AN INVERSE ANALYSIS OF ELECTROTHERMAL-CHEMICAL (ETC) GUN EXPERIMENTAL DATA

GLORIA P. WREN
WILLIAM F. OBERLE

SEPTEMBER 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.
An inverse analysis is presented as one method of assessing ballistic control exhibited in electrothermal-chemical (ETC) experimental gun firings. The analysis attempts to determine the decomposition or gas generation rate necessary to satisfy an energy balance equation as gleaned from available experimental data. The apparent functional relationship between the electrical energy input and working fluid mass consumed is examined. As applied in this report, the inverse analysis of ETC gun firing data is essentially an energy balance between projectile kinetic energy, gas kinetic energy, and gas internal energy. Lagrange assumptions are made for the pressure gradient and gas velocity. Thermochemistry is assumed to be variable depending on the plasma energy to working fluid mass ratio. A sample database consisting of 20-mm and 30-mm gun firings is examined.
INTENTIONALLY LEFT BLANK.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. MODEL DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>3. NUMERICAL APPROACH</td>
<td>6</td>
</tr>
<tr>
<td>4. VALIDATION</td>
<td>7</td>
</tr>
<tr>
<td>5. THERMOCHEMISTRY</td>
<td>11</td>
</tr>
<tr>
<td>6. RESULTS OF INVERSE ANALYSIS</td>
<td>14</td>
</tr>
<tr>
<td>7. SURFACE AREA RATIO</td>
<td>18</td>
</tr>
<tr>
<td>8. CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>9. REFERENCES</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX A: SAMPLE INPUT</td>
<td>25</td>
</tr>
<tr>
<td>APPENDIX B: INVERSE SIMULATION OF 20-MM AND 30-MM FIRINGS OF TiH$_2$/H$_2$O</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX C: SOURCE CODE LISTING</td>
<td>41</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>63</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic of ETC Gun</td>
</tr>
<tr>
<td>2a.</td>
<td>Comparison of IBHVG2 Results With the Inverse Analysis</td>
</tr>
<tr>
<td>2b.</td>
<td>Comparison of IBHVG3 Results With the Inverse Analysis</td>
</tr>
<tr>
<td>3.</td>
<td>Electrical/Plasma Energy for 20-mm Shot 249</td>
</tr>
<tr>
<td>4.</td>
<td>Recorded Pressure Histories for 20-mm Shot 249</td>
</tr>
<tr>
<td>5.</td>
<td>Comparison Between Chamber Pressure Gage History and Filtered Chamber Pressure Gage History for 20-mm Shot 249</td>
</tr>
<tr>
<td>6.</td>
<td>Projectile Position Derived From a Polynomial Least-Squares Fit to Barrel Gage Arrival Times for 20-mm Shot 249</td>
</tr>
<tr>
<td>7.</td>
<td>Projectile Position Derived From a Polynomial Least-Squares Fit to Barrel Gage Arrival Times for 20-mm Shot 249 After 133 μs, Together With a Quadratic Fit From 73 μs to 133 μs</td>
</tr>
<tr>
<td>8.</td>
<td>Impetus of TiH₂/H₂O With Electrical Energy Added</td>
</tr>
<tr>
<td>9.</td>
<td>Electrical Energy Input (kJ) as a Function of Time (ms) for 20-mm Gun Firings</td>
</tr>
<tr>
<td>10.</td>
<td>Electrical Energy Input (kJ) as a Function of Time (ms) for 30-mm Gun Firings</td>
</tr>
<tr>
<td>13.</td>
<td>Surface Area Ratio for 20-mm Shots 240, 249, and 259 Compared to Inhibited, Monolithic Grain</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The authors would like to express their appreciation to Dr. Bob Greig of GT-Devices, a subsidiary of General Dynamics Land Systems, who supplied the experimental data along with needed documentation. Dr. Paul Gough's criticisms of this work are appreciated. Dr. Eli Freedman of Eli Freedman Associates and Dr. Kevin White of the U.S. Army Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, MD, supported this work with thermochemical data and advice. The authors acknowledge the invaluable assistance of Ms. Sharon Richardson of BRL who handled data and performed the code runs. Finally, the authors wish to thank Mr. Fred Robbins and Dr. Terry Coffee, BRL, for reviewing the final manuscript.
INTENTIONALLY LEFT BLANK.
1. INTRODUCTION

The electrothermal-chemical (ETC) gun, generically shown in Figure 1, is a propulsion concept which utilizes a low mass, high energy plasma to initiate and, hopefully, control the combustion/vaporization of the working fluid (propellant) during the ballistic cycle. Controlling combustion (exothermic working fluid) or vaporization (endothermic working fluid) of the working fluid in the ETC gun is necessary in order to tailor the pressure-time profile in the gun. Theoretically, tailoring the pressure-time profile to obtain a "flatter" and extended pressure curve should result in enhanced performance (increased muzzle energy) and provide a "softer" launch environment to enhance projectile integrity, especially for "smart" projectiles. In addition, precise control of the pressure history should also allow for the required projectile velocity repeatability required of indirect fire support (artillery) applications.

One method of assessing the control exerted by the plasma on the combustion/vaporization process is through the use of an inverse analysis which computes the decomposition or gas generation rate of the working fluid given experimental measurements of pressure, projectile motion, and plasma energy histories as an input to the model. If the plasma is controlling the process, then the inverse analysis should show decomposition rates to be a "strong" function of the plasma input (plasma energy-time input).
To illustrate the method, an inverse analysis of 20-mm and 30-mm ETC firings using an exothermic working fluid is presented. The objective is to ascertain to what extent these experimental ETC firings indicate control of the working fluid combustion by the plasma energy input to the gun. The results of the inverse analysis for these data sets are viewed as qualitative since the experimental measurements are not precise; for example, the projectile position is not accurately known from the experimental data.

2. MODEL DESCRIPTION

The derivation is traditional (Hunt 1951). At any given time, let $Q$ be the total energy available, $U$ the internal energy of the gas, and $W$ the work performed by the gas. Then

$$Q = U + W + \text{Losses}.$$  

(1)

A number of estimates exist for calculating losses due to heat loss, recoil, projectile resistance, projectile rotational energy, shocked air ahead of the projectile and energy in compression of the working fluid. In small caliber guns, heat loss can be significant. However, in the current implementation for a qualitative comparison between a number of small caliber shots, losses are assumed to be similar in each firing. Thus, the "losses" term is taken to be zero.

The total available energy at the time in which a fraction $z(t)$ of a total charge mass $C$ has been burnt in a closed vessel is

$$Q = Cz(t) \int_{T_{\text{ref}}}^{T_o} c_v(T) \, dT$$  

(2)

where $c_v$ is the specific heat at constant volume of the gases at any temperature $T$, $T_o$ is the flame temperature and $T_{\text{ref}}$ is a reference temperature. Since only changes of energy will be considered, the actual value for $T_{\text{ref}}$ is not significant.

Since work is performed in the gun, the gas temperature $T$ is less than the flame temperature $T_o$, and the internal energy is given by
The work performed by the gas is the kinetic energy of the projectile and kinetic energy of the gas.

The kinetic energy of the projectile at any time is

\[ KE(\text{projectile}) = \frac{1}{2} m v_p^2(x,t) \]  

where \( v_p(x,t) \) is the projectile velocity and \( m \) is the projectile mass.

The kinetic energy of the gas, \( KE(\text{gas}) \), is determined in a similar manner. However, since both the velocity and mass of gas can vary along the length of the gun,

\[ KE(\text{gas}) = \frac{1}{2} \int_0^{x_p(t)} \rho(x,t) A(x) v_g^2(x,t) \, dx \]  

where \( x_p \) is the projectile base position at time \( t \), \( \rho(x,t) \), \( v_g(x,t) \) and \( A(x) \) are respectively the fluid density, fluid velocity, and cross sectional area of the gun at position \( x \).

To integrate Equation 5, the Lagrange assumption that the gas velocity \( v_g(x,t) \) is linear from the breech at position 0.0 to the projectile base at \( x_p \), with constant spatial density \( \rho(t) \), that is,

\[ v_g(x,t) = \frac{x}{x_p} v_p(t) \quad \text{and} \quad \frac{\partial \rho(x,t)}{\partial x} = 0 \]  

is utilized. Then, assuming a constant area \( A \) for the gun, Equation 5, upon substitution of Equation 6, becomes

\[ KE(\text{gas}) = \int_0^{x_p(t)} \frac{1}{2} \rho(t) A \left( \frac{x}{x_p(t)} v_p(t) \right)^2 \, dx \]
or,

\[
V_0 = \frac{1}{2} \rho(t) A \frac{v_p(t)}{x_p(t)} \int_0^{x_p(t)} x^2 \, dx \tag{8}
\]

\[
\frac{1}{6} \rho(t) A x_p(t) v_p(t) \tag{9}
\]

\[
KE(gas) = \frac{1}{6} C v_p^2(t) \tag{10}
\]

assuming that the total charge is accelerated and uniformly distributed. Substituting Equations 2, 3, 4, and 10 into Equation 1,

\[
Cz(t) \int_{T_{ref}}^{T} c_v(T) \, dT = Cz(t) \int_{T_{ref}}^{T} c_v(T) \, dT + \frac{1}{2} mv_p^2(t) + \frac{1}{6} C v_p^2(t) \tag{11}
\]

or,

\[
Cz(t) \int_{T}^{T_o} c_v(T) \, dT = \frac{1}{2} mv_p^2(t) + \frac{1}{6} C v_p^2(t) . \tag{12}
\]

Assuming an average value of \( c_v \) in the temperature range, \( T(t) \) to \( T_o \) yields

\[
Cz(t) \overline{c_v} (T_o - T(t)) = \frac{1}{2} mv_p^2(t) + \frac{1}{6} C v_p^2(t) . \tag{13}
\]

If \( v_p(t) \) can be obtained experimentally, then Equation 13 has two unknowns, \( z \) and \( T \). A Nobel-Able covolume equation of state,
provides a second condition on the system. In Equation 14, \( \bar{P}(t) \) represents the space-mean pressure based on the Lagrange ballistic assumptions, \( V_c \) the original free chamber volume, \( x_p(t) \) the projectile travel, \( A \) the cross-sectional area of the tube, \( m_a \) the mass of air in the chamber, \( \rho_a \) the density of air, \( \rho_c(t) \) the working fluid or charge density which has been calculated from a compressible equation of state, \( b \) the covolume correction, \( R \) the universal gas constant, and \( MW \) the molecular weight of reaction products. The effect of air in the chamber, \( m_a/\rho_a \), is included since ETC firings can have large initial ullage.

The equation of state for the unvaporized fluid is in the form (Gough 1989)

\[
\rho_c(t) = \begin{cases} 
\rho_o \left( 1 + \frac{(P(t)-P_o)}{K_1} \right) & \text{if } K_2 = 0 \\
\rho_o \left( 1 + \frac{K_2}{K_1} \frac{P(t)-P_o}{P(t)-P_o} \right)^{1/K_2} & \text{if } K_2 \neq 0 
\end{cases}
\]

where \( P(t) \) is the breech pressure and \( \rho_o \) is the fluid density at the initial breech pressure \( P_o \) (ambient in these calculations) assuming that the bulk modulus, \( K_p \), is at most a linear function of pressure,

\[
K_p = K_1 + K_2 (P(t) - P_o) .
\]

Using the standard definition of impetus, \( I = \frac{RT_o}{MW} \), Equation 14 is solved for \( T \).

\[
T(t) = \frac{T_o P(t)}{P(t)} \left[ \frac{V_c + x_p(t) A - \frac{m_a}{\rho_a} - \frac{C(1-z(t))}{\rho_c(t)} - b C z(t)}{I C z(t)} \right].
\]
The average value of $c_v$ is expressed as

$$\overline{c_v} = \frac{I}{T_o (\gamma - 1)}$$

where $\gamma$ is the ratio of specific heats.

