Surface Preparation of Stainless Steel Prior to Painting

by
Dario A. Emeric and Christopher E. Miller

Report Date
September 1992

Distribution unlimited; approved for public release.
Destroy this report when it is no longer needed.
Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.
Surface Preparation of Stainless Steel Prior to Painting (U)

Military specification MIL-T-704, *Treatment and painting of material*, requires the passivation of corrosion-resistant steel surfaces before painting. It also states surfaces to be painted shall be treated with wash primer conforming to DOD-P-15328, *Primer (wash) pretreatment (Form No. 117 for metals), metric, or MIL-C-8514, Coating compound, metal pretreatment, resin-acid*.

Federal, state and city environmental and/or health regulations may prohibit the use of hexavalent chromium—one of the components of the passivating formulation used for the treatment of corrosion-resistant steels. Many companies are not passivating the corrosion-resistant steels before the application of the wash primer.

Based on the above, we started a laboratory investigation to determine if the elimination of the passivating procedure will have an adverse effect on the camouflage paint system. From the information obtained, it is recommended that consideration be given to the elimination of the passivation requirement for stainless steel. It is also recommended that more extensive work be conducted to verify these findings.

Subject Terms
- corrosion
- wash primer
- passivating
- stainless steel
- epoxy primer
- sandblasting
Surface Preparation of Stainless Steel Prior to Painting

by

Dario A. Emeric and Christopher E. Miller

September 1992

Distribution unlimited; approved for public release.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Test Standards and Equipment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Standards</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FTMS Standards</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Equipment Used</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Test Procedures and Observations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparation</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Wet Adhesion Test</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Salt Spray Resistance Test</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Gravelometer Test/Salt Spray Test</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Outdoor Exposure Test</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Test Conclusions and Recommendations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conclusions</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Recommendations</td>
<td>8</td>
</tr>
</tbody>
</table>
Military specification MIL-T-704, *Treatment and painting of materiel*, requires the passivation of corrosion-resisting steel surfaces before painting. It also states surfaces to be painted shall be treated with wash primer conforming to DOD-P-15328, *Primer (wash) pretreatment (Formula No. 117 for metals)*, metric, or MIL-C-8514, *Coating compound, metal pretreatment, resin-acid*.

Federal, state and city environmental and/or health regulations may prohibit the use of hexavalent chromium—one of the components of the passivating formulation used for the treatment of corrosion-resisting steels. Many companies are not passivating the corrosion-resisting steels before the application of the wash primer.

Based on the above, we started a laboratory investigation to determine if the elimination of the passivating procedure will have an adverse effect on the camouflage paint system. From the information obtained, we should be able to recommend whether or not to delete the passivating paragraph or procedure from MIL-T-704 and other applicable documents.
Section 1
Test Standards and Equipment

This section presents test standards and equipment used for the evaluation of painting stainless steel with and without passivation.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) STANDARDS

- B117: Standard method of salt spray (fog) testing
- D610: Standard method of evaluating degree of rusting of painted steel surfaces
- D714: Standard method of evaluating degree of blistering of paints
- D1654: Standard method for evaluation of painted or coated specimens subjected to corrosive environments
- D3170: Standard test method for chip resistance of coatings
- D3359: Standard method for measuring adhesion by tape test

FEDERAL TEST METHOD STANDARD (FTMS)

- 141, Method 6301.2: Adhesion (wet) tape test

EQUIPMENT USED

- Binks Spray Gun, Model 2001, Binks Manufacturing Company
- Coatings Scribe, Model 13-378, Fisher Scientific
- Cold Temperature Chamber (cold box), Model #TM-35, B-M-A Inc.
- Gravelometer, Model #QGR, Q-Panel Company
- Harshaw Salt Fog Cabinet, Model #22, Harshaw Chemical Company
- High strength, pressure-sensitive tape
- Roller, 2 kg, 4 1/2 in long, rubber-coated
Section II
Test Procedures and Observations

All stainless steel samples were cleaned with a 0.1% solution of Triton X-100 and vapor degreased to assure a water-break free surface. Nine of the cleaned, degreased samples were sandblasted to obtain a 2 to 4 mil profile. Samples A through D were wash primed (DOD-P-15328) to a thickness of 0.3 mil and primed (MIL-P-53022) to a thickness of 1.0 mil.

