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Abstract.

We present expressions for absolute and relative errors in individual components of the so-
lution to systems of linear equations. We consider three kinds of linear systems: non-singular,
underdetermined of full row rank, and least squares of full column rank. No assumptions regarding
the structure or distribution of the perturbations are required.

Our expressions for component-wise relative errors allow the following conclusions: For any
linear system there is at least one solution component whose sensitivity to perturbations is propor-
tional to the condition number of the matrix; but — depending on the relation between right-hand
side and matrix ~ there may exist components that are much better conditioned. For a least squares
problem, the sensitivity of the components also depends on the right-hand side and may be as high
as the square of the condition number. Least squares problems are therefore always more receptive
to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underde-
termined linear systems of full column rank, the problem of finding the minimal-norm solution can
be formulated so that the same analysis as for least squares problems is applicable here as well.

Finally, we define component-wise condition numbers that measure the sensitivity of the so-
lution components to perturbations. They have simple geometric interpretations and can be com-
puted and estimated as efficiently as the conventional condition numbers.
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1 Introduction

Most people would probably believe that there is nothing left to be done when it comes to error
analysis for the solution of linear systems of equations and linear least squares problems, especially
where perturbation analysis without regard to a particular algorithm is concerned. So, why yet
another paper on the subject?

We want to demonstrate that a careful perturbation analysis is capable of providing a realistic
assessment of the error and reliable measures of the sensitivity of the solution to perturbations in
the data.

In particular, we derive expressions for the errors in individual components of the solution vector.
These expressions give rise to realistic and efficiently computable error bounds. The derivations of
the error expressions require no restrictions on the structure or distribution of the perturbations.
Without any knowledge of the underlying algorithm, we can therefore obtain a great deal of infor-
mation about the sensitivity of individual solution components to perturbations in the data —~ much
more, in fact, than what is provided by conventional perturbation results.

1.1 Motivation

Consider the solution of a system of linear equations Az = b with non-singular coefficient matrix A.
The computed solution £, which is usually different from the true solution z, can be viewed as
the true solution to a perturbed system (A + F)Z = b+ f. Let’s assume we do not know which
algorithm was used for the computation of Z, so we have no knowledge about the structure of the
perturbations F' and f.

Only very infrequently, e.g. [4, 15], does one try to assess the error in individual solution
components. The conventional way of assessing the error in Z, as compared to the true solution z,
is to estimate an upper bound on the norm-based! relative error ||Z — z||/||z|]. The most commonly
used first-order bound is

iz — =]|

=l < k(A)(pa + ps),

where the condition number x(A4) = ||A||||A~!{| > 1 acts as an amplifier for the relative perturbations
in the data p4 = ||F|}/||All and ps = ||f]}/]|8]]- This norm-based bound has led to a rule of thumb:
If, for instance, x(A) is about 103, and the size of the relative perturbations is about 107, then the
computed solution Z can be expected to be accurate to 7 — 3 = 4 significant digits.

In many situations this type of error assessment is just fine — unless, however, the individual
components of the solution have physical significance as, for example, in statistical applications [21].
Consider the linear system Az = b, where

(7). () =) Ca—

Suppose the computed solution is = (1), where ¢ is a very small positive number. Then Z can '
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!The following inequalities hold for any vector p-norm and induced matrix norm; see Section 2 in [l 2] for instance. lt;};&s'
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Because A is the identity matrix, £(4) = 1, and the above error bound tells us that ||Z - z||/||z||<e.
So the error in the solution seems to be no more than the error in the data, which is all we are
entitled to. However, the second component of the computed solution has component-wise relative
error? _
ro — I3 €e—0
= = = 1,
T2 €

and is thus totally wrong. Therefore, a small bound on the norm-based error does not guarantee
accuracy in individual components of the computed solution.

