
III. ANALYSIS AND CONCLUSIONS

A. MODE SEARCH PARAMETERS

The implementation of a mode search procedure requires several parameters. The search region has to be defined first. In M-Layer, the desired maximum range attenuation rate of the modes which support wave propagation is treated as an input parameter called \(a_{\text{loss}} \) given conventionally in dB per km. This parameter determines the region over which the modes are to be searched as explained in Chapter I. In the complex q plane, under the assumption that both \(m_1 \) and \(\beta/k \) of interest are close to unity, the search region is bounded from above by the FORTRAN variable \(q_{\text{top}} \), given by

\[
q_{\text{top}} = \frac{10^{-4} t_1}{k \log_{10} e} a_{\text{loss}}. \tag{12}
\]

The location at which to start the mode search, \(q_{\text{test}} \), is another parameter determined by M-Layer. Based on optical considerations, the M-deficiency, \(d_{\text{min}} \) of Fig. 1, which is the amount of decrease of the modified refractivity from its value on the sea surface to its minimum value in the air, is a measure of the capability of the duct to trap electro-magnetic waves. As explained also in Chapter I, this quantity determines the location for the program to start searching for modes. The validity of the optical argument and the usefulness of Eq. (10) have been proved by this work, as pointed out in Chapter
II.

To search for zeros of the mode function, M-Layer first covers the search region with identical mesh squares. It then follows the lines of the type \(\text{Im}(D(q)) = 0 \) through each mesh square, checking for indications that a curve \(\text{Re}(D(q)) = 0 \) is entering the same mesh so that an intersection is possible. The term "mesh size" will denote the size of the edges of the mesh squares. It is the size of the step taken by the program to advance through the search region. It also determines the initial resolution of the location of a mode. The choice of the mesh size should strike a balance between the desire for a speedy completion of the search process and the requirement in mode locating accuracy.

As reported in Ref. 2, for all the evaporation ducts considered, the choice of a mesh size equivalent to an attenuation rate of 1/32 dB per km appears to be optimal, that is, all modes can be found for all cases investigated in Ref. 2 without experiencing extraordinarily long computation time. Consider this mesh size as the default and call it \(q_d \) in the complex q plane. Under the same assumption for deducing Eq. (12), the value of \(q_d/t_1 \) at 9.6 GHz equals \(3.58 \times 10^{-8} \). Figure 7 shows the separation between two adjacent constant phase lines of the type \(\text{Im}(D(q)) = 0 \), indicated in the figure as solid lines, along the top edge of the search region for the 20 meter duct. The minimum of these separations in terms of \(q_{11}/t_1 \) is about \(2.8 \times 10^{-7} \), which corresponds to a spacing of a little less than eight mesh squares apart. The minimum separation between adjacent \(\text{Im}(D(q)) = 0 \) and \(\text{Re}(D(q)) = 0 \) lines is thus about four meshes. Constant phase line separations for all evaporation ducts considered are included in Appendix E. Note that the minimum separation is almost constant for ducts higher than 20 meters. It increases
Figure 7. Separation of Im[D(q)] = 0 lines along the top edge of the search region (20 m duct).
slightly as duct height is decreased.

As the program follows an $\text{Im}(D(q)) = 0$ line into the search region, a neighboring $\text{Re}(D(q)) = 0$ line moves closer and enters into the same mesh square. This causes the program to invoke the root finding routine to determine the possible locations of zeros of the mode function within this mesh square. If the mesh size is too large and the $\text{Re}(D(q)) = 0$ line enters the mesh square long before the actual intersection takes place, the root finding routine will be prematurely invoked many times and the probability of producing false modes is increased. This explains why a larger mesh size sometimes will increase the execution time.

Given these three parameters q_{top}, q_{test}, and q_d, a mode search strategy which does without the "contour rectangles" is proposed. It should improve the efficiency of M-Layer.

B. MODE SEARCH STRATEGY

From the constant phase line plots of Appendix D, a strategy to search for the mode can be drawn: move along the top edge starting at q_{test}. Search first toward either the left or the right, then reverse course to search along the other direction. After the search along the top edge is completed, search the lower edge from one end to the other. In what follows, the implementation of this strategy will be discussed.

