Unique Hydride Chemistry on Silicon - PH\textsubscript{3} Interaction with Si(100)-(2x1)

by

M.L. Colaianni, P.J. Chen and J.T. Yates, Jr.

Submitted To

Surface Science
Surface Science Center
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

September 28, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document had been approved for public release and sale; its distribution is unlimited
Unique Hydride Chemistry on Silicon - PH$_3$ Interaction with Si(100)-(2x1)'

M.L. Colaianni, P.J. Chen and J.T. Yates, Jr.

Surface Science Center
Department of Chemistry
University of Pittsburgh, Pittsburgh, PA 15260

September 28, 1992

Abstract

The dissociative adsorption of phosphine (PH$_3$) on Si(100)-(2x1) and its high-temperature thermal behavior have been studied by high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES) and by temperature programmed desorption (TPD). Phosphine adsorbs dissociatively onto Si(100)-(2x1) at 100 K as PH$_2$ and H species, as revealed by vibrational bands at 1050 cm$^{-1}$ (v$_{as}$ (PH$_2$)) and 2100 cm$^{-1}$ (v(Si-H)). The PH$_2$(a) undergoes thermal decomposition to adsorbed P and H near 650 K, as determined by HREELS. TPD measurements reveal two PH$_3$ desorption processes at 485 and 635 K. The 635 K-desorption is shown to result from PH$_2$ + H recombination, while the mechanism for the 485 K-desorption cannot be definitively identified. Additionally, two H$_2$ desorption states were observed at 685 and 770 K. Comparison of these features with H$_2$ desorption from clean and phosphorus-modified silicon indicates that the 685- and 770 K-H$_2$ desorption kinetics are controlled by thermal dissociation of adsorbed PH$_x$ species which supply hydrogen to the surface.
Submitted to: Surface Science
Date: 28 September 1992

UNIQUE HYDRIDE CHEMISTRY ON SILICON - PH₃ INTERACTION WITH
Si(100)-(2x1)

M.L. Colaianni, P.J. Chen# and J.T. Yates, Jr.

Surface Science Center
University of Pittsburgh
Pittsburgh PA 15260

#Present Address: Department of Chemistry, Texas A&M University, College
Station, TX 77843.
UNIQUE HYDRIDE CHEMISTRY ON SILICON - PH₃ INTERACTION WITH Si(100)-(2x1)

M.L. Colaianni, P.J. Chen# and J.T. Yates, Jr.

Surface Science Center
University of Pittsburgh
Pittsburgh PA 15260

Abstract

The dissociative adsorption of phosphine (PH₃) on Si(100)-(2x1) and its high temperature thermal behavior have been studied by high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES) and by temperature programmed desorption (TPD). Phosphine adsorbs dissociatively onto Si(100)-(2x1) at 100 K as PH₂ and H species, as revealed by vibrational bands at 1050 cm⁻¹ [δₛᶜ (PH₂)] and 2100 cm⁻¹ [ν(Si-H)]. The PH₂(a) undergoes thermal decomposition to adsorbed P and H near 650 K, as determined by HREELS. TPD measurements reveal two PH₃ desorption processes at 485 and 635 K. The 635 K-desorption is shown to result from PH₂ + H recombination, while the mechanism for the 485 K-desorption cannot be definitively identified. Additionally, two H₂ desorption states were observed at 685 and 770 K. Comparison of these features with H₂ desorption from clean and phosphorus-modified silicon indicates that the 685- and 770 K-H₂ desorption kinetics are controlled by thermal dissociation of adsorbed PHₓ species which supply hydrogen to the surface.
I. Introduction

The chemical vapor deposition of doped semiconductor films is typically accomplished at an interface by the thermal decomposition of small hydride molecules which are utilized due to their high vapor pressures and chemical simplicity [1]. Two examples are silane (SiH₄), which is used to deposit elemental silicon, and diborane (B₂H₆), which is used to deliver boron to the growing film.