Substituting Equations 17 and 18 into Equation 13 and solving for $z(t)$ at any time yields

$$z(t) = \frac{1}{2} m v_p^2 (t) \left( 1 + \frac{1}{3} \frac{C}{m} \right) + \frac{P(t)}{(\gamma - 1)} \left( V_c + x_p(t) A - \frac{m_a}{\rho_a} - \frac{C}{\rho_c(t)} \right)$$

$$\frac{1}{(\gamma - 1)} \left( C I + \overline{P(t)} \left( b C - \frac{C}{\rho_c(t)} \right) \right)$$

Experimental data are utilized to solve Equation 19 directly for $z$ by providing chamber pressure from which the space-mean pressure $\overline{P(t)}$ is calculated assuming a Lagrange gradient. Experimental projectile position, $x_p(t)$, is utilized not only to calculate the projectile velocity $v_p(t)$, but also to determine the gun volume at any time. The initial charge mass, $C$, the bore area, $A$, and the projectile mass, $m$, are determined from the experiment. Propellant density, $\rho_c(t)$, is calculated from Equation 15. It is noted that in the calculation, each timestep is independent of any other timestep. The specification of the thermochemical values (impetus $I$, ratio of specific heats $\gamma$, and covolume $b$) is discussed in detail below.

3. NUMERICAL APPROACH

As mentioned earlier, each time step is independent of any other time step. Thus, Equation 19 can be solved algebraically for $z(t)$. However, since impetus $I$, ratio of specific heat $\gamma$, and covolume $b$, are functions of $z(t)$ (see Section 5), it is necessary to iterate several times. Basically, to compute $z_{n+1}(t)$ at time $t_{n+1}$, values for $I$, $\gamma$, and $b$ at time $t_n$ are used in Equation 19 to determine $z'_{n+1}(t)$. New values of $I$, $\gamma$, and $b$ are then determined based upon $z'_{n+1}(t)$ and used in Equation 19 to determine the next approximation, $z''_{n+1}(t)$ to $z_{n+1}(t)$. This process continues until successive approximations are within the derived tolerance.

6
4. VALIDATION

In order to validate the inverse analysis, a 120-mm gun firing was simulated with a standard lumped parameter interior ballistic code, IBHVG2 (Anderson 1987) developed by the U.S. Army Ballistic Research Laboratory (BRL). The resulting IBHVG2 breech pressure history and projectile position were used as input to the inverse code. A comparison of the IBHVG2 calculation and the inverse analysis (ETINV) for mass consumed is shown in Figure 2. As can be seen, the inverse analysis accurately reproduces the time history of propellant mass burnt. However, as discussed elsewhere (Gough 1990), inaccuracies in the experimental data can lead to variability in the amount of mass burnt as determined by an inverse analysis. Thus, as discussed above, the inverse analysis is best viewed as a qualitative picture of the combustion process.

The ETC experimental database examined in this report consists of six 20-mm shots using titanium hydride and water, and three 30-mm shots using titanium hydride and water. All firings were performed at GT-Devices (Greig 1989), a subsidiary of General Dynamics Land Systems. A summary of the major physical parameters for the shots analyzed is shown in Table 1.

### Table 1. Summary of 21-mm and 30-mm Initial Conditions

<table>
<thead>
<tr>
<th>Tube Diameter</th>
<th>Chamber Volume</th>
<th>Working Fluid</th>
<th>Projectile Mass</th>
<th>Working Fluid Mass</th>
<th>Projectile Travel</th>
<th>Maximum EE Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 mm</td>
<td>72.4 cm³</td>
<td>50% TiH₂ &amp; 50% H₂O</td>
<td>20 g</td>
<td>64.0 to 64.64 g</td>
<td>199 cm</td>
<td>−500 kJ</td>
</tr>
<tr>
<td>30 mm</td>
<td>206.0 cm³</td>
<td>50% TiH₂ &amp; 50% H₂O</td>
<td>100 g</td>
<td>168.84 g</td>
<td>300 cm</td>
<td>−400 kJ</td>
</tr>
</tbody>
</table>

A number of experimental measurements is available for each shot. The experimental data is used to determine plasma energy delivered to the combustion chamber, chamber pressure, and projectile position as functions of time.

As an example, the electrical or plasma energy computed from the product of the experimental voltage and current for a 20-mm shot, Shot 249, is shown in Figure 3. Pressure histories for Shot 249 are shown in Figure 4. Gages are located in the combustion chamber, and in the barrel at 13 cm, 14 cm, 18 cm, 88 cm, and 168 cm of projectile travel. The initial position of the projectile is at tube origin.
Figure 2a. Comparison of IBHVG2 Results With the Inverse Analysis.
Mass Burned Computed by Inverse Code

120mm, no losses

Figure 2b. Comparison of IBHVG2 Results With the Inverse Analysis.
Figure 3. Electrical/Plasma Energy for 20-mm Shot 249.

Figure 4. Recorded Pressure Histories for 20-mm Shot 249.
For the majority of firings analyzed, the chamber pressure data is smoothed since the pressure history is "noisy." To illustrate, consider the chamber pressure for Shot 249, Figure 4, which is particularly "noisy" for the first 47 μs. To perform the smoothing, a low-pass filter is applied to the data, and the pressure history resulting from an inverse Fast Fourier Transform (FFT) is used in the analysis, a technique commonly utilized in the liquid propellant gun community. A comparison between the original data set and the data set resulting from the inverse FFT is shown in Figure 5. The filtering process is seen to maintain the characteristics of the data while removing the high frequency noise.

Projectile position is derived from arrival times at the barrel gage locations. Using the time of arrival at the barrel gage location, together with the actual gage locations, an interpolating fourth-degree polynomial of position as a function of time can be obtained. Experimental muzzle velocity, as measured by laser-velocity trap data, correlates very well with velocity predicted by the least-square fit (Greig 1989). In addition, any available radar data are utilized to confirm projectile position. However, in general, the radar data are not of sufficient fidelity to utilize in the inverse model. The polynomial method of determining projectile travel distorts the initial estimate of projectile motion prior to the first pressure probe since it is an extrapolation, as shown in Figure 6 for Shot 249. The projectile begins motion at 73 μs, and the projectile travel is negative from 73 μs to 133 μs. To eliminate negative projectile travel in the analysis, a quadratic fit is applied over the time from 73 μs to 133 μs using zero travel at 73 μs and the calculated travel at 133 μs. The resulting estimated projectile travel history is shown in Figure 7 for Shot 249. However, this procedure calls into question results obtained for approximately the first 15% of the analysis as a function of time.

The accuracy of the inverse analysis is dependent on accurate experimental data for plasma energy delivered to the combustion chamber, chamber pressure history, and projectile travel. Thus, since much of the needed information from the titanium hydride and water firings is inferred, as opposed to directly measured, the analysis of these firings is useful only as a comparison between experiments with similar initial conditions (i.e., gun geometry, plasma energy, etc.). An accurate estimation of gas generation rate will require precise experimental data.

5. THERMOCHEMISTRY

The specification of the thermochemical properties of the working fluid must consider the input of the plasma. Therefore, a series of BLAKE (Freedman, private communication) runs are performed with
Figure 5. Comparison Between Chamber Pressure Gage History and Filtered Chamber Pressure Gage History for 20-mm Shot 249.

Figure 6. Projectile Position Derived From a Polynomial Least-Squares Fit to Barrel Gage Arrival Times for 20-mm Shot 249.
Figure 7. Projectile Position Derived From a Polynomial Least-Squares Fit to Barrel Gage Arrival Times for 20-mm Shot 249 After 133 μs, Together With a Quadratic Fit From 73 μs to 133 μs.

varying amounts of plasma energy input (Bunte and Oberle 1989). In the BLAKE calculations, the plasma energy is assumed to mix uniformly with some amount of working fluid, and the ratio of electrical energy input to working fluid mass is referred to as the electrical energy density. Based on the electrical energy density, BLAKE then defines an impetus, ratio of specific heats, temperature and molecular weight for the mixture. In the inverse analysis, the plasma energy is assumed to mix only with the dissociated working fluid as determined iteratively from Equation 19. Since the BLAKE entries are not defined above approximately 6,000 K where ionization would occur, the impetus values are extended with a linear regression line to define electrical energy densities outside the table range.

Impetus for a mixture of 50% TiH$_2$ and 50% H$_2$O as a function of electrical energy density is shown in Figure 8 for the BLAKE calculations and is denoted by the square boxes. The linear regression line is shown in Figure 8 as well, and is given by

\[ \text{Impetus} = 134.238 \cdot \text{(EE density)} + 424.69. \]
The variable thermochemistry values are shown in Table 2. As can be seen from an examination of Table 2, the values of gamma and the covolume for electrical energy densities producing gas temperatures above 5,000 K are held constant at the last BLAKE calculation at 9 kJ/g. Although not accurate, better thermochemical data does not exist at the present time.

6. RESULTS OF INVERSE ANALYSIS

The inverse analysis assesses ballistic control exhibited in the experiment by inferring the relationship between electrical energy added to the system by the plasma and the amount of working fluid consumed. The delivery of electrical energy to the system is first discussed for the experimental shots. Results of the inverse analysis are then shown for 20-mm and 30-mm gun data with working fluid titanium hydride and water.

Electrical energy input in kilojoules vs. time in milliseconds is shown in Figure 9 for the six 20-mm firings (Shots 240, 249, 250, 257, 258, and 259). The shape of the curves is quite similar with a variation in pulse length and total energy. The 30-mm experiments are firings in which initial conditions and the
Table 2. Thermochemistry of 50% TiH₂ and 50% H₂O

<table>
<thead>
<tr>
<th>EE Density (kJ/g)</th>
<th>Temperature (K)</th>
<th>Impetus (J/g)</th>
<th>Gamma (-)</th>
<th>Covolume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,627</td>
<td>511</td>
<td>1.1685</td>
<td>0.655</td>
</tr>
<tr>
<td>1</td>
<td>1,950</td>
<td>612</td>
<td>1.1685</td>
<td>0.655</td>
</tr>
<tr>
<td>2</td>
<td>2,162</td>
<td>679</td>
<td>1.2722</td>
<td>0.655</td>
</tr>
<tr>
<td>3</td>
<td>2,630</td>
<td>826</td>
<td>1.2553</td>
<td>0.668</td>
</tr>
<tr>
<td>4</td>
<td>3,078</td>
<td>969</td>
<td>1.2443</td>
<td>0.675</td>
</tr>
<tr>
<td>5</td>
<td>3,502</td>
<td>1,106</td>
<td>1.2370</td>
<td>0.681</td>
</tr>
<tr>
<td>6</td>
<td>3,899</td>
<td>1,239</td>
<td>1.2325</td>
<td>0.690</td>
</tr>
<tr>
<td>7</td>
<td>4,265</td>
<td>1,368</td>
<td>1.2302</td>
<td>0.702</td>
</tr>
<tr>
<td>8</td>
<td>4,604</td>
<td>1,495</td>
<td>1.2294</td>
<td>0.717</td>
</tr>
<tr>
<td>9</td>
<td>4,917</td>
<td>1,622</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>1,767</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>3,109</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>30</td>
<td>—</td>
<td>4,451</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
<td>5,794</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>50</td>
<td>—</td>
<td>7,136</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>60</td>
<td>—</td>
<td>8,478</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>70</td>
<td>—</td>
<td>9,821</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>80</td>
<td>—</td>
<td>11,163</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>90</td>
<td>—</td>
<td>12,506</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
<tr>
<td>100</td>
<td>—</td>
<td>13,848</td>
<td>1.2299</td>
<td>0.735</td>
</tr>
</tbody>
</table>

delivery of electrical energy are nearly the same. Thus, these shots (Shots 39, 40, and 43A) form a repeatability series for this gun configuration. As shown in Figure 10, approximately 350 kJ of electrical energy is delivered as a simple ramped input over approximately 1.4 ms.

To assess the dependence of working fluid consumed on plasma energy input, the results are presented as groups of normalized electrical energy input vs. normalized working fluid consumed. The normalized curve (Figures 11 and 12) is obtained by dividing electrical energy by the maximum electrical energy.
Figure 9. Electrical Energy Input (kJ) as a Function of Time (ms) for 20-mm Gun Firings.