PREPARATION

The sample preparation listed below was followed using three panels per test procedure:

1. Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

2. Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

3. Clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

4. Clean, sandblast, clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

5. Clean, sandblast, clean, and prime (MIL-P-53022).

6. Clean and prime (MIL-P-53022).
WET ADHESION TEST

Wet adhesion testing was performed according to Federal Test Method Standard (FTMS) 141, Method 6301.2, Adhesion (wet) tape test. Panels were immersed in deionized water for 24 hours. Once removed, a diamond grid pattern consisting of four intersecting lines was scribed through the paint film in two areas on each panel. Adhesive tape was then applied using a 2-kilometer roller. Once in place for 90 seconds, it was removed using a smooth, uniform motion. (NOTE: No further testing was done of samples that failed the wet adhesion test.)

After the panels were immersed in distilled water for 24 hours according to FTMS 141, Method 6301.2, they were evaluated according to ASTM D3359, Standard method for measuring adhesion by tape test. Results are shown below in Table 1. All the samples passed the wet adhesion test.

Table 1. Wet Adhesion Results

<table>
<thead>
<tr>
<th>Panel No.</th>
<th>ASTM D3359 Rating</th>
<th>Panel No.</th>
<th>ASTM D3359 Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>5A</td>
<td>1D</td>
<td>5A</td>
</tr>
<tr>
<td>2A</td>
<td>5A</td>
<td>2D</td>
<td>5A</td>
</tr>
<tr>
<td>3A</td>
<td>5A</td>
<td>3D</td>
<td>5A</td>
</tr>
<tr>
<td>1B</td>
<td>5A</td>
<td>1E</td>
<td>5A</td>
</tr>
<tr>
<td>2B</td>
<td>5A</td>
<td>2E</td>
<td>5A</td>
</tr>
<tr>
<td>3B</td>
<td>5A</td>
<td>3E</td>
<td>5A</td>
</tr>
<tr>
<td>1C</td>
<td>5A</td>
<td>1F</td>
<td>0A</td>
</tr>
<tr>
<td>2C</td>
<td>5A</td>
<td>2F</td>
<td>0A</td>
</tr>
<tr>
<td>3C</td>
<td>5A</td>
<td>3F</td>
<td>0A</td>
</tr>
</tbody>
</table>

Key:
A - Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
B - Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
C - Clean, passivate (OO-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
D - Clean, sandblast, clean, passivate (OO-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
E - Clean, sandblast, clean, and prime (MIL-P-53022).
F - Clean and prime (MIL-P-53022).
Salt spray testing was performed in accordance with ASTM B117, *Standard method of salt spray (fog) testing*. The bottoms of the panels were scribed with a diamond grid pattern consisting of four intersecting lines. Next, the panels were placed in the Harshaw salt fog cabinet for 2,000 hours. After exposure, the unscribed region of the panels was evaluated according to ASTM D610, *Standard method of evaluating degree of rusting of painted steel surfaces*, while the scribed regions were evaluated according to ASTM D1654, *Standard method for evaluation of painted or coated specimens subjected to corrosive environments*. Table 2 presents results.

Table 2. Salt Spray Results (2,000 hours)

(Note: These samples went through the Wet Adhesion Test before the Salt Spray Exposure Test.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>10</td>
<td>10</td>
<td>1C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2A</td>
<td>10</td>
<td>10</td>
<td>2C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3A</td>
<td>10</td>
<td>10</td>
<td>3C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1B</td>
<td>10</td>
<td>10</td>
<td>1D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2B</td>
<td>10</td>
<td>10</td>
<td>2D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3B</td>
<td>10</td>
<td>10</td>
<td>3D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6E</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:

A - Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

B - Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

C - Clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

D - Clean, sandblast, clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

E - Clean, sandblast, clean, and prime (MIL-P-53022).