1. Track Termination

The tracking of an $\text{Im}(D(q)) = 0$ line naturally ends if the top edge or the bottom edge of the search region is reached. On the other hand, the search region is unbounded to the right and left of q_{test}. It is convenient to retain the feature in the
original program to set a limit on the number of steps allowed to follow a constant phase line. From Fig. 3, this limit can be set to 2.5 times the number of mesh squares between the vertical limits of the search region. This number equals $2.5 \times 32 \times a_{loss}$.

2. Search Termination

M-Layer has to determine that no more modes within the search region is to be found and to terminate the search for modes. When searching along the top edge of the search region for the constant phase lines $\text{Im}\{D(q)\} = 0$, the separation between the real parts of the mode eigenvalues is of interest. Figure 8 shows the separation in the real part of neighboring q-eigenvalues scaled by t_1, plotted against their locations q_m/t_1 along the real q_{11}/t_1 axis for the case of the 20 m duct. Similar plots for all duct heights are grouped in Appendix F. Excluding the lowest point which involves the mode obtained via searching along the lower edge, the separation between neighboring modes is erratic with an upward trend away from the center of the figure, which is close to the search starting position.

The increase in distance between two modes towards the end of the range searched makes it difficult to implement an adaptive mechanism to terminate the search. On the other hand, Fig. 3 shows that almost all phase lines entering the search region from the top that contain a mode within this region are bunched together. Therefore, the parameter n_{stop}, set equal to four and may be adjusted, can be used to stop the search along the top edge when four consecutive constant phase lines tracked turn up no mode.

The search along the real q axis can be confined to within the end points of the search along the top edge.
Figure 8. Difference between consecutive $\text{Re}(q_m/A_1)$ values (20 m duct).
3. Track Duplication Avoidance

When the program searches step by step along the top or bottom edges for sign changes in $\text{Im}\{D(q)\}$ to start tracking the constant phase line, the exit of a constant phase line from a previous track will be encountered. Entering into the search region at such a location will simply retrace a constant phase line which has already been examined for the existence of a mode. Thus, the exit locations of the constant phase lines must be recorded and checked whenever a sign change in $\text{Im}\{D(q)\}$ is found before deciding to follow the constant phase line into the search region. Along the top edge, a record of four updated most recent exit locations from the top edge should be adequate. The locations of exits from the bottom should be kept for use during the search along the lower edge of the search region. For this record, a dimension of 256 should be adequate for the current cases. But this dimension should be adjusted if other types of ducts are studied. A record of four of the most recent exit locations out of the lower edge should also be kept and checked to avoid duplicate tracking of the constant phase lines.
APPENDIX A: MODE LOCATIONS IN THE COMPLEX q_{11}/t_1 PLANE

This appendix contains figures of mode locations of evaporation ducts of 2, 4, 6, 8, 10, 20, 30, and 40 m heights plotted in the complex q_{11}/t_1 plane for easy comparison.
Figure A.1 q_{11}/t_1 mode locations (2 m duct).
Figure A.2 q_{11}/t_1 mode locations (4 m duct).
Figure A.3 q_{11}/t_1 mode locations (6 m duct).
Figure A.4 q_{11}/t_1 mode locations (8 m duct).
Figure A.5 q_{11}/t_1 mode locations (10 m duct).
Figure A.6 q_{11}/t_1 mode locations (12 m duct).
Figure A.7 q_{11}/t_1 mode locations (14 m duct).
Figure A.8 q_{11}/t_1 mode locations (16 m duct).
Figure A.9 \(q_{11}/\rho_1 \) mode locations (18 m duct).
Figure A.10 q_{11}/t_1 mode locations (20 m duct).
Figure A.11 q_{11}/l_1 mode locations (22 m duct).
Figure A.12 q_{11}/h_1 mode locations (24 m duct).
Figure A.13 \(q_{11}/t_1 \) mode locations (26 m duct).
Figure A.14 q_{11}/t_1 mode locations (28 m duct).
Figure A.15 q_{11}/t_1 mode locations (30 m duct).
Figure A.16 q_{11}/k_1 mode locations (32 m duct).
Figure A.17 q_{11}/t_1 mode locations (34 m duct).
Figure A.18 \(q_{11}/t_1 \) mode locations (36 m duct).
Figure A.19 q_{11}/t_1 mode locations (38 m duct).
Figure A.20 q_{11}/t_1 mode locations (40 m duct).
APPENDIX B: SUBROUTINE FNDMOD AND FZEROX

