FINAL REPORT
OF RESEARCH
FOR THE JOINT SERVICES ELECTRONICS PROGRAM
FOR THE PERIOD
OCTOBER 1, 1986, THROUGH SEPTEMBER 30, 1989
FOR
CONTRACT N00014-84-C-0149

This document has been approved for public release and sale; its distribution is unlimited.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
This is the final progress report of the research conducted at the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, under the sponsorship of the Joint Services Electronics Program from 1 October 1986 through 30 September 1989. The report includes an overview of the three-year program accomplishments, a listing of the investigators, a listing of degrees awarded, and a listing of publications under JSEP sponsorship (listed by work units).
JSEP FINAL PROGRESS REPORT

For the Period

1 October 1986 through 30 September 1989

Joint Services Electronics Program
Contract N00014-84-C-0149

Monitored by the
Office of Naval Research

William Kenneth Jenkins
JSEP Principal Investigator
Coordinated Science Laboratory

THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN
Grants and Contracts Office
506 S. Wright Street
Urbana, IL 61801

Reproduction in whole or in part is permitted
for any purpose of the United States Government

Approved for public release.
Distribution unlimited.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

LIST OF INVESTIGATORS ... 10

JSEP-SUPPORTED DEGREES AWARDED .. 11

PUBLICATIONS BY WORK UNITS:

RESEARCH AREA: Solid-State Electronics

Unit 1 Crystal Growth from the Vapor Phase and Controlled Doping of Equilibrium and Metastable Semiconductor Alloys: Ion/Surface Interactions 15

Unit 2 Studies of Transport Phenomena in Semiconductors .. 18

Unit 4 Basic Studies of the Optical and Electronic Properties of Defects and Impurities in Compound Semiconductor Epitaxial Layers and Related Superlattices ... 20

Unit 5 Heterostructure Electronic Devices by Metalorganic Chemical Vapor Deposition (MOCVD) ... 22

Unit 6 Optical Properties of MBE-Grown Structures.. 24

Unit 7 Computer-Aided Design of High-Performance Integrated Circuits with Ultra-Small Features ... 26

Unit 24 Electronic and Transport Properties of Ultra-Low-Dimensional Structures........... 29

RESEARCH AREA: Quantum Electronics

Unit 8 Collective Electronic Transport in Quasi One-Dimensional Systems 31

Unit 9 An Investigation of Plasma and Chemistry Processes in Cylindrical Magnetron Plasma Discharges ... 33

Unit 10 Excited State Chemistry in Gases .. 34
RESEARCH AREA: Electromagnetics

Unit 11 Monolithic Millimeter-Wave Integrated Circuits with Microstrip Antennas ..35

Unit 12 Investigation of Radar Scattering Characteristics of Controllable Surface Shapes with Application to Low Observable Targets ...36

RESEARCH AREA: Information Systems

Unit 13 High-Performance Testable Electronic Systems ...38

Unit 14 New Directions in Fault-Tolerant Computing ...40

Unit 15 Efficient Computation Techniques ..43

Unit 16 High-Resolution Sensor Array Processing ..46

Unit 17 Parallel VLSI Structures for Sensor Array Processing ...49

Unit 18 Adaptive Algorithms for Identification, Filtering, Control, and Signal Processing ...51