F - Clean and prime (MIL-P-53022).
GRAVELOMETER TEST/SALT SPRAY TEST

Impact by the gravelometer was performed according to ASTM D3170, *Standard test method for chip resistance of coatings*. After the panels were painted and cured, they were placed in the cold temperature chamber and cooled to -30°F for 2 hours before testing. The temperature was 10°F colder than the test temperature of -20°F. As specified in ASTM D3170, the 10-second warm-up period accounted for the time it took to remove a panel from the cold box and begin the gravelometer test. The upper half of the panels was impinged with 1 oz of gravel (between 3/8 and 5/8 inch in size) projected at a pressure of 70 ±3 pounds per square inch (psi). The impinged samples were placed in the salt spray cabinet for 336 hours. Tables 3 and 4 present results.

Table 3. Gravelometer Results
(Note: Two readings (upper and lower half) were made on the panel. From the corrosion viewpoint, 9B is superior to 6A.)

<table>
<thead>
<tr>
<th>Panel No</th>
<th>ASTM D3170 Rating</th>
<th>Panel No</th>
<th>ASTM D3170 Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>6A & 8B</td>
<td>4C</td>
<td>6A & 9B</td>
</tr>
<tr>
<td>5A</td>
<td>6A & 9B</td>
<td>5C</td>
<td>6A & 9B</td>
</tr>
<tr>
<td>4B</td>
<td>6A & 8B</td>
<td>4D</td>
<td>6A & 9B</td>
</tr>
<tr>
<td>5B</td>
<td>6A & 9B</td>
<td>5D</td>
<td>6A & 9B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6E</td>
<td>6A & 9B</td>
</tr>
</tbody>
</table>

Key:

A - Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

B - Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).

C - Clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

D - Clean, sandblast, clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).

E - Clean, sandblast, clean, and prime (MIL-P-53022).

F - Clean and prime (MIL-P-53022).
Table 4. Salt Spray Results (336 Hours)

(Note: These samples went through the Gravelometer Test before the Salt Spray Exposure Test.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>10</td>
<td>10</td>
<td>4C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5A</td>
<td>10</td>
<td>10</td>
<td>5C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4B</td>
<td>10</td>
<td>10</td>
<td>4D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4B</td>
<td>10</td>
<td>10</td>
<td>6E</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Key:

A - Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
B - Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
C - Clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
D - Clean, sandblast, clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
E - Clean, sandblast, clean, and prime (MIL-P-53022).
F - Clean and prime (MIL-P-53022).

OUTDOOR EXPOSURE TEST

The outdoor exposure took place behind our laboratory at Fort Belvoir, VA. Prior to exposure, the panels were top-coated (MIL-C-53039), and they were allowed to cure for 7 days. They were scribed using a diamond grid pattern consisting of four intersecting lines through the paint film on the bottom half of each panel. The scribed panels were placed on a rack at a 30° angle from the horizontal, facing south, for six months. Results are given in Table 5.
Table 5. Outdoor Test Results
(Note: These samples were sprayed weekly with a 5% salt spray solution.)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6A</td>
<td>10</td>
<td>10</td>
<td>6C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7A</td>
<td>10</td>
<td>10</td>
<td>7C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8A</td>
<td>10</td>
<td>10</td>
<td>8C</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6B</td>
<td>10</td>
<td>10</td>
<td>6D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7B</td>
<td>10</td>
<td>10</td>
<td>7D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8B</td>
<td>10</td>
<td>10</td>
<td>2D</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6E</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Key:
A - Clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
B - Clean, sandblast, clean, wash prime (DOD-P-15328), and prime (MIL-P-53022).
C - Clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
D - Clean, sandblast, clean, passivate (QQ-P-35), wash prime (DOD-P-15328), and prime (MIL-P-53022).
E - Clean, sandblast, clean, and prime (MIL-P-53022).
F - Clean and prime (MIL-P-53022).
Section III
Test Conclusions
and Recommendations

