METHOD OF MOMENTS
ANALYSIS OF SYMMETRIC DUAL REFLECTOR
ANTENNAS WITH FEEDS

by
Manuel V. Ordonez
June, 1992

Thesis Advisor: David C. Jenn

Approved for public release; distribution is unlimited.
METHOD OF MOMENTS ANALYSIS OF SYMMETRIC DUAL REFLECTOR ANTENNAS WITH FEEDS

12. PERSONAL AUTHOR(S)
ORDONEZ, Manuel V.

13a. TYPE OF REPORT
Master's Thesis

13b. TIME COVERED
FROM June 1992 TO

14. DATE OF REPORT (Year,Month,Day)
June 1992

15. PAGE COUNT
83

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Electric Field Integral Equation; Method of Moments
Dual Reflector Antennas

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Small symmetric dual reflector antennas have low efficiencies because of conflicting requirements for the subreflector and feed. Low efficiency is more pronounced for antenna configurations with main reflector diameters less than 50 times its operating wavelength. The subreflector and feed geometry must be small to reduce blockage but yet large enough to be an efficient scatterer. It may be possible to compensate for this by tuning the feed and subreflector. That is, by proper choice of the antenna geometry and dimensions and by using low-blockage feeds, the efficiency may be enhanced.

Existing computer codes have been modified in this thesis to reflect these changes in antenna feeds in order to optimize the antenna efficiency. A feed system consisting of a fed dipole in the presence of parasitic elements has resulted in an efficiency of 55%. Other untested feed configurations may produce even higher efficiencies.
ABSTRACT

Small symmetric dual reflector antennas have low efficiencies because of conflicting requirements for the subreflector and feed. Low efficiency is more pronounced for antenna configurations with main reflector diameters less than 50 times its operating wavelength. The subreflector and feed geometry must be small to reduce blockage but yet large enough to be an efficient scatterer. It may be possible to compensate for this by tuning the feed and subreflector. That is, by proper choice of the antenna geometry and dimensions and by using low-blockage feeds, the efficiency may be enhanced.

Existing computer codes have been modified in this thesis to reflect these changes in antenna feeds in order to optimize the antenna efficiency. A feed system consisting of a fed dipole in the presence of parasitic elements has resulted in an efficiency of 55%. Other untested feed configurations may produce even higher efficiencies.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. ANTENNA DESCRIPTION 1
 B. CASSEGRAIN DUAL-REFLECTOR SYSTEM 2
 C. SCOPE OF STUDY 4

II. ANTENNA OPTIMIZATION APPROACHES 7
 A. DIRECTIVITY AND EFFICIENCY 7
 B. FEED DESIGN REQUIREMENTS 8
 C. SHAPING OF REFLECTORS 10

III. METHOD OF MOMENTS ANALYSIS 13
 A. ELECTRIC FIELD INTEGRAL EQUATION (EFIE) 13
 B. SOLUTION OF EFIE USING METHOD OF MOMENTS ... 16
 C. MEASUREMENT MATRICES 20

IV. COMPUTER CODE DESCRIPTION 21
 A. BRIEF DESCRIPTION OF THE MAIN PROGRAM 21
 1. GAIN CALCULATION 24
 B. SUBROUTINES SOLVE AND DECOMP 25
 C. SUBROUTINES PLANES AND PLANEW 26
 D. SUBROUTINES ZMATSS, ZMATSW AND ZMATWW 26
 E. SUBROUTINES ZASMBO AND ZASMBN 26
V. DATA ANALYSIS .. 28
 A. FEED DESIGN STUDY 28
 B. SHAPING INVESTIGATION 32
 C. INTEGRATION OF THE FEED DESIGN INTO THE
 REFLECTOR .. 33

VI. SUMMARY AND CONCLUSIONS 39

APPENDIX. COMPUTER CODE 41

LIST OF REFERENCES 75

INITIAL DISTRIBUTION LIST 76
ACKNOWLEDGEMENT

I would like to thank Dr. David C. Jenn for his patience in allowing me to constantly aggravate him for his advise. From his vast knowledge of the electromagnetic field, the assistance he rendered in giving light to the gray areas of the field is superb. His support and guidance in the completion of this thesis is sincerely appreciated.

Most of all I would like to thank my family: my wife Mila; my son Matthew; and my daughters Paula and Kimberly. They have endured the constant neglect that I have often given them. Each one have stood by me throughout my studies and rendered their understanding.

vi
I. INTRODUCTION

A. ANTENNA DESCRIPTION

At high frequencies, an efficient method of focusing microwave energy into a desired directional beam is by the use of metallic reflecting surfaces. The reflector shape when using a single surface is usually parabolic, with a primary feed source located at the focus and directed onto the reflector area. Such a reflector may be a section of a surface formed by rotating a parabola about its axis. A single surface reflector however, does not allow both the aperture amplitude and phase distribution to be varied independently. The only means of control over the power distribution are by varying the focal length of the paraboloid or the feed pattern. Varying the focal length necessitates changing the physical dimensions of the antenna. Very large diameter front fed paraboloids are seldom used because of the long transmission line runs required to reach the feed. Adding a second reflecting surface, such as in the Cassegrain (parabola-hyperbola) or Gregorian (parabola-ellipse) design, leads to a more compact antenna than a single surface paraboloid of the same diameter. As discussed by Collin [Ref. 1], complete control over the aperture field distribution can be achieved by shaping both the subreflector and the main reflector.

As pointed out by Love [Ref. 2], reflector antennas are truly wideband devices, capable in principle of operation from radio to optical frequencies. Surface contours that are of particular interest at microwave frequencies are derived from the conic
sections. Conic sections include paraboloids, ellipsoids and hyperboloids. Axially symmetric reflectors are obtained by rotating these curves around the focal axis to generate a figure of revolution. Axially symmetric reflectors can suffer from severe blockage losses by the subreflector. To keep the subreflector blockage small requires a small subreflector size. Consequently, to simultaneously keep the blockage small, yet allow the subdish to be large enough so that it is an efficient scatterer restricts the main reflector diameter to be about 50 times the operating wavelength or greater. However, some recent applications such as direct broadcast satellites have been cause to re-examine the capabilities of reflector configurations less than 50 wavelengths, and perhaps as small as 20 wavelengths.

Another approach to designing efficient dual surface reflectors is to offset the surfaces to eliminate blocking. This would however, require more complex surface alignments as well as more restrictions on the feed. Such a design will also have degraded cross-polarization performance compared to a symmetric reflector.

B. CASSEGRAIN DUAL-REFLECTOR SYSTEM

The most common symmetric dual reflector configuration is the classical Cassegrain antenna shown in Figure (1). Based on the principles of geometrical optics, a spherical wave originating at the focus is transformed to a plane wave in the aperture plane. The feed is located at the accessible focal point and radiates the energy toward the subreflector which is in turn reflected toward
the main reflector. The internal focal point of the hyperboloid coincides with the focal point of the paraboloid.

![Diagram of Cassegrain antenna system]

Figure 1: Cassegrain antenna system.

The effectiveness or efficiency of these antennas is a product of three factors. The first is the ability of the energy source to illuminate only the subreflector while minimizing the energy that radiates elsewhere. This is termed as "spillover efficiency." The second factor is the ability of the source to illuminate the parabola evenly, making maximum use of the entire reflector surface. Such is termed as "illumination efficiency." The third factor affecting efficiency is the blockage by the feed and
subreflector. The feed blocks rays from the subdish that would normally impinge on the main dish. Similarly, the subreflector blocks rays reflected from the paraboloid. In a classical Cassegrain system, the burden of optimizing these efficiencies is primarily placed upon the feed itself. The ideal feed would have a radiation pattern which would be uniform within the angle subtended by the subreflector and would fall abruptly to zero for all angles outside this region. Such a pattern is, of course not achievable in practice using feeds of limited extent [Ref. 3].

The blockage introduced by the subreflector as well as the interaction of the fields between the main reflector and the subreflector significantly affects the efficiency of the antenna. A suitable feed pattern coupled with the proper choice of the geometry and dimensions of the reflectors are required. Therefore, by proper tuning and by using low-blockage feeds, the antenna efficiency can be greatly improved.

C. SCOPE OF STUDY

The objective of this thesis is to optimize the performance (gain) of small, axially symmetric dual reflectors. A combination of the usual techniques such as shaping, low blockage feeds, and minimization of subreflector blocking and spillover are considered. In Chapter II, a study on shaping the reflectors in order to increase antenna efficiency is delineated. These techniques are based on geometrical optics principles and only give reliable results when the reflector dimensions are electrically large.
In chapter III, the scattered fields are obtained using the method of moments solution of the E-field integral equation (EFIE) for a perfectly conducting body of revolution. A computer program has been developed based on an existing code written by Mautz and Harrington that computes the electric surface current and far scattered field of a perfectly conducting body of revolution. The program was modified to incorporate the desired antenna feed configuration.

As stated earlier, most of the burden in maximizing the efficiency on Cassegrain antennas is placed upon the antenna feed itself. Chapter V discusses some of the comparisons and efficiency improvements derived from experimental feed reconfigurations. A systematic approach is taken for evaluating feed radiation patterns starting from a point feed to a dipole radiating in the presence of parasitic wires and rings. Figure (2) illustrates the most general feed configuration included in the main program. It is shown that the parasitic elements increase the feed directivity, and therefore reduce spillover loss. An efficient design was achieved by placing the fed dipole one quarter of a wavelength in front of the main reflector. This allows the cavity to be completely eliminated if the rim is replaced by a parasitic ring.
Figure 2: Antenna feed configuration.
II. ANTENNA OPTIMIZATION APPROACHES

A. DIRECTIVITY AND EFFICIENCY

Radiation from an antenna is not uniformly distributed in all directions. The directivity function $D(\theta, \phi)$ for the antenna describes the variation of the intensity with the direction in space. The directivity function is defined by Reference (1)

$$D(\theta, \phi) = \frac{\text{power radiated per unit solid angle}}{\text{average power radiated per unit solid angle}} = \frac{\partial P_r/\partial \Omega}{P_r/4\pi} = 4\pi \frac{\partial P_r/\partial \Omega}{P_r}$$

(1)

where P_r is the total radiated power.

The gain of an antenna is similar to the directivity, except that the total power into the antenna rather than the total radiated power is used as the reference. As pointed out by Collin [Ref. 1], the relationship between gain and directivity is given by the efficiency, η

$$P_r = \eta P_{in}$$

(2)

where P_{in} is the total input power.

The directivity can be calculated by integrating the radiation pattern, which in turn can be determined by integrating the currents obtained from the method of moments (MM) solution of the
electric field integral equation (EFIE). Thus, the directivity, which is the maximum value of $D(\theta, \phi)$, is given by

$$D_{\text{DIRECTIVITY}} = 4\pi \frac{|E_{\text{max}}|^2}{\Omega_A}$$

(3)

where

$$\Omega_A = \int_0^{2\pi} \int_0^\pi E(\theta, \phi)^2 R^2 \sin(\theta) d\theta d\phi$$

(4)

and $E(\theta, \phi)$ is the total radiated electric field. The maximum value of the electric field in the direction of the main beam is E_{max}.

B. FEED DESIGN REQUIREMENTS

In order to reduce spillover, the radiation from the feed must be highly directive; nearly all of the energy from the feed must be reflected by the subdish. For a cavity backed dipole feed to fulfill this requirement, it must have a prohibitively large diameter in order to produce a narrow beam. However, a large feed structure would then cause a substantial blockage of the energy from the subdish. This presents conflicting requirements necessary to maximize the antenna performance.

For small reflector systems, an efficient geometry is illustrated in Figure (3). The focus is located 0.25λ from the paraboloid, which serves as a ground plane for the dipole. This is a function normally performed by the bottom of the cavity. The cavity walls give the dipole a more directive pattern than it would have if it were isolated in free space. But this added directivity
mainly comes from the rim of the cavity, not the sidewalls. Therefore, the entire cavity can be eliminated if a parasitic ring is added to simulate the cavity rim. Dipoles are added on each side of the fed dipole to narrow the radiation pattern in the H-plane. A third parasitic dipole is located 0.25\(\lambda\) in front of the feed dipole to act as director.

Thus, the three optimization objectives discussed in Chapter I are achieved. They are:

1. a low-blockage (low surface area) feed is employed
2. high feed directivity is achieved
3. the dimensions can be adjusted to fine-tune the efficiency of a small reflector.

C. SHAPING OF REFLECTORS

The primary objective of the feed design is to concentrate as much energy as possible toward the subreflector. In practice, the feed beam shape will have a smooth roll-off in gain at the subreflector edge, not an abrupt drop as desired. Also, the phase of the feed field will vary across the subreflector, whereas a constant phase is desired. These two shortcomings are a consequence of a high gain feed design.

Galindo [Ref. 4] has demonstrated that it is possible to compensate for the feed amplitude and phase error by modifying the shape of the reflector surface. To correct phase requires reshaping one of the reflector surfaces; to correct both amplitude and phase requires shaping both reflector surfaces. In this case, only the phase correction is considered, so the main reflector will be left unchanged.

The modification of a Cassegrain antenna system is shown in Figure (4). The power radiation pattern \(F(\theta) \) has a feed phase center located as shown. For the present application, the path length \(r + r' + r'' \) must be chosen to compensate for the feed phase error at each angle \(\theta \), so that there would be no phase error in the reflected energy. This would result in the final illumination across the aperture \(I(x) \) to have a uniform phase front.
Figure 4: Phase distribution.

Keeping in mind that a constant phase front would be ideal, the required equation to obtain equal phase path lengths can be derived from geometry

\[k \left(r + y + \frac{x-r \sin \theta}{\sin \beta} \right) + \phi_f(\theta) = C \text{ (constant)} \] \hspace{1cm} (5)

where \((x,y)\) and \((r,\theta)\) are the coordinates of the points on the main reflector and the subreflector and \(\phi_f(\theta)\) is the feed phase in the direction of \(r\). If \(\phi_f\) were a constant, then Equation (5) would be satisfied by the standard Cassegrain system. When \(\phi_f\) is not
constant over the angle subtended by the subreflector, \((r, \theta)\) must be chosen accordingly.