Unit 19 Distributed and Decentralized Systems ...54

Unit 20 Robust Feedback Control of Nonlinear Systems ...57

Unit 21 Multiple-Terminal Digital Communication Systems ...59

Unit 22 Statistical Signal Processing in Communication Systems ..61

RESEARCH AREA: Electronics Research

Unit 23 Basic Research in Electronics ..62
EXECUTIVE SUMMARY

Summary of the Program

This final report covers the Joint Services Electronics Program at the Coordinated Sciences Laboratory, University of Illinois at Urbana-Champaign, from October 1, 1986 through September 30, 1989. During this contract period, the program included twenty-three work units that covered five major technical areas: (1) Solid State Electronics, (2) Quantum Electronics, (3) Electromagnetics, (4) Information Systems, and (5) Electronics Research (Director's unit). There were seven units in Physical Electronics devoted mostly to the growth, characterization, and device fabrication of compound semiconductor materials. Quantum Electronics included three units: one unit studied charge density waves (DCWs) in superconducting materials, and two units dealt with plasmas and excited state chemistry of gases. Electromagnetics contained two units: one concentrated on monolithic millimeter-wave ICs with microstrip antennas and the second on the design and analysis of nonreflecting surface structures to control radar scattering characteristics. There were ten units in Information Systems covering important topics in computers, control, communications, and signal processing. Detailed discussions of individual accomplishments can be found in the "Annual Progress Report" covering each of years one, two, and three of the contract. During the three-year contract period, eight items were selected from among the many significant contributions and highlighted as "JSEP Most Significant Accomplishments." These accomplishments are summarized below.

JSEP MOST SIGNIFICANT ACCOMPLISHMENTS (October 1, 1986 - September 30, 1989)

The Heterostructure Hot Electron Diode (Unit 2 and Unit 5)

Professors J. J. Coleman and K. Hess, together with graduate students T. K. Higman and M. A. Emanuel, discovered a new switching mechanism in semiconductor heterostructures that resulted in the development of a new electronic device, the heterostructure hot electron diode (H^2ED). The operation of the H^2ED is based on a transition between two current conduction modes in a two-terminal structure, a low current tunneling mode, and a high current thermionic emission mode. Switching between these modes gives rise to an S-shaped negative differential resistance in the current versus voltage characteristic (as shown in Figure 1). These devices have application as a microwave oscillator. Microwave characterization is presently in progress, and preliminary results have demonstrated test-fixture-limited gain to 18 GHz. If no parasitic effects are encountered, and if the oscillation frequency is, in fact, electron transit time limited, oscillation in the 100 GHz range may be possible.

This work represents a synergistic relationship between Professor Hess's theoretical work supported under Unit 2 and Professor Coleman's experimental work supported under Unit 5. Professor Hess developed the theoretical model of the new device and predicted its characteristics. Professor Coleman built the new device in his laboratory, measured the physical characteristics of his experimental sample, and is presently continuing its further characterization and development. It was announced in a press release by the University of Illinois at Urbana-Champaign to the UPI wire service that a patent disclosure has been filed on this new device, and a number of publications have appeared describing the technical details of the H^2ED.
Fig. 1. Experimental room temperature dc I-V characteristics for the Heterostructure Hot Electron Diode (HHED) exhibiting the expected S-shaped NDR. The structure, grown on a (100) GaAs:Si n⁺ substrate, consists of an undoped AlAs barrier (1500 Å), an undoped GaAs heating region (1300 Å), and a heavily doped n + Al₀.₂Ga₀.₈As cap layer. The theoretical maximum frequency of oscillation is estimated to be 57 GHz.

Error-Control Coding and Spread-Spectrum Communication Techniques for the Army's SINCgars Radio (Unit 21)

Several results of CSL research in error-control coding and spread-spectrum communications have been incorporated into the SINCgars radio (Single Channel Ground/Airborne Radio Subsystem). This radio, the Army's newest tactical radio, was developed by ITT Aerospace/Optical Division for voice and data communications. It operates in both a single-channel mode and a frequency-hop spread-spectrum mode. In addition, an overlay is being developed by ITT and SRI International to enable SINCgars radios to operate as packet radios in a mobile communication network.