Another very important dopant utilized in the semiconductor industry is phosphorus. The incorporation of phosphorus into silicon films is often achieved by phosphine (PH₃) adsorption onto freshly deposited silicon films, followed by desorption of the co-adsorbed hydrogen atoms. This apparently simple process of adsorbing phosphine and desorbing H₂ has been studied by a variety of surface sensitive techniques over the past 25 years. While progress has been made, several fundamental questions have yet to be resolved; these concern the surface species which form upon phosphine exposure to silicon, and the thermal stability of these species.

Early studies used low energy electron diffraction (LEED) to examine the surface structures which resulted after phosphine exposure to a Si(111)-(7x7) surface at temperatures between 300 - 773 K [2,3]. While several complex ordered LEED structures were observed, their corresponding surface structure could not be determined.

Recent studies have examined the reactivity of phosphine with the structurally simpler Si(100)-(2x1) surface. Phosphine was found to have an initial sticking coefficient of unity on the Si(100)-(2x1) surface at 300 K and to saturate after exposures of 3 - 5 Langmuir [4]. This saturation phosphorus coverage was found to increase upon PH₃ exposures at higher substrate temperatures [5].
The nature of the PH$_3$-Si bonding was first addressed by Yu et al. in 1986 [6]. The authors reported that on the Si(100)-(2x1) surface phosphine "mostly adsorbs non-dissociatively" at 300 K, while molecular and dissociative adsorption was reported upon adsorption at 575 K. This molecularly bound phosphine was postulated to utilize the phosphorus lone-pair to form a bridge bond across a silicon dimer [6]. Heating to ~775 K caused the desorption of H$_2$, and at a temperature of ~825 K P$_2$ was liberated from the surface [6].

A different model for phosphine adsorption on Si(111)-(7x7) was proposed by Taylor et al. [7] and Wallace et al. [8]. Utilizing Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron stimulated decomposition (ESD), these authors reported that phosphine adsorbed dissociatively on the Si(111)-(7x7) surface at 120 K [7,8] with a sticking coefficient of unity up to 75% of saturation coverage. Their TPD studies yielded H$_2$ and P$_2$ desorption processes at 740 and 1010 K, respectively. A recent HREEL study confirmed the dissociation of PH$_3$ on the Si(111)-(7x7) surface at 120 K, and also assigned a P-H vibration at 1050 cm$^{-1}$ to the -PH$_2$ scissor mode [9]. This was the first direct experimental evidence that -PH$_2$ species formed from PH$_3$ on the Si(111)-(7x7) surface upon adsorption at 120 K. Complete decomposition of the PH$_2$(a) to P(a) + 2H(a) was observed upon heating to 500 K [9].

In this study we examine the bonding and high temperature behavior of phosphine on the Si(100)-(2x1) crystal face. Phosphine dissociatively adsorbs on Si(100)-(2x1), leaving PH$_2$(a) and H(a) species on the surface. Unlike the thermal behavior on Si(111)-(7x7) [7-10], PH$_2$(a) + H(a) recombine on the Si(100)-(2x1) surface to liberate PH$_3$(g) at 635 K. We also observe two H$_2$ desorption states from the PH$_3$/Si(100)-(2x1) interface, at 685 and 770 K. Thermal desorption studies from co-adsorbed phosphorus and hydrogen, which yield different
desorption kinetics, lead us to propose that P-H bond rupture from adsorbed PHₓ species controls the desorption kinetics of H₂.

II. Experimental

The experiments reported in this work were performed in a stainless-steel ultra high vacuum (UHV) chamber which has been described previously [11]. Briefly, vibrational spectroscopic studies were carried out in a Leybold-Heraeus ELS-22 high-resolution electron energy loss spectrometer (HREELS) utilizing a 4.2 eV primary excitation beam. The elastic beam measured ~1 x 10⁵ counts per second (cps) from the clean surface and ~5 x 10⁴ cps from the PH₃ covered silicon surface. The beam typically had a full width at half maximum (FWHM) of 65 - 70 cm⁻¹. All HREEL data were recorded by a multichannel analyzer and were smoothed following data acquisition using a simulated RC filtering program which is described in a previous publication [12].