Of course, you could argue now that this should have been anticipated. Since z3 is zero, hence
small in magnitude, one should not expect to compute it correctly in the first place. Accordingly,
we could account for it by estimating the error in each component Z; of th- computed solution via

& — =il < iz - =||
| |zl
provided z; # 0. The amplifiers for the relative perturbations are now the condition number, as

well as the size of an individual component relative to the whole solution. This modification yields
a correct assessment for the errors in individual solution components of the above example.

< n(A)’l'—f}I'(pA + o),

Unfortunately, we have not really fixed the problem. The condition number x(A) can still
severely over estimate the error in some solution components, as the following 4 x 4 linear system
demonstrates.

0.4919  0.1112 -0.6234 -0.6228 0.4351

A= —0.5050 -0.6239 0.0589  0.0595 b= -0.1929
0.5728 -0.0843 0.7480 0.7483 j° 0.6165

—0.4181 0.7689  0.2200 0.2204 —0.8022

The first three columns of A are nearly orthogonal while the last two columns are almost identical.
Both the two-norm condition number x3(A) and Skeel’s condition number [19] are larger than 103.
Note that the matrix is not ill-scaled.

But the ‘component-wise condition numbers’ that we will introduce in this paper turn out to be
<ll, <11, >10% >103.

This means that the first two components of z are well-conditioned and the remaining two are
ill-conditioned, regardless of the perturbations. To illustrate this, compare the ‘exact’ solution
computed with 16-digit arithmetic

2T = (1.000075414240576 —.5000879795933286 —.0242511388797165 .02624513955005858),

with the solution computed with 4-digit arithmetic, which can be viewed as the solution to a per-
turbed problem,
z7 = (1.000 -.5003 -.0589 .06090).

As predicted by our component-wise condition numbers, the first two components are accurate to
almost four digits, whereas the last two have no accuracy whatsoever. As far as we know no other
existing condition numbers can predict the well-conditioning of the first two components of this
system.

Therefore, the conventional norm-based bounds are apparently not able to estimate the accuracy
of individual components correctly. We hope to have now provided enough motivation for the need
to study component-wise relative errors and the sensitivity to perturbations of individual solution
components.

2\Whenever z; = 0 while #; # 0, the component-wise relative error has %, instead of z; in the denominator.




1.2 Overview

Given a linear system Az = b of full column rank and a perturbed system (A + F)Z = b+ f, we
derive expressions for the error in individual components of the computed solution Z. Our work is
more general than that of Skeel [19] on component-wise perturbations and that of Stewart [22] on
stochastic perturbations because we make no assumptions about the perturbations F and f, either
their size, structure or distribution.

In particular, we show that there is always one component of the solution vector whose sensitivity
to relative perturbations is proportional to the condition number of the matrix; but — depending
on tha right-hand side - there may exist components that are much better conditioned. Therefore
the conventional upper bounds on norm-wise relative errors are as tight as possible, and if they are
pessimistic it is because they represent an inadequate means of measuring the error.

We derive condition numbers for individual components for the solution of a linear system, which
we call ‘component-wise condition numbers’. We thus associate with a linear system Az = b not a
single condition number but a set of condition numbers. Our work, although developed indepen-
dently, can therefore be considered a continuation of Stewart’s work on collinearity in regression
problems (21]. The singular value decomposition, often used to determine the conventional condi-
tion number of a matrix, provides a basis for the column space but does not relate this basis to
the columns of the matrix. In contrast, Stewart’s condition numbers are designed to expose the
most linearly dependent columns of a matrix. They are embedded in our component-wise condi-
tion numbers, whose purpose is not only to recognise linearly dependent columns but also to reflect
the relationship between matrix and right-hand side. We provide a geometric interpretation for
Stewart’s condition numbers and demonstrate that they are ‘inherent’ in the inverse of the matrix.