The contours of the corrected subreflector will depend on the feed phase error profile and the Cassegrain parameters. For a phase error that increases with \(\theta\), the shape can possibly resemble that shown in Figure (4). The new subreflector shape will cause more energy to be directed toward the main reflector edge which may or may not be a problem. If the resulting aperture illumination is not acceptable, it can be modified by changing the main reflector shape as described by Galindo [Ref. 4]. The effects of diffraction losses are not considered in this treatment since the analysis only used geometrical optics. The new surface shapes obtained using this method can be entered into the computer program discussed in Chapter IV to calculate the radiation pattern and gain of the antenna with shaped reflectors.
III. METHOD OF MOMENTS (MM)

A. ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

In the following discussion, the phasor representations of the time-harmonic fields are used with the $e^{j\omega t}$ time dependence suppressed. It is also assumed that the conductors used in the computations are perfect electric conductors, thus, only electric currents will be present. In Figure (5), E_{inc} which is the incident field from the feed, induces a current J_s which radiates a scattered field E_s.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{incident_field.png}
\caption{Incident field on perfect conductor.}
\end{figure}
The electric field due to the electric surface current on S is expressed as

\[E_s(P) = -j \omega A - \frac{j}{\omega \mu \varepsilon} \nabla (\nabla \cdot A) \] \hspace{1cm} (6)

where

\[A(P) = \frac{\mu}{4\pi} \int_S \mathcal{I}_s(x', y', z') \frac{e^{-jkr}}{r} ds' \] \hspace{1cm} (7)

\(\mathcal{A} \) is the magnetic vector potential as described by Mautz and Harrington [Ref. 5]. Denote the free space Green's function as

\[G(R, R') = \frac{e^{-jkr}}{4\pi r} \] \hspace{1cm} (8)

where from Figure (5)

\[r = |R - R'| = [(x-x')^2 + (y-y')^2 + (z-z')^2]^{1/2} \] \hspace{1cm} (9)

Since the surface is a perfect conductor, the total tangential electric field on S must be zero

\[E_{inc}(P) |_{tan} = -E_s |_{tan} \]

\[= -\left[-j \omega A - \frac{j}{\omega \mu \varepsilon} \nabla (\nabla \cdot A) \right] |_{tan} \] \hspace{1cm} (10)

which leads to the general form of the EFIE

\[E_{inc}(P) |_{tan} = \{j \omega \mu \mathcal{I}_s \nabla_{s} G \, ds' + \frac{j}{\omega} \nabla [\nabla \cdot \mathcal{I}_s G \, ds'] \} |_{tan} \] \hspace{1cm} (11)

The subscript \(tan \) is used to refer to tangential components of a vector. S includes all of the antenna surfaces, both feed and reflector. For long thin wires, the current will only have an axial
component and ∇ becomes $\partial t / \partial t$, where t is the arclength along the wire. Furthermore, because the current is constant around the wire, $\int_s ds'$ reduces to $2\pi a \int dt'$ as shown in Figure (6). The requirement for the thin wire approximation to hold is that $a \ll \lambda$.

The unknown current J_s only depends on the primed quantities. G is a scalar that depends on both the primed and unprimed quantities. For convenience, define an operator \mathcal{G} which will operate on J_s

$$\mathcal{G}(\mathcal{J}_s) = j \omega \mu \int_s \int \mathcal{J}_s G \, ds' + \frac{j}{\omega \epsilon} \nabla \left[\nabla \int_s \mathcal{J}_s G \, ds' \right] .$$

The last term in Equation (12) can be expressed as

$$\nabla \cdot \int_s \mathcal{J}_s G \, ds' = \int_s \nabla \cdot (\mathcal{J}_s G) \, ds'$$

by use of the vector identity

$$\nabla \cdot (\mathcal{J}_s G) = \nabla G \mathcal{J}_s + G (\nabla \mathcal{J}_s)$$
where \(\nabla \) operates on the unprimed coordinates \((x,y,z)\). The gradient of \(G \) in terms of the two sets of coordinates are related by

\[
\nabla G = -(jk + \frac{1}{r}) \frac{e^{-jkr}}{4\pi r} f = -\nabla' G
\]

where

\[
\nabla' = \frac{\partial}{\partial x'} \hat{x} + \frac{\partial}{\partial y'} \hat{y} + \frac{\partial}{\partial z'} \hat{z}
\]

Using the surface divergence theorem developed by Mautz and Harrington [Ref. 5], it can be shown that

\[
\int \int \nabla' \cdot (\nabla' G) \, ds' = 0 \quad (16)
\]

Finally, the integro-differential operator \(\mathcal{G} \) can be written as

\[
\mathcal{G}(\nabla') = \int \int \left[j \omega \mu \nabla' \nabla' G + \frac{j}{\omega\varepsilon} \nabla \left(\nabla' \nabla' G \right) \right] ds'
\]

and the EFIE becomes

\[
E_{inc}(x) \mid_{tan} = \mathcal{G}(\nabla') \mid_{tan} \quad (18)
\]

B. SOLUTION OF EFIE USING METHOD OF MOMENTS

To solve the EFIE for a perfect electric conductor the MM is used. The current is expanded into a series with unknown coefficients

\[
\mathcal{J}_s = \sum_{i=1}^{N} I_i \mathcal{J}_i
\]

where \(I_i \) are the expansion coefficients and \(\mathcal{J}_i \) are the basis or
expansion functions. From the linearity of \(\mathcal{F} \), substitution of Equation (19) into Equation (18) yields

\[
E_{inc}|_{tan} = \sum_{i=1}^{N} I_i \mathcal{F}(J_i) \quad \text{(20)}
\]

Now, define a set of testing functions \(W_k \) and multiply each testing function times both sides of the EFIE and integrate. For Galerkin's method, the testing functions are chosen to be the complex conjugate of the expansion function (i.e., \(W_k = J^*_k \)). The testing procedure results in \(N \) equations which can be written as

\[
V_k = \sum_{i=1}^{N} I_i Z_{ik} \quad \text{(21)}
\]

for \(k = 1, 2, \ldots, N \), where \(N \) is the number of basis functions and

\[
Z_{ik} = \int_{s_k} \int_{s_i} ds ds' [j \omega \mu W_k J_i - \frac{j}{\omega \epsilon} (\nabla J_i) \cdot (\nabla W_k)] G
\]

\[
V_k = \int_{s_k} W_k E_{inc} ds \quad \text{(22)}
\]

Written explicitly, Equation (21) is

\[
V_1 = Z_{11} I_1 + Z_{12} I_2 + \ldots + Z_{1N} I_N
\]

\[
V_2 = Z_{21} I_1 + Z_{22} I_2 + \ldots + Z_{2N} I_N
\]

\[
\vdots
\]

\[
V_N = Z_{N1} I_1 + Z_{N2} I_2 + \ldots + Z_{NN} I_N
\]

which in matrix notation becomes

\[
[V] = [Z] [I] \quad \text{(24)}
\]
To evaluate the impedance matrix, basis functions and testing functions must be defined. On the antenna surface, two orthogonal current components are required. They are the \mathcal{E} and $\mathcal{\Phi}$ components defined by Mautz and Harrington. On the wires, only a longitudinal component is needed if the thin wire approximation is used. The elements of Z are comprised of all possible combinations of basis and testing functions in Equation (22). Using the subscripts s and w to denote surface and wire, the impedance matrix will have the following block structure

$$
\begin{bmatrix}
Z_{ss} & \cdots & Z_{sw} \\
\vdots & \ddots & \vdots \\
Z_{ws} & \cdots & Z_{ww}
\end{bmatrix}
\begin{bmatrix}
I_s \\
\vdots \\
I_w
\end{bmatrix} =
\begin{bmatrix}
V_s \\
\vdots \\
V_w
\end{bmatrix}
$$

(25)

Although n can take on values between $\pm \infty$, it has been terminated at $\pm M$ in the above matrix. In practice, when the feed is on the reflector axis of symmetry, a converged solution can be obtained with $M=1$.
Each block on the diagonal can be decomposed further according to basis and testing components

\[
\begin{bmatrix}
Z_{nn}^{tt} & Z_{nn}^{st} \\
Z_{nn}^{st} & Z_{nn}^{ss}
\end{bmatrix}
\begin{bmatrix}
I_n^{tt} \\
I_n^{st}
\end{bmatrix}
=
\begin{bmatrix}
V_n^{tt} \\
V_n^{st}
\end{bmatrix}
\quad (26)
\]

for \(n = 0, \pm 1, \pm 2, ..., M \)

where the first subscript refers to the basis function and the second to the test function.

If the pattern is calculated for the antenna transmitting, the excitation vector will have only one nonzero value corresponding to the dipole feed point

\[
V = \begin{bmatrix}
V_1 \\
\vdots \\
V_n \\
\vdots \\
V_N
\end{bmatrix} = \begin{bmatrix}
0 \\
\vdots \\
1 e^{j\theta} \\
\vdots \\
0
\end{bmatrix}
\quad (27)
\]

The unknown expansion coefficients are determined by solving the matrix in Equation (25) for \([I]\). To compute the electric field, the coefficients are used in Equation (19) which in turn is used in Equations (6) and (7).
C. MEASUREMENT MATRICES

The scattered field from the current \(\mathbf{J}_s \) on the body can be determined using a measurement vector

\[
\mathbf{R}_{\text{m, measurement}} = \iint_\mathbf{S} \mathbf{E}_r \cdot \mathbf{J}_m \, ds \tag{28}
\]

where \(\mathbf{E}_r \) is a unit radiated plane wave which is weighted by the current at that point on \(\mathbf{S} \).

For a \(\theta \) polarized far field measurement

\[
\mathbf{E}_r = \theta e^{-jkr} \tag{29}
\]

\[
= \theta e^{-jk(xu+yv+zw)}
\]

where \(u, v, \) and \(w \) are direction cosines defined as: \(u = \sin \theta \cos \phi \), \(v = \sin \theta \sin \phi \) and \(w = \cos \theta \). Substitution of Equation (25) into (27) yields

\[
\mathbf{R}_m^{\theta} = \iint_\mathbf{S} e^{jk(xu+yv+zw)} (\mathbf{\hat{u}} \cdot \mathbf{J}_m) \, ds'. \tag{30}
\]

The total electric field at the far-field point is the superposition of all surface current contributions

\[
\mathbf{E}_\theta = \frac{-jk\eta}{4\pi R} e^{-jkr} \sum_m \mathbf{R}_m^{\theta} \mathbf{I}_m. \tag{31}
\]

Similarly, for measuring the \(\phi \) component

\[
\mathbf{E}_\phi = \frac{-jk\eta}{4\pi R} e^{-jkr} \sum_m \mathbf{R}_m^\phi \mathbf{I}_m. \tag{33}
\]
IV. COMPUTER CODE DESCRIPTION

This chapter discusses the main program CASTRIDIP.F which is written in FORTRAN. The program utilizes the numerical solution covered in Chapter III. A listing of the computer code is included in the Appendix. The antenna under consideration is a Cassegrain with a parabolic main dish and a hyperbolic subdish. The feed consists of a ring and three parasitic dipoles surrounding the fed dipole.

A. BRIEF DESCRIPTION OF THE MAIN PROGRAM

The program initially generates the sections of bodies of revolutions which includes the parabolic main reflector, the hyperbolic subreflector and the circular ring. The detached elements of the feed are then formulated. The subroutines ZMATSS, ZMATSW and ZMATWW compute the impedance matrix blocks. The impedance matrix is then assembled using the subroutines ZASMBO and ZASMBN. The matrix equation is solved using the subroutines DECOMP and SOLVE. The plane wave measurement vectors are calculated using PLANES and PLANEW. The scattered field is then obtained by performing the sums in Equations (31) and (33).

A flow chart derived from Reference (6) which illustrates the main program is shown in Figure (7). The input arguments which describe the geometry of the antenna feed is shown in Figure (8).
MAIN PROGRAM (CASTRIDIP.F)

1. DEFINE GEOMETRY
2. COMPUTE IMPEDANCE
 - MATRIX BLOCKS
3. ASSEMBLE IMPEDANCE
 - MATRIX BLOCKS
4. SOLVE MATRIX
 - EQUATION
5. COMPUTE PLANE WAVE
 - MEASUREMENT VECTORS
6. OBTAIN THE
 - SCATTERED FIELD
7. COMPUTE TOTAL FIELD
 - (FEED AND SCATTERED)

SUBROUTINES
- ZMATSS
- ZMATSW
- ZMATWW
- ZASMBO
- ZASMBN
- DECOMP
- SOLVE
- PLANES
- PLANEW

Figure 7: Main program flow chart.
Figure 8: Program parameters.

The input parameters are:

DM = diameter of paraboloid (ground plane)
DS = diameter of subreflector (hyperboloid)
ZC = distance of dipole to ground plane
FOD = focal length to diameter ratio of the paraboloid
ZR = distance of ring from fed dipole along the z axis
RC = radius of ring
SW = ring width
DLN = fed dipole length
PLN = parasitic director dipole length
DDIP = distance between DLN and PLN along the z axis
AW = radius of dipoles
HLGTH = (2) parasitic (H plane) dipole length
DHP = H plane dipole distance from feed along the y axis

The main program implements the numerical solution described in Chapter III. All dimensions input to the program are in wavelengths.

1. GAIN CALCULATION

A separate computer code calculates the gain for the antenna configuration used in the main program. Far field pattern integration is employed using Gaussian quadrature. The previously calculated currents from the main program (saved on disk file PCURRENT) are used. From the gain, the efficiency of the antenna is computed using the gain of a uniformly illuminated aperture as a reference.

\[\eta, \text{efficiency} = \frac{G}{G_o} \] \hspace{1cm} (34)

where

\[G_o = \frac{4\pi A}{\lambda^2} \] \hspace{1cm} (35)

and

\[A = \pi \left(\frac{D_m}{2} \right)^2 \] \hspace{1cm} (36)
A flow chart for the gain program is shown in Figure (9).

<table>
<thead>
<tr>
<th>GAIN PROGRAM (GAIN.F)</th>
<th>ASSOCIATED ARGUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. READ CURRENT COEFFICIENTS</td>
<td>INPUT DATA FROM CASTRIDIP.F</td>
</tr>
<tr>
<td>AND GEOMETRY</td>
<td></td>
</tr>
<tr>
<td>2. COMPUTE SCATTERED FIELD</td>
<td>SUBROUTINES PLANE AND PLANEW</td>
</tr>
<tr>
<td>3. INTEGRATE TO GET GAIN</td>
<td></td>
</tr>
<tr>
<td>4. COMPARE TO $4\pi A/\lambda^2$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: Gain program flow chart.