Research results obtained by Professors M. B. Pursley and D. V. Sarwate and their graduate research assistants were employed by Professor Pursley to design the synchronization sequence that is utilized for timing acquisition in the SINCgars receiver. In addition, for the packet radio version of SINCgars (known as the SINCgars Packet Overlay), Professor Pursley developed the error-control method that combines Reed-Solomon codes with side information derived from test patterns. The side information is used to erase unreliable data at the output of the demodulator so that the input to the decoder is a combination of data symbols and special erasure symbols. The code enables
the receiver to correct errors and erasures caused by noise and interference in the communication channel. The combination of coding and side information provides the capability for a large number of SINCGARS radios to operate simultaneously in the same frequency band. It also improves the radio's ability to communicate in the presence of various types of electromagnetic interference.

The decoding algorithm, developed and implemented in software by Professor Sarwate, is basically a mathematical description of the computations required to correct both errors and erasures. The actual computations prescribed by the algorithm are carried out in a microprocessor contained in the radio. The resulting decoder is capable of handling data rates in excess of 16,000 data symbols per second, the maximum signaling rate of the SINCGARS radio.

Professor Parsley also provided the analytical tools to evaluate the performance of the error-control scheme and assess its impact on the overall communication network performance. Analytical results from this effort, and other investigations conducted by Professor Pursley and Mr. J. R. McChesney of ITT, were used subsequently in the SINCGARS packet radio network simulation developed for the Army by SRI.

The research leading to the development of the approach used for error control in the SINCGARS radio was funded by JSEP during the early stages, funded by ARO during later stages, and developed into the actual SINCGARS application with funds provided by ITT and under individual consulting arrangements with SRI and ITT.

Design and Fabrication of a VLSI Digital Filter Integrated Circuit Module (Unit 17)

For a number of years, both NSF and JSEP have supported theoretical studies at the Coordinated Science Laboratory on the use of residue number arithmetic (RNS) for the design of high-speed VLSI circuits for the digital signal-processing functions that are required in modern communication and radar systems. Two years ago, Professors Jenkins and S. F. Lao carried out the successful design and fabrication of a semicustom VLSI digital filter module that demonstrates both the feasibility and desirability of using residue number theory design techniques in practice (Unit 17). A semicustom integrated circuit module was designed for an RNS digital filter using the IBM MVISA CAD system that is located on the campus of the University of Illinois at Urbana-Champaign. A programmable 4-bit module was designed as a basic building block for a finite impulse response digital filter that has order 8 and 14 bits of arithmetic precision. The module was designed using finite field logarithm additions to completely eliminate conventional multipliers on the chip and thereby improve speed and circuit density. The chip design was done with MVISA using a standard cell approach, and MVISA was then used to simulate the hardware operation and to estimate physical parameters. The chip was subsequently fabricated at the IBM Manassas facility, and 10 samples were eventually returned to the University of Illinois at Urbana-Champaign for testing and characterization. MVISA estimates that the 4.2 mm chip consumes 89 mW and operates at a system cycle frequency of 10 mHz, which corresponds to a data-cycle frequency of 1.2 mHz. The design used 529 out of a possible 560 available standard cells. A photo of the IC layout is shown in Figure 2.

Experience gained in the above experiment led to a new integrated circuit design based on a modular systolic architecture. This new IC contains a fundamental computational element that is monitored internally on-chip by an error detection scheme. Many similar computational modules can be interconnected to form a wide variety of pipelined systolic arrays for implementing important computational kernels required in signal processing applications. At the time of this writing, a set of test chips has been received from MOSIS and these chips are now being tested at the University of Illinois.

University of Illinois at Urbana-Champaign

Coordinated Science Laboratory
Fig. 2. A VLSI digital filter module designed with the MVISA CAD System.

Modeling and Simulation of New Microelectronic and Optoelectronic Devices and Circuits with the iSMILE Program (Unit 7)

During the last few years, Professors S. M. Kang and T. N. Trick, with graduate students K. Cioffi and A. T. Yang, collaborated on the development of circuit models for High Electron Mobility Transistors (HEMT) under the JSEP sponsorship. Traditionally, the task of developing new circuit models has been time consuming, mainly due to the intensive line-by-line modification of generic circuit simulators like SPICE or SLATE. As a result, the progress in computer-aided simulation of new microelectronic devices and circuits has been hampered by the slow model development process.