All of our results also hold for the solution of linear least squares problems miny [|Ay — b}] of full
column rank. The set of component-wise condition numbers for a least squares problem contains
those for a linear system as a subset, hence the sensitivity of some solution components may be much
lower than the condition number. In particular, we show that there is a component of the solution
vector whose sensitivity to relative perturbations equals at least the product of condition number
and tan @, where 0 is the angle between the right-hand side and the column space of the matrix; the
sensitivity can be as high as the product of tan# and the square of the condition number. Least
squares problems are therefore always more receptive to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underdeter-
mined linear systems of full column rank, the problem of finding the minimal-norm solution can be
formulated so that the same analysis as for least squares problems is applicable.

The expressions for the errors in the solution of least squares problems and underdetermined
linear systems can be used, for instance, to obtain perturbation results for the computation of left
and right inverses of matrix.

In Section 2 we present the basic ideas contained in this paper. We derive them from first
principles, keeping technical details to a minimum. Section 3 and Appendix 2 contain a detailed
perturbation theory for the solution of linear systems of full column rank, and Section 4 extends
it to the solution of least squares problems of full column rank. The treatment ~f full rank least
squares problems is extended to the solution of underdetermined linear systems of full row rank
in Section 5. In Section 6 we discuss the efficient computation and estimation of component-wise
condition numbers. In particular, we show how to compute them via updating QR decompositions,
and how to estimate them by means of conventional condition numbers estimators. A short summary




of the paper is followed by Appendix 1, where expressions for the left-inverse of a matrix are derived
in order to justify our choice of condition numbers as a natural measure of sensitivity.

Although we concentrate on component-wise relative errors, expressions for component-wise ab-
solute errors are also included; the corresponding condition numbers can be computed as easily as
those for conventional norm-based errors.

1.3 Summary of Notation

We give a brief summary of frequently used notation for easy reference. This notation is also
introduced in the body of the paper whenever it appears for the first time.

The norm || -|| represents the two-norm, and e; stands for the ith column of the identity matrix I,
whose order will be clear from the context. The column space of a matrix A, {c : Az = ¢}, is
represented by R(A) and its nullspace, {z : Az = 0} by Ker(A4). The subspace in real n-space R"
that is orthogonal to the space span{v,,..., vt} spanned by n x 1 vectors vy, ..., vg is denoted by
spant{vy,...,u}.

The columns of a n x m matrix A are denoted by a;, and if A is of rank m the rows of its
left-inverse A! are denoted by =¥,

r
A=(ay ... am), Al =

r:,

The singular value decomposition (SVD) of a n x m matrix A, n > m, is represented as A =
UTVT, where U is a n x n orthogonal matrix, V is a m x m orthogonal matrix, and the mx n diagonal
matrix T has as its diagonal elements the singular values of A in descending order ¢y > ... 2> 0, 2 0.
The two-norm condition number of a full-rank matrix A is denoted by x(A) = ||A[| [|A1|l.

If z solves the least squares problem miny ||Ay — b|| then the residual is denoted by r = b~ Az.

2 The Basic Ideas

We start out by illustrating the ideas that led us to pursue a component-wise perturbation analysis;
this is done by studying perturbations in the right-hand side only. We also restrict ourselves to the
solution of full-rank least squares problems until Section 5 where the results are extended to the
solution of underdetermined linear systems of full row rank.

As for notation, || - || represents the two-norm, and e; stands for the ith column of the identity
matrix [.

2.1 Motivation

The first theorem gives a simple geometric interpretation of the components of the solution z to a
full-rank least squares problem miny ||Ay — b|. An individual solution component can be expressed




as a product of three factors: the length of a row in the left-inverse A', the length of the right-hand
side and the angle between the two.

Theorem 1 Given a n x m matriz A of rank m, denote by rT the rows of its left-inverse Al,

é
Al = (ATA) AT =

7
Then the components z; of the solution z to the least squares problem miny ||Ay — b|| are given by
z; = rlb = ||ri]| [[b]] cos Gi, 1<i<m,

where B; is the angle between r; and b.