Temperature programmed desorption (TPD) experiments were performed with a UTI 100C quadrupole mass spectrometer (QMS) mounted behind a 3 mm diameter aperture. The data were accumulated in a Teknivent multiplexer, which allowed the simultaneous recording of up to six desorbing species. All TPD data shown are in raw data form; no smoothing routines have been employed.

The Si(100) crystal (5-10 Ω-cm, B-doped, 13 x 13 x 1.5 mm) was fastened between two electrically isolated tungsten leads (1 mm diameter) by two pieces of thin tantalum foil. Each piece of foil was wrapped around a tungsten lead and wedged into one of two pre-cut slots (0.38 mm width) on opposite edges of the crystal. This mounting scheme allowed the crystal to be heated to 1400 K by simply passing current through the tungsten/foil/crystal assembly. To achieve a linear heating rate, a Honeywell Universal Digital 5000 Ultra-Pro Controller was used to regulate the power output from a direct current power supply (maximum
current = 50 A; maximum voltage = 100 V). Cooling the crystal was accomplished by direct thermal contact of the mounting assembly to a liquid-N\textsubscript{2} cooled reservoir in the manipulator.

The Si(100) crystal was subjected to a chemical cleaning procedure prior to its insertion into vacuum. The procedure utilized hydrogen peroxide to oxidize the contaminated overlayer of the crystal surface, and employed an aqueous HF solution (49\%) to strip-off the contaminated oxide [13]. This procedure was found to remove any metal contamination which resulted from the cutting of slots into the sides of the crystal [14]. No evidence in the Auger spectra was found for nickel or any other metal contamination in the silicon crystal after heating in vacuo.

After insertion of the Si(100) crystal into the vacuum chamber and baking to 150 °C for two days, the crystal surface was found to be contaminated with carbon and oxygen. Flashing to 1100 K sufficed to remove the oxide layer; however, removal of the carbon contamination required repeated Ar+ ion sputtering (2.5 keV). To regenerate a (2x1) surface structure after sputtering, the crystal was annealed to 1150 K and then cooled to 100 K in approximately 15 minutes. This produced a Si(100) crystal with a well-ordered (2x1) structure, as determined by low energy electron diffraction (LEED), and a carbon concentration below 0.5 atom \% in the depth of Auger sampling.

The PH\textsubscript{3} gas used in this study was purchased from Matheson Gas Products (99.9\% pure) and transferred to a stainless-steel cylinder after several freeze-pump-thaw cycles. The gas was introduced onto the Si(100)-(2x1) surface through a stainless-steel gas handling system which was attached to a translatable micro-capillary array doser containing an internal 2\(\mu\) pinhole. A similar system has been described in detail previously [15]. The flux of the PH\textsubscript{3} at the crystal surface was calculated using the PH\textsubscript{3} effusion rate through our doser, corrected with a
geometrical factor (0.50) which was based on our doser-sample geometry [16,17]. To check the accuracy of this method, the adsorption of PH₃ was measured kinetically by using the QMS to monitor the PH₃ pressure during adsorption with the crystal in the molecular beam. The saturation coverage (PH₃ molecules/cm²) was found to be within 8% of the full coverage measured in a previous study [7].