Under the JSEP sponsorship, Professor Kang and his Research Assistant A. T. Yang initiated the development of a new CAD tool, iSMILE (Illinois Simulator for Modeling of Integrated-circuit Level Elements). This program was first tried by Dr. Cioffi, now at Rockwell International, for his development of HEMT models. Circuit models are described to iSMILE by using a simple input file containing model topology descriptions and element characteristic equations. The iSMILE program then builds a circuit simulator based on circuit models, shielding the user from the laborious line-by-line program modifications. Owing to this unique feature, the model development time is reduced significantly from several months to a few weeks once the model developer has a clear understanding of underlying device physics.
Further development of the iSMILE program is continuing under the sponsorship of the National Science Foundation (NSF) Engineering Research Center for Compound Semiconductor Microelectronics. iSMILE has been used to develop lossy transmission models, multiple quantum well laser diode models, optical waveguide models, and photodetector circuit models in cooperation with Professors J. J. Coleman, T. A. DeTemple, and G. E. Stillman. Using these models and HEMT models, we have been able to simulate the speed performance of optical interconnect systems, which would not have been possible in such a short time without iSMILE.

The unique capability of the iSMILE program has been well recognized by industry collaborators. At their request, the iSMILE program has been ported to industrial researchers at Hewlett Packard, Boeing, GTE, AT&T, TI, and several universities. Results on circuit modeling and simulation were presented at the 1988 International Conference on Circuits and Systems and the 1988 International Conference on Computer Design. Further details of this work will be published in the 1989 Design Automation conference proceedings and journals. It was through the interdisciplinary team effort provided under the sponsorship of JSEP, NSF, and industry that enabled the development of new circuit models, as well as the novel CAD tool, iSMILE.

Scanning Tunneling Microscopy of the CDW Discommensuration Domain Structure in the Nearly Commensurate Phase of 1T-TaS₂ (Unit 8)

It has been known for some time from bulk NMR and XPS measurements that the nearly commensurate CDW phases exhibited by some of the layered transition metal dichalcogenides actually consist of relatively small commensurate regions separated by CDW phase kinks or discommensurations (DCs). Their existence and microscopic domain structure have previously been predicted by the Ginzburg Landau approaches of McMillan and Nakanishi; however, no direct observation of the DC domain structure has been made until now.

Recently, Professor Joe Lyding and one of his students, Mr. Stephen Skala, have been able to use their new variable temperature scanning tunneling microscope (STM) (thermal drift < 1 Å/hour) to study the nearly commensurate phase of 1T-TaS₂. Shown in Figure 3a is a representative STM image in which the larger period CDW is superimposed against the sulfur rows of the atomic lattice. From images like this, the commensurability of the CDW relative to the lattice can be studied. Shown in Figure 3b is a proposed model for the DC structure for Figure 3a and for 1T-TaS₂ in general. The small dots denote the sulfur atoms, the large dots are the CDW maxima, and the lines are the DCs between commensurate regions. Here it is seen that the domains are rhombohedral, with a characteristic length of 60 Å along each edge. The bold line to the right of Figure 3b represents a DC with a larger phase kink than the other DCs. The observed domain structure is not the hexagonal domain structure predicted by Nakanishi but one in which there are two equivalent CDW wavevectors (parallel to the DC boundaries), while the third wavevector passes through more DCs per unit length. This model also yields the correct average orientation of the incommensurate CDW wavevector relative to the lattice, as determined by bulk measurements.