This appendix contains the listing of the subroutines FNDMOD and FZEROX, modified from the NPS version of the M-Layer FORTRAN code to track the constant phase-lines and to locate the modes.
subroutine fndmod(aloss,dmmin,t1,dmesh,filem,nrmode,qeigen)

* purpose:
* This subroutine sets up the areas in the complex qi1-plane
* to search for the zeroes of the modal function.

* inputs...
* mxlayr - maximum number of layers allowed in refractivity
* profile
* nzlayr - actual number of layers in refractivity profile
* aloss - maximum attenuation rate (in db/km) of modes
* to be found
* dmmin - minimum of zim(j)-zim(1)
* t1 - koa123
* dmesh - initial mesh size divisor

* outputs...
* qeigen - complex array containing the zeros of the modal
* function
* nrmode - actual number of modes found

* subroutines called...
* fzerox
* findfx

* common block areas...
* coml

* implicit double precision (a-h,o-z)
* complex*16 ctemp,t1,qeigen,zeros,fx1,fx2
* parameter(c20log=8.68588963806504d0,one=(1.d0,0.d0),
* $ step0=1024.d0,step0h=step0/2.d0)
* character*3 filem,kline
* character*40 rfile

* qeigen - complex array containing all the zeros of the
* modal function found
* zeros - complex array containing the zeros of the modal
* function found in the current rectangular region
* of the complex qi1-plane

* use include file for parameters of
* mxlayr max # layers
* mxmode max # modes

$include: 'mlaparm.inc'

***** Begin listing of: mlaparm.inc
c include file to define the maximum # of layers (mxlayr)
c
parameter (mxlayr=35)

parameter (mxmode=127)
***** End listing of: mlaparm.inc

dimension qeigen(mxmode),zeros(2*mxmode+1)
c*****
c
common /com l/waveno

C*************************************
c rl - value of mode search on the real part of qll at the left edge in tmesh units.
c r2 - value of mode search on the real part of qll at the right edge in tmesh units.
c bot - value of the imaginary part of qll at the bottom edge (this is set to 0).
c t0 - value of the imaginary part of qll at the top edge in tmesh units.
c step - size of search areas.
c
**
c
r1 - value of mode search on the real part of qll at the left edge in tmesh units.
r2 - value of mode search on the real part of qll at the right edge in tmesh units.
bot - value of the imaginary part of qll at the bottom edge (this is set to 0).
t0 - value of the imaginary part of qll at the top edge in tmesh units.
step - size of search areas.
**

C**
c
set up search areas for finding modes and solve for modes,
c calculate approximate value for re(qll) where modes start occurring
C**
nrmode=0
recons=dreal(t1)
rstart=-2.0d-6*dmmin
qtest=rstart*recons
ttop=(2.0d-3/(waveno*c20log))*recons
ttop=aloss*ttop1
tmesh=ttop1/dmesh
if(tmesh .gt. 0.1d0) tmesh=1.0d-1
if((tmesh .gt. 1.0d-3) then
tol=1.0d-4
else
tol=tmesh*0.1d0
end if