III. Results and Discussion

A. HREEL Study of the PH₃/Si(100)-(2x1) Interface

Figure 1(a) proves that even at 100 K, phosphine adsorbs dissociatively on the Si(100)-(2x1) surface. The appearance of a Si-H stretching mode at 2100 cm⁻¹ [18], the P-H stretching mode at 2300 cm⁻¹ [19] and the Si-P stretching mode at 495 cm⁻¹ [9] confirms that the PH₃ has reacted with the silicon surface to produce adsorbed PHₓ (3 ≥ x ≥ 1) and H species. Addition information is obtained from the feature observed at 1050 cm⁻¹ [Fig. 1(a)], which a previous vibrational study of PH₃ on Si(111)-(7x7) has assigned to a PH₂ scissor mode [9]. This assignment was based on the similarity between the 1050 cm⁻¹ loss and the vibrational frequencies from seven compounds which contained the -PH₂ moiety [9]. Therefore, based on the 2100 cm⁻¹ [v(Si-H)] mode and the 1050 cm⁻¹ [δsc(PH₂)] mode, it follows that PH₂(a) and H(a) species are produced by phosphine adsorption on Si(100)-(2x1) at 100 K. The only other vibrational loss appears at 640 cm⁻¹, and is assigned to a Si-H bending mode [18]. All these spectral assignments are supported by the results of our heating experiments.

Heating the PH₃/Si(100)-(2x1) layer between 100 and 500 K does not produce any significant changes in the adsorbed layer, as judged by the vibrational spectra [Fig. 1(a-c)]. However, heating to a temperature of 600 K causes the onset of PH₂(a) dissociation. This is observed clearly from the intensity attenuations of the PH₂ scissor mode intensity at 1050 cm⁻¹ and the P-H stretching mode at 2300
The P-H vibrational modes decrease in intensity while increases in the Si-H stretching and bending mode intensities are observed at 2120 and 640 cm\(^{-1}\), respectively. Continued heating to 650 K for one minute [Fig. 1(e)] removes fully the PH\(_2\) scissor mode intensity at 1050 cm\(^{-1}\) and the P-H stretching mode intensity at 2300 cm\(^{-1}\). This leaves a vibrational spectrum devoid of any P-H related species. Only Si-H modes (640 and 2120 cm\(^{-1}\)) and the Si-P modes (465 and 900 cm\(^{-1}\)) remain. Heating to 900 K causes the additional removal of all Si-H related vibrations [Figs. 1(g)]. The development of vibrational features at \(\sim 400\) and \(\sim 900\) cm\(^{-1}\) is indicative of silicon-phosphide formation. These features have also been observed after PH\(_3\) exposures on Si(111)-(7x7), followed by heating to 900 K [9].

Our studies also utilized HREELS to study initial PH\(_3\) exposures as high as \(1.3 \times 10^{15}/\text{cm}^2\) onto Si(100)-(2x1) at 100 K. The spectra are not shown since they were nearly identical at all temperatures to the vibrational spectra recorded after a \(1 \times 10^{14}\) PH\(_3/\text{cm}^2\) exposure, shown in Fig. 1.

Summarizing our HREEL results, we have shown that PH\(_3\) dissociatively adsorbs onto Si(100)-(2x1) as PH\(_2\)(a) and H(a) at 100 K. The PH\(_2\) species decompose after heating to 650 K for one minute, leaving adsorbed P and H. Heating to 900 K causes the removal of all Si-H vibrational modes.

B. Temperature Programmed Desorption Results

1. **Phosphine Desorption Kinetics**

Temperature programmed desorption studies after PH\(_3\) exposures onto Si(100)-(2x1) reveal very interesting results for the H\(_2\) and the PH\(_3\) desorbing species. First we shall examine the desorption of molecular phosphine from the surface. As shown in Fig. 2A(a), a low exposure of \(5 \times 10^{13}\) PH\(_3/\text{cm}^2\) on Si(100)-(2x1) does not lead to desorption of any PH\(_3\) between 100 - 1000 K.
phosphine exposure of $1 \times 10^{14}/\text{cm}^2$, however, produces two molecular phosphine desorption peaks at 485 and 635 K [Fig. 2A(b)]. These desorption features increase in intensity with higher initial PH$_3$ exposures [Fig. 2A(b-d)]. Isotopic exchange studies show definitively that the 635 K peak is due to PH$_2$(a) + H(a) recombinative desorption (to be discussed). The mechanism for the 485 K PH$_3$ desorption is uncertain.