Proof: The vector z solves miny ||Ay — b|] if and if only it solves the normal equations AT Az = ATb.
So z = Atb, which implies z; = r7b = ||ri|| ||b]] cos B;, where §; is the angle between r; and b. ®

Already in [20] Stewart recognised the importance of the ||r;|] for the purpose of detecting almost
linearly dependent columns in A. In fact, it turns out that length and angles associated with the r;
indicate the sensitivity of individual components of the solution z to perturbations in the right-hand
side.

Theorem 2 Given a matriz A of full column rank, let z # 0 solve miny [|Ay — b|| and let T solve
miny ||Ay — (b+ /)Il-

Denote by ; the angle between r; and f. Then
=z + r,Tf = z; + |7l |1 £]] cos ¥i.
Ifzi # 0 and €y = || f]|/]1b]| then

Ty~ T _
I - cosﬂ.-
_lisll Y=l

AT el] = 70l e cos ¥

€p cos Y;

Proof: According to Theorem 1,
Z=rT o+ ) =rTo ol f = ab o7 = 2+ Il L] cos v,
where ¥; is the angle between r; and f. Since 0 # z; = rTb = ||r;|| ||bl| cos B we have

B-z T 1S

z,  rThp cosﬂ;ml—I

cos 9.

The theorem states that the absolute perturbation ||f|| cos ¥; in &; — z; is amplified by ||ri]|. In
the first expression for the relative error, the perturbation € cos; is amplied by 1/ cos B;. That
is, the ‘more orthogonal’ b is to r;, the smaller is cos 3, and the larger is the amplification of the




relative perturbation. Therefore, the component-wise relative error is likely to increase, the more
orthogonal r; is to the right-hand side.

Comparing the two amplifiers we see that the amplifier ||r;|] in the absolute error only refers to
the matrix and ignores b, while the amplifier 1/ cos f; in the first expression for the relative error
describes a relationship between the matrix and the right-hand side.

The second expression for the relative error in Theorem 2 is more conventional and perhaps
easier to interpret. It consists of the relative perturbation ¢ cos ¢;, amplified by three factors: the
magnitude of z; relative to ||z||; the term [|A[| ||r;]|, which describes the condition of the matrix and

will be studied more closely in Section 2.2; and the term , which is coinmon to all components
and describes the relation between matrix and right-hand side. If we denote by x(A) = ||A|] ||t}

the condition number of the matrix A then ]| A}|||ri]] can be bounded by
1= |lef || = |lef A Al < [l ATl 1Al = AN Imil] < w(A),
A lower bound for H'AH_IT provided z # 0, is

b1 L
TAIl= = AT llﬁ-’n"-ﬂ <A
In case of a linear system Az = b,
o lldz)

A=l A=) =

otherwise it can be unbounded since b may be almost orthogonal to all rows of Af.

Therefore, the component-wise relative error tends to be large for those components z; whose
size is small in comparison to ||z||, or whose matrix condition number ||A]|||ri] is large, or whose
right-hand side is nearly orthogonal to all rows of At. The three amplification factors in the second
expression for the relative error in Theorem 2 provide a clear separation of the factors responsible
for the loss of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

In Sections 3 and 4 we show that the same quantities that determine the sensitivity to right-hand
side perturbations also determine the sensitivity to perturbations in the matrix. .First, though, we
relate them to more established ways of measuring sensitivity.

2.2 Relation to Singular Values

The goal of this section is to compare the amplification factors for the usual norm-based errors with
those for our new component-wise errors.

Because the two-norm condition number x(A) = || A ||A'}| equals the ratio of the extreme singu-
lar values of A, we can relate the ||r;]] to the singular values of A and obtain the following well-known
inequalities.

Theorem 3 Let A be a n x m matriz of rank m with singular values oy > ... > o > 0, and denote
by rT the rows of A'. Then

<oy, Om mm” “5\/_0".
Tk

= .II




If [Irmaz|| = maxy ||ri|| then

N4l Irmazll < IAHHAN] < VmllAll Irmacll.