Figure 10. Electrical Energy Input (kJ) as a Function of Time (ms) for 30-mm Gun Firings.
Figure 11. Normalized Electrical Energy Input vs. Normalized Working Fluid Consumed for 20-mm Gun Firings.

Figure 12. Normalized Electrical Energy Input vs. Normalized Working Fluid Consumed for 30-mm Gun Firings.
input and the mass consumed by the maximum mass of working fluid in the experiment. The computed mass of working fluid consumed is shown in Appendix B for each shot, with the sample input/output in Appendix A.

The results for the 20-mm shots with titanium hydride and water as the working fluid are shown in Figure 11. From Figure 9 the electrical energy input is a simple ramp. Although the mass of working fluid consumed (Figure 11) does indicate some linearity as a function of electrical energy, the results provide no evidence that the plasma energy input drives the ballistic response for the entire ballistic cycle.

The 30-mm shots using titanium hydride and water as the working fluid are shown in Figure 12. These shots form a set of repeatability experiments. As shown in Figure 10, the approximately 350 kJ of electrical energy is deposited uniformly over approximately 1.2 ms in each experiment. As can be seen in Figure 12, the working fluid response is similar in all three experiments. As in the 20-mm experiments, although the plasma energy is applied uniformly, the rate of working fluid mass consumed appears to increase during the ballistic cycle. Although the mass fraction of working fluid consumed appears to occur similarly in the experiments, it is not evident that the plasma controls the ballistic process.

In both experimental data sets, an increase in the rate of working fluid consumed over time is observed. In order to identify the role of plasma energy as the driving mechanism in the gas generation rate, shots in which the initial plasma input is substantially varied should be fired and compared.

An analysis of several firings with water as the working fluid was attempted. It is possible to devise an extended thermochemical description of the mixture of water and electrical energy similar to Table 2. However, as demonstrated by Gough (1990) and verified in the analysis of experimental data, the dependence of pressure on the fraction of working fluid consumed is weak for endothermic fluids for all electrical energy densities. As opposed to exothermic fluids, the possibility of multiple roots and bifurcation in the inverse analysis makes water firings unsuitable for inverse analysis. Thus, these firings are not further discussed in this report.

7. SURFACE AREA RATIO

A second method to investigate control of the ballistic process is to ascertain the surface area of the reacting working fluid. If the process is not controlled, it would be expected that the total reacting surface
area would display large fluctuations. To determine an apparent surface area, the experimental breech pressure and working fluid mass consumed (as computed from the inverse analysis) are used to compute a surface area ratio (current surface area to initial surface area) under the assumption of a pressure dependent combustion law for the working fluid reaction. Although the results are qualitative, the ratio provides some insight into the behavior of the surface which is in contact with the hot gases. Surface area ratios in solid propellants are well behaved.

A pressure dependent burn rate of JA2 propellant ($r = 0.12 P^{0.95}$, $r$ in cm/s) and an initial surface area equal to the cross-sectional area of the chamber are assumed. Then for each percent mass consumed, the ratio of the current to the initial surface area can be computed. The selection of the initial surface area as the cross-sectional area of the chamber is arbitrary. However, changing the value of the initial surface area preserves the shape of the surface area ratio curve but changes its magnitude. Thus, the surface area ratio curves should not be viewed in terms of absolute magnitude but only in terms of characteristic shape. The results are similarly affected by the choice of burn rate law. Figure 13 shows the surface area ratio for three 20-mm firings, Shots 240, 249, and 259, with titanium hydride and water as the working fluid. For the first 50% of the mass consumed the ratios show minor fluctuations except for the early portions of the graph where the data is questionable due to the inaccuracies in the early portion of projectile travel. Unfortunately, the surface area ratios fluctuate sharply after approximately 50% of the working fluid mass has been consumed, especially Shot 249. In the experiments, the plasma continues to enter the chamber until almost all of the working fluid has been consumed as seen in Figure 11. Thus, the working fluid surface area appears to be well behaved only initially.

For comparison, the geometry of an inhibited, monolithic grain with dimensions suggested by the initial working fluid configuration is theoretically burned under the same pressure-dependent conditions. The surface area ratio as a function of percent mass consumed is shown in Figure 13 and is seen to be progressive and well-behaved.

8. CONCLUSIONS

An inverse analysis has been presented as one method of assessing ballistic control exhibited in ETC experimental gun firings. The analysis attempts to determine the decomposition or gas generation rate necessary to satisfy an energy balance equation as gleaned from available experimental data. The quantitative values of working fluid mass consumed are dependent on accurate experimental breech
The analysis was applied to 20-mm and 30-mm experimental firings (rear plasma injection) using titanium hydride and water as the working fluids. The results of the analysis are viewed as qualitative for these data sets and suggest:

1. For the firings analyzed, there is little evidence to indicate that the electrical energy input plays a dominant role in the amount of working fluid consumed.

2. A large fluctuation in surface area occurs for the titanium hydride and water system when approximately 50% of the mass has been consumed regardless of the presence or absence of plasma energy in the configuration analyzed.
(3) Accurate measurement of projectile position through in-bore radar is needed to accurately establish the volume behind the projectile.

(4) The potential coupling between plasma energy input and working fluid mass consumed is obscured by the lack of comparable data sets in which the plasma energy input history is significantly varied.

(5) Additional work is needed in defining the thermochemistry of working fluid/electrical energy combinations.
9. REFERENCES


White, K. Private communication. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
INTENTIONALLY LEFT BLANK.
APPENDIX: A

SAMPLE INPUT
INTENTIONALLY LEFT BLANK.
Enter the file containing input file names.

Inverse Electrothermal Gun Code

Pressure-time file: 250tvp.IN
Proj motion-time file: 250tvpp.IN
Proj travel-time file.

Electrical energy-time file: 250tvce.IN
Initial data file: 250init.IN

Chamber volume (cm^3) = 72.40000
Tube diameter (cm) = 2.1
Area (cm^2) = 3.46361
Projectile position (cm) = 0.00000
Projectile mass (kg) = 0.02
Working fluid mass (g) = 64.64000
Initial working fluid density (g/cm^3) = 1.59000
Tolerance required in mass consumed = 0.00100
Time start (sec) = 0.00000000
Time increment (sec) = 0.00005000
Time end (sec) = 0.00120000
Initial guess for mass consumed (g) = 0.10000
Initial value of beta, fraction of wf moving (-) = 1.00000
Mass of air initially in chamber (g) = 0.03750
Bulk modulus of WF at a zero atmosphere (MPa) = 5000.00000
Derivative of bulk modulus wrt pressure (-) = 8.00000

Thermochemical data file: tihextra.prn

<table>
<thead>
<tr>
<th>TIME (ms)</th>
<th>CHAM PR (MPa)</th>
<th>BASE PR (MPa)</th>
<th>PROJ TRAV (cm)</th>
<th>PROJ VEL (cm/s)</th>
<th>EL EN DEN (MJ/kg)</th>
<th>CUM WF (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.10</td>
<td>0.040005</td>
<td>0.0000</td>
<td>0.00</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.05</td>
<td>2.89</td>
<td>1.15726</td>
<td>0.3916</td>
<td>7831.56</td>
<td>19259.860</td>
<td>0.00079</td>
</tr>
<tr>
<td>0.10</td>
<td>98.12</td>
<td>39.29342</td>
<td>0.7832</td>
<td>7831.56</td>
<td>2101.635</td>
<td>0.02080</td>
</tr>
<tr>
<td>0.15</td>
<td>200.20</td>
<td>80.17240</td>
<td>1.1747</td>
<td>7831.56</td>
<td>1811.112</td>
<td>0.04470</td>
</tr>
<tr>
<td>0.20</td>
<td>338.07</td>
<td>135.38190</td>
<td>1.5663</td>
<td>27364.79</td>
<td>1433.635</td>
<td>0.08227</td>
</tr>
<tr>
<td>0.25</td>
<td>413.63</td>
<td>165.64180</td>
<td>3.9112</td>
<td>55843.03</td>
<td>1198.416</td>
<td>0.12971</td>
</tr>
<tr>
<td>0.30</td>
<td>493.50</td>
<td>197.62530</td>
<td>7.1506</td>
<td>73255.77</td>
<td>1039.150</td>
<td>0.19483</td>
</tr>
<tr>
<td>0.35</td>
<td>573.84</td>
<td>229.79470</td>
<td>16.1227</td>
<td>105250.30</td>
<td>17.629</td>
<td>16.52764</td>
</tr>
<tr>
<td>0.40</td>
<td>577.92</td>
<td>231.42860</td>
<td>21.7618</td>
<td>119858.60</td>
<td>11.768</td>
<td>28.05256</td>
</tr>
<tr>
<td>0.45</td>
<td>588.95</td>
<td>235.84870</td>
<td>28.1085</td>
<td>133558.50</td>
<td>8.616</td>
<td>43.34926</td>
</tr>
<tr>
<td>0.50</td>
<td>559.01</td>
<td>223.85940</td>
<td>35.1177</td>
<td>146363.10</td>
<td>7.105</td>
<td>56.13565</td>
</tr>
<tr>
<td>0.55</td>
<td>473.38</td>
<td>189.56690</td>
<td>42.7448</td>
<td>158286.10</td>
<td>7.172</td>
<td>56.85619</td>
</tr>
<tr>
<td>0.60</td>
<td>403.04</td>
<td>161.39790</td>
<td>50.9463</td>
<td>169340.30</td>
<td>7.109</td>
<td>57.92583</td>
</tr>
<tr>
<td>0.65</td>
<td>355.40</td>
<td>142.31970</td>
<td>59.6788</td>
<td>179538.80</td>
<td>6.588</td>
<td>62.86549</td>
</tr>
<tr>
<td>0.70</td>
<td>306.18</td>
<td>122.61100</td>
<td>68.9001</td>
<td>188895.20</td>
<td>6.544</td>
<td>63.38555</td>
</tr>
<tr>
<td>0.75</td>
<td>263.75</td>
<td>105.61900</td>
<td>78.5683</td>
<td>197422.40</td>
<td>6.623</td>
<td>62.64100</td>
</tr>
<tr>
<td>0.80</td>
<td>235.21</td>
<td>94.18995</td>
<td>88.6424</td>
<td>205134.10</td>
<td>6.418</td>
<td>64.93068</td>
</tr>
</tbody>
</table>

TIME = 0.00035 NO CONVERGENCE

0.90 213.39 85.45289 99.0817 212043.00 6.418 66.28542
0.95 190.69 76.36062 109.8466 218163.30 6.418 66.49628
1.00 171.73 68.76966 120.8980 223505.80 6.417 66.69440
1.05 156.52 62.67997 132.1973 228086.30 6.417 67.08662
1.10 143.31 57.38857 143.7066 231917.30 6.417 67.33691
1.15 130.72 52.34921 155.3890 235012.50 6.416 67.08495
1.20 119.08 47.68684 167.2078 237381.90 6.416 66.46645
INTENTIONALLY LEFT BLANK.
APPENDIX B:

INVERSE SIMULATION OF 20-MM AND 30-MM FIRINGS OF Ti:H$_2$/H$_2$O
INTENTIONALLY LEFT BLANK.
Shot 250

Propellant Consumed (g)

Time (ms)

Electrical Energy (kJ)
Electrical Energy (kJ)

Shot 39

Propellant Consumed (g)

Time (ms)
APPENDIX C:

SOURCE CODE LISTING
INTENTIONALLY LEFT BLANK.
PROGRAM ETINVBC

C ADD COMPRESSION OF WORKING FLUID - JULY 1990
C
C CONSIDER BETA-AMT OF FLUID WHICH MOVES
C APRIL 1990
C INVERSE PROGRAM TO CALCULATE INTERACTION RATE
C OF WORKING FLUID AND PLASMA FROM ET DATA
C ASSUMING LAGRANGE PRESSURE GRADIENT
C
C TYPE ETINVBC (WAIT FOR QUESTION ABOUT INPUT FILE!!)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
COMMON /DATA/ PRTIM (I:NPT), PRES (1:NPT),
  1 TRTIM (1:NPT), TRAV (1:NPT),
  2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /OUT/ WFTIM (NPr), WFCUM (NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
  1 PROJI, PROJW, TOL, TIMINC,
  2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
  1 ELECEN, TEMP, RIMPET, GAMMA,
  2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
  3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
COMMON /THERMO/ ELDENI (I:NVMT), TEMPI (I:NPIT), RIMPI (I:NPIT),
  1 GAMMA1 (1:NPTT), COVOL1 (1:NPTT)
C
CHARACTER*20 ETIN, PRESIN, TRAVIN, ELECIN, THERIN, INITIN
C
WRITE (*, 6000)
6000 FORMAT(10X, ' Enter the file containing input file names. ')
READ (*, 5000) ETIN
OPEN (15, FILE = ETIN)
REWIND (15)
C
C LINE 1: PRESSURE
C LINE 2: PROJECTILE TRAVEL
C LINE 3: ELECTRICAL ENERGY INPUT
C LINE 4: THERMOCHEMICAL VALUES BASED ON ELECTRICAL ENERGY INPUT
C LINE 5: INITIAL DATA
C Each file contains descriptor on line 1, number of points on line 2,
C time vs parameter on other lines or thermochems.
  READ (15, 5000) PRESIN
  READ (15, 5000) TRAVIN
  READ (15, 5000) ELECIN
READ (15, 5000) THERIN
READ (15, 5000) INITIN
CALL OUTPUT (1)
CALL PRESS (1)
CALL TRAVEL (1)
CALL ELECTR (1)
CALL INITIAL
CALL THERM (1, IREAC)
CALL OUTPUT (2)

C
C INITIALIZE AT TIME=0.
C SET UP ARRAY FOR WF TO FIND DERIVATIVE
   TIME = 0.0
   WF2 = 0.
   WFTIM (1) = 0.0
   WFCUM (1) = 0.0
   IEND = 0
   NWF = 1
   CALL PRESS (2)
   CALL TRAVEL (2)
   CALL THERM (2, IREAC)
   CALL OUTPUT (3)

C
C TAKE FIRST TIME STEP
   TIME = TIME + TIMINC

C
C INITIAL GUESS FOR MASS OF FLUID CONSUMED IN INITIAL
C ITERATE TO MATCH THERMOCHEMS WITH MASS CONSUMED
1000 CONTINUE
   CALL PRESS (2)
   CALL TRAVEL (2)
   CALL ELECTR (2)
   M = 0

C
C IF IREAC=0, NO REACTION (EL EN DENSITY NOT LARGE ENOUGH)
C IF IREAC=1, REACTION
1010 CONTINUE
   CALL THERM (2, IREAC)
   IF (IREAC .EQ. 0) THEN
      CALL SPMEAN
      CALL OUTPUT (3)
      TIME = TIME + TIMINC
      GO TO 1000
   END IF

C
   CALL STATE

C
C M IS COUNTER--CONVERGE BEFORE 100 STEPS OR SKIP
   IF (M .GT. 100) THEN
WRITE (*, 6010) TIME
6010 FORMAT(1X, ' TIME=', F10.5, ' NO CONVERGENCE')
TIME = TIME + TIMINC
GO TO 1000
END IF
IF ((ABS (WF1 - WF2)) .LE. TOL) THEN
C FILL ARRAY FOR WF TO FIND DERIVATIVE
   NWF = NWF + 1
   WFTIM (NWF) = TIME
   WFCUM (NWF) = WF2
   CALL OUTPUT (3)
TIME = TIME + TIMINC
C
C END CONDITIONS
   IF (TIME .GT. TIMEND) GO TO 1020
   IF (WF2 .LE. 0.) GO TO 1020
C END IF ALL FLUID CONSUMED
   IF (WF2 .GE. WFMASI) .AND. (IEND .EQ. 0)) THEN
      WRITE (*, *) ' All fluid consumed.'
      WRITE (*, *) ' Solution continues to balance energy.'
      IEND = 1
   END IF
C
C READY TO TAKE ANOTHER STEP
   WF1 = WF2
   GO TO 1000
ELSE
   WF1 = WF2
   M = M + 1
   GO TO 1010
END IF
C
5000 FORMAT (A20)
C
C POST PROCESSING--TAKE DERIVATIVES
1020 CONTINUE
   CALL OUTPUT (4)
   CLOSE (26, STATUS = 'KEEP')
   CLOSE (27, STATUS = 'KEEP')
   CLOSE (28, STATUS = 'KEEP')
   CLOSE (29, STATUS = 'KEEP')
   STOP
END
C
SUBROUTINE PRESS (IOPT)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
1 TRTIM (1:NPT), TRAV (1:NPT),
2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
C
CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN, IDENT
C
C IOPT=1 READ FILE
C TIME IN MS, PRESSURE IN MPA
C CHANGE TIME TO SEC
C CHANGE PRESSURE FROM MPA TO CONSISTENT UNITS WITH CGS SYSTEM
C BY MULTIPLYING BY 1.0E7 CONVERSION CONSTANT
C
IF (IOPT .EQ. 2) GO TO 1000
OPEN (21, FILE = PRESIN, STATUS = 'OLD', IOSTAT = IOS, ERR = 1010)
REWIND (21)
1010 CONTINUE
IF (IOS .NE. 0) WRITE (*, 6000) IOS
6000 FORMAT(' ERROR OPENING PRESSURE FILE:',15)
READ (21, 5000) IDENT
WRITE (*, 6010) PRESIN
C WRITE(*,620) IDENT
READ (21, *) NPR
DO 1020 I = 1, NPR
   READ (21, *) PRTIM (I), PRES (I)
1020 CONTINUE
GO TO 1030
C
C IOPT=2 INTERPOLATE
1000 CONTINUE
TIMTOL = ABS (TIME - .1E-10)
IF ((TIME .EQ. 0.0) .or. (TIMTOL .EQ. 0.)) THEN
   PRESCH = PRES (1)
   CALL SPMEAN
END IF
DO 1040 I = 2, NPR
   IF (TIME .EQ. PRTIM (I)) PRESCH = PRES (I)
   IF (TIME .GT. PRTIM (I - 1)) THEN
      PRESCH = PRES (I - 1) + (PRES (I) - PRES (I - 1))
   END IF
1040 CONTINUE
GO TO 1030
C
1040 CONTINUE
C
5000 FORMAT (A80)
6010 FORMAT(' Pressure-time file:',A20)
8000 FORMAT(' Pressure-time ident:',A20,/) 
1030 CONTINUE
RETURN
END
C
***********
SUBROUTINE TRAVEL (IOPT)
C
C DETERMINE PROJECTILE TRAVEL
C CALL SUBROUTINE TO DETERMINE PROJECTILE VELOCITY
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPIT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
1 TRTIM (1:NPT), TRAV (1:NPT),
2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
C
CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN, IDENT
C
IF ((IOPT .NE. 1) .AND. (IOPT .NE. 2))
1 WRITE (*, *) 'Error in Subroutine Travel.'
C
IOPT=1 READ FILE
C IF 2ND LINE IS 1: TIME IN MS, TRAVEL IN CM
C IF 2ND LINE IS 2: TIME IN MS, TRAVEL IN CM, VELOCITY IN CM/S
C CHANGE TIME TO SEC
C TRAVEL MUST BE IN CM
C VELOCITY IN CM/S
C
IF (IOPT .EQ. 2) GO TO 1000
OPEN (21, FILE = TRAVIN, STATUS = 'OLD', IOSTAT =IOS, ERR = 1010)
REWIND (21)
1010 CONTINUE
IF (IOS .NE. 0) WRITE (*, 6000) IOS
6000 FORMAT(' ERROR OPENING TRAVEL FILE:',J5)
READ (21, 5000) IDENT
WRITE (*, 6010) TRAVIN
C WRITE(*,620) IDENT
C ITRVEL=1 FOR TIME, TRAVEL PAIRS
C ITRVEL=2 FOR TIME, TRAVEL, VELOCITY PAIRS
READ (21, *) ITRVEL
IF (ITRVEL .EQ. 1) WRITE (*, 6020)
IF (ITRVEL .EQ. 2) WRITE (*, 6030)
IF ((ITRVEL .NE. 1) .AND. (ITRVEL .NE. 2)) THEN
  WRITE (*, 6040)
  STOP
END IF
READ (21, *) NTR
DO 1020 I = 1, NTR
  C
  C READ TIME-TRAVEL IF ITRVEL=1
  C CHANGE TIME TO SEC
  C **IBHV2
  C CHANGE TRAVEL TO CM (GIVEN IN .1 MM), VEL TO CM/SEC
  C IF (ITRVEL .EQ. 1) THEN
  C READ(21,*) TRTIM(I),TRAV(I)
  C TRTIM(I)=TRTIM(I)*1.0E-3
  C TRAV(I)=TRAV(I)*0.01
  C ENDIF
  C
  C READ TIME-TRAVEL-VELOCITY IF ITRVEL=2
  C IF (ITRVEL .EQ. 2) THEN
  C READ(21,*) TRTIM(I),TRAV(I),VEL(I)
  C TRTIM(I)=TRTIM(I)*1.0E-3
  C TRAV(I)=TRAV(I)*0.01
  C VEL(I)=VEL(I)*0.1
  C ENDIF
  C***
  C TIME IN MS, TRAVEL GIVEN IN CM
  IF (ITRVEL .EQ. 1) THEN
    READ (21, *) TRTIM (I), TRAV (I)
    TRTIM (I) = TRTIM (I)*1.0E-3
  END IF
C
1020 CONTINUE
  GO TO 1030
C
C IOPT=2 INTERPOLATE
1000 CONTINUE
  IF (TIME .EQ. 0.) THEN
    TRAVPR = TRAV (1)
    VELP = 0.0
  END IF
C
C ITRVEL=1 HAVE JUST TIME-TRAVEL
  IF (ITRVEL .EQ. 1) THEN
    DO 1040 I = 2, NTR
      IF (TIME .EQ. TRTIM (I)) THEN
        TRAVPR = TRAV (I)
      END IF
  END DO 1040
48
CALL VELPR (I)
GO TO 1030
END IF
IF (TIME .GT. TRTIM (I - 1)) THEN
    TRAVPR = TRAV (I - 1) + (TRAV (I) - TRAV (I - 1)) *
    1
    ((TIME - TRTIM (I - 1))/(TRTIM (I) - TRTIM (I - 1)))
CALL VELPR (I)
END IF
1040 CONTINUE
END IF

C
ITRVEL=2 HAVE TIME-TRAVEL-VELOCITY
IF (ITRVEL .EQ. 2) THEN
    DO 1050 I = 2, NTR
        IF (TIME .EQ. TRTIM (I)) THEN
            TRAVPR = TRAV (I)
            VELPR = VEL (I)
            GO TO 1030
        END IF
        IF (TIME .GT. TRTIM (I - 1)) THEN
            TRAVPR = TRAV (I - 1) + (TRAV (I) - TRAV (I - 1)) *
            ((TIME - TRTIM (I - 1))/(TRTIM (I) - TRTIM (I - 1)))
            VELPR = VEL (I - 1) + (VEL (I) - VEL (I - 1)) *
            ((TIME - TRTIM (I - 1))/(TRTIM (I) - TRTIM (I - 1)))
        END IF
    1050 CONTINUE
END IF

C
5000 FORMAT (A80)
6010 FORMAT(' Proj motion-time file:.' ,A20)
8000 FORMAT(' Proj motion-time ident:.' ,A20,/)
6020 FORMAT(' Proj travel-time file.' ,/)
6030 FORMAT(' Proj velocity-time file.' ,/)
6040 FORMAT(' Error--unknown type file.' ,/)
1030 CONTINUE
RETURN
END

C
SUBROUTINE ELECTR (IOPT)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELEClN, THERIN, INITIN
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
1 TRTIM (1:NPT), TRAV (1:NPT),
2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
COMMON /OPTIONS/ IBETA, ICOM

CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN, IDENT

IF ((IOPT .NE. I) .AND. (IOPT .NE. 2))
1 WRITE (*)(*,*)'Error in Subroutine Electr.'