After an exposure of $\sim 2 \times 10^{14}$ PH$_3$/cm2, a very broad lower-temperature (200 - 400 K) PH$_3$ desorption feature develops which increases in intensity after higher PH$_3$ exposures [Figs. 2A(c-d)]. However, results from a TPD experiment which did not involve line-of-sight mass spectrometer detection geometry indicated that this broad desorption feature is at least partly caused by desorption of PH$_3$ from the crystal support assembly. Also while TPD studies showed this feature to increase at higher initial exposures, both AES and HREELS did not show any spectral changes upon continued exposure. Therefore, since it is likely that this feature is not entirely associated with adsorption on the Si(100) crystal, we shall not consider it further.

2. Hydrogen Desorption Kinetics

Figure 2(B) shows the desorption of molecular hydrogen from a PH$_3$/Si(100)-(2x1) interface as a function of PH$_3$ exposure. A low phosphine exposure of $5 \times 10^{13}/\text{cm}^2$ [Fig. 2B(a)] produces only one H$_2$ desorption feature at 770 K. Similar desorption features have been reported for a variety of H-containing adsorbates on Si [7,8,10,20-23]. However, at higher PH$_3$ exposures, two hydrogen desorption features are observed at 685 K and 770 K.

Four hydrogen desorption experiments are shown in Figure 3. Figure 3A shows the two desorption states of hydrogen originating from PH$_3$. Figure 3B shows the hydrogen desorption from pure atomic hydrogen adsorption on Si(100)-(2x1); major desorption processes at 740 K and 640 K are observed as well as a
broad low-intensity hydrogen evolution process centered at about 360 K, in agreement with other H\textsubscript{2}/Si experiments [18,24]. A comparison of Figure 3A with Figure 3B shows that the desorption kinetics differ for hydrogen from PH\textsubscript{3} adsorption compared to hydrogen from a fully hydrogen-covered surface. Hydrogen desorption occurs at higher temperatures from layers produced from PH\textsubscript{3} compared to layers produced by pure atomic hydrogen adsorption.

In order to determine whether the presence of atomic P(a) on Si(100) significantly influences hydrogen desorption kinetics, two additional experiments were performed and are shown in Figures 3C and 3D. Here, surface P(a) is generated by decomposition of PH\textsubscript{3} at 900 K, and then atomic hydrogen is adsorbed to two levels of coverage [25]. The P(a) coverage is estimated to be 0.25 ML based on the initial PH\textsubscript{3} exposure at 90 K and the small P\textsubscript{2} desorption (~ 5%) as detected by TPD. The hydrogen desorption kinetics from the phosphorus-covered surface, as indicated by the three states at 360 K, 640 K and 740 K, closely resemble the desorption kinetics obtained from pure hydrogen layers [18,24]; adsorbed phosphorus has little or no effect on the hydrogen desorption kinetics.

Thus the experiments in Figure 3 suggest that H\textsubscript{2} desorption from layers produced by PH\textsubscript{2} decomposition is retarded slightly compared to H\textsubscript{2} desorption from pure hydrogen layers or from phosphorus modified layers. The increased temperature of the H\textsubscript{2} desorption features from PH\textsubscript{3}-derived layers is attributed to the involvement of P-H bond scission in the remaining PH\textsubscript{2}(a) or PH(a) species; the P-H bond breaking supplies hydrogen to the surface in a rate-controlling manner for a portion of the hydrogen which is desorbed. Comparison with HREELS measurements indicates that we cannot determine whether the decomposition of PH\textsubscript{2}(a) or PH(a) controls the H\textsubscript{2} desorption kinetics.
3. Desorption of Other Species from PH\textsubscript{3} Treated Si(100)

Line-of-sight thermal desorption experiments were used to look for other species, such as P\textsubscript{2} (mass 62) and P\textsubscript{2}H\textsubscript{4} (major mass spectrometer cracking product at mass 64 [26]). P\textsubscript{2} was observed to desorb with a peak temperature of 945 K, in comparison, P\textsubscript{2} desorbs at 1010 K from a Si(111) surface following PH\textsubscript{3} adsorption [8,9]. P\textsubscript{2}H\textsubscript{4} desorption was not observed from Si(100).