Proof: The singular values of the left inverse At are 1/0;, Section 5.5.4 in [12], hence 1/0; < ||ril| <
1/0m, giving the first set of inequalities.

Let A= UZVT be the singular value decomposition of A. The last row eL, VT of V7 is a vector
with unit two-norm in R™, so at least one of its components, say the jth, must be of magnitude
1/\/m. Hence the jth row r; of A! satisfies

Il = IUSET R V51l = IEETD) Vgl 2 IERZETD) VT 2 —=—,

yielding the second set of inequalities.

The last set of inequalities comes from ||rmaz|| < ||Af]| = 1/om. W

Applying Theorem 3 to the second expression for the component-wise error in Theorem 2 shows
that there must exist a component #; for which

[Ze —ze| 1 |18 li=ll
— > —=——— k(A) = €] cos Y|
|z vm |AlL =l ||
Therefore, the sensitivity of z; to right-hand side perturbations is proportional to the condition
number of A whenever the right-hand side has an appropriate direction, that is, whenever "-AH*;“
is not too small

We briefly take a closer look at this last condition. When Az = b and b is a singular vector
associated with the smallest singular value o of A4, ||Atb[|/||b}] = 1/om = ||A!]], then

e _ 1 g bl Il
A=l = =@ " TAl=l 14T =

According to the expressions for the errors in Theorem 2, the sensitvity of all solution components
to right-hand side perturbations is then solely determined by their relative magnitude.

Al lrll = <L

The existence of a row of A' whose norm approximates 1/0,, well, as evidenced by Theorem 3,
underlies the rank-revealing QR factorisations, which first appeared in (11, 13], and are further
analysed and refined in [20, 10, 6, 21]. In the simplest case, the goal of a rank-revealing QR
factorisation is to determine the most linearly dependent column of a matrix A. To this end one
performs the QR factorisation AP = QR, where Q has orthonormal columns, R is upper triangular
and the permutation matrix P is chosen so as to minimise the trailing diagonal element (R)mm of R.
Then the inverse of this element, 1/|(R)mm| = |leT, R™|| = ||rL|l, is as large as possible, and thus
close to 1/om.

While Theorem 3 states that at least one {|r;|| approximates the smallest singular value well, the
following corollary indicates that each ||ri]} cannot stray too far away from some singular value.

Theorem 4 Let A be a n x m matriz of rank m with singular values oy > ... > om > 0, and let
lAllr = ,/E” 3; denote the Frobenius norm of A.




If the ||r;|| are ordered by increasing norm, |irj,|| < ... < |Irj. ]|, then

an 2 =11A"% =

i=l

ot Z sZur,u’ 1<k<m-1.

2
ag
m i=1 i=1

.—w‘ Lol

Proof: The equality results from the invariance of the Frobenius norm under orthogonal transfor-
mations, Section 2.5.3 in [12].

The inequalities are obtained by applying the proof of Theorem 4.3.26 in [17] to the singular
values of A!. =

Remark 1 [t is important to realise that the looseness of the inequalities in Theorem 3 depends on
how close the right singular vector matriz of A is to a permutation matriz: if A = ULVT is the
SVD of A then

lIrill = WEETE) Vel = IE(ETE)" VT el

Thus, if V is a permutation matriz (this includes diagonal matrices) then we can find indices that
achieve the bounds in Theorem 3 since ||r;|| = 1/0 for some k.

2.3 Conventional Error Bounds

In this section we present a rather unconventional way of deriving bounds on the norm-based relative
error, by making use of the theorems from the previous sections.