B. SUBROUTINES SOLVE AND DECOMP

The subroutines SOLVE and DECOMP are used to solve a system of N linear equations in N unknowns. The input to DECOMP consists of N and the N by N matrix of coefficients on the left-hand side of the matrix equation stored by columns in UL. IPS and UL are the outputs from DECOMP. These outputs are part of the input arguments to SOLVE. The rest of the input to SOLVE consists of N and the column of coefficients on the right-hand side of the matrix equation stored in B. The subroutine SOLVE puts the solution to the matrix equation in X. An in-depth explanation of SOLVE and DECOMP is enumerated by Mautz and Harrington [Ref. 7].
C. SUBROUTINES PLANES AND PLANEW

In order to calculate the elements of the plane wave receive vectors, the subroutines PLANES and PLANEW are used. R is the only output argument to these subroutines; the rest of the arguments are input arguments. These subroutines are described by Mautz and Harrington in [Ref. 8].

D. SUBROUTINES ZMATSS, ZMATSW AND ZMATWW

The blocks of the moment matrices in Equation (25) are calculated by the subroutines ZMAT, ZMATSW and ZMATWW and assembled. These matrices are stored in Z which is the only output argument of the subroutine. The rest of the arguments of ZMAT are inputs. The subroutine ZMAT is described by Mautz and Harrington [Ref. 8].

E. SUBROUTINES ZASMBO AND ZASMBN

The subroutine ZASMBO assembles mode independent blocks of Z. The subroutine ZASMBN assembles the mode dependent blocks in Z where the parameter NM is the mode number of the blocks ZSS and ZSW. Details of the subroutine can be found in Reference (8).
Listed in Table 1, as per Reference (6), is a summary of the subroutines in the program and the relevant quantities obtained.

TABLE 1: SUMMARY OF THE SUBROUTINES

<table>
<thead>
<tr>
<th>GENERAL FUNCTION</th>
<th>SUBROUTINE NAME</th>
<th>QUANTITY CALCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPEDANCE MATRIX BLOCKS</td>
<td>ZMATSS</td>
<td>(Z_{tt}, Z_{ts}, Z_{st}, Z_{ss}) (or (Z_{ss}) in Eqn. 25)</td>
</tr>
<tr>
<td></td>
<td>ZMATSW</td>
<td>(Z_{tw}, Z_{sw}) (or (Z_{sw}) in Eqn. 25)</td>
</tr>
<tr>
<td></td>
<td>ZMATWW</td>
<td>(Z_{ww})</td>
</tr>
<tr>
<td>RECEIVE VECTORS</td>
<td>PLANES</td>
<td>(R_{ts}, R_{s0}, R_{0s}, R_{st})</td>
</tr>
<tr>
<td></td>
<td>PLANENW</td>
<td>(R_{w0}, R_{w})</td>
</tr>
<tr>
<td>MATRIX OPERATIONS</td>
<td>DECOMP</td>
<td>DECOMPOSES (Z) MATRIX</td>
</tr>
<tr>
<td></td>
<td>SOLVE</td>
<td>SOLVES DECOMPOSED (Z) MATRIX</td>
</tr>
<tr>
<td></td>
<td>ZASMBO</td>
<td>ASSEMBLES MODE INDEPENDENT BLOCKS OF (Z) MATRIX ((Z_{ww}))</td>
</tr>
<tr>
<td></td>
<td>ZASMBN</td>
<td>ASSEMBLES MODE DEPENDENT BLOCKS OF (Z) MATRIX ((Z_{ss} \text{ and } Z_{sw}))</td>
</tr>
</tbody>
</table>
V. DATA ANALYSIS

A. FEED DESIGN STUDY

An antenna pattern with high directivity is essentially the goal of this thesis. With the feed configuration shown in Figure (2) and using a parabolic ground plane, several candidate configurations were examined. The two parasitic dipoles extending along the y axis of Figure (2) are referred to as the H-plane dipoles and the other parasitic dipole along the z axis as the E-plane dipole. Each of the parameters of the feed in Figure (2) was varied in small increments in order to observe the effect on the feed pattern.

A dipole above the paraboloid with a parasitic ring has the pattern shown in Figure (10). The solid line in the figure is the E-plane (0°) pattern and the dashed line is the H-plane (φ=90°). The circular grid lines are in 5 dB increments and the angular grid lines in 15° increments. A typical subreflector will subtend roughly 60° (±30°). From the plot, it is evident that much of the feed energy will miss the subreflector.

If a parasitic element is added in front of the feed dipole and the ring is removed, the patterns shown in Figure (11) result. The parasitic dipole clearly illustrates the improvement in the directivity of the feed. A combination of a ring and a parasitic element resulted in a more directive and symmetric feed pattern as shown in Figure (12).
Figure 10: Feed pattern with ring and no parasitic dipoles.
The feed patterns shown in Figures (10) and (11) were run using the parameters shown in Table 2.

TABLE 2

COMMON PARAMETERS USED IN FIGURES (10) AND (11)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius of ground plane</td>
<td>10(\lambda)</td>
</tr>
<tr>
<td>fed dipole distance from ground plane</td>
<td>0.25(\lambda)</td>
</tr>
<tr>
<td>ratio of focal length to diameter of ground plane</td>
<td>0.3(\lambda)</td>
</tr>
</tbody>
</table>

Figure 11: Feed pattern with one parasitic element in front of the fed dipole.
From Figure (8), it is obvious that there are many possible combinations of feed and reflector components. In an effort to find the optimum combination, each parameter was varied to examine its effect on gain while all other parameters were held constant.

![Pattern from fed dipole surrounded by ring and a parasitic director element.](image)

The feed pattern of Figure (12) appeared to be the most directive of all the feed geometries examined. To reduce the H-plane sidelobes at 50°, the addition of two H-plane dipoles was investigated. The sidelobes were slightly lower as shown in Figure (13), however; the feed gain was not significantly higher.
B. SHAPING INVESTIGATION

One approach to compensating for the feed phase error is to shape the subreflector as described in Section II.C. The phase of the radiation pattern in Figure (13) is plotted in Figure (14). It is essentially constant out to 40° except for a ripple which is primarily due to scattering from the rim of the main reflector. A 40° subreflector edge angle is about the maximum expected for antennas with FOD ≥ 0.3 and DS ≤ 7λ. In light of this data, it is apparent that subreflector shaping does not offer any advantage. Therefore, shaping was not incorporated into the final antenna design.
C. INTEGRATION OF THE FEED DESIGN INTO THE REFLECTOR

The feed pattern study results provided a starting point for the feed dimensions used in the main program. It should be noted that the presence of a subreflector will affect the feed pattern. The reflected wave from the subreflector will modify the current on the feed structures as well as the main reflector. Thus, the optimum geometry for the feed when it is radiating in free space may not be the optimum when the subreflector is present. However, it was found that readjusting the feed geometry from the original
values had little effect on the overall antenna gain. More important was the subreflector location and shape. A series of calculations were done for various subreflector diameters and eccentricities. The results are summarized in Figure (15).

![Figure 15: Relative effects of changing some parameters to the antenna performance (DM=20\(\lambda\)).](image-url)
An interesting result of Figure (15) is that it is possible to increase the efficiency by increasing the subreflector area, even when the subreflector-to-main reflector diameter is as large as 1/3. This is the effect of tuning, i.e., adjusting the geometry so that the interactions between the reflectors add constructively rather than destructively. The trend for a small reflector antenna can be exactly opposite that predicted by geometrical optics.

As an example of the improvement that can be achieved, the pattern of a 20λ Cassegrain antenna with a single dipole feed (no parasitic dipoles and no ring) is illustrated in Figure (16) for reference. The efficiency is only 26%, primarily due to the large amount of spillover between 30° and 60°. To improve the efficiency, the feed design obtained in the last section was incorporated into the Cassegrain design. After a slight adjustment in the feed parameters, a maximum efficiency of 55.6% was achieved with a 7λ subreflector diameter. The final dimensions are given in Table 3 and the E- and H-plane radiation patterns in Figure (17). The efficiency of the basic reflector/feed configuration is approximately 50%. An increase of about 4% was obtained by readjusting the feed parameters, primarily the location of the ring. A further slight increase in the efficiency (≈0.8%) was due to the addition of the H-plane parasitic dipoles.
Figure 16: Antenna pattern without parasitic dipole and ring on feed.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>20λ</td>
<td>DLN</td>
<td>0.5λ</td>
</tr>
<tr>
<td>DS</td>
<td>7λ</td>
<td>PLN</td>
<td>0.44λ</td>
</tr>
<tr>
<td>ZC</td>
<td>0.25λ</td>
<td>DDIP</td>
<td>0.25λ</td>
</tr>
<tr>
<td>FOD</td>
<td>0.325λ</td>
<td>AW</td>
<td>0.001λ</td>
</tr>
<tr>
<td>RC</td>
<td>1.65λ</td>
<td>HLGTH</td>
<td>0.2λ</td>
</tr>
<tr>
<td>ZR</td>
<td>0.25λ</td>
<td>DHP</td>
<td>0.3λ</td>
</tr>
<tr>
<td>SW</td>
<td>0.15λ</td>
<td>ZHP</td>
<td>0λ</td>
</tr>
</tbody>
</table>
Figure 17: Field pattern for parameters of Table 3.
VI. SUMMARY AND CONCLUSIONS

The introduction of a mechanically simple low-blockage feed for small symmetric dual-reflector antennas has significantly improved its performance. From the computed results, it is apparent that in order to maximize the antenna gain, an E-plane dipole shorter than the fed dipole (director) is required. The distance of the E-plane dipole was found to be optimal at 0.25 wavelength in front of the fed dipole. Likewise, the distance of the fed dipole from the main dish has to be 0.25 wavelengths to obtain maximum gain. The ring improves the antenna’s directivity but the optimum diameter and location of the ring largely depend upon the interactions of the ring to the other feed structures. The diameter of the ring may or may not be less than the length of the fed dipole. A shorter diameter however, may pose a problem in the fabrication process. The ring has to be electrically isolated from the feed and yet current continuity must be maintained on the ring.

The antenna performance generally behaved as would be expected based on the traditional ray optics approach to reflector design. But because the computer code is more accurate than ray optics, it was possible to tune the antenna geometry to minimize the loss in gain due to the surface interactions. The calculations showed that once an optimum gain had been achieved, small adjustments in the antenna feed geometry did not have a significant negative impact on antenna performance. This indicates that the design is tolerant to perturbations in the dimensions due to manufacturing and assembly errors. It may be possible that other combinations of feed
parameters are more efficient; an exhaustive study was not performed. It was determined that if there was any improvement in gain due to subreflector shaping (to compensate for feed phase error), the increase in complexity did not merit its use.

To summarize, a lightweight, compact microwave antenna design has been presented. By tuning the antenna components, an efficiency of 55% has been achieved, up from approximately 30% for a standard Cassegrain design. An antenna of this size with over 50% efficiency would be a viable candidate for such application as direct broadcast satellites and passive sensors.
APPENDIX

C PROGRAM CAS "DIP.F"
C
C RADIATION PATTERN OF A CASSEGRAIN WITH A PARASITIC RING DIPOLE
C FEED. THE DIPOLE LIES IN THE FOCAL PLANE AND THE CAVITY IS A
C DISTANCE ZC BEHIND IT. (This program utilizes a parasitic
dipole, two h-plane parasitic dipoles and a ring for its feed
configuration.)
C
ICALC=0 CALC CURRENTS AND FIELD
C =1 CALC FIELDS ONLY (READ CURRENTS)
C IMP=0 PERFECTLY CONDUCTING SURFACES
C =1 SOME NONZERO SURFACE RESISTANCE
C ICWRT=0 WRITE CURRENT COEFFICIENTS TO FILE pcurrent
C IRES=0 READ RESISTIVE CORRECTIONS
C
COMPLEX EP, ET, Z(500000), RS(1000), RW(400), B(700), C(700), U, UC
COMPLEX ZLO(400), ZL(1500), EC, EX, ZSS(500000)
COMPLEX EXP1, EXP2, ZSW(500000), ZWW(10000)
COMPLEX CEXP, CONJG, CMPLX, ET1, ET2, EP1, EP2, ETW, EPW
DIMENSION RH(400), ZH(400), XT(4), AT(4), IPS(700), NW1(4)
DIMENSION A(400), X(400), EXP(800), ANG(800), ECP(800)
DIMENSION ECV(800), EXV(800), PHC(800), PHX(800), NW2(4)
DIMENSION XX(41), YY(41), XH(400), YH(400), PHA(400)
DATA PI, START, STOP, DT/3.14159, 0., 180., l./, ICWRT/0/., IRES/1/
DATA ICALC/O/, IPRINT/0/, IMP/0/, ITEST/1/
DATA nt/2/, xt(l), at(l)/.5773503, l./
C * .6521451548, .3478548451/
OPEN(1, FILE='outgaus', status='old')
READ(1,*) NPHI
DO 3 K=1, NPHI
READ(1,*) X(K), A(K)
3 CONTINUE
RAD=PI/180.
BK=2.*PI
U=(0.,1.)
UO=(0.,0.)
UC=-U/4./PI
NT2=NT/2
DO 1 K=1, NT2
K1=NT-K+1
AT(K1)=AT(K)
XT(K1)=XT(K)
1 XT(K)=-XT(K)
C
C NP10 = NUMBER OF PARABOLOID POINTS
C NP11 = NUMBER OF HYPERBOLOID POINTS
C NP12 = NUMBER OF RING POINTS
C
MODES=1

41
MHI=Modes+1
NBLOCK=2*Modes+1
NWires=1
WRITE(6,*) 'ENTER START, STOP, DT'
READ(5,*) START, STOP, DT
NP10=61
NP11=31
NP12=3
WRITE(6,*) 'ENTER PARA (NP10), HYPER(NP11) AND SW(NP12) PTS'
READ(5,*) NP10, NP11, NP12
NP1=NP10+NP11+NP12
DM=20.
RO=DM/2.
DS=5.
ZC=.25
FOD=.3
RC=0.5
SW=.05
WRITE(6,*) 'ENTER DM, DS, ZC (>0), FOD, RC, ZR AND SW'
READ(5,*) DM, DS, ZC, FOD, RC, ZR, SW
FM=FOD*DM
FC=FM-ZC