91 c
92 c*****
93 write(*,1002)
94 write(16,1002)
95 c
96 write(*,1003) tmesh,tol
97 write(16,1003) tmesh,tol
98 c
99 t0=dnint(ttop/mesh)+1.d0
100 bot=0.d0
101 c*****
102 c
103 r1=dnint(qtest/mesh)-step0h
104 r1=r1
105 rr=r1+step0
106 call findfx(r1,t0,fx1,x1,y1,mesh)
107 il=int(r1)
108 in=int(step0)+int(r1)
109 nn=0
110 50 continue
111 do 100 nn=il,lnn
112 r2=r1+1.d0
113 call findfx(r2,t0,fx2,x2,y2,mesh)
114 if (y1*y2 .lt. 0.d0) then
115 r=r1*tmesh
116 write (*,5555) r
117 c write (16,5555) r
118 5555 format (/5x,'r=',d28.16)
119 go to 400
120 endif
121 r1=r2
122 fx1=fx2
123 x1=x2
124 y1=y2
125 100 continue
126 return
127 c
128 400 continue
129 nrold=nmode
130 nline=nline+1
131 nc100=int(nline/100)
132 nc10=int((nline-nc100*100))
133 nc1=nline-nc100*100-nc10*10
134 kline=char(48+nc100//char(48+nc10)//char(48+nc1)
135 rfile='c:sans5x''/filem/kline''/dat'
136 c*****
137 open (unit=25,file=rfile,status='unknown')
138 call fzerox(t0,r1,r11.fx1,x1,y1,fx2,x2,y2,zeror,nrold,nnew,mesh)
141 close (25)
142 c********
143 c
144 nrmode=nrnew
145 new0=nrmode-nrold
146 c
147 c***
148 c mode search completed
149 c order zeros found by order of increasing real part.
150 c***
151 c
152 if(nrmode.gt.1) then
153 jkend=nrmode-1
154 do 420 jk=1,jkend
155 nend=nrmode-jk
156 do 410 ja=lnend
157 m-j=nrmode-ja
158 nrjl=nrj+l
159 if(dimag(zeros(nrj l)).lt.$ dimag(zeros(nrj))) then
160 ctemp=zeros(nrj l)
161 zeros(nrj l)=zeros(nmj)
162 zeros(mrj)=ctemp
163 410 continue
164 420 continue
165 end if
166 end if
167 410 continue
168 420 continue
169 end if
170 c***
171 c the possibility exists that duplicate (within the tolerance 'tol')
172 c zeros of the modal equation will be found. eliminate these
173 c duplicate zeros.
174 c***
175 c
176 c
177 jkflag=0
178 jkend=nrmode-1
179 do 240 jk=1,jkend
180 jk1=jk+l
181 ctemp=zeros(jk1)
182 chksq=cdabs(zeros(jk-jkflag)-ctemp)
183 if(chksq .lt. tol) then
184 jkflag=jkflag+1
185 go to 240
186 end if
187 240 continue
188 nrmode=nrmode-jkflag
53
191 c
192 c**
193 c Store the zeros as the eigenvalues.
194 c**
195 c
196 nrmode=min0(nrmode,mxmode)
197
198 do 430 jk=1,nrmode
199 qeigen(jk)=zeros(jk)
200 430 continue
201 c
202 il=int(rll)+1
203 if (il .LT. in) then
204 rl=rll+1.d0
205 call findfx(rl,tO,fxl,yl,tmesh)
206 go to 50
207 endif
208 return
209 c
210 c**
211 c format statements
212 c**
213 1000 format(/5x.'searching for zeroes in this areas are',
214 $ ' defined by:'/5x,'istar= ',ilO/5x.'itop= ',ilO,
215 $ 5x,' ibot= ',il1/5x,'ileft= ',ilO,5x,'iright= ',ilO)
216 1001 format(Sxi4,' new zeroes found in this area.'/
217 1002 format(/5x.'******* start search for modal eigenvalues',
218 $ ' *******')
219 1003 format(/5x.'tmesh= ',d15.5,'tol= ',d15.5/)
220 end
221 c
222 subroutine fzerox(tO,lrl,fx,lx2,yl2,zeros,mn0d,
223 $ nrnewmsh0)
224 c***fh
225 c fzerox is a routine for finding the zeroes of a complex function, f,
226 c which lie within a specified rectangular region of the
227 c complex q11 plane, assuming that the function has only
228 c simple zeroes over this rectangle.
229 c
230 subroutine fzerox(t0,x1,r1,fx1,yl1,fy2,x2,y2, zeros,nr0d,
231 $ nrnew,msh0)
232 c
233 c*****
234 c fzerox is a routine for finding the zeroes of a complex function, f,
zeros within the rectangle. A smaller value may be used as a safety measure, but too small a value will result in excessively long run time.

zeros - output list of (complex) values of \(q_1 \) at which zeroes are found.