IOPRT=1 READ FILE
ELECTRICAL ENERGY IS CUMULATIVE
TIME IN MS, ELECTRICAL ENERGY IN kJ
CHANGE TIME TO SEC

IF (IOPT .EQ. 2) GO TO 1000
OPEN (21, FILE = ELECIN, STATUS = 'OLD', IOSTAT = IOS, ERR = 1010)
REWIND (21)
1010 CONTINUE
IF (IOS .NE. 0) WRITE (*, 6000) IOS
6000 FORMAT('ERROR OPENING ELECTRICAL ENERGY FILE:',I5)
READ (21, 5000) IDENT
WRITE (*, 6010) ELECIN
WRITE(*,620) IDENT
READ (21, *) NEL
DO 1020 I = 1, NEL
   READ (21, *) ELTIM(I), ELEC(I)
   ELTIM(I) = ELTIM(I)*1.0E-3
1020 CONTINUE
GO TO 1030

C IOPT=2 INTERPOLATE
1000 CONTINUE
IF (TIME .EQ. 0.) ELECEN = ELEC(1)
DO 1040 I = 2, NEL
   IF (TIME .EQ. ELTIM(I)) ELECEN = ELEC(I)
   IF (TIME .GT. ELTIM(I - 1)) THEN
      ELECEN = ELEC(I - 1) + (ELEC(I) - ELEC(I - 1))*
               ((TIME - ELTIM(I - 1))/(ELTIM(I) - ELTIM(I - 1)))
   END IF
1040 CONTINUE
GO TO 1030

C SUBROUTINE INITIAL

5000 FORMAT (A80)
6010 FORMAT('Electrical energy-time file:',A20)
8000 FORMAT('Electrical energy-time ident:',A20,/)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
1 PROJI, PROJW, TOL, TIMINC,
2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
C
CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN, IDENT
C
OPEN (21, FILE = INITIN, STATUS = 'OLD', IOSTAT = IOS, ERR = 1000)
REWIND (21)
1000 CONTINUE
IF (IOS .NE. 0) WRITE (*, 6000) IOS
6000 FORMAT(' ERROR OPENING INITIAL DATA FILE:',15)
C
C CHAMBER VOLUME IN CM^3
C INITIAL PROJECTILE POSITION IN CM WITH 0.0 AT ORIGIN OF TUBE
C TUBE DIAMETER IN CM--AREA IN CM^2
C PROJECTILE MASS IN KG
C INITIAL MASS OF WORKING FLUID IN GRAMS
C DENSITY OF WORKING FLUID IN G/CM^3
C TIME INCREMENT IN SEC
READ (21, 5000) IDENT
WRITE (*, 6010) INITIN
C
WRITE(*,620) IDENT
READ (21, *) CHVOL
WRITE (*, 6020) CHVOL
C TUBE DIAMETER
READ (21, *) DIAM
AREA = 3.141592654*(DIAM/2.)*(DIAM/2.)
WRITE (*, 6030) DIAM, AREA
C PROJECTILE INITIAL POSITION AND MASS (CHANGE KG TO G)
READ (21, *) PROJI
IF (PROJI .NE. 0.0) WRITE (*, *)
1 ' Change needed--proj not zeroed.'
READ (21, *) PROJW
WRITE (*, 6040) PROJI, PROJW
PROJW = PROJW*1000.
C WORKING FLUID INITIAL MASS
READ (21, *) WFMASI
WRITE (*, 6050) WFMASI
READ (21, *) RHOI
WRITE (*, 6060) RHOI

51
RHO = RHOI
C TOLERANCE IN ITERATION
   READ (21, *) TOL
   WRITE (*, 6070) TOL
C TIME IN SEC
   READ (21, *) TIME
   READ (21, *) TIMINC
   READ (21, *) TIMEND
   WRITE (*, 6080) TIME, TIMINC, TIMEND
C INITIAL GUESS FOR MASS OF WORKING FLUID CONSUMED
   READ (21, *) WFI
   WRITE (*, 6090) WFI
C READ INITIAL VALUE OF BETA
C OPTIONS FOR BETA:
C   BETA IS INITIAL VALUE OF WORKING FLUID MOVING--
C   LAGRANGE ASSUMPTION IS BETA=1, I.E. ALL FLUID MOVES
C   IF BETA=0., FLUID IS AT REST
C   CHANGE FRACTION OF BETA MOVING IF IBETA=1
C   IF IBETA=0, LET BETA=CONSTANT (INITIAL VALUE)
C   IF IBETA=1, LET BETA=Z (FRACTION OF WF REACTED)
   READ (21, *) BETA, IBETA
   WRITE (*, 6100) BETA
   IF (IBETA .EQ. 1) THEN
      WRITE (*, 6110) IBETA
      Z = 0.
   END IF
C MASS OF AIR INITIALLY IN CHAMBER
   READ (21, *) WAIR
   WRITE (*, 6120) WAIR
C C OPTION - COMPRESSION OF WORKING FLUID
C IF ICOM=0, DO NOT CONSIDER COMPRESSION
C IF ICOM=1, CONSIDER COMPRESSION
   READ (21, *) ICOM
   IF ((ICOM .NE. 0) .AND. (ICOM .NE. 1)) WRITE (*, *) 'Error--ICOM'
C BM=BULK MODULUS OF FLUID AT ONE ATMOSPHERE (MPa)
C DERBM=DERIVATIVE OF BULK MODULUS WITH RESPECT TO PRESSURE
   IF (ICOM .EQ. 1) THEN
      READ (21, *) BM, DERBM
      WRITE (*, 6130) BM, DERBM
   END IF
C CHANGE TO CGS
   BM = BM*1.0E7
      END IF
C 5000 FORMAT (A80)
6010 FORMAT( ' Initial data file:', A20)
8000 FORMAT( ' Initial data ident:', A20)
6020 FORMAT( ' Chamber volume (cm^3)=', F15.5)
6030 FORMAT( ' Tube diameter (cm)=', F6.1, 2x, ' Area (cm^2)=', F12.5)
6040 FORMAT(' Projectile position (cm)=',F10.5,
1 2X,' Projectile mass (kg)=',F10.2)
6050 FORMAT(' Working fluid mass (g)=',F10.5)
6060 FORMAT(' Initial working fluid density (g/cm^3)=',F10.5)
6070 FORMAT(' Tolerance required in mass consumed=',F10.5)
6080 FORMAT(' Time start (sec)=',F10.8,' Time increment (sec)=',
1 F10.8,' Time end (sec)=',F10.8)
6090 FORMAT(' Initial guess for mass consumed (g)=',F10.5)
6100 FORMAT(' Initial value of beta, fraction of wf moving (-)=',F10.5)
6110 FORMAT(' Option: ibeta=',I15,',
1 ' If ibeta=0 fraction moving is constant',/
2 ' If ibeta=1, fraction moving= fraction decomposed')
6120 FORMAT(' Mass of air initially in chamber (g)=',F10.5)
6130 FORMAT(' Bulk modulus of WF at one atmosphere (MPa)=',F10.5,
1 ' Derivative of bulk modulus wrt pressure (-)=',F10.5)

C
CLOSE (21)
RETURN
END

C****************************************************************************
SUBROUTINE THERM (IOPT, IREAC)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
1 PROJI, PROJW, TOL, TIMINC,
2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
COMMON /THERMO/ ELDEN1 (1:NPTT), TEMP1 (1:NPTT), RIMP1 (1:NPTT),
1 GAMMA1 (1:NPTT), COVOL1 (1:NPTT)
C
CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN, IDENT
C
IF ((IOPT .NE. 1) .AND. (IOPT .NE. 2))
1 WRITE (*, *) ' Error in Subroutine Electr.'
C
C IOPT=1 READ FILE
IF (IOPT .EQ. 2) GO TO 1000
C BASED ON AMOUNT OF ELECTRICAL ENERGY INPUT
OPEN (21, FILE = THERIN, STATUS = 'OLD', IOSTAT = IOS, ERR = 1010)
REWIND (21)
1010 CONTINUE
IF (IOS .NE. 0) WRITE (*, 6000) IOS

53
6000 FORMAT(' ERROR OPENING THERMOCHEM DATA FILE: *.i5')
C
C ELECTRICAL ENERGY DENSITY (Elec en/mass fluid in chamber) IN kJ/G
C TEMPERATURE IN K
C IMPETUS IN J/G
C GAMMA, RATIO OF SPECIFIC HEAT, UNITLESS
C COVOLUME IN CM^3/G
C CONVERT JOULES TO CGS: 1 JOULE=1.0E7 G-CM^2/S^2
  READ (21, 5000) IDENT
  WRITE (*, 6010) THERIN
C WRITE(*,620) IDENT
  READ (21, *) NTH
  DO 1020 I = 1, NTH
      READ (21, *) ELDEN1 (I), TEMPI (I), RIMPI (I),
          GAMMAI (I), COVOLI (I)
  C ELECTRICAL ENERGY DENSITY IN kJ/G
      RIMPI (I) = RIMPI (I)*1.0E+7
  1020 CONTINUE
  GO TO 1030
C
1000 CONTINUE
C ELECTRICAL ENERGY DENSITY=CUMULATIVE ELEC ENERGY/CUMULATIVE WF REACTED
  IF (WFI .LT. 0.0) THEN
      WRITE (*, 6020)
  END IF
C ASSUME FIRST LINE OF TABLE IS 0.
  IF ((WFI .LE. 0.) .OR. (TIME .EQ. 0.)) THEN
      TEMP = TEMPI
          RIMPET = RIMPI (1)
          GAMMA = GAMMA1 (I)
          COVOL = COVOL1 (1)
      GO TO 1030
  END IF
C
  IF (WFI .GT. 0.) ELDEN = ELECEN/WFI
C
C IF WF CONSUMED, FIX THERMOCHEMS AT FINAL VALUE
  IF (WFI .GT. WFMASI) ELDEN = ELECEN/WFMASI
C
C IF ELECTRICAL ENERGY DENSITY NOT LARGE ENOUGH FOR REACTION,
C COMMUNICATE TO MAIN WITH IREAC=0 AND SKIP THIS STEP
  IF (ELDEN .LT. ELDEN1 (1)) THEN
      IREAC = 0
      GO TO 1030
  END IF
C
  DO 1040 I = 2, NTH
      IF (ELDEN .EQ. ELDEN1 (I)) THEN
          TEMP = TEMPI
      END IF
  1040 CONTINUE
RIMPET = RIMP1 (I)
GAMMA = GAMMA1 (I)
COVOL = COVOL1 (I)
END IF

IF (ELDEN .GT. ELDEN1 (I - 1)) THEN
  TEMP = TEMP1 (I - 1) + (TEMP1 (I) - TEMP1 (I - 1))
  RIMPET = RIMP1 (I - 1) + (RIMP1 (I) - RIMP1 (I - 1))
  GAMMA = GAMMA1 (I - 1) + (GAMMA1 (I) - GAMMA1 (I - 1))
  COVOL = COVOL1 (I - 1) + (COVOL1 (I) - COVOL1 (I - 1))
END IF

IREAC = 1
1040 CONTINUE
C
C IF FALL OUTSIDE ARRAY
  IF (ELDEN .GT. ELDEN1 (NTH)) THEN
    TEMP = TEMP1 (NTH)
    RIMPET = RIMP1 (NTH)
    GAMMA = GAMMA1 (NTH)
    COVOL = COVOL1 (NTH)
    WRITE (26, *) ' OUTSIDE THERM ARRAY'
  END IF
C
5000 FORMAT (A80)
6010 FORMAT(' Thermochemical data file:',A20)
8000 FORMAT(' Thermochemical data ident:',A20,/)
6020 FORMAT(' Error in Subroutine Electr--El En Density negative. ')
C
1030 CONTINUE
RETURN
END
C
C **********************************************************************