C GENERATE PARABOLOID CONTOUR -- ONLY DO OUT TO RADIUS RGP

PHIV=2.*ATAN(1./4./FOD)
FNM=FLOAT(NP10-1)
DO 50 I=1,NP10
TH=FLOAT(I-1)*PHIV/FNM
RM=2.*FM/(1.+COS(TH))
ZH(I)=-RM*COS(TH)*BK+FC*BK
RH(I)=RM*SIN(TH)*BK
50 CONTINUE

C HYPERBOLOID (SUBREFLECTOR) CONTOUR (FC IS 2.*C)

PHIR=ATAN(1./(2.*FC/DS-1./TAN(PHIV)))
ECC=SIN((PHIV+PHIR)/2.)/SIN((PHIV-PHIR)/2.)
AA=FC/2./ECC
BB=AA*SQR(T(ECC**2-1.))
DO 5 I=1,NP11
THETA=FLOAT(I-1)*PHIR/FLOAT(NP11-1)
RR=AA*(ECC**2-1.)/(1.-ECC*COS(THETA))*BK
ZH(I+NP10)=-RR*COS(THETA)
RH(I+NP10)=-RR*SIN(THETA)
5 CONTINUE

C NEXT THE SIDEWALLS

DSW=SW/FLOAT(NP12-1)
ZRBK=ZR*BK
IF(NP12.NE.0) THEN
DO 7 I=1,NP12
II=NP11+NP10+I
XH(II)=0.
YH(II)=0.
RH(II)=RC*BK
ZH(II)=FLOAT(I-1)*DSW*BK+ZRBK
*7
PHA(II)=0.
ENDIF
NP1=NP10+NP11+NP12
.
C
DIPOLE ANTENNA POINTS IN WAVELENGTHS: AW= RADIUS; NP2= NUMBER
OF POINTS (=NP21+NP22; NP21 MUST BE ODD); DLGTH= LENGTH;
C PLGTH IS PARASITIC ELEMENT LENGTH.
C
AW=.001
DLGTH=.45
PLGTH=.44
WRITE(6,*,'ENTER DLN, PLN, DDIP AND AW')
READ(5,*) DLGTH,PLGTH,DDIP,AW
CENT=DLGTH/2.
AK=AW*BK
NP21=11
NP22=0
WRITE(6,*,'ENTER NP21 AND NP22 (ONLY 1 DIP IF NP22=0)')
READ(5,*) NP21,NP22
NW1(1)=NP1+1
NW2(1)=NP1+NP21
NP2=NP21+NP22
DEL=DLGTH/FLOAT(NP21-1)
DO 10 I=1,NP21
II=NP1+I
YH(II)=0.
ZH(II)=0.
XH(II)=BK*(FLOAT(I-1)*DEL-CENT)
RH(II)=SQRT(XH(II)**2+YH(II)**2)
PHA(II)=ATAN2(YH(II),XH(II)+1.E-6)
10 CONTINUE
IF(NP22.NE.0) THEN
NW1(2)=NP1+NP21+1
NW2(2)=NP1+NP21+NP22
DEL=PLGTH/FLOAT(NP22-1)
CENT=PLGTH/2.
DO 11 I=1,NP22
II=NP1+NP21+I
YH(II)=0.
ZH(II)=DDIP*BK
XH(II)=BK*(FLOAT(I-1)*DEL-CENT)
RH(II)=SQRT(XH(II)**2+YH(II)**2)
PHA(II)=ATAN2(YH(II),XH(II)+1.E-6)
11 CONTINUE
ENDIF
END
43
C NP23=NUMBER OF H-PLANE DIPOLE POINTS
C HLGTH=H-PLANE DIPOLE LENGTH
C DHP=H-PLANE DIPOLE DISTANCE FROM FEED
C ZHP=H-PLANE DIPOLE Z COORDINATE
C NP24=NUMBER OF POINTS FOR THE OTHER H-PLANE DIPOLE
NP23=7
NP24=7
HLGTH=.2
DHP=.2
ZHP=.001
WRITE(6,*) 'ENTER NUMBER OF POINTS PER H-PLANE DIPOLE'
WRITE(6,*) '(0 FOR NO H-PLANE PARASITIC DIPOLES)'
READ(5,*) NP23
IF(NP23.NE.0) THEN
WRITE(6,*) 'H-PLANE DIPOLE LENGTH, DISTANCE AND LOCATION'
READ(5,*) HLGTH,DHP,ZHP
NWIREs=NWIREs+2
NP24=NP23
NP2=NP21+NP22+NP23+NP24
NW1(3)=NP1+NP21+NP22+1
NW2(3)=NP1+NP21+NP22+NP23
NW1(4)=NP1+NP21+NP22+NP23+1
NW2(4)=NP1+NP21+NP22+NP23+NP24
DEL=HLGTH/FLOAT(NP23-1)
CENT=HLGTH/2.
DO 12 I=1,NP23
I1=NP1+NP21+NP22+I
ZH(I1)=ZHP*BK
YH(I1)=DHP*BK
XH(I1)=BK*(FLOAT(I-1)*DEL-CENT)
RH(I1)=SQRT(XH(I1)**2+YH(I1)**2)
PHA(I1)=ATAN2(YH(I1),XH(I1)+1.E-6)
12=I1+NP23
ZH(12)=ZHP*BK
YH(12)=-DHP*BK
XH(12)=BK*(FLOAT(I-1)*DEL-CENT)
RH(12)=SQRT(XH(12)**2+YH(12)**2)
PHA(12)=ATAN2(YH(12),XH(12)+1.E-6)
ENDIF
CLOSE(1)
NP=NP1+NP2
OPEN(8, file='outcascav')
WRITE(8,8000) DM,DS,FC,ECC,FOD,PHIR/RAD,PHIV/RAD,NP10,NP11
*,RC,SW,NP12,DLGTH,PLGTH,DDIP,NP2,AW,Modes,NT,NPHI
IF(NP23.NE.0) WRITE(8,8001) HLGTH,DHP,ZHP,NP23
8000 FORMAT(//,5X,'*** CASSEGRAIN REFLECTOR SYSTEM ***',//,5X,
* REFLECTOR PARAMETERS (LENGTHS IN WAVELENGTHS):',//,5X,
* 'MAIN REFL DIA=' F8.3,/,5X,'SUB REFL DIA=' F8.3,/,5X,
* '2*C=' F8.3,/,5X,'ECCENTRICITY=' F8.4,/,5X,
* 'F/D=' F8.4,/,5X,'PHIR (DEG)=' F8.2,/,5X,
* 'PHIV (DEG)=' F8.2,/,5X,'MAIN REFL POINTS (NP11)=' I4,//,
* 'SUB REFL POINTS (NP12)=' ,I4 ,/ ,5X ,/ ,5X ,
* 'RING RADIUS=' ,F8.3 ,/ ,5X , 'SIDEWALL LENGTH=' ,F8.3 ,/ ,5X ,
* 'NUMBER OF RING POINTS (NP12)=' ,I4 ,/ ,5X ,
* 'DIPOLE PARAMETERS:' ,/ ,5X , 'FED DIPOLE LENGTH=' ,F8.3 ,/ ,5X ,
* 'PARASITIC DIPOLE LENGTH=' ,F8.3 ,/ ,5X , 'SPACING=' ,F8.3 ,/ ,5X ,
* 'NUMBER OF DIPOLE POINTS=' ,I4 ,/ ,5X , 'RADIUS OF DIPOLE=' ,
* F8.4 ,/ ,5X , 'NUMBER OF AZIMUTHAL MODES=' ,I3 ,/ ,5X , 'NT=' ,I3 ,
* / ,5X , 'NPHI=' ,I3 ,
8001 FORMAT (/ ,5X , 'H-PLANE DIPOLE LENGTH=' ,F8.3 ,/ ,5X ,
* 'H-PLANE DIPOLE DISTANCE FROM AXIS=' ,F8.3 ,/ ,5X ,
* 'Z POSITION OF H-FIELD DIPOLE=' ,F8.3 ,/ ,5X , 'NUMBER OF H-FIELD
* DIPOLE POINTS=' ,I3 ,
IF(ISEG.EQ.0) WRITE(8,1300)
1300 FORMAT (/ ,5X , 'INDEX' ,8X , 'RHO(I)' ,10X , 'Z(HB)' ,8X , 'ZSURF')
IF((IMP.EQ.0).OR.(IRES.NE.0)) GO TO 70
OPEN(9,FILE='difdat')
READ(9,*) ID
WRITE(6,*) 'ID=',ID
DO 75 I=1,ID
READ(9,*) II,RI,YY(I),DUM
IF(YY(I).LT.0.) YY(I)=0.
75 CONTINUE
XXI=1./FLOAT(ID-1)
DO 15 II=1,ID
XX(II)=XXI*FLOAT(II-1)
15 CONTINUE
WRITE(6,*)'SURFACE IMPEDANCE VALUES READ'
70 CONTINUE
DO 52 I=1,NP1
IF(ABS(ZH(I)).LT.001) ZH(I)=0.
IF(ABS(RH(I)).LT.001) RH(I)=0.
ZLO(I)=(0.,0.)
ZHB=ZH(I)/BK
RHB=RH(I)/BK
C if(rhb.ge.10.) zlo(i)=(.2,0.)
C C NONZERO SURFACE IMPEDANCES IF IMP > 0
C IF((IMP.EQ.0).OR.(IRES.NE.0)) GO TO 51
C IF(I.GT.NP10) GO TO 51
C C USE THE EXACT RESISTIVE CORRECTIONS -- INTERPOLATE BETWEEN
C DATA POINTS.
C
UU=RHB/R0
CALL INTERP(UU,YY,XX,YY,ID)
ZLO(I)=VV
51 CONTINUE
WRITE(8,8004) I,ZHB,RHB,ZLO(I)
52 CONTINUE
8004 FORMAT(6X,I4,4X,F8.3,8X,F8.3,6X,2F8.4)
WRITE(8,1310)
1310 FORMAT(//,5X,'DIPOLE COORDINATES:',//,
 " * 5X,'INDEX',8X,'Z(I)',10X,'RHO(I)',10X,'PHI PLN')
 DO 53 I=NP1+1,NP
 IF(Abs(ZH(I)).LT.0.001) ZH(I)=0.
 IF(Abs(RH(I)).LT.0.001) RH(I)=0.
 ZHB=ZH(I)/BK
 RHB=RH(I)/BK
 PHB=PHA(I)/RAD
 53 WRITE(8,8005) I,ZHB,RHB,PHB
8005 FORMAT(6X,I4,4X,F8.3,8X,F8.3,9X,F8.2)
 CONTINUE
 IF(ITEST.EQ.0) GO TO 9998
 WRITE(6,*) 'geometry defined'
 C
 C DEFINE DIMENSIONS OF THE IMPEDANCE MATRIX BLOCKS
 C
 MT1=NP1-2
 MP1=NP1-1
 N=MP1+MT1
 MT2=NP2-2
 NSURF=NBLOCK*N
 NSW=NSURF+MT2
 NROW=NSW
 WRITE(6,*) 'NP1,NP2,NSURF,NROW=',NP1,NP2,NSURF,NROW
 WRITE(6,*) 'MT2 SHOULD BE ODD -- MT2=',MT2
 IF(ITEST.EQ.0) GO TO 9998
 IF(ICALC.EQ.0)
 THEN
 C
 C COMPUTE IMPEDANCE MATRIX ELEMENTS
 C
 CALL ZMATWW(NWIRES,NW1,NW2,XH,YH,RH,ZH,NT,XT,AT,AK,ZWW)
 CALL ZASMBO(NP1, NP2, MODES, Z, ZWW)
 WRITE(6,*) 'wire impedance computed'
 IF(IMP.NE.0) THEN
 CALL ZLOAD(NP1,RH,ZH,ZL0,ZL)
 WRITE(6,*) 'RESISTIVE SURFACE IMPEDANCE MATRIX COMPUTED'
 ENDIF
 DO 400 M=1,MHI
 NM=M-1
 CALL ZMATSS(NM,NM,NP10,NP11,NP12,NPHI,NT,RH,ZH,X,A,XT,AT,ZSS)
 IF(NM.NE.0) THEN
 WRITE(8,*) 'print zss'
 DO 669 KK=1,N
 DO 669 JJ=1,N
 JK=JJ+(KK-1)*N
 WRITE(8,*) NM,JK,KK,ZSS(JK)
 ENDIF
 IF(IMP.NE.0) CALL ZTOT(MT1,MP1,ZL,ZSS)
 CALL ZMATSW(NWIRES,NW1,NW2,NP10,NP11,NP12,XH,YH,RH,ZH,
 NT,XT,AT,NPHI,X,A,NM,AK,ZSW)
 IF(NM.NE.0) THEN
 WRITE(8,*) 'printing positive zsw'
c do 666 kk=1,mt2
 c do 666 jj=1,n
 c jk=jj+(kk-1)*n
 c666 write(8,*) nm,jj,kk,zsw(jk)
c endif
 CALL ZASMBN(NP1,NP2,MODES,NM,Z,ZSS,ZSW)
 IF(NM.EQ.0) GO TO 400
 NMN=-NM
 CALL ZMATSW(NWIRES,NW1,NW2,NP10,NP11,NP12,XH,YH,PX,Y, ZH,
 * NT,XT,AT,NPHI,X,A,NMN,AK,ZSW)
 CALL ZASMBN(NP1,NP2,MODES,NMN,Z,ZSS,ZSW)
 400 CONTINUE
 write(6,*) 'z filled'
 CALL DECOMP(NROW,IPS,Z)
 write(6,*) 'z decomposed'
C
C EXCITATION ELEMENTS (NONZERO FOR THE DIPOLE ONLY)
C
 DO 40 I=1,NROW
 40 B(I)=(0.,0.)
 I0=NSURF+(NP21-1)/2
 B(I0)=(1.,0.)
 CALL SOLVE(NROW,IPS,Z,B,C)
do 665 ii=1,nrow
 665 write(6,*) ii,c(ii)
 IF((ICWRT.EQ.0) .AND. (ICALC.EQ.0)) THEN
C
C WRITE CURRENTS ON DISC FOR PATTERN INTEGRATION
C (program 'cavarchint.f')
C
 OPEN(3, file='pcurrent')
 WRITE(3,*) DM,AW,ZC,RC,DS,NP1,NP2,NBLOCK,NWIRES
 WRITE(3,*) (XH(I),I=1,NP)
 WRITE(3,*) (yh(I),I=1,NP)
 WRITE(3,*) (zh(I),I=1,NP)
 WRITE(3,*) (rh(I),I=1,NP)
 WRITE(3,*) (pha(I),I=1,NP)
 WRITE(3,*) (NW1(I),I=1,NWIRES)
 WRITE(3,*) (NW2(I),I=1,NWIRES)
 WRITE(3,*) (C(i),I=1,NROW)
 ENDIF
ENDIF
C
C IF ICALC.NE.0 THEN READ CURRENT COEFFICIENTS FROM DISK FILE
C
 IF(ICALC.NE.0) THEN
 OPEN(3, file='pcurrent',STATUS='OLD')
 READ(3,*) DMX,AWX,ZCX,RCX,DSX,NP1X,NP2X,NBLX,NWX
 READ(3,*) (xh(i),i=1,np)
 READ(3,*) (yh(i),i=1,np)
 47
READ(3,*) (zh(i), i=1,np)
READ(3,*) (rh(i), i=1,np)
READ(3,*) (pha(i), i=1,np)
READ(3,*) (nw1(i), i=1,nwires)
READ(3,*) (nw2(i), i=1,nwires)
READ(3,*) (c(i), i=1,nrow)
CLOSE(3)
write(6,*) 'data read from pcurrent'
do 909 i=1,np
909 write(6,*) 'i,rh,zh=',i,rh(i)/bk,zh(i)/bk
ENDIF
IT=INT((STOP-START)/DT)+1
C
C RECEIVER PHI CUTS: DO 0 AND 90 (E- AND H- PLANES)
C
DO 501 IP=1,2
ECX=1.e-10
PHR0=0.
IF(IP.EQ.2) PHR0=RAD*90.
DO 500 I=1,IT
THETA=FLOAT(I-1)*DT+START
THR=THETA*RAD
PHR=PHR0
IF(THETA.LE.180.) GO TO 99
THR=(360.-THETA)*RAD
PHR=PHR0+PI
99 CONTINUE
C
write(6,*) 'theta,phi=',theta,phr/rad
ET1=U0
ET2=U0
EP1=U0
EP2=U0
ETW=U0
EPW=U0
C
C DIPOLE FIELD
C
CALL PLANEW(NWIRES,NW1,NW2,NP1,NP2,XH,YH,ZH,THR,PHR,RW)
DO 210 L=1,MT2
ETW=ETW+RW(L)*C(L+NSURF)
210 EPW=EPW+RW(L+MT2)*C(L+NSURF)
C
C REFLECTOR AND CAVITY FIELD CONTRIBUTIONS
C
DO 300 M=1,MHI
NM=M-1
EXP1=CEXP(CMPLX(0.,FLOAT(NM)*PHR))
EXP2=CONJG(EXP1)
CALL PLANES(NM,NP10,NP11,NP12,NT,RH,ZH,XT,AT,THR,RS)
NTOP1=MODES-NM
NTOP2=NBLOCK-(NTOP1+1)
NS2=NTOP1*N