\(n_{n_{\text{new}}}, n_{\text{rold}} \) - the number of zeroes found

subroutines called--

findfx

roots

implicit double precision (a-h,o-z)

complex*16 \(f_0, f_1, f_{11}, f_{x1}, f_{x2}, f_{x00}, f_{x10}, f_{x01}, f_{x11} \),

+ one,sol,zeros

parameter(one=(1.d0,0.d0))

\$include: 'mlaparm.inc'

***** Begin listing of: mlaparm.inc

include file to define the maximum # of layers (mlayr)

maximum # of modes (mmode)

parameter (mlayr=35)

parameter (mmode=127)

***** End listing of: mlaparm.inc

dimension sol(3),theta(2),zeros(2*mmode+1),rline(2,1024)

common/tmccom/tmesh

npoint=0

nnew=nrold

tmesh=tmsh0

bot=0.d0

t=t0-1.d0

r11=r1

r=r11

fx01=fx1

fx01=x1

fx01=y1

fx11=fx2

fx11=x2

fx11=y2

go to 82

enter mesh square from left side or exit rectangle at right edge.
282 20 r=r+1.d0
283 21 fx01=fx11
284 22 fx01r=fx11r
285 23 fx01i=fx11i
286 24 fx00=fx10
287 25 fx00r=fx10r
288 26 fx00i=fx10i
289 27 continue
290 28 call findfx(r+1.d0,t+1.d0,fx11,fx11r,fx11i,tmesh)
291 29 call findfx(r+1.d0,t,fx10,fx10r,fx10i,tmesh)
292 c******
293 30 c Determine the edge of exit of im(f)=0 from current mesh.
294 31 edgeit=fx0li*fx1li
295 32 edgeib=fx00i*fx10i
296 33 if (edgeib .gt. 0.d0) then
297 34 c Im(f)=0 goes through the 01 to 10 line.
298 35 if (edgeit .gt. 0.d0) then
299 36 c Im(f)--0 goes through the 10 to 11 edge (edge 1).
300 37 lout=1
301 38 else
302 39 c Im(f)=0 goes through the 01 to 11 edge (edge 2)
303 40 lout=2
304 41 end if
305 42 else
306 43 c Im(f)=0 goes through the 00 to 10 edge (edge 4)
307 44 lout=4
308 45 if (edgeit .lt. 0.d0) then
309 46 c Im(f)=0 also runs through 01 to 11 and 10 to 11 edges.
310 47 store crossing location and in/out information.
311 48 knot34=knot34+1
312 49 loc34r(knot34)=lr
313 50 loc34i(knot34)=li
314 51 end if
315 52 end if
316 c******
317 53 go to 85
318 c*****
319 54 c enter mesh square from bottom side or exit rectangle at top edge.
320 55 t=t+1.d0
321 56 41 fx00=fx01
322 57 42 fx00r=fx01r
323 58 43 fx00i=fx01i
324 59 44 fx10=fx11
325 60 45 fx10r=fx11r
326 61 46 fx10i=fx11i
327 62 continue
328 63 call findfx(r,t+1.d0,fx01,fx01r,fx01i,tmesh)
329 64 call findfx(r+1.d0,t+1.d0,fx11,fx11r,fx11i,tmesh)
330 c******
331 65 c Determine the edge of exit of im(f)=0 from current mesh.
if (edgeir .gt. 0.d0)
 then
 Im(f)=0 goes through the 00 to 11 line.
 else
 Im(f)=0 goes through the 01 to 11 edge (edge 2).
 lout=2
 end if
else
 Im(f)=0 goes through the 00 to 01 edge (edge 3).
 lout=3
 end if
else
 Im(f)=0 goes through the 10 to 11 edge (edge 1)
 lout=1
 if (edgeil .gt. 0.d0) then
 Im(f)=0 also runs through 00 to 01 and 01 to 11 edges.
 end if
 Store crossing location and in/out information.
 knot4l=knot41+1
 loc4l(knot4l)=lr
 loc4i(knot4l)=li
end if

go to 85

c enter mesh square from right side or exit rectangle at left edge.