An expression for the absolute norm-based error in the infinity-norm is available from Theorem 2,
12 = 2lloo = max {llrfl 171 | cos %]}
Dividing this by ||z|| results in a mixed-norm relative error

12 -2zl _ _lisll ll

where ey = || f]|/]|b]]. Denoting by x(A) = || 4|} {|A!|| the condition number of A, we obtain an upper
bound for the norm-based relative error ftom Theorem 3,

=2l _ = ol m
TSP S V) e @

In case of a linear system Az = b, ||b]] < ||A|| liz|| and the bound simplifies to

12 - =il
=l H

In this last form, the upper bound agrees with the conventional bounds. Its amplification factor for
the perturbations consists of the condition number k(A) of the matrix but ignores the relationship
between matrix and right-hand side.

< vVmr(A)es.

Theorem 3 also comes in handy for the derivation of the lower bound

N2 =zl | 2=zl _
=l = el

_ iy
A=l

b1,

ltéil ,
ax {} Al lIrill e TA=T es| cos i|} 2 \/— &(A) T




a; spani'#,- {ax}

Qi

Z /Spank;ei{ﬂk}

Figure 1: Angles Associated with Columns.

where 4 = max; {Ir| | cos ¥}/ maxs [[rill.

To summarise, we have derived lower and upper bounds on the norm-wise relative error for
perturbations restricted to the right-hand side,

L Iz — =l I L
\/— <) AN MAIT=T = Tl A=l

In the absence of knowledge about the value of cos ¥; we have to assume the worst case ¢ = 1, which
implies that the norm-based error bound is tight. Therefore the conventional upper bounds are as
good as possible — given that one has chosen to measure a norm-based error. We have therefore
shown that, if the norm-wise bounds give unsatisfying information, it is 2ot because the bounds are
loose but rather because an unsatisfying way of measuring the error was adopted in the first place.

< Vmi(A) 7= i

When Az = b and b is a singular vector associated with the smallest singular value o, of A,
LATeI/1i8l) = 1/om = {|A]], then [LAll{j=]I/flblf = K(A) and

Iz~
—=6p < < vmes.
vm l= II
In this special case the norm-wise relative error is of about the same magnitude as the perturbation
in the right-hand side and does not depend on the condition number of A, an observation already
made by Chan and Foulser {7].

2.4 Geometric Interpretation

We have seen so far that individual components of the solution z to a full-rank least squares problem
miny ||Ay — b}| can be expressed as z; = ||ri]| ||5]| cos B;, where r7 is the ith row of A" and §; is the
angle between r; and b; that [|r;|| and 1/ cos 8; determine the sensitivity of z; to perturbations in b;
and that at least one 1/||r;j|| approximates the smallest singular value of 4 well.

Now we want to give a geometric interpretation of the ||r;]| in terms of the columns in the original
matrix A. This will allow us to determine how exactly the linear independence of the columns of A
and their relationship to b affects the sensitivity of individual solution components to perturbations.

As for notation, the column space of a matrix A is represented by R(A) and its nullspace by
Ker(A). The subspace in real n-space R" that is orthogonal to the space span{vy,...,v:} spanned
by n x 1 vectors vy, ..., vs is denoted by spant{v,,...,n}.

We first show that the size of the ||r|| reflects the linear dependence of the ith column of 4 on
all others.




Theorem 5 Given a n x m matriz A of rank m, denote by a; its columns, and by r7 the rows of
its left-inverse A,

T
Ty

A=(ay ... am), At=(ATA)"AT=

Then R((AN)T) = R(A) and
1

laiflcos s’

il =

where —17 < a; < 1 is the angle between r; and a;.

Proof: Because A has full column rank, AT A is non-singular, and Az = A(ATA)"'z = (AN)Tz,
where z = AT Az, which implies that R((AN)T) = R(A).

The ith diagonal element of I = A!A satisfies i = rTa; = ||r;|| |lai|| cos i, where a; is the angle
between r; and a;. Hence cosa; > 0,30 =37 < a;i < 37, and ||ri|| = m

Because e7 = rT A, r; is orthogonal to all columns of A except for a;, that is r; € spa.n,f¢,-{ak},
see Figure 1. Theorem 11 and Corollary 5 of Appendix 1 show that the ith row r of Al has the

same direction as the residual in the least squares approximaticn of column a; by the remaining
columns: if A; contains all columns of A except for a; then

1 I Lp
T r -

r: =e: A = —
: * [|ail] cosa; [|@;l) *°

where —a; = A;z — a; is the residual for the solution z to the least squares problem miny [|A;y — a;l.
In other words, &; is the projection of a; onto the orthogonal complement of R(A;), and r; has the
same direction as a;.