48
NS1=NTOP2*N
DO 250 L=1,MT1
ET1=ET1+RS(L)*C(L+NS1)*EXP1
EP1=EP1+RS(L+N)*C(L+NS1)*EXP1
IF(NM.EQ.0) GO TO 250
ET1=ET1+RS(L)*C(L+NS2)*EXP2
EP1=EP1-EP2(L+N)*C(L+NS2)*EXP2
250 CONTINUE
DO 260 L=1,MP1
ET2=ET2+RS(L+MT1)*C(L+NS1+MT1)*EXP1
EP2=EP2+RS(L+MT1+N)*C(L+NS1+MT1)*EXP1
IF(NH.EQ.0) GO TO 260
ET2=ET2-ET2(L+MT1)*C(L+NS2+MT1)*EXP2
EP2=EP2-EP2(L+MT1+N)*C(L+NS2+MT1)*EXP2
260 CONTINUE
300 CONTINUE
ET=UC*(ET1+ET2+ETW)
EP=UC*(EP1+EP2+EPW)
EC=ET
EX=EP
ECV(I)=CABS(EC)
EXV(I)=CABS(EX)
ECR=REAL(EC)
ECI=AIMAG(EC)
EXR=REAL(EX)
EXI=AIMAG(EX)
PHC(I)=ATAN2(ECI,ECR+1.e-10)/RAD
PHX(I)=ATAN2(EXI,EXR+1.e-10)/RAD
ANG(I)=THETA
ECX=AMAX1(ECX,ECV(I),EXV(I))
500 CONTINUE
WRITE(8,103) PHR/RAD,ECX
103 FORMAT(/,5X, 'PHI OF RECEIVER (DEG)=' ,F8.2,/ ,5X, 'MAXIMUM FIELD VALUE (V/M)=',E15.5)
DO 600 I=1,IT
ECP(I)=(ECV(I)/ECX)**2
EXP(I)=(EXV(I)/ECX)**2
ECP(I)=AMAX1(ECP(I),.00001)
EXP(I)=AMAX1(EXP(I),.00001)
ECP(I)=10.*ALOG10(ECP(I))
EXP(I)=10.*ALOG10(EXP(I))
600 CONTINUE
IF(IPRINT.NE.0) GO TO 310
WRITE(8,5015)
DO 9000 L=1,IT
WRITE(8,5016) ANG(L),ECV(L),PHC(L),ECP(L),EXV(L),PHX(L),
*,EXP(L)
5016 FORMAT(5X,F6.1,3X,2(F8.4,3X,F7.1,3X,F7.2,3X))
9000 CONTINUE
310 CONTINUE
IF(IP.EQ.1) THEN
OPEN(2, file='cang.m')
OPEN(3, file='ccpole.m')
OPEN(4, file='cxpole.m')
DO 9097 I=1,IT
WRITE(2,5019) ANG(I)
WRITE(3,5019) ECP(I)
9097 WRITE(4,5019) EXP(I)
CLOSE(2)
CLOSE(3)
CLOSE(4)
ENDIF
IF(IP.EQ.2) THEN
OPEN(3, file='ccpolh.m')
OPEN(4, file='cxpolh.m')
DO 9098 I=1,IT
WRITE(3,5019) ECP(I)
9098 WRITE(4,5019) EXP(I)
CLOSE(3)
CLOSE(4)
ENDIF
501 CONTINUE
5019 FORMAT(F8.3)
9998 STOP
END
SUBROUTINE SOLVE(N, IPS, UL, B, X)
COMPLEX UL(500000), B(700), X(700), SUM
DIMENSION IPS(700)
NP1=N+1
IP=IPS(1)
X(1)=B(IP)
DO 2 I=2,N
IP=IPS(I)
IPB=IP
IM1=I-1
SUM=(0., 0.)
DO 1 J=1,IM1
SUM=SUM+UL(IP) *X(J)
1 IP=IP+N
2 X(I)=B(IPB)-SUM
K2=N*(N-1)
IP=IPS(N)+K2
X(N)=X(N)/UL(IP)
DO 4 IBACK=2,N
I=NP1-IBACK
K2=K2-N
IPI=IPS(I)+K2
IP1=I+1
SUM=(0., 0.)
IP=IPI
DO 3 J=IP1,N
IP=IP+N
3 \text{SUM} = \text{SUM} + \text{UL}(IP) \times X(J)
4 \quad X(I) = (X(I) - \text{SUM}) / \text{UL}(IPI)
\text{RETURN}
\text{END}

\text{SUBROUTINE DECOMP(N, IPS, UL)}
\text{COMPLEX UL(500000), PIVOT, EM}
\text{DIMENSION SCL(700), IPS(700)}
\text{DO 5 I=1,N}
\quad \text{IPS}(I) = I
\quad \text{RN} = 0.
\quad \text{J1} = I
\text{DO 2 J=1,N}
\quad \text{ULM} = \text{ABS}(\text{REAL}(\text{UL}(\text{J1}))) + \text{ABS}(\text{AIMAG}(\text{UL}(\text{J1})))
\quad \text{J1} = \text{J1} + N
\quad \text{IF}(\text{RN} - \text{ULM}) 1,2,2
1 \quad \text{RN} = \text{ULM}
2 \quad \text{CONTINUE}
\text{SCL(I)} = 1./\text{RN}
5 \text{CONTINUE}
\text{NM1} = N-1
\quad \text{K2} = 0
\text{DO 17 K=1,NM1}
\quad \text{BIG} = 0.
\text{DO 11 I=K,N}
\quad \text{IP} = \text{IPS}(I)
\quad \text{IPK} = \text{IP} + \text{K2}
\quad \text{SIZE} = (\text{ABS}(\text{REAL}(\text{UL}(\text{IPK}))) + \text{ABS}(\text{AIMAG}(\text{UL}(\text{IPK})))) \times \text{SCL(IP)}
\quad \text{IF} (\text{SIZE} - \text{BIG}) 11,11,10
10 \quad \text{BIG} = \text{SIZE}
\quad \text{IPV} = I
11 \text{CONTINUE}
\text{IF} (\text{IPV} - K) 14,15,14
14 \quad \text{J} = \text{IPS}(K)
\quad \text{IPS(K)} = \text{IPS(IPV)}
\quad \text{IPS(IPV)} = J
15 \quad \text{KPP} = \text{IPS}(K) + \text{K2}
\quad \text{PIVOT} = \text{UL(KPP)}
\quad \text{KP1} = K + 1
\text{DO 16 I=KP1,N}
\quad \text{KP} = \text{KPP}
\quad \text{IP} = \text{IPS}(I) + \text{K2}
\quad \text{EM} = -\text{UL(IP)}/\text{PIVOT}
\quad 18 \quad \text{UL(IP)} = -\text{EM}
\text{DO 16 J=KP1,N}
\quad \text{IP} = \text{IP} + N
\quad \text{KP} = \text{KP} + N
\quad \text{UL(IP)} = \text{UL(IP)} + \text{EM} \times \text{UL(KP)}
16 \quad \text{CONTINUE}
\quad \text{K2} = \text{K2} + N
17 \text{CONTINUE}
\text{RETURN}
\text{END}
FUNCTION BLOG(X)
 IF(X.GT..1) GO TO 1
 X2=X*X
 BLOG=((.075*X2-.1666667)*X2+1.)*X
 RETURN
 1 BLOG=ALOG(X+SQRT(1.+X*X))
 RETURN
 END

SUBROUTINE ZLOAD(NP,RH,ZH,ZO,Z)
 C
 C COMPUTES IMPEDANCE MATRIX ELEMENTS FOR LOADED BODIES OF REV
 C Z0(I) IS THE SURF IMPEDANCE OF THE ITH SEGMENT (NP-1 SEGMENTS)
 C Z(.) ARE THE IMPEDANCE MATRIX TERMS (TRIDIAGONAL FOR T-T
 C SUBMATRIX; DIAGONAL FOR P-P SUBMATRIX). STORED IN COL VECTOR.
 C
 COMPLEX C1,C2,Z0(400),Z(1500),X1,X2,X3,Y1,Y2,Y3,FN(400)
 COMPLEX U1,U2,U3,XI,YI
 DIMENSION RH(400),ZH(400),RS(400),D(400),SV(400)
 PI=3.14159
 MT=NP-2
 MP=NP-1
 N=MT+MP
 DO 10 IP=2,NP
 II=IP-1
 DR=RH(IP)-RH(II)
 DZ=ZH(IP)-ZH(II)
 D(II)=SQRT(DR*DR+DZ*DZ)
 SV(II)=DR/D(II)
 RS(II)=.5*(RH(IP)+RH(II))
 DS=D(II)*SV(II)/2.
 Q1=RS(II)+DS
 Q2=RS(II)-DS
 FN(II)=1.
 IF((ABS(Q2).GT.1.E-6).AND.(ABS(Q1).GT.1.E-6))
 * FN(II)=ALOG(Q1/Q2)
 10 CONTINUE
 LO=MT*3-2
 DO 20 I=1,MP
 C1=PI*Z0(I)
 IF(I.EQ.MP) GO TO 80
 KI=2
 IF(I.EQ.1) KI=1
 IF(I.EQ.MT) KI=3
 II=I+1
 C2=PI*Z0(II)
 A=SV(I)
 IF(ABS(A).LT.1.E-6) GO TO 41
 X1=C1*FN(I)/2./A
 X2=C1*2./A*(1.-RS(I)*FN(I)/D(I)/A)
 X3=-X2*RS(I)/D(I)/A
 GO TO 42
 41 CONTINUE
X1 = C1/z.*RS(I)*D(I)
X2 = (0., 0.)
X3 = C1*D(I)/6./RS(I)

42 CONTINUE
A = SV(II)
IF(ABS(A).LT.1.E-6) GO TO 45
Y1 = C2*FN(II)/2./A
Y2 = C2*2./A*(1.-RS(II)*FN(II)/D(II)/A)
Y3 = -Y2*RS(II)/D(II)/A
GO TO 40

45 CONTINUE
Y1 = C2/2./RS(II)*D(II)
Y2 = (0., 0.)
Y3 = C2*D(II)/6./RS(II)

40 CONTINUE

C DEFINE TRIDIAGONAL ELEMENTS FOR T-T SUBMATRIX (STORED IN COLS)
C (U1- DIAG; U2- LOWER; U3- UPPER)
C
XI = X1 + X2 + X3
YI = Y1 - Y2 + Y3
IF(KI.EQ.1) XI = C1/SV(I)
C IF(KI.EQ.3) YI = C2/SV(II)
U1 = XI + YI
U2 = XI - X3
U3 = Y1 - Y3
L = 2 + (I-2)*3
IF(KI.EQ.1) L = 0
L1 = L + 1
L2 = L + 2
L3 = L + 3
go to (50, 60, 70), ki

50 Z(L1) = U1
Z(L2) = U2
GO TO 80
60 Z(L1) = U3
Z(L2) = U1
Z(L3) = U2
GO TO 80
70 Z(L1) = U3
Z(L2) = U1
80 Z(L0+I) = 2.*C1*D(I)/RS(I)
20 CONTINUE
RETURN
END

SUBROUTINE ZTOT(MT, MP, ZL, Z)

C ADDS THE SURF IMPEDANCE TERMS TO THE TRIDIAGONAL ELEMENTS OF
C THE BOR IMPEDANCE MATRIX Z.