SUBROUTINE STATE
C
IMPLIED REAL (A - H, O - Z)
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
  PROJI, PROJW, TOL, TIMINC,
  TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
  ELECEN, TEMP, RIMPET, GAMMA,
  COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
  Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
C
C DETERMINE SPACE-MEAN PRESSURE
  CALL SPMEAN
C IF ICOM=0, DO NOT CONSIDER COMPRESSION OF WF
C IF ICOM=1, CONSIDER COMPRESSION OF WF
C ENCOMP IS ENERGY PER UNIT MASS STORED BY COMPRESSED FLUID
C --NEED TO MULTIPLY BY AMT OF FLUID UNVAPORIZED

IF (ICOM.EQ.0) THEN
   RHO = RHOI
   ENCOMP = 0.0
END IF
IF (ICOM.EQ.1) CALL COMPRES

C CUMULATIVE FLUID CONSUMED FROM ENERGY EQN, P 105, BK 9
GAM1 = GAMMA - 1.
DIV = RIMPET/GAM1 + SPMPR*(COVOL/GAM1 - 1/(RHO*GAM1))

TOP = (CHVOL - WFMASI/RHO + TRAVPR*AREA)*(SPMPR/GAM1)
1 + VELP*VELP*((1./6.)*CM*PROJW + .5*PROJW)
2 + (1. - Z)*WFMASI*ENCOMP

Z = (1./WFMASI)*(TOP/DIV)
WF2 = Z*WFMASI

RETURN
END

C SUBROUTINE SPMEAN
C
IMPLICIT REAL (A - H, O - Z)
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
1 PROJI, PROJW, TOL, TIMINC,
2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
C
C SPACE MEAN PRESSURE EQUALS CHAMBER PRESSURE (IF EXPERIMENTAL)
C SPMPR=PRESCH
C
C SPACE-MEAN PRESSURE FROM LAGRANGE GRADIENT
C ASSUME PRESCH IS A PRESSURE MEASUREMENT AT THE BREECH
C INCREASE PROJECTILE MASS BY 5% TO ACCOUNT FOR FRICTION
C CHARGE TO MASS RATIO, CM, IS INITIAL MASS OF WORKING FLUID
C DIVIDED BY MASS OF PROJECTILE
C projw=1.05*PROJW
C For test case, no friction
     ALPHA = WF2/WFMASI
C CONSIDER BETÀ=FRACTION OF FLUID WHICH MOVES
C IF BETÀ=0., ALL THE FLUID IS AT REST
C IF BETÀ=1., ALL THE WF MOVES (LAGRANGE ASSUMP)
   IF (IBETÀ .EQ. 1) BETÀ = Z
   CM = ((WFMASI*(ALPHA + BETÀ*(1. - ALPHA)) + WAIR)/PROJW
   IF (CM .LE. 0.0) WRITE (*, *) ' Error in Spmean--C/M <= 0.'
   SPMPR = (((1. + 1./3.*CM)/(1. + 1./2.*CM)))*PRESCH
   BASEPR = (1./((1. + 1./3.*CM)))*SPMPR
C
   RETURN
   END
C
SUBROUTINE COMPRES
C
C DETERMINE DENSITY OF COMPRESSED WORKING FLUID
C DETERMINE ENERGY OF COMPRESSION
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
   PROJI, PROJW, TOL, TIMINC,
   WFMASI, AREA, WFMASI, RHOI,
   TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
   ELECEN, TEMP, RIMPET, GAMMA,
   COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
   Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETÀ, ICOM
COMMON /DATA/ PRTIM (I:NPT), PRES (I:NPT),
   TRTIM (I:NPT), TRAV (I:NPT),
   VEL (1:NPT), ELTIM (I:NPT), ELEC (1:NPT)
C
C LET BULK MODULUS BE AT MOST A LINEAR FCN OF PRESSURE
   IF (BM .LE. 0.0) WRITE (*, *) 'ERROR--BM<=0.0'
   IF (DERBM .EQ. 0.0) THEN
      RHO = RHOI*(I. + (PRESCH - PRES (I))/BM)
   ELSE
      RHO = RHOI*(1. + (DERBM/BM)*(PRESCH - PRES (1))/BM)
   END IF
C
C ENERGY PER UNIT MASS STORED BY COMPRESSED FLUID
   IF (((DERBM .EQ. 0.0) .OR. (DERBM .EQ. 1.0)) THEN
      ENCOMP = - 1.*(PRESCH - PRES (1))/RHO + (BM/RHOI)*
   1   LOG (1. + (PRESCH - PRES (1))/BM)
   ELSE
      ENCOMP = - 1.*(PRESCH - PRES (1))/RHO + (BM +
   1   DERBM*(PRESCH - PRES (1)))
   2   (/((DERBM - 1.)*RHO) - BM/((DERBM - 1.)*RHOI))
   END IF
C
RETURN
END
C ******************************************************************************
SUBROUTINE VELPR (I)
C
C DETEkteMINE PROJECTILE VELOCITY
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
  1 TRTIM (1:NPT), TRAV (1:NPT),
  2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
  1 PROJ, PROJW, TOL, TIMINC,
  2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
  1 ELECEN, TEMP, RIMPET, GAMMA,
  2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
  3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
C
C CENTERED DIFFERENCE
IF (I .EQ. NTR) THEN
  VELP = (TRAV (I) - TRAV (I - 2))/(2.*
  1 (TRTIM (I) - TRTIM (I - 1)))
ELSE
  VELP = (TRAV (I + 1) - TRAV (I - 1))/(2.*
  1 (TRTIM (I) - TRTIM (I - 1)))
END IF
C
RETURN
END
C ******************************************************************************
SUBROUTINE DER (TIME, IOPT, AMT, AMTDER)
C
C FINDS DERIVATIVES: USED FOR dE/dt and dWF/dt
C ASSUMES CONSTANT STEP SIZE FOR TIME
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
  1 TRTIM (1:NPT), TRAV (1:NPT),
  2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /OUT/ WFTIM (NPT), WFCUM (NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
C
C IF IOPT=1, FIND DER OF ENERGY
C IF IOPT=2, FIND DER OF WF
IF (IOPT .EQ. 1) GO TO 1000
IF (IOPT .EQ. 2) GO TO 1010

C

IF ((ABS (TIME - 1.E-10)) .EQ. 0.0) THEN
  AMT = 0.0
  AMTDER = 0.0
  GO TO 1020
END IF

C IOPT=1, DERIVATIVE OF ELEC EN
1000 CONTINUE
  DO 1030 I = 2, NEL
    IF (TIME .EQ. ELTIM (I)) THEN
      AMT = ELEC (I)
      IMARK = I
      GO TO 1040
    END IF
    IF (TIME .GT. ELTIM (I - 1)) THEN
      AMT = ELEC (I - 1) + (ELEC (I) - ELEC (I - 1))*
          ((TIME - ELTIM (I - 1))/(ELTIM (I) - ELTIM (I - 1)))
      IMARK = I
    END IF
  1030 CONTINUE
  C IF GREATER THAN LAST POINT, USE LAST POINT
  C CENTERED DIFFERENCE
  1040 CONTINUE
  IF (IMARK .EQ. NEL) THEN
    AMT = ELEC (NEL)
    AMTDER = (ELEC (IMARK) - ELEC (IMARK - 2))/(2.*(ELTIM (IMARK)
          1 - ELTIM (IMARK - 1)))
  ELSE
    AMTDER = (ELEC (IMARK + 1) - ELEC (IMARK -
          1))/(2.*(ELTIM (IMARK)
          2 - ELTIM (IMARK - 1)))
  END IF
  C
    GO TO 1020
  C