With regard to the length of r;, it follows that

11
Naill ™ Nailj cos o™

lIrll =

This means, the better the remaining columns A; approximate a; the smaller is the residual ||a;]|
and the larger is ||r;||. That is, the more linearly dependent a; is on the other columns, the larger

is {[ril.

The relationship between the length of r; and the norm of the residual is already known. In [21]
Stewart uses a different argument to show that
. . 1
llail] = min|}A;y - aif| = 7.
v |73l
Our contribution here is to provide more justification for the choice of r; as an indicator of sensitivity.
Because r; is a multiple of the residual a,, the residual is inherent in A and thus represents a most
natural choice for sensitivity measure.

Nur geometric interprctation of the rows of the left-inverse justifies the use of rank-revealing QR

factorisations to determine the most linearly dependent column of a matrix. If the permutation
matrix P for the QR factorisation AP = QR is chosen so that the trailing diagonal element |(R)mm|

10




of R is minimal, then the residual 1/||rZ|| = 1/||eZ R~!|| = |(R)mm| is minimal. This implies that
the last column of AP is the column that can be best approximated by all other columns and so is
the most linearly dependent among all columns.

The individual components of the solution z to a least squares problem miny ||Ay — b|] can be

expressed as
11{] cos B:
i = |l 10]] cos B = ———.

The denominator of z; indicates the linear dependence of column a; on all others, while the numerator
indicates the contribution of the right-hand side b in spanf;#{a;,}. In detail, for fixed b, the smaller
the contribution of a; outside the space spanned by the other columns, the larger is z;. Or, the
smaller the contribution of a; outside the space spanned by the other columns, the more z; has to
make up for the weakness of a; in the direction spani'#{ak}. Moreover, the shorter a; is, the larger
z; has to be because it has to make up for the shortness of a;.

We can also apply the geometric interpretations to the errors resulting from perturbations f in
the right-hand side. The expression for the absolute error from Theorem 2,

. _ ISl cos ¢
Ti—z = po——,

flail| cos a;
contains a iarge amplification factor ]Ia_.HéT.T if column a; is short or lies almost in the space spanned
by the other columns. The relative error

Ti—z; 1

= €5 CO8 Y;
z; cos i ° ¥i

contains a large amplification factor 1/cosF; if b lies almost in the space spanned by the other
columns or in Ker(AT) = Ker(A') (in the latter case the right-hand side of the normal equations is
zero). Note that the amplification factor for the absolute error only reflects the linear independence
of the matrix columns, yet ignores their relation to the right-hand side.

2.5 Implications for Column Scaling

A diagonal column scaling D of the least squares problem min, ||Ay — b|| to min, ||(AD)z - b||, where
D = (dij) is a non-singular diagonal matrix, changes only the lengths of the columns but not the

angles, so
lll]  cos B

|ldiiai]| cosa;

Zy =

In case of a column equilibrated matrix AD, Section 3.5.2 in [12], and [24, 25], where the diagonal
matrix D is chosen so that all columns of AD have identical length, the condition number of AD
comes from the largest angle amq, of A, as

1 vm
—— <Il4Dl|I(4D)] < L,
S Amar maz

according to Theorem 3. This bound already appeared in a different form in [21].

Van der Sluis has shown that a column equilibrated matrix A has the lowest condition number
among all matrices of the form AD [24]. This would suggest that one solve only linear systems and
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least squares problems with column equilibrated matrices so as to minimise the condition number
in

le=all bl
S Ve e

However, the condition number occurs in an upper bound!