C. Isotopic Exchange Studies

Figure 4 shows an experiment in which PH\textsubscript{3} was adsorbed on a Si(100) surface partially covered with D(a) species. Both PH\textsubscript{3} and PH\textsubscript{2}D are observed at 635 K, indicating that the 635 K phosphine desorption process occurs by means of a recombination step between PH\textsubscript{2}(a) and H(a) or D(a). This result is similar to that obtained for NH\textsubscript{2} on Si(100), where a high temperature recombination process to produce NH\textsubscript{3} was also observed [10,22,27,28]. HREELS studies of a mixed D(a) and PH\textsubscript{X}(a) layer did not disclose a P-D stretching mode (1625 cm-1) within the detection limit of HREELS.

Figure 5 involves a study of the hydrogen isotopes desorbing from a layer produced by PH\textsubscript{3} adsorption on a partially covered D(a) layer. The hydrogen isotopic species HD and D\textsubscript{2} are observed to be liberated above 600 K. This is consistent with two models:

1. P-H bond scission is rate controlling in HD desorption from surfaces containing D(a).

2. P-H bonds exchange with D(a) to produce P-D bonds in PH\textsubscript{X}(a) species.
IV. Summary

We have used HREELS and TPD to study the adsorption and decomposition of PH$_3$ on Si(100)-(2x1) surfaces in the temperature range 100 K to 1000 K. The following results have been obtained:

1. PH$_3$ dissociatively adsorbs on Si(100)-(2x1) at 100 K producing PH$_2$(a) and H(a).

2. The PH$_2$(a) species are thermally stable up to about 600 K, where additional P-H bond scission occurs.

3. No evidence for the existence of PH(a) species was obtained by vibrational spectroscopy.

4. A recombination process involving PH$_2$(a) and H(a) was observed at 635 K, producing PH$_3$(g).

5. Evidence for HD(g) production from PH$_2$(a) and D(a) was obtained at temperatures above 600 K.

6. Kinetic studies of hydrogen desorption from PH$_X$(a) species indicate that P-H bond scission is involved in controlling the kinetics of hydrogen desorption. This hydrogen desorption from layers produced from PH$_3$ is compared to layers produced from pure atomic hydrogen adsorption. An alternate model in which adsorbed P influences the kinetics of H$_2$ desorption is not supported by coadsorption experiments involving P(a) and H(a).

V. Acknowledgment

We acknowledge with thanks the full support of this work by the Office of Naval Research.
Figure Captions

Figure 1. HREEL spectra showing the effects of heating on a low coverage of PH$_3$ on Si(100)-(2x1). All spectra were recorded at 90 K after heating to the indicated temperature for one minute.

Figure 2. TPD spectra of PH$_3$ and H$_2$ from PH$_3$/Si(100)-2x1) interfaces at various coverages. The heating rate was 2 K/s.

Figure 3. TPD spectra (dT/dt = 2 K/s) monitoring the release of H$_2$ from clean and phosphorus-modified Si(100)-(2x1); (A) a PH$_3$/Si(100)-(2x1) interface; (B) dihydride species on a Si(100)-(2x1) surface; (C) dihydride species on the Si(100)-(2x1) surface which had been dosed with PH$_3$ and heated to 900 K; (D) a layer similar to (C), but containing only monohydride species [25].

Figure 4. TPD spectra (dT/dt = 2 K/s) of PH$_3$ and PH$_2$D desorption from a deuterium pre-capped (θ$_D$ = 0.12 ML) surface after an exposure of 2 x 1014 PH$_3$/cm2 at 100 K. The PH$_2$D species observed at 635 K shows a recombinative PH$_2$(a) + H(a) process is occurring on the surface.