CONCLUSIONS

This work evaluated the effect of passivation and/or sandblasting before painting stainless steel as required by MIL-T-704. According to the test results, if a conversion coating (wash primer) is used, there may not be a need for sandblasting or for passivation of the surface to have adhesion of the coating to the substrate.

RECOMMENDATIONS

Based on these preliminary test results and environmental requirements, it is recommended that consideration be given to the elimination of the passivation requirement for stainless steel. It is also recommended that more extensive work be conducted to verify these findings.
Distribution for Report #2534

DEPARTMENT OF DEFENSE

1 Director, Technical Information
 Defense Advanced Research Projects Agency
 1400 Wilson Blvd
 Arlington, VA 22209

 Director
 Defense Nuclear Agency
 1 ATTN: TTT
 Washington, DC 20305

 Defense Technical Information Center
 Cameron Station
 2 ATTN: DTIC-FDAC
 Alexandria, VA 22304-6145

DEPARTMENT OF THE ARMY

Commander
Chemical Research R&D Center
1 ATTN: SMCCR-SPS (Tech Library)
Aberdeen Proving Ground, MD 21005

Commander
US Army Aberdeen Proving Ground
1 ATTN: STEAP-MT-U (GE Branch)
Aberdeen Proving Ground, MD 21005

Director
US Army Materiel Systems Analysis Agency
1 ATTN: AMXSYSY-MP
Aberdeen Proving Ground, MD 21005-5071

Commander and Director
USAE Waterways Experiment Station
1 ATTN: CEMM-MER-MR
3909 Halls Ferry Road
Vicksburg, MS 35180-6199

Commander
US Army Armament Research & Development Command
1 ATTN: SMCAR-TSS
Dover, NJ 07801-5001

Commander
US Army Tank Automotive Command
1 ATTN: AMSTA-TSL
Warren, MI 48090-5000

Commander
Rock Island Arsenal
1 ATTN: SARRI-LPL
Rock Island, IL 61299-7300

Commander
US Army AMCCOM
1 ATTN: Joseph Menke
1032 N. Thornwood
Davenport, IA 52804

Commander
HQ, 39th Engineer Bn (Combat)
Fort Devens, MA 01433

US Army Airborne, Communications, and Electronics
1 ATTN: STEBF-ABTD
Fort Bragg, NC 28307

US Army Armor and Engineer Board
1 ATTN: ATZK-AE-PD-E
Fort Knox, KY 40121

US Army FESA
1 ATTN: FESA-TS
Fort Belvoir, VA 22060

Director
Tobyhanna Army Depot
1 ATTN: STSTO-TPP
Tobyhanna, PA 18466-5097

HQ, USAEUR & Seventh Army
Deputy Chief of Staff, Engineer
1 ATTN: AEAEN-MT-P
APO New York 09403

Director
US Army TRADOC
Systems Analysis Activity
1 ATTN: ATAA-SL (Tech Library)
White Sands Missile Range, NM 88002

Commander
US Army Engineer School & Center
Canadian Liaison Office
1 ATTN: ATSE-DAC-LC (Major S. Allan)
Fort Leonard Wood, MO 65473

Commander
Corpus Christi Army Depot
1 ATTN: AMSAV-MRAA (A. Gonzales)
Corpus Christi, TX 78419