Controlled Doping in MBE Si: Chemistry at the Atomic Level (Unit 1)

Fabrication of modern microelectronic devices requires precise control of dopant concentrations and depth distributions. Molecular beam epitaxy (MBE) is presently employed in many critical applications, such as the growth of superlattices and modulation-doped structures. However, most of the common dopants used in bulk Si wafers present serious problems during film growth by MBE due to low incorporation probabilities and/or pronounced surface segregation giving rise to uncontrolled profile broadening.
Fig. 3. a) STM image of the nearly commensurate phase of \(\text{IT-TaS}_3 \) showing the orientation of the CDW (large period) relative to the atomic sulfur rows of the lattice. b) Discommensuration model constructed from a) where the small dots are atoms, large dots are CDW maxima, and the lines are discommensurations. The bold line is a discommensuration having a larger phase kink.
Under JSEP Unit 1, Professor Joe Greene has been investigating the use of low-energy (50-500 eV) accelerated-ion doping during MBE Si growth. The experiments are carried out using new ultra-high vacuum-compatible low-energy ion sources, which were developed as part of the research program. Sb, an important shallow donor in Si, and In, a deep acceptor, were chosen as model dopant materials.

Thermal Sb and In, obtained from standard effusion cells, have low incorporation probabilities \(\sigma \) in MBE Si: \(\sigma_{\text{Sb}} \) ranges from \(10^{-3} \) to \(10^{-5} \) at growth temperatures \(T \), between 700 and 850 °C, while \(\sigma_{\text{In}} \) is \(< 10^{-3} \) at \(T > 550 ^\circ \text{C} \). These dopants also exhibit severe surface segregation with, in the case of Sb, steady-state surface accumulations during growth of up to a full monolayer. This not only gives rise to broad doping profiles but also limits the maximum usable doping concentrations. For example, obtaining Sb concentrations higher than \(\approx 5 \times 10^{17} - 10^{18} \text{ cm}^{-3} \) with thermal-doping requires the use of extremely large Sb fluxes, which results in the production of a high concentration of structural defects and a corresponding decrease in electron mobilities.

The University of Illinois at Urbana-Champaign Thin Film Physics Group is employing a combination of Auger electron spectroscopy (AES), low-energy and reflected high-energy electron diffraction (LEED and RHEED), plan-view and cross-sectional transmission electron microscopy (TEM and XTEM), secondary-ion mass spectrometry (SIMS), and temperature-dependent Hall measurements to investigate the growth, structure, dopant distribution, and electrical properties of Si films grown at \(T = 800 ^\circ \text{C} \) with 150 eV Sb\(^+\) and 200 eV In\(^+\) dopant beams. Sb and In were found to incorporate, with unity probability, into substitutional, electrically active sites at concentrations up to at least \(3 \times 10^{19} \text{ cm}^{-3} \) and \(1 \times 10^{18} \text{ cm}^{-3} \), respectively. The films were essentially dislocation free with no indication of residual ion-induced damage. Data presented in Figure 4 show that carrier mobilities of Sb and In ion-doped films are equal to the best reported values for bulk Si even at doping concentrations extending well above those attainable by thermal-beam MBE. In fact, the hole mobilities are the highest ever reported for In-doped Si (note that the solid curve in Figure 4 corresponds to Si:B), whether bulk or thin film. Doping profiles in accelerated-beam modulation-doped structures were extremely abrupt. There was no indication from \textit{in situ} AES and RHEED analyses of significant dopant surface accumulation during growth.

Conception and Demonstration of a New Mechanism of Tunnel Injection (Unit 24)

Professors Adesida, Kolodzey, and Leburton recently reported the conception and experimental verification of a new mechanism of tunnel injection into the active region of MODFET structures. Injection occurs through a tunnel junction parallel to the MODFET channel and is the basic mechanism for sophisticated high-speed multi-terminal devices. Two novel transistor structures were proposed—the BiTFT and the TIFET—that exploit the new injection principle in a configuration leading to Negative Differential Resistance (NDR) characteristics. Theoretical estimates of the relevant time constants indicate possible operation in the 100 GHz range.