C
COMPLEX ZL(700), Z(50000)
N = MT + MP

53
MO=MT*3-2
DO 100 I=1,MP
L0=MT*N+(I-1)*N+MT
IF(I.EQ.MP) GO TO 80
KI=2
IF(I.EQ.1) KI=1
IF(I.EQ.MT) KI=3
L2=(I-1)*N+I
L1=L2-1
L3=L2+1
M=2+3*(I-2)
IF(KI.EQ.1) M=0
M1=M+1
M2=M+2
M3=M+3
GO TO (50,60,70),KI
50 Z(L2)=Z(L2)+ZL(M1)
Z(L3)=Z(L3)+ZL(M2)
GO TO 80
60 Z(L1)=Z(L1)+ZL(M1)
Z(L2)=Z(L2)+ZL(M2)
Z(L3)=Z(L3)+ZL(M3)
GO TO 80
70 Z(L1)=Z(L1)+ZL(M1)
Z(L2)=Z(L2)+ZL(M2)
80 Z(L0+I)=Z(L0+I)+ZL(M0+I)
100 CONTINUE
RETURN
END

SUBROUTINE interp(u,v,x,y,nn)
"c program to interpolate linearly between arrays of x and y
c values (with dimensions nn). u is specified and v is returned
c uniform sampling in x (the ordinate) is assumed.
dimension x(nn),y(nn)
delx=x(2)-x(1)
n1=int(u/delx)+1
n2=n1+1
dely=y(n2)-y(n1)
sgn=sign(1.,dely)
dely=abs(dely)
alpha=u-x(n1)
zeta=dely*alpha/delx
v=y(n1)+sgn*zeta
RETURN
END

SUBROUTINE PLANEW(NWIRES,NW1,NW2,NP1,NP2,XH,YH,ZH,
* THR,PHR,R)
"C
"C PLANE WAVE EXCITATION VECTOR ELEMENTS FOR WIRE AND
"C ATTACHMENT SEGMENT. INCIDENCE DIRECTION IS (THR,PHR).
"C - ONLY ONE INCIDENCE ANGLE PER CALL
"C - WIRE DOES NOT HAVE TO LIE IN THE Z=0 PLANE

54
COMPLEX U0, AA, BB, C, R(400), CEXP, EXP, FI1, FI2, SI, DI, CMPLX
DIMENSION ZH(400), NS(4), NW1(4), NW2(4), XH(400), YH(400)
MP2 = NP2 - 1
MT2 = NP2 - 2
MT22 = 2 * MT2
DO 5 L = 1, NWIRES
5 NS(L) = NW2(L) - NW1(L) + 1
U0 = (0., 0.)
CC = COS(THR)
SS = SIN(THR)
CP = COS(PHR)
SP = SIN(PHR)
UP = SS * CP
VP = SS * SP
WP = CC
DO 12 IP = 1, MP2
II = IP + NP1
I = II + 1
ZS = 0.5 * (ZH(I) + ZH(II))
XS = 0.5 * (XH(I) + XH(II))
YS = 0.5 * (YH(I) + YH(II))
DX = XH(I) - XH(II)
DY = YH(I) - YH(II)
D1 = SQRT(DX**2 + DY**2)
SU = DY / D1
CU = DX / D1
C FOR WIRES IN PERPENDICULAR TO Z SIN(V) = 1 AND COS(V) = 0
SV = 1.0
CV = 0.0
C WIRE SEGMENT CALCULATIONS
C
A = UP * CU + VP * SU
B = UP * XS + VP * YS + WP * ZS
C = CMPLX(0., A)
EXP = CEXP(CMPLX(0., B))
AA = CC * (CU * CP + SU * SP)
BB = SU * CP - SP * CU
PSI = D1 * A / 2.
IF(Psi.NE.0.) GO TO 60
SINC = 1.
GO TO 61
60 SINC = SIN(PSI) / PSI
61 COSP = COS(PSI)
FI1 = SINC * D1 * EXP / 2.
FI2 = (0., 0.)
IF(ABS(A).LT.1.E-4) GO TO 62
CSP = COSP - SINC
IF(ABS(CSP).LT.1.E-4) GO TO 62
FI2 = EXP / C * CSP
62 CONTINUE
SI=FI1+FI2
DI=FI1-FI2

C R-WIRE-THETA
C
IF(IP.EQ.MP2) GO TO 10
R(IP)=AA*SI
R(IP+MT2)=BB*SI
10 CONTINUE

C R-WIRE-PHI
C
14 IF(IP.EQ.1) GO TO 12
R(IP-1)=R(IP-1)+AA*DI
R(IP-1+MT2)=R(IP-1+MT2)+BB*DI
12 CONTINUE

C WRITE OVER DUMMY WIRE SEGMENTS
C
C IF(NWIRES.EQ.1) GO TO 210
C
209 NSPTS=0
C
DO 209 L=1,NWIRES-1
C
NSPTS=NSPTS+NS(L)
C
IN=NSPTS-2
C
R(IN+1)=U0
C
R(IN+2)=U0
C
IN=IN+MT2
C
R(IN+1)=U0
C
R(IN+2)=U0
C 209 CONTINUE
C
210 RETURN
END

SUBROUTINE PLANES(M1,NPO,NP1,NP2,NT,RH,ZH,XT,AT,THR,R)

C PLANE WAVE excitation vector FOR BOR ELEMENTS.
C NO CHANGE FROM HARRINGTON'S ORIGINAL PROGRAM OTHER THAN
C
C ** ONLY ONE MODE PER CALL **
C
COMPLEX R(1000),U,U1,UA,UB,FA(50),FB(50),F2A,F2B,F1A,F1B
COMPLEX U2,U3,U4,U5,CMPLX
DIMENSION RH(400),ZH(400),XT(4),AT(4)
DIMENSION R2(4),Z2(4),BJ(5000)
U=(0.,1.)
U1=3.141593*U**M1
NF=1
M2=M1
NP=NPO+NP1+NP2
NRF=NPO+NP1
MP=NP-1
MT=MP-1
N=MT+MP
N2=2*N
CC=COS(THR)
SS=0.5*(ZHI-ZHIP)
M3=M1+1
M4=M2+3
IF(M1.EQ.0) M3=2
M5=M1+2
M6=M2+2
DO 12 IP=1,MP
 K2=IP
 I=IP+1
 DR=.5*(RH(I)-RH(IP))
 DZ=.5*(ZHI-ZHIP)
 D1=SQRT(DR*DR+DZ*DZ)
 R1=.25*(RH(I)+RH(IP))
 IF(Abs(R1).LT.1.E-5) R1=1.
 Z1=.5*(ZHI+ZHIP)
 DR=.5*DR
 D2=DR/R1
 DO 13 L=1,NT
 R2(L)=R1+DR*XT(L)
 Z2(L)=Z1+DZ*XT(L)
 CONTINUE
 D3=DR*CC
 D4=-DZ*SS
 D5=D1*CC
 DO 23 M=M3,M4
 FA(M)=0.
 FB(M)=0.
 CONTINUE
 DO 15 L=1,NT
 X=SS*R2(L)
 IF(X.GT.5E-7) GO TO 19
 DO 20 M=M3,M4
 BJ(M)=0.
 CONTINUE
 BJ(2)=1.
 S=1.
 GO TO 18
 M=2.8*X+14.-2./X
 IF(X.LT.5E-5) M=11.8+ALOG10(X)
 IF(M.LT.M4) M=M4
 BJ(M)=0.
 JM=M-1
 BJ(JM)=1.
 DO 16 J=4,M
 J2=JM
 JM=JM-1
 J1=JM-1
 BJ(JM)=J1/X*BJ(J2)-BJ(JM+2)
 CONTINUE
 S=0.
IF(M.LT.4) GO TO 24
DO 17 J=4,M,2
S=S+BJ(J)
17 CONTINUE
24 S=BJ(2)+2.*S
18 ARG=Z2(L)*CC
UA=AT(L)/S*CMPLX(COS(ARG),SIN(ARG))
UB=XT(L)*UA
DO 25 M=M3,M4
FA(M)=BJ(M)*UA+FA(M)
FB(M)=BJ(M)*UB+FB(M)
25 CONTINUE
15 CONTINUE
IF(M1.NE.0) GO TO 26
FA(1)=- FA(3)
FB(1)=- FB(3)
26 UA=U1
DO 27 M=M5,M6
M7=M-1
M8=M+1
F2A=UA*(FA(M8)+FA(M7))
F2B=UA*(FB(M8)+FB(M7))
UB=U*UA
F1A=UB*(FA(M8)-FA(M7))
F1B=UB*(FB(M8)-FB(M7))
U4=D4*UA
U2=D3*F1A+U4*FA(M)
U3=D3*F1B+U4*FB(M)
U4=DR*F2A
U5=DR*F2B
K1=K2-1
K4=K1+N
K5=K2+N
R(K2+MT)=-D5*(F2A+D2*F2B)
R(K5+MT)=D1*(F1A+D2*F1B)
IF(IP.EQ.1) GO TO 21
R(K1)=R(K1)+U2-U3
R(K4)=R(K4)+U4-U5
IF(IP.EQ.MP) GO TO 22
21 R(K2)=U2+U3
R(K5)=U4+U5
22 K2=K2+N2
UA=UB
27 CONTINUE
12 CONTINUE
R(NPO-1)=(0.,0.)
R(NPO)=(0.,0.)
R(NPO+MT)=(0.,0.)
R(NPF-1)=(0.,0.)
R(NPF)=(0.,0.)
R(NPF+MT)=(0.,0.)
99 RETURN
END

SUBROUTINE ZMATSS(M1,M2,NP0,NP1,NP2,NPHI
*NT,RH,ZH,X,A,XT,AT,Z)

C
C ******* THREE DETACHED SURFACES **********
C SURFACE-SURFACE IMPEDANCE ELEMENTS. REMAINS UNCHANGED FROM
C HARRINGTON EXCEPT MULTIPLE SURFACES ARE PERMITTED. THE FIRST
C SURFACE HAS NP0 POINTS, THE SECOND NP1 POINTS AND THE THIRD NP2.
C NP0 PARABOLOID PTS; NP1 HYPERBOLOID PTS; NP2 CAVITY PTS.
C
COMPLEX Z(50000),U1,U2,U3,U4,U5,U6,U7,U8,U9,UA,UB
COMPLEX G6A(4),G4B(4),G5B(4),G6B(4),H4A,H5A,H6A,H4B,H5B
COMPLEX CMPLX,H6B,UC,UD,GA(400),GB(400),G4A(4),G5A(4)
DIMENSION RH(400),ZH(400),X(400),A(400),AT(4),RS(400),ZS(400)
DIMENSION D(400),DR(400),DZ(400),DM(400),C2(400)
DIMENSION C4(400),C5(400),C6(400),Z7(4),R7(4),Z8(4),R8(4)
DIMENSION XT(4),Z2(4),C3(400),R2(4)

CT=2.
CP=.1
NP=NP0+NP1+NP2
NRF=NP0+NP1
DO 10 I=2,NP
I2=I-1
RS(I2)=.5*(RH(I)+RH(I2))
ZS(I2)=.5*(ZH(I)+ZH(I2))
D1=.5*(RH(I)-RH(I2))
D2=.5*(ZH(I)-ZH(I2))
D(I2)=SQR(D1*D1+D2*D2)
DR(I2)=D1
DZ(I2)=D2
DM(I2)=D(I2)/RS(I2)

10 CONTINUE
M3=M2-M1+1
M4=M1-1
PI2=1.570796
DO 11 K=1,NPHI
PH=PI2*(X(K)+1.)
C2(K)=PH*PH
SN=SIN(.5*PH)
C3(K)=4.*SN*SN
A1=PI2*A(K)
D4=.5*A1*C3(K)
D5=A1*COS(PH)
D6=A1*SIN(PH)
M5=K
DO 29 M=1,M3
PHM=(M4+M)*PH
A2=COS(PHM)
C4(M5)=D4*A2
C5(M5)=D5*A2
C6(M5)=D6*SIN(PH)
M5=M5+NPHI