r=r-1.d0
fx11=fx01
fxl1r=fx01r
fx11i=fx01i
fx10=fx00
fx10r=fx00r
fx10i=fx00i
continue

call findfx(r.t+1.d0,fx01,fx01r,fx01i,tmesh)
call findfx(r.t,fx00,fx00r,fx00i,tmesh)

Determine the edge of exit of im(f)=0 from current mesh.
edgeit=fx01r*fx01i
edgeib=fx00i*fx10i
if (edgeit .gt. 0.d0) then
 Im(f)=0 goes through the 01 to 10 line.
else
 Im(f)=0 goes through the 00 to 10 edge (edge 4).
 lout=4
 end if
else
 c Im(f)=0 goes through the 01 to 11 edge (edge 2)
 lout=2
 if (edgeib .lt. 0.d0) then
 c Im(f)=0 also runs through 00 to 10 and 00 to 01 edges.
 Store crossing location and in/out information.
 knot12=knot12+1
 loc12r(knot12)=lr
 loc12i(knot12)=li
 end if
end if

 go to 85

c enter mesh square top side or exit rectangle at bottom edge.
 t=t-1.d0
 fx01=fx00
 fx01r=fx00r
 fx01i=fx00i
 fx11=fx10
 fx11r=fx10r
 fx11i=fx10i
 continue
 call findfx(r,t,fx00,fx00r,fx00i,tmesh)
 call findfx(r+1.d0,t,fx10,fx10r,fx10i,tmesh)

 Determine the edge of exit of im(f)=0 from current mesh.
 continue
 edgeil=fx00i*fx01i
 edgeir=fx10i*fx11i
 if (edgeil .gt. 0.d0) then
 c Im(f)=0 goes through the 00 to 11 line.
 if (edgeir .gt. 0.d0) then
 c Im(f)=0 goes through the 00 to 10 edge (edge 4)
 lout=4
 else
 c Im(f)=0 goes through the 01 to 11 edge (edge 1).
 lout=1
 end if
 else
 c Im(f)=0 goes through the 00 to 01 edge (edge 3)
 lout=3
 if (edgeir .lt. 0.d0) then
 c Im(f)=0 also runs through 00 to 10 and 10 to 11 edges.
 Store crossing location and in/out information.
 knot23=knot23+1
 loc23r(knot23)=lr
loc23i(knot23)=li
end if
end if

Test for there being at least one re(0)=0 line entering and
leaving the mesh square.

85 continue
npoint=npoint+1
r=r*tmesh
tt=t*tmesh
rline(1,npoint)=rr
rline(2,npoint)=ttt
if (npoint .eq. 1024) lout=5

if((t .lt. bot) .or. (t .gt. tO)) go to 100

if ((fx0Or*fx1Or .lt. 0.d0) .and. (fx0lr*fx1lr .gt. 0.d0)
+ .and. (fx0Or*fx0lr .gt. 0.d0)) go to (20,40,60,80,100)
lout

Compute the values of the modal function at the corners of
a mesh square to determine its Taylor series to the 3rd order
for estimating its root locations.

fO0=one
fl0=cdexp(fx10-fx00)-one
fO1=cdexp(fx01-fx00)-one
fl1=cdexp(fx11-fx00)-one