C IOPT=2 DERIVATIVE OF WF
1010 CONTINUE
  C
  10 DO 1050 I = 2, NWF
    IF (TIME .EQ. WFTIM (I)) THEN
      AMT = WFCUM (I)
      IMARK = I
      GO TO 1060
    END IF
    IF (TIME .GT. WFTIM (I - 1)) THEN
      AMT = WFCUM (I - 1) + (WFCUM (I) - WFCUM (I - 1))*
          ((TIME - WFTIM (I - 1))/(WFTIM (I) - WFTIM (I - 1)))
      IMARK = I
    END IF
  1050 CONTINUE
  C
IMARK = I
END IF
1050 CONTINUE
C IF GREATER THAN LAST POINT, USE LAST POINT
C CENTERED DIFFERENCE
1060 CONTINUE
IF (IMARK .EQ. NWF) THEN
AMT = WFCUM (NWF)
AMTDER = (WFCUM (IMARK) - WFCUM (IMARK - 2))/((2.*(WFTIM (IMARK) - WFTIM (IMARK - 1))))
ELSE
AMTDER = (WFCUM (IMARK + 1) - WFCUM (IMARK - 1))/((WFTIM (IMARK) - WFTIM (IMARK - 1)))
END IF
C
1020 CONTINUE
RETURN
END
C ***********************
SUBROUTINE OUTPUT (IOPT)
C
IMPLICIT REAL (A - H, O - Z)
PARAMETER (NPT = 150, NPTT = 50)
COMMON /START/ CHVOL, AREA, WFMASI, RHOI,
1 PROJI, PROJW, TOL, TIMINC,
2 TIMEND, WAIR, BM, DERBM
COMMON /CURRENT/ TIME, PRESCH, TRAVPR,
1 ELECEN, TEMP, RIMPET, GAMMA,
2 COVOL, WF1, WF2, ELDEN, SPMPR, VELP, BETA, BASEPR, CM,
3 Z, RHO, ENCOMP
COMMON /OPTIONS/ IBETA, ICOM
COMMON /DATA/ PRTIM (1:NPT), PRES (1:NPT),
1 TRTIM (1:NPT), TRAV (1:NPT),
2 VEL (1:NPT), ELTIM (1:NPT), ELEC (1:NPT)
COMMON /OUT/ WFTIM (NPT), WFCUM (NPT)
COMMON /NUMBER/ NPR, NTR, NEL, NTH, ITRVEL, NWF
COMMON /NAME/ PRESIN, TRAVIN, ELECIN, THERIN, INITIN
CHARACTER*20 PRESIN, TRAVIN, ELECIN, THERIN, INITIN
C
C FILE 28 IS OUTPUT FOR DETAILS OF WORKING FLUID
C FILE 27 IS ENERGY BALANCE
C FILE 26 IS ERROR FILE AND MESSAGES
IF (IOPT .EQ. 1) THEN
WRITE (*, 6000)
OPEN (26, FILE = 'MESSAGES.OUT')
OPEN (27, FILE = 'ENERGY.OUT')
OPEN (28, FILE = 'WORKFL.OUT')
OPEN (29, FILE = 'COMPRESS.OUT')
GO TO 1000
END IF
IF (IOPT .EQ. 2) GO TO 1010
IF (IOPT .EQ. 3) GO TO 1020
IF (IOPT .EQ. 4) GO TO 1030
C
1010 CONTINUE
WRITE (*, 6010)
WRITE (*, 6020)
WRITE (27, 6030)
WRITE (28, 6040)
WRITE (29, 6050)
GO TO 1000
C
1020 CONTINUE
C CHANGE TO MPa AND TO JOULES
TIMMS = TIME*1.0E+3
PRESCH = PRESCH*1.0E-7
BASEPR = BASEPR*1.0E-7
SPMPR = SPMPR*1.0E-7
WRITE (*, 6060) TIMMS, PRESCH, BASEPR, TRAVPR, VELP, ELDEN, WF2
write (26, 6070) timms, presch, basepr
rimpet = rimpet*1.0e-7
enused = (rimpet/(gamma - 1.))*wf2
enkp = .5*projw*velp*velp*1.0e-7
alpha = wf2/wfmasi
cm = (wfmasi*(alpha + beta*(1. - alpha)) + wair)/projw
enkg = (1./6.)*cm*projw*velp*velp*1.0e-7
vol = chvol - covol*wf2 - (wfmasi - wf2)/rho + travpr*area
enigas = spmpr*vol/(gamma - 1.)
encom = (1. - z)*wfmasi*encomp*1.0e-7
if (enused .ne. 0.0)
  ener = ((enused - enkp - enkg - enigas - encom)/enused)*100.
write (27, 6080) timms, enused, enkp, enkg, enigas, encom, ener
write (29, 6090) timms, rho, encomp, encom
C
GO TO 1000
C
C IF IOPT=1, FIND DER OF ENERGY
C IF IOPT=2, FIND DER OF WF
1030 CONTINUE
TIME = 0.0
TIMEND = WFTIM (NWF)
TIM2 = 0.0
EL = 0.0
WF = 0.0
ELDEN = 0.0
ELDER = 0.0
WFDER = 0.0
WRITE (28, 6100) TIM2, EL, WF, ELDEN, ELDER, WFDER
DO 1040 I = 1, NPT
   TIME = TIME + TIMINC
   IF (TIME .LE. TIMEND) THEN
      CALL DER (TIME, 1, EL, ELDER)
      CALL DER (TIME, 2, WF, WFDER)
      IF (WF .NE. 0.0) ELDEN = EL/WF
      TIM2 = TIME*1E+3
      C ELDEN IN MJ/s, WFDER IN kg/s
      ELDER = ELDER*.001
      WFDER = WFDER*.001
      WRITE (28, 6100) TIM2, EL, WF, ELDEN, ELDER, WFDER
   ELSE
      GO TO 1000
   END IF
1040 CONTINUE
C
6000 FORMAT(/,' Inverse Electrothermal Gun Code',//)
6010 FORMAT(1X, 'TIME ',2X,'CHAM PR',2X,
   1  ' BAS- PR '3X,'PROJ TRAV',2X,' PROJ VEL',5X, 'EL EN DEN',
   2  '2X,' 'CUM WF' )
6020 FORMAT(2X,' (ms) ',2x,2x,'(MPa) ',3x,2x,'(MPa)',1x,2x,
   1  2x,'(cm)',3x,2x,3x,'(cm/s)',2x,2x,2x, '(MJ/kg)',1X,
   2  2X,1X,'(g) '/)
6070 format(1x,f6.2,2x,f15.7,2x,f15.7)
6080 format(1x,F6.1)
6040 FORMAT(1X, 'ENERGY BALANCE' //,
   1 1x,'time',7x,'enused','10x,'KE proj',9x,'KE gas',8x,
   2 'Intgas',5x,'En comp',5x,'Error %',
   3 1x,'(ms)', 7x,' (J)', 11x,' (J)', 9x, '(J)', '10x,' (J)',
   4 10x,'(J)'/)
6050 FORMAT(1X, 'WORKING FLUID AND ELECTRICAL ENERGY SUMMARY' //,
   1 1x,1x,'TIME','1x,3x,'EL EN',2x,5x,'WF CUMULATIVE',1X,1x,
   2 'EL EN DENSITY',1x,'ELEC DER',1x,2x,'WF DER',
   3 1x,1x,'(ms)',1X,3x, '(kJ)',3X,11X,'(G)',6x,4X, '(MJ/kg)',5X,
   4 2x,'(MJ/s)',2X,3x,'(kg/s)')
6100 FORMAT(1X,f6.3,1x,f10.2,1x,f15.5,1x,f15.5,1x,f10.2,1x,f10.2)
6050 FORMAT(1X, 'timms(ms),rho(g/cc),encomp(J/g),encom(J)')
6090 FORMAT(1X,f6.3,1x,f8.5,1x,f20.5,1x,f10.5)
C
1000 CONTINUE
    RETURN
END
C *******************************
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 2             | Administrator  
Defense Technical Info Center  
ATTN: DTIC-DDA  
Cameron Station  
Alexandria, VA 22304-6145 |
| 1             | Commander  
U.S. Army Materiel Command  
ATTN: AMCAM  
5001 Eisenhower Ave.  
Alexandria, VA 22333-0001 |
| 1             | Commander  
U.S. Army Laboratory Command  
ATTN: AMSLC-DL  
2800 Powder Mill Rd.  
Adelphi, MD 20783-1145 |
| 2             | Commander  
U.S. Army Armament Research,  
Development, and Engineering Center  
ATTN: SMCAR-IMI-I  
Picatinny Arsenal, NJ 07806-5000 |
| 2             | Commander  
U.S. Army Armament Research,  
Development, and Engineering Center  
ATTN: SMCAR-TDC  
Picatinny Arsenal, NJ 07806-5000 |
| 1             | Director  
Benet Weapons Laboratory  
U.S. Army Armament Research,  
Development, and Engineering Center  
ATTN: SMCAR-CCB-TL  
Watervliet, NY 12189-4050 |
| 1             | Commander  
U.S. Army Rock Island Arsenal  
ATTN: SMCR-TL/Technical Library  
Rock Island, IL 61299-5000 |
| 1             | Director  
U.S. Army Aviation Research and Technology Activity  
ATTN: SAVRT-R (Library)  
M/S 219-3  
Ames Research Center  
Moffett Field, CA 94035-1000 |
| 1             | Commander  
U.S. Army Missile Command  
ATTN: AMSMI-RD-CS-R (DOC)  
Redstone Arsenal, AL 35898-5010 |
| 1             | Commander  
Defense Technical Info Center  
ATTN: ASQNC-TAC-DIT (Technical Information Center)  
Warren, MI 48397-5000 |
| 1             | Director  
U.S. Army TRADOC Analysis Command  
ATTN: ATRC-WSR  
White Sands Missile Range, NM 88002-5502 |
| 1             | Commandant  
U.S. Army Field Artillery School  
ATTN: ATSF-CSI  
Ft. Sill, OK 73503-5000 |
| 1             | Commandant  
U.S. Army Infantry School  
ATTN: ATSH-CD (Security Mgr.)  
Fort Benning, GA 31905-5660 |
|             | Commandant  
U.S. Army Infantry School  
ATTN: ATSH-CD-CSO-OR  
Fort Benning, GA 31905-5660 |
| 1             | WL/MNOI  
Eglin AFB, FL 32542-5000  
Aberdeen Proving Ground |
| 2             | Dir, USAMSAA  
ATTN: AMXSY-D  
AMXSY-MP, H. Cohen |
| 1             | Cdr, USATECOM  
ATTN: AMSTE-TC |
| 3             | Cdr, CRDEC, AMCOM  
ATTN: SMCCR-RSP-A  
SMCCR-MU  
SMCCR-MSI |
| 1             | Dir, VLAMO  
ATTN: AMSLC-VL-D |
| 10            | Dir, USABRL  
ATTN: SLCBR-DD-T |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander, U.S. Army Concepts Analysis Agency</td>
</tr>
<tr>
<td></td>
<td>ATTN: D. Hardison</td>
</tr>
<tr>
<td></td>
<td>8120 Woodmount Ave.</td>
</tr>
<tr>
<td></td>
<td>Bethesda, MD 20014</td>
</tr>
<tr>
<td>1</td>
<td>Director, U.S. Army BMD</td>
</tr>
<tr>
<td></td>
<td>Advanced Technology Center</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 1500</td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td>1</td>
<td>Chairman, DOD Explosives Safety Board</td>
</tr>
<tr>
<td></td>
<td>Room 856-C</td>
</tr>
<tr>
<td></td>
<td>Hoffman Bldg. 1</td>
</tr>
<tr>
<td></td>
<td>2461 Eisenhower Ave.</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22331-0600</td>
</tr>
<tr>
<td>3</td>
<td>Project Manager, Autonomous Precision-Guided Munition (APGM)</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Armament Research, Development, and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCPM-CWW</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>Department of the Army</td>
</tr>
<tr>
<td></td>
<td>Office of the Product Manager</td>
</tr>
<tr>
<td></td>
<td>155 mm Howitzer, M109A6, Paladin</td>
</tr>
<tr>
<td></td>
<td>ATTN: SFAE-AR-HIP-IP, Mr. R. De Kleine</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>1</td>
<td>Commander, Production Base Modernization Agency</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Armament Research, Development, and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMC-PBM-E, L. Laibson</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>3</td>
<td>PEO-Armaments</td>
</tr>
<tr>
<td></td>
<td>Project Manager</td>
</tr>
<tr>
<td></td>
<td>Tank Main Armament Systems</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCPM-TMA, K. Russell</td>
</tr>
<tr>
<td></td>
<td>AMCPM-TMA-105</td>
</tr>
<tr>
<td></td>
<td>AMCPM-TMA-120</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>5</td>
<td>Director, Benet Laboratories</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Watervliet Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARWV-RD, L. Johnson</td>
</tr>
<tr>
<td></td>
<td>G. Carafano</td>
</tr>
<tr>
<td></td>
<td>R. Thierry</td>
</tr>
<tr>
<td></td>
<td>R. Hasoenbein</td>
</tr>
<tr>
<td></td>
<td>P. Votis</td>
</tr>
<tr>
<td></td>
<td>Watervliet, NY 12189</td>
</tr>
<tr>
<td>3</td>
<td>Commander, U.S. Army AMCOM</td>
</tr>
<tr>
<td></td>
<td>R&amp;D Technical Library</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMC-IRC, G. Cowan</td>
</tr>
<tr>
<td></td>
<td>SMCAR-ESM(R), W. Fortune</td>
</tr>
<tr>
<td></td>
<td>R. Zastrow</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61299-7300</td>
</tr>
<tr>
<td>1</td>
<td>Commander, USACECOM</td>
</tr>
<tr>
<td></td>
<td>R&amp;D Technical Library</td>
</tr>
<tr>
<td></td>
<td>ATTN: ASQNC-ELC-IS-L-R, Myer Center</td>
</tr>
<tr>
<td></td>
<td>Fort Monmouth, NJ 07703-5301</td>
</tr>
<tr>
<td>1</td>
<td>Commander, U.S. Army Aviation School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Aviation Agency</td>
</tr>
<tr>
<td></td>
<td>Fort Rucker, AL 36360</td>
</tr>
<tr>
<td>1</td>
<td>President, U.S. Army Armor and Engineering Board</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATZK-AD-S</td>
</tr>
<tr>
<td></td>
<td>Fort Knox, KY 40121</td>
</tr>
<tr>
<td>1</td>
<td>Director, HQ, TRAC RPD</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATCD-MA, MAJ Williams</td>
</tr>
<tr>
<td></td>
<td>Fort Monroe, VA 23651-5143</td>
</tr>
<tr>
<td>1</td>
<td>Headquarters, U.S. Army Materiel Command</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCICP-AD, Michael F. Fisette</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Ave.</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22333-0001</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>4</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Armament Research, Development, and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-CCD, D. Spring</td>
</tr>
<tr>
<td></td>
<td>SMCAR-CCS</td>
</tr>
<tr>
<td></td>
<td>SMCAR-CCH-T, L. Rosendorf</td>
</tr>
<tr>
<td></td>
<td>SMCAR-CCH-V, E. Fennell</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>8</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Armament Research, Development, and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-AE, J. Picard</td>
</tr>
<tr>
<td></td>
<td>SMCAR-AEE-B, A. Beradell</td>
</tr>
<tr>
<td></td>
<td>D. Downs</td>
</tr>
<tr>
<td></td>
<td>S. Einstein</td>
</tr>
<tr>
<td></td>
<td>A. Bracuti</td>
</tr>
<tr>
<td></td>
<td>D. Chiu</td>
</tr>
<tr>
<td></td>
<td>SMCAR-AEE, J. Lannon</td>
</tr>
<tr>
<td></td>