59
CONTINUE

MP=NP-1
MT=MP-1
N=MT+MP
N2N=MT*N
N2=N*N
U1=(0.,5)
U2=(0.,2.)
JN=-1-N
DO 15 JQ=1,MP
 KQ=2
 IF(JQ.EQ.1) KQ=1
 IF(JQ.EQ.MP) KQ=3
 R1=RS(JQ)
 Z1=ZS(JQ)
 D1=D(JQ)
 D2=DR(JQ)
 D3=DZ(JQ)
 D4=D2/R1
 D5=DM(JQ)
 SV=D2/D1
 CV=D3/D1
 T6=CT*D1
 T62=T6+D1
 T62=T62*T62
 R6=CP*R1
 R62=R6*R6
 DO 12 L=1,NT
 R2(L)=R1+D2*XT(L)
 Z2(L)=Z1+D3*XT(L)
 12 CONTINUE
 U3=D2*U1
 U4=D3*U1
 DO 16 IP=1,MP
 R3=RS(IP)
 Z3=ZS(IP)
 R4=R1-R3
 Z4=Z1-Z3
 FM=R4*SV+Z4*CV
 PHM=ABS(FM)
 PH=ABS(R4*CV-Z4*SV)
 D6=PH
 IF(PHM.LE.D1) GO TO 26
 D6=PHM-D1
 D6=SQRT(D6*D6+PH*PH)
 26 IF(IP.EQ.JQ) GO TO 27
 KP=1
 IF(T6.GT.D6) KP=2
 IF(R6.GT.D6) KP=3
 GO TO 28
 27 KP=4
28 GO TO (41,42,41,42),KP
42 DO 40 I=1,NT
 D7=R2(L)-R3
 D8=Z2(L)-Z3
 Z7(L)=D7*D7+D8*D8
 R7(L)=R3*R2(L)
 Z8(L)=.25*Z7(L)
 R8(L)=.25*R7(L)
40 CONTINUE
 Z4=R4*R4+Z4*Z4
 R4=R3*R1
 R5=.5*R3*SV
 DO 33 K=1,NPHI
 A1=C3(K)
 RR=Z4+R4*A1
 UA=0.
 UB=0.
 IF(RR.LT.T62) GO TO 34
 DO 35 L=1,NT
 R=SQRT(Z7(L)+R7(L)*A1)
 SN=-SIN(R)
 CS=COS(R)
 UC=AT(L)/R*CMPLX(CS,SN)
 UA=UA+UC
 UB=XT(L)*UC+UB
35 CONTINUE
 GO TO 36
34 DO 37 L=1,NT
 R=SQRT(Z8(L)+R8(L)*A1)
 SN=-SIN(R)
 CS=COS(R)
 UC=AT(L)/R*SN*CMPLX(-SN,CS)
 UA=UA+UC
 UB=XT(L)*UC+UB
37 CONTINUE
 A2=FM+R5*A1
 D9=RR-A2*A2
 R=ABS(A2)
 D7=R-D1
 D8=R+D1
 D6=SQRT(D8*D8+D9)
 R=SQRT(D7*D7+D9)
 IF(D7.GE.0.) GO TO 38
 A1=ALOG((D8+D6)*(-D7+R)/D9)/D1
 GO TO 39
38 A1=ALOG((D8+D6)/(D7+R))/D1
39 UA=A1+UA
 UB=A2*(4./(D6+R)-A1)/D1+UB
 GA(K)=UA
 GB(K)=UB
33 CONTINUE
 K1=0
DO 45 M=1,M3
H4A=0.
H5A=0.
H6A=0.
H4B=0.
H5B=0.
H6B=0.
DO 46 K=1,NPHI
K1=K1+1
D6=C4(K1)
D7=C5(K1)
D8=C6(K1)
UA=GA(K)
UB=GB(K)
H4A=D6*UA+H4A
H5A=D7*UA+H5A
H6A=D8*UA+H6A
H4B=D6*UB+H4B
H5B=D7*UB+H5B
H6B=D8*UB+H6B
46 CONTINUE
G4A(M)=H4A
G5A(M)=H5A
G6A(H)=H6A
G4B(M)=H4B
G5B(M)=H5B
G6B(M)=H6B
45 CONTINUE
IF(KP.NE.4) GO TO 47
A2=D1/(PI2*R1)
D6=2./D1
D8=0.
DO 63 K=1,NPHI
A1=R4*C2(K)
R=R4*C3(K)
IF(R.LT.T62) GO TO 64
D7=0.
DO 65 L=1,NT
D7=D7+AT(L)/SQRT(Z7(L)+A1)
65 CONTINUE
GO TO 66
64 A1=A2/(X(K)+1.)
D7=D6*ALOG(A1+SQRT(1.+A1*A1))
66 D8=D8+A(K)*D7
63 CONTINUE
A1=.5*A2
A2=1./A1
D8=-PI2*D8+2./R1*(BLOG(A2)+A2*BLOG(A1))
DO 67 M=1,M3
G5A(M)=D8+G5A(M)
67 CONTINUE
GO TO 47

62
DO 25 M=1,M3
 G4A(M)=0.
 G5A(M)=0.
 G6A(M)=0.
 G4B(M)=0.
 G5B(M)=0.
 G6B(M)=0.
25 CONTINUE

 DO 13 I=1,NT
 A1=R2(L)
 R4=A1-R3
 Z4=Z2(L)-Z3
 Z4=R4*R4+Z4*Z4
 R4=R3*A1
 DO 17 K=1,NPHI
 R=SQRT(Z4+R4*C3(K))
 SN=-SIN(R)
 CS=COS(R)
 GA(K)=CMPLX(CS,SN)/R
 17 CONTINUE

 D6=0.
 IF(R62.LE.Z4) GO TO 51
 DO 62 K=1,NPHI
 D6=D6+A(K)/SQRT(Z4+R4*C2(K))
 62 CONTINUE

 Z4=3.141593/SQRT(Z4/R4)
 D6=-PI2*D6+ALOG(Z4+SQRT(1.+Z4*Z4))/SQRT(R4)

51 A1=AT(L)
 A2=XT(L)*A1
 K1=0
 DO 30 M=1,M3
 U5=0.
 U6=0.
 U7=0.
 DO 32 K=1,NPHI
 UA=GA(K)
 K1=K1+1
 U5=C4(K1)*UA+U5
 U6=C5(K1)*UA+U6
 U7=C6(K1)*UA+U7
 32 CONTINUE

 U6=D6+U6
 G4A(M)=A1*U5+G4A(M)
 G5A(M)=A1*U6+G5A(M)
 G6A(M)=A1*U7+G6A(M)
 G4B(M)=A2*U5+G4B(M)
 G5B(M)=A2*U6+G5B(M)
 G6B(M)=A2*U7+G6B(M)
30 CONTINUE

13 CONTINUE

47 A1=DR(IP)
 UA=A1*U3
\[UB = DZ(IP) \times U4 \]
\[A2 = D(IP) \]
\[D6 = -A2 \times D2 \]
\[D7 = D1 \times A1 \]
\[D8 = D1 \times A2 \]
\[JM = JN \]
\[DO 31 \quad M = 1, M3 \]
\[FM = M4 + M \]
\[A1 = FM \times DM(IP) \]
\[H5A = G5A(M) \]
\[H5B = G5B(M) \]
\[H4A = G4A(M) + H5A \]
\[H4B = G4B(M) + H5B \]
\[H6A = G6A(M) \]
\[H6B = G6B(M) \]
\[U7 = UA \times H5A + UB \times H4A \]
\[U8 = UA \times H5B + UB \times H4B \]
\[U5 = U7 - U8 \]
\[U6 = U7 + U8 \]
\[U7 = -U1 \times H4A \]
\[U8 = D6 \times H6A \]
\[U9 = D6 \times H6B - A1 \times H4A \]
\[UC = D7 \times (H6A + D4 \times H6B) \]
\[UD = FM \times D5 \times H4A \]
\[K1 = IP + JM \]
\[K2 = K1 + 1 \]
\[K3 = K1 + N \]
\[K4 = K2 + N \]
\[K5 = K2 + MT \]
\[K6 = K4 + MT \]
\[K7 = K3 + N2N \]
\[K8 = K4 + N2N \]

GO TO (18, 20, 19), KQ
18 \(Z(K6) = U8 + U9 \)
 IF(IP.EQ.1) GO TO 21
 \(Z(K3) = Z(K3) + U6 - U7 \)
 \(Z(K7) = Z(K7) + UC - UD \)
 IF(IP.EQ.MP) GO TO 22
21 \(Z(K4) = U6 + U7 \)
 \(Z(K8) = UC + UD \)
 GO TO 22
19 \(Z(K5) = Z(K5) + U8 - U9 \)
 IF(IP.EQ.1) GO TO 23
 \(Z(K1) = Z(K1) + U5 + U7 \)
 \(Z(K7) = Z(K7) + UC - UD \)
 IF(IP.EQ.MP) GO TO 22
23 \(Z(K2) = Z(K2) + U5 - U7 \)
 \(Z(K8) = UC + UD \)
 GO TO 22
20 \(Z(K5) = Z(K5) + U8 - U9 \)
 \(Z(K6) = U8 + U9 \)
 IF(IP.EQ.1) GO TO 24

64
\[Z(K_1) = Z(K_1) + U_5 + U_7 \]
\[Z(K_3) = Z(K_3) + U_6 - U_7 \]
\[Z(K_7) = Z(K_7) + U_C - U_D \]

```
IF(IP.EQ.MP) GO TO 22
```

```
24 Z(K2) = Z(K2) + U5 - U7
Z(K4) = U6 + U7
Z(K8) = U_C + U_D
22 Z(K8+MT) = U2*(D8*(H5A+D4*H5B)-A1*U_D)
JM=JM+N2
```

```
31 CONTINUE
16 CONTINUE
JN=JN+N
15 CONTINUE
```

C
THREE MULTIPLE BODIES USING THE SIMPLIFIED APPROACH
C NULL OUT ROWS AND COLS FOR THE FIRST DUMMY SEGMENT
C
```
DO 100 LSS=1,N
LS=LS-1
Z((LS*N+NPO)=(0.,0.))
Z((LS*N+NPO-1)=(0.,0.))
100 Z((LS*N+NPO+MT)=(0.,0.))
DO 101 LS=1,N
Z((NPO-2)*N+LS)=(0.,0.)
Z((NPO-1)*N+LS)=(0.,0.)
101 Z((NPO-1+MT)*N+LS)=(0.,0.)
Z((NPO-2)*N+NPO-1)=(1.,0.)
Z((NPO-1)*N+NPO)=(1.,0.)
Z((MT+NPO-1)*N+NPO+MT)=(1.,0.)
```

C
C NULL OUT ROWS AND COLS FOR THE SECOND DUMMY SEGMENT
C
```
DO 200 LSS=1,N
LS=LS-1
Z((LS*N+NRF)=(0.,0.))
Z((LS*N+NRF-1)=(0.,0.))
200 Z((LS*N+NRF+MT)=(0.,0.))
DO 201 LS=1,N
Z((NRF-2)*N+LS)=(0.,0.)
Z((NRF-1)*N+LS)=(0.,0.)
201 Z((NRF-1+MT)*N+LS)=(0.,0.)
Z((NRF-2)*N+NRF-1)=(1.,0.)
Z((NRF-1)*N+NRF)=(1.,0.)
Z((MT+NRF-1)*N+NRF+MT)=(1.,0.)
```