*********** estimate locations of zeroes by radicals***********
call roots(f10,f01,f11,sol,nrsol)
do 90 n=1,nrsol
ureal = dreal(sol(n))
uiimag = dimag(sol(n))
if (ureal .lt. 0.d0 .or. ureal .gt. 1.0d0) go to 90
if (uiimag .lt. 0.d0 .or. uiimag .gt. 1.0d0) go to 90
theta(1)=(r+ureal)*tmesh
theta(2)=(t+uiimag)*tmesh
nnew = nnnew+1
zeros(nnnew)=dcmplx(theta(1),theta(2))
90 continue

continue following the phase line
482 c
483 95 continue
484 go to (20,40,60,80,100) lout
485 c**
486 100 continue
487 c******
488 write (25,8888) ((rline(i,j), i=1, 2), j=1, npoint)
489 8888 format (2e15.5)
490 c
491 return
492 end
APPENDIX C: CONSTANT PHASE LINE TRACKING FLOW CHARTS

START

\[\text{nrmode} = 0 \]
\[\text{recons} = \text{dreal(t1)} \]
\[\text{qtest} = -2 \times 10^{-6} \times \text{dmmin} \times \text{recons} \]
\[\text{ttop1} = ((2 \times 10^{-3}) / k \times \log(e)) \times \text{recons} \]
\[\text{top} = \text{aloss} \times \text{ttop1} \]
\[\text{tmesh} = \text{ttop1} / \text{dmesh} \]

Decision Diamond

- **tmesh < 0.1**
 - YES: \(\text{tmesh} = 0.1 \)
 - NO: \(\text{tmesh > 0.001} \)

Decision Diamond

- **tmesh > 0.001**
 - YES: \(\text{tol} = 0.0001 \)
 - NO: \(\text{tol} = \text{tmesh} \times 0.1 \)

WRITE

\((\text{tmesh}, \text{tol}) \)
t0 = dnnint(qtop/tmesh) + 1.0d0
bot = 0.0d0
r1 = dnnint(qtest/tmesh) - step0h
rl = r1
rr = r1 + 1024.0d0

CALL FINDFX

d1 = int(r1), in = 1024 + int(r1), nline = 0

DO 100
nn = d1, in
r2 = r1 + 1.0d0

CALL FINDFX

r1 = r2
fx1 = fx2
x1 = x2
y1 = y2

RETURN

CONTINUE

50

100

DO 100
nn = d1, in
r2 = r1 + 1.0d0

CALL FINDFX

N

r = r1 * tmesh

WRITE (r)

Y

y1 * y2 < 0
nroid = nmode
nline = nline + 1
nc100 = int(nline/100)
nc10 = int((nline-nc100*100)/10)
nc1 = nline - nc100*100 - nc10*10
kline=char(48+nc100)//char(48+nc10)
//char(48+nc1)
rfi1e='e:\ml.che\ans\v\filem\//kline//.dat'

Open(unit=25, file=rfi1e, status= 'unknown')

CALL FZEROX

CLOSE (25)

nmode = nnew
new0 = nmode - nroid
WRITE (new0)

WRITE (nmew)

nrmode > 1

jkend = nrmode - 1

DO 420
jk = 1, jkend, nend = nrmode - jk

DO 410
ja = 1, nend, nrj = nrmode - ja
nrj1 = nrj + 1

dreal(zero(nrj1))
< dreal(zeros(nrj))

ctemp = zeros (nrj1)
zeros (nrj1) = zeros (nrj)
zeros (nrj) = ctemp

jdiag = 0
jkend = nrmode - 1

CONTINUE
CONTINUE

DO 240
 jk = jk + 1
 jk1 = jk + 1
 ctemp = zeros(jk1)

 chksq = cdabs(zeros(jk-jkflag)-ctemp)

 Y
 chk < tol
 N

 zeros(jk1-jkflag) = ctemp

 nmode = nmode - jkflag
 nmode = min0(nmode, mxmode)