<td>SMCAR-AES, S. Kaplowitz</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>11</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Armament Research, Development, and Engineering Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCAR-FSA-T, M. Salsbury</td>
</tr>
<tr>
<td></td>
<td>SMCAR-FSE, G. Ferdinand</td>
</tr>
<tr>
<td></td>
<td>T. Gora</td>
</tr>
<tr>
<td></td>
<td>B. Knutelsky</td>
</tr>
<tr>
<td></td>
<td>K. C. Pan</td>
</tr>
<tr>
<td></td>
<td>W. Davis</td>
</tr>
<tr>
<td></td>
<td>C. Dunham</td>
</tr>
<tr>
<td></td>
<td>A. Graf</td>
</tr>
<tr>
<td></td>
<td>H. Naber-LEbby</td>
</tr>
<tr>
<td></td>
<td>R. Lundberg</td>
</tr>
<tr>
<td></td>
<td>J. Niles</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>D. Mann</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td></td>
<td>Research Triangle Park, NC 27709-2211</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Belvoir R&amp;D Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: STRBE-WC, Technical Library (Vault)</td>
</tr>
<tr>
<td></td>
<td>Bldg. 315</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060-5606</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army TRAC - Fort Lee</td>
</tr>
<tr>
<td></td>
<td>Defense Logistics Studies</td>
</tr>
<tr>
<td></td>
<td>Fort Lee, VA 23801-6140</td>
</tr>
<tr>
<td>1</td>
<td>President</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Artillery Board</td>
</tr>
<tr>
<td></td>
<td>Fort Sill, OK 73503</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Command and General Staff College</td>
</tr>
<tr>
<td></td>
<td>Fort Leavenworth, KS 66027-5200</td>
</tr>
<tr>
<td>1</td>
<td>Commandant</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Special Warfare School</td>
</tr>
<tr>
<td></td>
<td>ATTN: Rev and Tng Lit Div</td>
</tr>
<tr>
<td></td>
<td>Fort Bragg, NC 28307</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Radford Army Ammunition Plant</td>
</tr>
<tr>
<td></td>
<td>ATTN: SMCRA-QA/HI Library</td>
</tr>
<tr>
<td></td>
<td>Radford, VA 24141</td>
</tr>
<tr>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Foreign Science and Technology Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMXST-MC-3</td>
</tr>
<tr>
<td></td>
<td>S. LeBeau</td>
</tr>
<tr>
<td></td>
<td>C. Beitner</td>
</tr>
<tr>
<td></td>
<td>220 Seventh St., NE</td>
</tr>
<tr>
<td></td>
<td>Charlottesville, VA 22901</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Field Artillery Center and School</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSF-CO-MW, B. Willis</td>
</tr>
<tr>
<td></td>
<td>Fort Sill, OK 73503</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 473, R S. Miller</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy St.</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2            | Commander Naval Sea Systems Command  
ATTN: SEA 62R  
SEA 64  
Washington, DC 20362-5101 |
| 1            | Commander Naval Air Systems Command  
ATTN: AIR-954-Technical Library  
Washington, DC 20360 |
| 1            | Naval Research Laboratory  
Technical Library  
Washington, DC 20375 |
| 2            | Commander Naval Surface Warfare Center  
ATTN: J. P. Consaga  
C. Gotzmer  
Silver Spring, MD 20902-5000 |
| 3            | Commander Naval Surface Warfare Center  
ATTN: S. Jacobs/Code R-10  
K. Kim/Code R-13  
R. Bernecker/Code R-13  
Silver Spring, MD 20902-5000 |
| 6            | Commander Naval Surface Warfare Center  
ATTN: Code G33,  
T. Doran  
J. L. East  
W. Burrell  
J. Johndrow  
Code G23, D. McClure  
Code DX-21 Technical Library  
Dahlgren, VA 22448-5000 |
| 2            | Commander Naval Underwater Systems Center  
Energy Conversion Dept.  
ATTN: Code 5B331, R. S. Lazar  
Technical Library  
Newport, RI 02840 |
| 1            | Commander Naval Weapons Center  
ATTN: Code 388, C. F. Price  
Info Science Div  
China Lake, CA 93555-6001 |
| 1            | OSD/SDIO/IST  
ATTN: Dr. Len Caveny  
Pentagon  
Washington, DC 20301-7100 |
| 1            | OLAC PL/TSTL  
ATTN: D. Shiplett  
Edwards AFB, CA 93523 |
| 1            | Commandant U.S. Army Field Artillery School  
ATTN: STSF-TSM-CN  
Fort Sill, OK 73503-5600 |
| 10           | Central Intelligence Agency  
Office of the Central Reference Dissemination Branch  
Room GE-47 HQS  
Washington, DC 20502 |
| 1            | Central Intelligence Agency  
ATTN: Joseph E. Backofen  
HQ Room 5F22  
Washington, DC 20505 |
| 5            | Director Sandia National Laboratories  
ATTN: T. Hitchcock  
R. Woodfin  
D. Benson  
S. Kempka  
R. Beasley  
Advanced Projects Div 14  
Organization 9123  
Albuquerque, NM 87185 |
| 2            | Director Los Alamos National Laboratory  
ATTN: B. Kaswhia  
H. Davis  
Los Alamos, NM 87545 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Lawrence Livermore National Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. S. L-355, A. Buckingham</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 808</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94550</td>
</tr>
<tr>
<td>2</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td></td>
<td>Combustion Research Facility</td>
</tr>
<tr>
<td></td>
<td>Division 8357</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Armstrong</td>
</tr>
<tr>
<td></td>
<td>S. Vosen</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94551-0469</td>
</tr>
<tr>
<td>1</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mech./Indust. Engr.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Professor Herman Krier, 144 MEB</td>
</tr>
<tr>
<td></td>
<td>1206 N. Green St.</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td>1</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td></td>
<td>Applied Physics Laboratory</td>
</tr>
<tr>
<td></td>
<td>Chemical Propulsion Information Agency</td>
</tr>
<tr>
<td></td>
<td>ATTN: T. Christian</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins Rd.</td>
</tr>
<tr>
<td></td>
<td>Laurel, MD 20707</td>
</tr>
<tr>
<td>1</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td></td>
<td>Dept. of Mechanical Engr.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. K. Kuo</td>
</tr>
<tr>
<td></td>
<td>312 Mechanical Engineering Bldg.</td>
</tr>
<tr>
<td></td>
<td>University Park, PA 16802</td>
</tr>
<tr>
<td>1</td>
<td>North Carolina State University</td>
</tr>
<tr>
<td></td>
<td>ATTN: John G. Gilligan</td>
</tr>
<tr>
<td></td>
<td>Box 7909</td>
</tr>
<tr>
<td></td>
<td>1110 Burlington Engineering Labs</td>
</tr>
<tr>
<td></td>
<td>Raleigh, NC 27695-7909</td>
</tr>
<tr>
<td>1</td>
<td>SRI International</td>
</tr>
<tr>
<td></td>
<td>Propulsion Sciences Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Library</td>
</tr>
<tr>
<td></td>
<td>333 Ravenswood Ave.</td>
</tr>
<tr>
<td></td>
<td>Menlo Park, CA 94025</td>
</tr>
<tr>
<td>1</td>
<td>SPARTA</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. Michael Holland</td>
</tr>
<tr>
<td></td>
<td>9455 Towne Center Dr.</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA 92121-1964</td>
</tr>
<tr>
<td>5</td>
<td>FMC Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. G. Johnson</td>
</tr>
<tr>
<td></td>
<td>Mr. M. Seale</td>
</tr>
<tr>
<td></td>
<td>Dr. A. Giovannetti</td>
</tr>
<tr>
<td></td>
<td>Mr. J. Dyvik</td>
</tr>
<tr>
<td></td>
<td>Dr. D. Cook</td>
</tr>
<tr>
<td></td>
<td>4800 East River Road</td>
</tr>
<tr>
<td></td>
<td>Minneapolis, MN 55421-1498</td>
</tr>
<tr>
<td>3</td>
<td>GT Devices</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. S. Goldstein</td>
</tr>
<tr>
<td></td>
<td>Dr. R. J. Greig</td>
</tr>
<tr>
<td></td>
<td>Dr. N. Winsor</td>
</tr>
<tr>
<td></td>
<td>5705A General Washington Dr.</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22312</td>
</tr>
<tr>
<td>3</td>
<td>General Dynamics Land Systems</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. B. VanDeusen</td>
</tr>
<tr>
<td></td>
<td>Mr. F. Lunsford</td>
</tr>
<tr>
<td></td>
<td>Dr. M. Weidner</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 2074</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48090-2074</td>
</tr>
<tr>
<td>2</td>
<td>Alliant Techsystems, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. E. Tompkins</td>
</tr>
<tr>
<td></td>
<td>J. Kennedy</td>
</tr>
<tr>
<td></td>
<td>MN38-3300</td>
</tr>
<tr>
<td></td>
<td>10400 Yellow Circle Dr.</td>
</tr>
<tr>
<td></td>
<td>Minnetonka, MN 55343</td>
</tr>
<tr>
<td>2</td>
<td>Olin Ordnance</td>
</tr>
<tr>
<td></td>
<td>ATTN: V. McDonald, Library</td>
</tr>
<tr>
<td></td>
<td>Hugh McElroy</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 222</td>
</tr>
<tr>
<td></td>
<td>St. Marks, FL 32355</td>
</tr>
<tr>
<td>1</td>
<td>Paul Gough Associates, Inc.</td>
</tr>
<tr>
<td></td>
<td>ATTN: P. S. Gough</td>
</tr>
<tr>
<td></td>
<td>1048 South St.</td>
</tr>
<tr>
<td></td>
<td>Portsmouth, NH 03801-5423</td>
</tr>
<tr>
<td>1</td>
<td>Physics International Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: Library, H. Wayne Wampler</td>
</tr>
<tr>
<td></td>
<td>2700 Merced St.</td>
</tr>
<tr>
<td></td>
<td>San Leandro, CA 94577</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 2            | Rockwell International Rocketdyne Division  
ATTN: BA08, J. E. Flanagan, J. Gray  
6633 Canoga Ave. Canoga Park, CA 91304 |
| 2            | Princeton Combustion Research Laboratory  
ATTN: M. Summerfield, N. Messina  
4275 U.S. Highway One Monmouth Junction, NJ 08852 |
| 2            | Science Applications, Inc.  
ATTN: J. Batteh, L. Thornhill  
1519 Johnson Ferry Rd. Suite 300 Marietta, GA 30062-6438 |
| 1            | Eli Freedman & Associates  
ATTN: E. Freedman  
2411 Diana Rd. Baltimore, MD 21209 |
| 3            | Deputy Commander Strategic Defense Command  
ATTN: SSFAE-SD-HVA  
S. Smith  
LTC Kee  
D. Kianos  
P. O. Box 1500 Huntsville, AL 35887-3801 |
| 1            | Veritay Technology, Inc.  
4845 Millersport Hwy. P. O. Box 305 East Amherst, NY 14051-0305 |
| 1            | Battelle  
ATTN: TACTEC Library, J. N. Huggins  
505 King Ave. Columbus, OH 43201-2693 |
| 2            | California Institute of Technology Jet Propulsion Laboratory  
ATTN: L. D. Strand, MS 512/102 D. Elliot  
4800 Oak Grove Dr. Pasadena, CA 91109 |
| 1            | General Electrica Co. Defense Systems Division  
ATTN: Dr. J. Mandzy  
Mail Drop 43-220 100 Plastics Ave. Pittsfield, MA 01201 |
| 1            | Naval Sea System Command Department of the Navy  
ATTN: CSEA/CDR Dampier 06KR12 Washington, DC 20362-5101 |
| 2            | SAIC  
ATTN: Mr. N. Sinha, Dr. S. Dash  
501 Office Center Drive Suite 420 Fort Washington, PA 19034-3211 |
| 1            | Dr. W. J. Sargeant James Clark Maxwell Professor Department of Electrical Engineering Bonner Hall—Room 312 Buffalo, NY 14260 |
| 4            | Cdr, USACSTA  
ATTN: S. Walton  
G. Rice  
D. Lacey  
C. Herud |
| 1            | Dir, USAHEL  
ATTN: J. Weisz |

Aberdeen Proving Ground
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RARDE</td>
</tr>
<tr>
<td></td>
<td>GS2 Division</td>
</tr>
<tr>
<td></td>
<td>Building R31</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. C. Woodley</td>
</tr>
<tr>
<td></td>
<td>Dr. G. Cook</td>
</tr>
<tr>
<td></td>
<td>Fort Halstead</td>
</tr>
<tr>
<td></td>
<td>Sevenoaks, Kent TN147Bt</td>
</tr>
<tr>
<td></td>
<td>ENGLAND</td>
</tr>
</tbody>
</table>
This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.


2. Date Report Received: 

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) 

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) 

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)