C
RETURN
END
```

SUBROUTINE ZASMB0(NP1,NP2,MODESZ,Z,ZWW)
C
C ASSEMBLES MODE INDEPENDENT BLOCKS OF Z
C
```
COMPLEX Z(500000),ZWW(10000)
MT1=NP1-2
```

65
SUBROUTINE ZASMBN(NP1,NP2,MODES,NM,Z,ZSS,ZSW)

C ASSEMBLES MODE DEPENDENT BLOCKS IN Z. MODES=TL # OF MODES;
C NM IS THE MODE # OF THE BLOCKS ZSS,ZSW,ZSJ. (IF NM<0 THEN
C ZSS IS OMITTED - ONLY FILLED FOR POSITIVE NM)
C
COMPLEX ZSS(50000),Z(500000),ZSW(50000)
MT1=NP1-2
NP1-1
MT2=NP2-2
N=MP1+MT1
NBLOCK=2*MODES+1
NS=NBLOCK*N
NR=NS+MT2
MT=MT1+MT2
MTN=MT*N
IF(NM.LT.0) GO TO 225

C ZSS BLOCKS FOR MODE NM (+ AND - FILLED IN 1 LOOP)
C
NTOP1=MODES-NM
NTOP2=NBLOCK-(NTOP1+1)
NSS2=NTOP1*(N+NR*N)
NSS1=NTOP2*(N+NR*N)
DO 200 IC=1,MP1
IC1=IC-1
DO 200 IR=1,MP1
IF(IC.GT.MT1) GO TO 100
IF(IR.GT.MT1) GO TO 50
I0=IC1*N+IR
ITT=IC1*NR+IR
Z(ITT+NSS1)=ZSS(I0)
IF(NM.NE.0) Z(ITT+NSS2)=ZSS(I0)
200 CONTINUE

50 CONTINUE
I0=MT1+IC1*N+IR
IPT=IC1*NR+MT1+IR
Z(IPT+NSS1)= ZSS(I0)

RETURN
END
IF(NM.NE.0) Z(IPT+NSS2)=-ZSS(I0)
100 IF(IR.GT.MT1) GO TO 150
 I0=N*MT1+IC1*N+IR
 ITP=MT1*NR+IC1*NR+IR
 Z(ITP+NSS1)= ZSS(I0)
 IF(NM.NE.0) Z(ITP+NSS2)=-ZSS(IO)

 150 IO=N*MT1+MT1+IC1*N+IR
 IPP=IC1*NR+MT1+MT1*NR+IR
 Z(IPP+NSS1)=ZSS(IO)
 IF(NM.NE.0) Z(IPP+NSS2)=ZSS(IO)

 200 CONTINUE
 225 CONTINUE

C ZSW AND ZWS BLOCKS
C
NTOP1=MODES+NM
NTOP2=NBLOCK-(NTOP1+1)
NSW=NTOP1*N+NS*NR
NWS=NTOP2*NR*N+NS
DO 250 IC=1,MT2
 IC1=IC-1
 DO 250 IR=1,N
 ISW=IR+IC1*NR+NSW
 IWS=(IR-1)*NR+IC+NWS
 IO=IC1*N+IR
 Z(ISW)=ZSW(IO)
 Z(IWS)=ZSW(IO)

 250 CONTINUE
 RETURN
END

SUBROUTINE ZMATSW(NWIRES,NW1,NW2,NP11,NP12,NP13,
* XH,YH,RH,ZH,NT,XT,AT,NG,XG,AG,MODE,A,Z)

C >>>>>>>>>>>>>>> revised version <<<<<<<<<<<<
C
C CALCULATION OF THE SURFACE-WIRE MATRIX ELEMENTS. ATTACHMENT
C POINT NOT AT A SURFACE EDGE, BUT CAN BE ON Z AXIS (IC#1). SURFACE
C START INDEX IS 1. TWO BORS OF LENGTHS NP11, NP12 AND NP13. WIRE
C START AND STOP POINTS ARE NW1 AND NW2.
C
COMPLEX CEXP,EXP,Z(50000),G5,G6,G7,CONH,F5,F6,F7
COMPLEX U,U0,PSI,T0,T1,T2,T3,ST1,ST2,ST3,CON,SP1,SP2,SP3
COMPLEX U5,U6,U7,U8,U9,CMPLX,T4,T5,T6,T7
DIMENSION RS1(400),RH(400),ZH(400),XG(400),AG(400),XT(4)
DIMENSION ZS1(400),D1(400),D(400),S(400),C(400),RS(400)
DIMENSION ZS(400),S1(400),C1(400),NW1(4),NW2(4),NS(4),AT(4)
DIMENSION XH(400),YH(400),XS1(400),YS1(400),CU(400),SU(400)
PI=3.14159
PI2=2.*PI
NP1=NP11+NP12+NP13
NRF=NP11+NP12
DO 1 L=1,NWIRES
1 NS(L)=NW2(L)-NW1(L)+1
U0=(0.,0.)
U=(0.,1.)

C
C DEFINE SURFACE GEOMETRY TERMS
C
MP=NP1-1
MT=MP-1
NROW=MP+MT
DO 5 I=2,NP1
   I2=I-1
   RS(I2)=.5*(RH(I)+RH(I2))
   ZS(I2)=.5*(ZH(I)+ZH(I2))
   DR=RH(I)-RH(I2)
   DZ=ZH(I)-ZH(I2)
   D(I2)=SQRT(DR**2+DZ**2)
   S(I2)=DR/D(I2)
   C(I2)=DZ/D(I2)
5 CONTINUE

C
C DEFINE WIRE GEOMETRY TERMS
C
NW=NW2(NWIRES)-NW1(1)
NWP=NW+1
MT2=NWP-2
DO 10 N=2,NWP
   NO=N-1
   I=NP1+N
   I2=I-1
   RS1(NO)=.5*(RH(I)+RH(I2))
   ZS1(NO)=.5*(ZH(I)+ZH(I2))
   XS1(NO)=.5*(XH(I)+XH(I2))
   YS1(NO)=.5*(YH(I)+YH(I2))
   DX=XH(I)-XH(I2)
   DY=YH(I)-YH(I2)
   D1(NO)=SQRT(DX**2+DY**2)
C FOR WIRES PARALLEL TO THE XY PLANE SIN(V)=1 AND COS(V)=0
S1(':0)=1.
C1(NO)=0.
CU(':0)=DX/D1(NO)
SU(':0)=DY/D1(NO)
10 CONTINUE
CON=U/P12/2.

C INTEGRATING FROM 0 TO 2*PI
O1=FI
O2=FI
JN=-1-NROW

C
C SEGMENT LOOPS: q=WIRE, p=SURFACE
C
DO 100 JQ=1,NW
   KQ=2
   IF(JQ.EQ.1) KQ=1
IF(JQ.EQ.NW) KQ=3
H1=D1(JQ)/2.
ZW=ZS1(JQ)
DO 22 IP=1,MP
ST1=U0
ST2=U0
ST3=U0
SP1=U0
SP2=U0
SP3=U0
AA=S(IP)*CU(JQ)
BB=S(IP)*SU(JQ)
RD=RS(IP)*D1(JQ)
DD=D(IP)*D1(JQ)
CONH=CON*D(IP)

C FIRST TERM (H-INTEGRATION)
C
DO 30 I=1,NT
H=H1*XT(I)
HHD=2.*H/D1(JQ)
XW=XS1(JQ)+H*CU(JQ)
YW=YS1(JQ)+H*SU(JQ)
C
C PHI INTEGRATIONS FOR G-HAT FUNCTIONS
C
G7=U0
G5=U0
G6=U0
DO 32 K=1,NG
PH=O1*XG(K)+O2
PHM=PH*FLOAT(MODE)
XS=RS(IP)*COS(PH)
YS=RS(IP)*SIN(PH)
EXP=CEXP(CMPLX(0.,-PHM))
RP=SQRT((XS-XW)**2+(YS-YW)**2+(ZS(IP)-ZW)**2)
PSI=CEXP(CMPLX(0.,-RP))/RP
F5=EXP*COS(PH)*PSI
F6=EXP*SIN(PH)*PSI
F7=EXP*PSI
G7=G7+F7*AG(K)
G5=G5+F5*AG(K)
G6=G6+F6*AG(K)

69
T6 = -G6 * CU(JQ) / 2.
T7 = T6 * HHD
ST1 = ST1 + AT(I) * (T0 + T2)
ST2 = ST2 + AT(I) * (T1 + T3)
ST3 = ST3 + AT(I) * G7 / DD
SP1 = SP1 + AT(I) * (T4 + T6)
SP2 = SP2 + AT(I) * (T5 + T7)
SP3 = SP3 + AT(I) * U * G7 * FLOAT(MODE) / RD
30 CONTINUE
C
C ZSW-t TERMS (K1, K2, K3, K4)
C
U5 = (ST1 - ST2) * CONH * H1
U6 = (ST1 + ST2) * CONH * H1
U7 = -ST3 * CONH * H1
C
C ZSW-p TERMS (K5, K6)
C
U8 = SP1 * CONH * H1
U9 = (SP2 + SP3) * CONH * H1
K1 = IP + JN
K2 = K1 + 1
K3 = K1 + NROW
K4 = K2 + NROW
K5 = K2 + MT
K6 = K4 + MT
GO TO (18, 20, 19), KQ
18 Z(K6) = U8 + U9
IF (IP .EQ. 1) GO TO 21
Z(K3) = Z(K3) + U6 - U7
IF (IP .EQ. MP) GO TO 22
21 Z(K4) = U6 + U7
GO TO 22
19 Z(K5) = Z(K5) + U8 - U9
IF (IP .EQ. 1) GO TO 23
Z(K1) = Z(K1) + U5 + U7
IF (IP .EQ. MP) GO TO 22
23 Z(K2) = Z(K2) + U5 - U7
GO TO 22
20 Z(K5) = Z(K5) + U8 - U9
Z(K6) = U8 + U9
IF (IP .EQ. 1) GO TO 24
Z(K1) = Z(K1) + U5 + U7
Z(K3) = Z(K3) + U6 - U7
IF (IP .EQ. MP) GO TO 22
24 Z(K2) = Z(K2) + U5 - U7
Z(K4) = U6 + U7
22 CONTINUE
JN = JN + NROW
100 CONTINUE
C
C FOR MULTIPLE BORS WRITE OVER DUMMY SEGMENT ROWS
C WRITE OVER ROWS AND COLS FOR FIRST DUMMY SEG.
C
DO 101 LSS=1,MT2
   LS=LSS-1
   Z(LS*NROW+NP11)=(0.,0.)
   Z(LS*NROW+NP11-1)=(0.,0.)
101   Z(LS*NROW+NP11+MT)=(0.,0.)
C
C WRITE OVER ROWS AND COLS FOR SECOND DUMMY SEG.
C
DO 201 LSS=1,MT2
   LS=LSS-1
   Z(LS*NROW+NRF)=(0.,0.)
   Z(LS*NROW+NRF-1)=(0.,0.)
201   Z(LS*NROW+NRF+MT)=(0.,0.)
C
C WRITE OVER DUMMY SEGMENTS IN THE CASE OF MULTIPLE WIRES
C
IF(NWIRE$EQ.1) GO TO 292
NSPTS=0
DO 291 L=1,NWIRE-1
   NSPTS=NSPTS+NS(L)
DO 291
C
C SET COLS TO ZERO FOR STRIPS
C
IN=(NSPTS-2)*NROW
   Z(IN+I)=U0
   Z(IN+I+NROW)=U0
291 CONTINUE
292 RETURN
END
SUBROUTINE ZMATWW(NWIRE$,NW1,NW2,XH,YH,RH,ZH,NT,XT,AT,A,Z)
C
C *** MODS FOR DIPOLE -- RECTANGULAR COORDINATES ARE SENT OVER ***
C COMPUTE MATRIX ELEMENTS FOR MULTIPLE WIRES USING GLISSON METHOD
C NWIRE$= # OF WIRES; NW1(I),NW2(I) ARE START AND STOP POINTS.
C &&&&& WIRES NEED NOT BE IN THE Z=0 PLANE &&&&
C
COMPLEX CEXP,Z(10000),CON,Cmplx
COMPLEX U,U0,PSI,SUM1,SUM2,SUM3,U5,U6,U7
DIMENSION RH(400),ZH(400),XT(4),AT(4),XH(400),YH(400)
DIMENSION D1(400),S1(400),C1(400)
DIMENSION NW1(4),NW2(4),NS(4),XS1(400),YS1(400)
DIMENSION CU(400),SU(400)
PI=3.141592
PI2=2.*PI
U0=(0.,0.)
U=(0.,1.)
C
C DEFINE GEOMETRY TERMS FOR THE WIRE. XH,YH,RH,ZH ARE ALL KNOWNs.
DO 5 L=1,NWIRES
5 NS(L)=NW2(L)-NW1(L)+1
NS1=NW2(NWIRES)-NW1(1)
NPS=NS1+1
DO 10 N=2,NPS
N0=N-1
I=NW1(1)+N-1
I2=I-1
XS1(N0)=.5*(XH(I)+XH(I2))
YS1(N0)=.5*(YH(I)+YH(I2))
ZS1(N0)=.5*(ZH(I)+ZH(I2))
DX=XH(I)-XH(I2)
DY=YH(I)-YH(I2)
D1(N0)=SQRT(DX**2+DY**2)
CU(N0)=DX/D1(N0)
SU(N0)=DY/D1(N0)
S1(N0)=1.0
C1(N0)=0.0
10 CONTINUE
NROW=NS1-1
JN=-1-NROW
DO 500 JQ=1,NS1
KQ=2
IF(JQ.EQ.1) KQ=1
IF(JQ.EQ.NS1) KQ=3
Q1=D1(JQ)/2.
DO 22 IP=1,NS1
LQ=0
IF(IP.EQ.JQ) LQ=1
CON=D1(IP)/4./PI*U
SUM1=UO
SUM2=UO
SUM3=UO
AA=CU(IP)*CU(JQ)+SU(IP)*SU(JQ)

C H INTEGRATION -- SUBTRACT OUT SINGULARITY IF JQ=IP
C AND SAME SEGMENT (N11=N21): DESIGNATED LQ=1
C
DO 100 I=1,NT
H=Q1*XT(I)
IF(LQ.NE.1) GO TO 40
RP=SQRT(H**2+A*A)
GO TO 50
40 XP=XS1(JQ)+H*CU(JQ)*S1(JQ)
YP=YS1(JQ)+H*SU(JQ)*S1(JQ)
RP=SQRT((XS1(IP)-XP)**2+(YS1(IP)-YP)**2+(ZS1(JQ)-ZS1(IP))**2)
50 PSI=CEXP(CMPLX(0.,-RP))
IF(LQ.NE.1) GO TO 60
PSI=PSI-(1.,0.)
60 PSI=PSI/RP
SUM1=SUM1+PSI*AA*AT(I)/4.
SUM2 = SUM2 + PSI * AA * AT(I) / 2 / D1(JQ) * H
SUM3 = SUM3 + PSI * AT(I) / D1(IP) / D1(JQ)

100 CONTINUE
X1 = 0.
X2 = 0.
X3 = 0.

IF (LQ .NE. 1) GO TO 200
DQ = D1(JQ) / 2.
SDQ = SQRT(DQ**2 + A**2)
X1O = ALOG(SDQ + DQ) - ALOG(SDQ - DQ)
X1 = X1O * AA / 4.
X3 = X1O / D1(IP) / D1(JQ)

200 CONTINUE
SUM1 = (SUM1 * Q1 + X1) * CON
SUM2 = (SUM2 * Q1 + X2) * CON
SUM3 = (SUM3 * Q1 + X3) * CON
U5 = SUM1 - SUM2
U6 = SUM1 + SUM2
U7 = -SUM3
K1 = IP + JN
K2 = K1 + 1
K3 = K1 + NROW
K4 = K2 + NROW
GO TO (18, 20, 19), KQ

18 CONTINUE
IF (IP .EQ. 1) GO TO 21
Z(K3) = Z(K3) + U6 - U7
IF (IP .EQ. NS1) GO TO 22
21 Z(K4) = U6 + U7
GO TO 22

19 CONTINUE
IF (IP .EQ. 1) GO TO 23
Z(K1) = Z(K1) + U5 + U7
IF (IP .EQ. NS1) GO TO 22
23 Z(K2) = Z(K2) + U5 - U7
GO TO 22

20 CONTINUE
IF (IP .EQ. 1) GO TO 24
Z(K1) = Z(K1) + U5 + U7
Z(K3) = Z(K3) + U6 - U7
IF (IP .EQ. NS1) GO TO 22
24 Z(K2) = Z(K2) + U5 - U7
Z(K4) = U6 + U7
22 CONTINUE
JN = JN + NROW

500 CONTINUE
IF (NWIRSES .EQ. 1) GO TO 297
NSPTS = 0
DO 291 L = 1, NWIRSES - 1
NSPTS = NSPTS + NS(L)
DO 291 I = 1, NROW
C
C USE THE SIMPLIFIED METHOD OF HANDLING MULTIPLE WIRES
C SET COLS TO ZERO FOR STRIPS
C
IN=(NSPTS-2)*NROW
Z(IN+I)=U0
Z(IN+I+NROW)=U0
C
C SET ROWS TO ZERO FOR STRIPS
C
IN=NSPTS-2+(I-1)*NROW
Z(IN+1)=U0
Z(IN+2)=U0
291 CONTINUE
C
C SET DIAGONALS TO 1 FOR STRIPS
C
NSPTS=0
DO 296 I=1,NWIRES-1
NSPTS=NSPTS+NS(I)
I0=NSPTS-2
I1=I0*NROW+NSPTS-2
Z(I1+1)=(1.,0.)
Z(I1+NROW+2)=(1.,0.)
296 CONTINUE
297 RETURN
END
LIST OF REFERENCES


<table>
<thead>
<tr>
<th>No. of copies</th>
<th>Initial Distribution List</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1. Defense Technical Information Center Cameron Station Alexandria, Va 22304-6145</td>
</tr>
<tr>
<td>2</td>
<td>2. Library, Code 52 Naval Postgraduate School Monterey, Ca 93943-5002</td>
</tr>
<tr>
<td>1</td>
<td>3. Chairman, Code EC Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, Ca 93943-5000</td>
</tr>
<tr>
<td>1</td>
<td>4. Dr. David C. Jenn, Code EC/Jn Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, Ca 93943-5000</td>
</tr>
<tr>
<td>1</td>
<td>5. Dr. Gurnam S. Gill, Code EC/Gl Department of Electrical and Computer Engineering Naval Postgraduate School Monterey, Ca 93943-5000</td>
</tr>
<tr>
<td>5</td>
<td>6. Lt. Manuel V. Ordonez SIMA Pearl Harbor, Box 141 Pearl Harbor, Hi 96860-5230</td>
</tr>
</tbody>
</table>