Figure 5. TPD spectra (dT/dt = 2 K/s) of (a) H$_2$, (b) HD and (c) D$_2$ desorption from a deuterium pre-capped surface exposed to PH$_3$ at 100 K. Both desorption features are evident in all three desorbing species.
References

25. The H-exposures were chosen to ensure dihydride [Fig. 3(C)] and monohydride [Fig. 3(D)] species on the phosphorus-modified silicon. The presence (and absence) of dihydride species was confirmed by the intense 925 cm⁻¹ δ_{sc}(Si-H) loss observed by HREELS (spectra not shown).

Thermal Effects on a Low Coverage of PH$_3$/Si(100)-(2x1)

PH$_3$ Exposure: 1×10^{14} cm$^{-2}$

$T_{ads} = 100$ K

Heated to:
- g) 900 K
- f) 700 K
- e) 650 K
- d) 600 K
- c) 500 K
- b) 300 K
- a) 100 K

Colaianni, et al.

Figure 1
Thermal Desorption from Various Coverages of PH$_3$/Si(100)-(2x1)

(A) PH$_3$

(B) H$_2$

Temperature (K)

Colaianni, et al.

Figure 2
H$_2$ Desorption from Clean and Phosphorus-Modified Si(100)-(2x1)

(A) \(\text{PH}_3 / \text{Si}(100)-(2\times1) \)
\[
\begin{align*}
\text{PH}_3 &= 1.3 \times 10^{15} / \text{cm}^2 \\
T_{\text{ads}} &= 100 \text{ K} \\
\end{align*}
\]

(B) \(\text{H}_2 / \text{Si}(100)-(2\times1) \)
\[
\begin{align*}
\text{H}_2 &= 300 \text{ L} \\
T_{\text{ads}} &= 230 \text{ K} \\
\end{align*}
\]

(C) \(\text{H}_2 / [\text{PH}_3 / \text{Si}(100) \rightarrow 900 \text{ K}] \)
\[
\begin{align*}
\text{PH}_3 &= 2 \times 10^{14} / \text{cm}^2 \\
\text{H}_2 &= 100 \text{ L} \\
\end{align*}
\]

(D) \(\text{H}_2 / [\text{PH}_3 / \text{Si}(100) \rightarrow 900 \text{ K}] \)
\[
\begin{align*}
\text{PH}_3 &= 2 \times 10^{14} / \text{cm}^2 \\
\text{H}_2 &= 10 \text{ L} \\
\end{align*}
\]

Colaianni, et al.

Figure 3
Thermal Desorption from a \(\text{PH}_3 / \text{D} \cdot / \text{Si}(100)-(2 \times 1) \) Interface

(a) \(\text{PH}_3 \)

\[\text{PH}_3 = 2.0 \times 10^{14} / \text{cm}^2 \text{ at } 100 \text{ K} \]

\[\Theta_D / \Theta_{D,\text{sat}} = 0.12 \text{ at } 230 \text{ K} \]

(b) \(\text{PH}_2 \text{D} \)

\[5 \times 10^{-12} \text{ Amps} \]
Thermal Desorption of H_2, HD and D_2 from a $PH_3/D\cdot/\text{Si}(100)-(2\times1)$ Interface.

(a) H_2

$PH_3(115\ \text{K})/D\cdot(575\ \text{K})/\text{Si}(100)$

$PH_3 = 6.5 \times 10^{14} \text{ cm}^{-2}$

$D_2 = 4.4 \text{ L}$

(b) HD

(c) D_2

Intensity (arb. units)

Temperature (K)
ALE Contractor Distribution List

D.T.I.C.
Bldg # 5, Cameron Station
Alexandria, VA 22314

Dr. Andrew Freedman
Aerodyne Research, Inc.
45 Manning Road
Billerica, MA 01821
Tel: (508) 663-9500
FAX: (508) 663-4918
e-mail: aerodyn@mitvma.mit.edu