With barrier height equal to the band gap, the use of tunnel junctions has the advantage of reducing thermionic emission competing with the tunneling current and results in high peak-to-valley NDR ratios that are suitable for high-power microwave devices.

TIFET structures have been fabricated and tested in our laboratory. Experimental I-V characteristics show evidence of tunneling in the 2-D channel of the MODFET across the tunnel junction (see Figure 5). A patent application for the new devices has been filed by University Patents, Inc.
Fig. 4. Experimental carrier mobilities of Sb and In ion-doped films.

University of Illinois at Urbana-Champaign

Coordinated Science Laboratory
Completion of the University of Illinois EpiCenter (Unit 23)

In late 1989 construction of the University of Illinois EpiCenter was completed and researchers are now successfully growing materials. The EpiCenter is a world-class facility that consists of seven MBE chambers interconnected by high-vacuum transfer tubes. Having the chambers, each of which is dedicated to a different type of material growth and characterization, interconnected by vacuum lines allows samples to be moved from one growth environment to another without external contamination. Since the planning for this new facility was begun about five years ago and the construction has taken two years, the completion of this project is a major accomplishment. All of the JSEP discretionary funds provided under Unit 23 of the 86-89 contract were applied toward the purchase of several MBE chambers that will support future MBE research in the JSEP program. Since the EpiCenter is described in detail in the Annual Progress Report for year three of the contract, further details will not be presented in this report.
LIST OF INVESTIGATORS

Principal Investigator
William Kenneth Jenkins

Senior Investigators

<table>
<thead>
<tr>
<th>Jacob A. Abraham</th>
<th>Panganamala R. Kumar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilesanmi Adesida</td>
<td>Mark J. Kushner</td>
</tr>
<tr>
<td>Erdal Arikan</td>
<td>Jean-Pierre Leburton</td>
</tr>
<tr>
<td>Prithviraj Banerjee</td>
<td>Yuen T. Lo</td>
</tr>
<tr>
<td>Andrew R. Barron</td>
<td>Michael C. Loui</td>
</tr>
<tr>
<td>Tamer Başar</td>
<td>Joseph W. Lyding, Jr.</td>
</tr>
<tr>
<td>Donna Brown</td>
<td>Juraj V. Medanic</td>
</tr>
<tr>
<td>Shun-Lien Chuang</td>
<td>Raj Mittra</td>
</tr>
<tr>
<td>James J. Coleman</td>
<td>Hadis Morkoc</td>
</tr>
<tr>
<td>Jose B. Cruz, Jr.</td>
<td>David C. Munson, Jr.</td>
</tr>
<tr>
<td>J. Gary Eden</td>
<td>Janak H. Patel</td>
</tr>
<tr>
<td>W. Kent Fuchs</td>
<td>William R. Perkins</td>
</tr>
<tr>
<td>Joseph E. Greene</td>
<td>Kameshwar Poolla</td>
</tr>
<tr>
<td>Jessy W. Grizzle</td>
<td>Harold Vincent Poor</td>
</tr>
<tr>
<td>Bruce E. Hajek</td>
<td>Franco P. Preparata</td>
</tr>
<tr>
<td>Ibrahim N. Hajj</td>
<td>Michael B. Pursley</td>
</tr>
<tr>
<td>Karl Hess</td>
<td>Vijaya Ramachandran</td>
</tr>
<tr>
<td>Thomas S. Huang</td>
<td>Vasant B. Rao</td>
</tr>
<tr>
<td>Ravi K. Iyer</td>
<td>Dilip V. Sarwate</td>
</tr>
<tr>
<td>William Kenneth Jenkins</td>
<td>Gregory E. Stillman</td>
</tr>
<tr>
<td>Sung Mo Kang</td>
<td>John A. Thornton (deceased)</td>
</tr>
<tr>
<td>Arun S. Karalamangala</td>
<td>Timothy N. Trick</td>
</tr>
<tr>
<td>(a.k.a. K. S. Arun)</td>
<td>John R. Tucker</td>
</tr>
<tr>
<td>(a.k.a. K. S. Arun)</td>
<td>Joseph T. Verdeyen</td>
</tr>
<tr>
<td>Miles V. Klein</td>
<td>Benjamin W. Wah</td>
</tr>
<tr>
<td>Petar V. Kokotovic</td>
<td></td>
</tr>
</tbody>
</table>
JSEP-SUPPORTED DEGREES AWARDED
October 1, 1986, through September 30, 1989