 CONTINUE

DO 430
 jk = 1, nmode

 qeigen(jk) = zeros(jk)

 i1 = int(r11) + 1

 N
 RETURN

 Y
 r1 = r11 + 1.d0
 CALL FINDFX

 50
APPENDIX D: CONSTANT PHASE LINES IN THE COMPLEX q_{11}/t_1 PLANE

This appendix contains plots of the constant phase lines $\text{Im}\{D(q)\} = 0$ and $\text{Re}\{D(q)\} = 0$ initiating from the top edge of the search region in the complex q_{11}/t_1 plane for the evaporation ducts of 2, 4, 6, 8, 10, 20, 30, and 40 m heights.
Figure D.1 Constant phase lines in the q_{11}/t_1 plane (2 m duct).
Figure D.2 Constant phase lines in the q_{11}/t_1 plane (4 m duct).
Figure D.3 Constant phase lines in the q_{11}/t_1 plane (6 m duct).
Figure D.4 Constant phase lines in the q_{11}/t_1 plane (8 m duct).
Figure D.3
Constant phase lines in the q_11/t_1 plane for 10 m duct

- Constant phase lines in the q_11/t_1 plane (10 m duct)
Figure D.6 Constant phase lines in the q_{11}/t_1 plane (20 m duct).
Figure D.7 Constant phase lines in the q_{11}/t_1 plane (30 m duct).

73
Figure D.8 Constant phase lines in the q_{11}/t_1 plane (40 m duct).
APPENDIX E: SEPARATION OF Im(D(q))=0 LINES

This appendix contains figures of the separation of Im(D(q))=0 lines along the top edge of the search region. The 2, 4, 6, 8, 10, 20, 30 and 40 meter evaporation ducts are included.
Figure E.1 Separation of \(\text{Im}(D(q)) = 0 \) lines along the top edge of the search region (2 m duct).
Figure E.2 Separation of $\text{Im}(D(q))=0$ lines along the top edge of the search region (4 m duct).
Figure E.3 Separation of \(\text{Im}(D(q)) = 0 \) lines along the top edge of the search region (6 m duct).
Figure E.4 Separation of $\text{Im}[D(q)]=0$ lines along the top edge of the search region (8 m duct).
Figure E.5 Separation of Im(D(q))=0 lines along the top edge of the search region (10 m duct).
Figure E.6 Separation of $\text{Im}(D(q))=0$ lines along the top edge of the search region (20 m duct).
Figure E.7 Separation of \(\text{Im}(D(q))=0 \) lines along the top edge of the search region (30 m duct).
Figure E.8 Separation of $\text{Im}(D(q))=0$ lines along the top edge of the search region (40 m duct).
APPENDIX F: DIFFERENCE BETWEEN CONSECUTIVE Re(qm/t_1) VALUES

Separation in real part of neighboring q-eigenvalues scaled by t_1 is plotted in this appendix against the eigenvalue locations along the real q_{11}/t_1 axis.
Figure F.1 Difference between consecutive $\text{Re}(q_{m1}/t_1)$ values (2 m duct).
Figure F.2 Difference between consecutive Re(q_m/t_1) values (4 m duct).
Figure F.3 Difference between consecutive $Re(q_m/t_1)$ values (6 m duct).
Figure F.4 Difference between consecutive $\text{Re}(\eta_m/\theta_1)$ values (8 m duct).
Figure F.5 Difference between consecutive $\text{Re}(q_{ml}/L_1)$ values (10 m duct).
Figure F.6 Difference between consecutive $\text{Re}(q_m/t_1)$ values (20 m duct).
Figure F.7 Difference between consecutive Re(qm/t1) values (30 m duct).
Figure F.8 Difference between consecutive Re(qm/t1) values (40 m duct).
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Cameron Station
 Alexandria, VA 22304-6145

2. Library, Code 52
 Naval Postgraduate School
 Monterey, CA 93943-5002

3. Department Chairman, Code EC
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943-5100

4. Professor Hung-Mou Lee, Code EC/Lh
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943-5100

5. Professor Lawrence J. Ziomek, Code EC/Zm
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA 93943-5100

6. Che, Jen Peng
 3F, No. 6, Lane 93, Chung-Young Rd, Hsin-Tien City,
 Taipei County, Taiwan, R.O.C.

7. Naval Academy Library
 Kao-Hsiung Tso-Ying P.O. Box 90175
 Taiwan, R.O.C.

8. Ting, Chueh
 Department of Electrical Engineering
 Chung Cheng Institute of Technology
 Tao-Yuan, Tai-Hsi
 Taiwan, R.O.C.