Distribution-1
<table>
<thead>
<tr>
<th>Role</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander</td>
<td>US Army Aviation Systems Command</td>
</tr>
<tr>
<td></td>
<td>4300 Goodfellow Blvd</td>
</tr>
<tr>
<td></td>
<td>St. Louis, MO 63120-1798</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td></td>
<td>Construction Engineering Research Lab</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 9005</td>
</tr>
<tr>
<td></td>
<td>Champaign, IL 61826</td>
</tr>
<tr>
<td>Commander</td>
<td>Riverbank Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>Riverbank, CA 95367-0670</td>
</tr>
<tr>
<td>Commandant</td>
<td>US Army Engineer School</td>
</tr>
<tr>
<td></td>
<td>Ft. Leonard Wood, MO 65473</td>
</tr>
<tr>
<td>BELVOIR RD&E CENTER</td>
<td></td>
</tr>
<tr>
<td>Circulate</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>Riverbank Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>Riverbank, CA 95367-0670</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Armament, Munitions & Chemical Command</td>
</tr>
<tr>
<td></td>
<td>Rock Island Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCR-EM (A. M. Dupont Jr.)</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-IL (Technical Library)</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61299-0670</td>
</tr>
<tr>
<td>Director</td>
<td>US Army Material Technology Lab</td>
</tr>
<tr>
<td></td>
<td>ATTN: SLCMT-EMM (M. Ley)</td>
</tr>
<tr>
<td></td>
<td>ATTN: SLCMT-MEE (K. Bamberg)</td>
</tr>
<tr>
<td></td>
<td>Watertown, MA 02172-0001</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Tank-Automotive Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSTA-THF (C. Hansey)</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48397-5000</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Armament, Munitions & Chemical Command</td>
</tr>
<tr>
<td></td>
<td>Armament RDE Center</td>
</tr>
<tr>
<td></td>
<td>Benet Weapons Laboratory</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-CBB-TL</td>
</tr>
<tr>
<td></td>
<td>Watervliet, NY 12189-5000</td>
</tr>
<tr>
<td>Headquarters</td>
<td>US Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCMC-PCG-M (J. Kaddatz)</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-ESM-J (J. Menke)</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61299-6000</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US Naval Training Equipment Center
1 ATTN: Tech Library
Orlando, FL 32813

US Naval Sea Systems Command
1 ATTN: PMS377J1 (P. Schneider)
Washington, DC 20362-5101

US Naval Air Development Center
1 ATTN: Code 6062 (V. S. Agarwala)
Warminster, PA 18974

David W. Taylor Naval Research Center
3 ATTN: Code 2813 (A. G. S. Morton)
Annapolis, MD 21402

DEPARTMENT OF THE AIR FORCE

1 Commander
HQ USAF/RDPT
Washington, DC 20330

1 Chief, Utilities Branch
HQ USAF/PREEU
Washington, DC 20330

HQ, USAF Engineering & Services Center
1 ATTN: FL7050 (Tech Library)
Tyndall AFB, FL 32403

USAF Warner-Robins Air Logistics Center
1 ATTN: WR-ALC/MMEM
Warner-Robins AFB, GA 31098

Fuels and Lubrications Division
Chief, Lubrications Branch
1 ATTN: AFWAL/POSZ
Wright-Patterson AFB, OH 45433

OTHERS

Oakite Products, Inc.
1 ATTN: R. Ascenzo
50 Valley Road
Berkely Heights, NJ 07922

Parker-Amchem
1 ATTN: P. King
32100 Stephenson Highway
Madison Heights, MI 48071

Ocean City Research Corp.
1 ATTN: G. Gehring
Tennessee Avenue & Beach Thorofare
Ocean City, NJ 08226

ARINC Research Corp.
1 ATTN: G. Evana
Two Crystal Park, Suite 101
Arlington, VA 22202

NI Industries
Riverbank Army Ammunition Plant
1 ATTN: S. Luquire
5300 Claus Road
P.O. Box 856
Riverbank, CA 95367-0856

Chamberlain Manufacturing Corp.
Scranton Division
5 ATTN: C. MacCrindle
136 Cedar Avenue
Scranton, PA 18505

Distribution-3