April 1, 1986 - March 31, 1987

April 1, 1987 - March 31, 1988

April 1, 1988 - March 31, 1989

PUBLICATIONS BY WORK UNITS

WORK UNIT NUMBER 1

TITLE: Crystal Growth from the Vapor Phase and Controlled Doping of Equilibrium and Meta-stable Semiconductor Alloys: Ion-Surface Interactions

SENIOR PRINCIPAL INVESTIGATOR:
J. E. Greene, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 2

TITLE: Studies of Transport Phenomena in Semiconductors

SENIOR PRINCIPAL INVESTIGATORS:

K. Hess, Research Professor
J. P. Leburton, Research Associate Professor (participated during year one)

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 4

TITLE: Basic Studies of the Optical and Electronic Properties of Defects and Impurities in Compound Semiconductor Epitaxial Layers and Related Superlattices

SENIOR PRINCIPAL INVESTIGATOR:

G. E. Stillman, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 5

TITLE: Heterostructure Electronic Devices by Metalorganic Chemical Vapor Deposition (MOCVD)

SENIOR PRINCIPAL INVESTIGATOR:
J. J. Coleman, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 6

TITLE: Optical Properties of MBE-Grown Structures

SENIOR PRINCIPAL INVESTIGATORS:

M. V. Klein, Research Professor
H. Morkoç Research Associate Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 7

TITLE: Computer-Aided Design of High-Performance Integrated Circuits with Ultra-Small Features

SENIOR PRINCIPAL INVESTIGATORS:

I. N. Hajj, Research Professor
S. M. Kang, Research Professor
V. B. Rao, Research Assistant Professor

JSEP-SPONSORED PUBLICATIONS

University of Illinois at Urbana-Champaign

Coordinated Science Laboratory

WORK UNIT NUMBER 24
(Unit began 2nd reporting period)

TITLE: Electronic and Transport Properties of Ultra-Low-Dimensional Structures

SENIOR INVESTIGATORS:

J. P. Leburton, Research Associate Professor
I. Adesida, Research Assistant Professor
J. Kolodzey, Research Assistant Professor

JSEP-SPONSORED PUBLICATIONS

31

WORK UNIT NUMBER 8

TITLE: Collective Electronic Transport in Quasi One-Dimensional Systems

SENIOR PRINCIPAL INVESTIGATORS:

J. R. Tucker, Research Professor
J. W. Lyding, Research Associate Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 9

TITLE: An Investigation of Plasma and Chemistry Processes in Cylindrical Magnetron Plasma Discharges

SENIOR PRINCIPAL INVESTIGATORS:

J. A. Thornton, Research Professor (deceased)
M. J. Kushner, Research Associate Professor (2nd and 3rd reporting periods only)

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 10

TITLE: Excited State Chemistry in Gases

SENIOR PRINCIPAL INVESTIGATORS:

J. G. Eden, Research Professor
J. T. Verdeyen, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 11

TITLE: Monolithic Millimeter-Wave Integrated Circuits with Microstrip Antennas

SENIOR PRINCIPAL INVESTIGATORS:
S. L. Chuang, Research Associate Professor
Y. T. Lo, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 12

TITLE: Investigation of Radar Scattering Characteristics of Controllable Surface Shapes with Application to Low Observable Targets

SENIOR PRINCIPAL INVESTIGATOR:

R. Mittra, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 13

TITLE: High-Performance Testable Electronic Systems

SENIOR PRINCIPAL INVESTIGATORS:

J. A. Abraham, Research Professor
J. H. Patel, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 14

TITLE: New Directions in Fault-Tolerant Computing

SENIOR PRINCIPAL INVESTIGATORS:

P. Banerjee, Research Associate Professor
K. Fuchs, Research Associate Professor
R. K. Iyer, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 15

TITLE: Efficient Computation Techniques

SENIOR PRINCIPAL INVESTIGATORS:

D. J. Brown, Research Associate Professor
M. C. Loui, Research Associate Professor
F. P. Preparata, Research Professor
V. L. Ramachandran, Research Assistant Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 16

TITLE: High-Resolution Sensor Array Processing

SENIOR PRINCIPAL INVESTIGATORS:

T. S. Huang, Research Professor
W. K. Jenkins, Research Professor
D. C. Munson, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 17

TITLE: Parallel VLSI Structures for Sensor Array Processing

SENIOR PRINCIPAL INVESTIGATORS:

W. K. Jenkins, Research Professor
A. S. Karalamangala (a.k.a. K. S. Arun), Research Assistant Professor
B. W. Wah, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 18

TITLE: Adaptive Algorithms for Identification, Filtering, Control, and Signal Processing

SENIOR PRINCIPAL INVESTIGATORS:

P. V. Kokotovic, Research Professor
P. R. Kumar, Research Professor
J. V. Medanic, Research Professor
W. R. Perkins, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 19

TITLE: Distributed and Decentralized Systems

SENIOR PRINCIPAL INVESTIGATORS:

T. Başar, Research Professor
J. B. Cruz, Jr., Research Professor (1st reporting period only)
P. R. Kumar, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 20

TITLE: Robust Feedback Control of Nonlinear Systems

SENIOR PRINCIPAL INVESTIGATORS:

J. W. Grizzle, Research Assistant Professor (1st reporting period only)
P. V. Kokotovic, Research Professor
K. Poolla, Research Associate Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 21

TITLE: Multiple-Terminal Digital Communication Systems

SENIOR PRINCIPAL INVESTIGATORS:

E. Arikan, Research Assistant Professor (1st reporting period only)
B. Hajek, Research Professor
M. B. Pursley, Research Professor
D. V. Sarwate, Research Professor

JSEP-SPONSORED PUBLICATIONS

TITLE: Statistical Signal Processing in Communication Systems

SENIOR PRINCIPAL INVESTIGATORS:
A. R. Barron, Research Assistant Professor
H. V. Poor, Research Professor

JSEP-SPONSORED PUBLICATIONS

WORK UNIT NUMBER 23

TITLE: Basic Research in Electronics

SENIOR PRINCIPAL INVESTIGATOR:

W. Kenneth Jenkins, Research Professor

The objective of this unit is to provide discretionary funds to the Director for support of new initiatives on basic problems of electronic materials, devices, and systems in a timely manner and to provide early start-up funding of projects that present immediate opportunities of high scientific promise. These discretionary funds are an important feature of the JSEP program in that they support exploratory work on new topics, provide matching equipment funds in the laboratory, and support promising work of new faculty where appropriate.

In late 1989 construction of the University of Illinois EpiCenter was completed and researchers are now successfully growing materials. The EpiCenter is a world-class facility that consists of seven MBE chambers interconnected by high-vacuum transfer tubes. Having the chambers, each of which is dedicated to a different type of material growth and characterization, interconnected by vacuum lines allows samples to be moved from one growth environment to another without external contamination. Since the planning for this new facility was begun about five years ago and the construction has taken two years, the completion of this project is a major accomplishment. All of the JSEP discretionary funds provided under Unit 23 of the 86-89 contract were applied toward the purchase of several MBE chambers that will support future MBE research in the JSEP program. Since the EpiCenter is described in detail in the Annual Progress Report for year three of the contract, further details will not be presented in this report.