Dr. Asif Kahn
APA Optics
2950 NE 94th Lane
Blaine, MN 55434
Tel: (612) 784-4995
FAX: (612) 784-2038
e-mail: asif@compuserve.com

Dr. Duncan Brown
Advanced Technology Materials, Inc
7 Commerce Drive
Danbury, CT 06810
Tel: (203) 794-1100
FAX: (203) 792-8040

Dr. Peter Norris
EMCORE Corp.
35 Elizabeth Ave.
Somerset, NJ 08873
Tel: (201) 271-9090

Prof. Joe Greene
Dep’t of Materials Science and Engineering
University of Illinois
1101 W. Springfield Ave.
Urbana, IL 61801
Tel: (217) 333-0747

Dr. T. P. Smith
IBM T.J. Watson Research Center
P. O. Box 218, Route 134
Yorktown Heights, NY 10598
e-mail: trey@ibm.com

Prof. Robert F. Davis
N.C.S.U. Box 7907
Raleigh, NC 27695-7907
Tel: (919) 515-2377/3272
FAX: (919) 515-3419
e-mail: davis@mte.ncsu.edu

Prof. Salah Bedair
Department of Electrical Engineering
N.C.S.U.; Box
Raleigh, NC 27695
Tel: (919) 515-2336
e-mail: jll@ecegrad.ncsu.edu

Max N. Yoder
ONR Code 1114
Arlington, VA 22217
Tel: (703) 696-4218
FAXes (703) 696-2611/3945/5383
e-mail: yoder@charm.isi.edu

Dr. A. M. Goodman
ONR, Code 1114
Arlington, VA 22217
Tel: (703) 696-4218
FAXes (703) 696-2611/3945/5383
e-mail: goodman@ocnr-hq.navy.mil

Dr. J. Pazik
ONR Code 1113
Arlington, VA 22217
Tel: (703) 696-4410
FAXes (703) 696-2611/3945/5383
e-mail: pazik@ocnr-hq.navy.mil

Prof. J. T. Yates, Jr.
Dept. of Chemistry
Surface Science Ctr.
University of Pittsburgh
Pittsburgh, PA 15260
Tel: (412) 624-8320
FAX: (412) 624-8552
e-mail: yates@vms.cis.pitt.edu

Robert J. Markunas, R.A. Rudder
Research Triangle Institute; Box 12194
Research Triangle Park, NC 27709-2194
Tel: (919) 541-6153
FAX: (919) 541-6515
e-mail: rjmk@rti.rti.org

Professor Mark P. D'Evelyn
William Marsh Rice University
Dept. of Chemistry
P.O. Box 1892
Houston, TX 77251
Tel: (713) 527-8101, ext. 3468
FAX: (713) 285-5155
e-mail: mpdev@langmuir.rice.edu

Dr. Howard K. Schmidt
Schmidt Instruments, Inc.
2476 Bolsover, Suite 234
Houston, TX 770054
Tel: (713) 529-9040
FAX: (713) 529-1147
e-mail: hksionwk@ricevm1.rice.edu

Prof. A. F. Tasch
Dept. of Electrical Engr. & Computer Science
Engineering Science Bldg.
University of Texas at Austin
Austin, TX 78712
Tel:
FAX:
e-mail: tasch@roz.ece.utexas.edu

Prof. Charles Tu
Dept of Electrical & Computer Engr.
UCSD
LaJolla, CA
Tel: (619) 534-4687
FAX: (619) 534-2486
e-mail: cwt@celece.ucsd.edu

Prof. John E. Crowell
Department of Chemistry
University of California at San Diego
LaJolla, CA
Tel: (619) 534-5441
FAX: (619) 534-0058
e-mail: jcrowell@ucsd.edu

Prof. P. Daniel Dapkus
University of Southern California
University Park
Los Angeles, CA 90089-1147
e-mail: dapkus@mizar.usc.edu
Tel: (213) 740-4414
FAX: (213) 740-8684

Unless you are a small business invoking your 2 year proprietary
distribution unlimited.