An examination of the first expression for the component-wise relative error in Theorem 2 shows
that none of the angles change when the columns of A are multiplied by non-zero scalars. In
particular, if we consider instead the system (AD)z = b, where z = D~'z, then the computed
solution Z satisfies a perturbed system ADZ = b + g. Postmuitiplication of A by D corresponds to
premultiplication of A' by D=!, which changes only the lengths of the rows r7 in A! but preserves
the angles §; between b and r;. Hence the amplification factor 1/ cos 8; remains invariani under
column scaling.

Therefore, if perturbations are restricted to the right-hand side, then column scaling is only
beneficial if it manages to decrease the relative perturbations ¢y cos ¢; in the component-wise relative
error (this could occur, for instance, if column scaling brings about a different choice of pivots in
Gaussian elimination).

2.6 Summary

The main result of Section 2 is the pair of expressions for the component-wise relative errors in a
full-rank least squares problem when perturbations are restricted to the right-hand side (Theorem 2).

Suppose z # 0 solves the least squares problem miny ||Ay — b||, and Z solves the corresponding
problem miny || Ay — (b + f)|| with a perturbed right-hand side. The relative error in an individual
component of £ can be expressed as

Z; — 2 1

T cos 3;

€p cOS ¥,

where §; is the angle between b and the ith row of A!, v; is angle between f and the ith row of A!, and
e = |IflI/llbll- Thus, the component-wise relative error consists of a relative perturbation €, cos ¥;,
amplified by 1/cos ;. This amplification factor is large if b is almost orthogonal to the ith row
of A'; that is, if b lies almost in the space spanned by the other columns or in Ker(AT) = Ker(A?).

Because 3; depends only on the direction but not the length of the ith row of At, column scaling
of A is only beneficial if it manages to decrease the relative perturbations ¢; cos ¥;.

We also gave a second expression for the relative error

ot o DL L g e con

which provides a clear separation of the factors responsible for the loss of accuracy in the computed
solution: relative magnitude of the solution components ||z||/z:; matrix condition ||A||||ri|; and

. . . . . » .
relatl.onshlp'b'et.ween matrix and nght-.hand side er'H:n > T‘Tlfﬁ’ where (A4) = [[Al|||AT]| is the
matrix condition number. In case of a linear system Az = §,

B _ sl

lAlli=ll — HAlli=ll =

otherwise there is no bound as b may be almost orthogonal to all rows of A'.
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The component-wise relative error tends to be large for those components z; whose size is small
in comparison to ||z||, or whose matrix condition number |[A|| ||;|| is large, or whose right-hand side
is nearly orthogonal to all rows of A!. Moreover, Theorem 3 shows that there must be at least one
component z; for which ||A[]||re|| > x(A)/+/m. In the special case when Az = b and b is a singular
vector associated with the smallest singular value of A,

liell 1 el
_— . = and U A=) < 1,
IE) T

and the sensitvity of all solution components to right-hand side perturbations is solely determined
by their relative magnitude.

In the next section we derive expressions for component-wise relative errors when perturbations
in the matrix are also allowed. For simplicity we start with linear systems, and consider least squares
problems separately in the subsequent section.

3 Perturbation Results for Linear Systems

We derive expressions for component-wise errors in a linear system of full column rank when both
matrix and right-hand side are perturbed. From these expressions we derive component-wise condi-
tion numbers for the individual components of the solution. The expressions for the component-wise
errors are used in turn to derive upper bounds for the norm-based errors that are essentially equal to
the conventional upper bounds. We conclude that the norm-based bounds are as tight as possible.
If they turn out to be pessimistic then this is because one has chosen to measure the norm of the
error instead of the error in individual components.

3.1 Component-Wise Errors

A computed solution £ to a linear system Az = b can be viewed as the exact solution to a perturbed
system (A + F)Z = b+ f. We will determine how the error in the components of £ is affected by
the perturbations F and f.

The first theorem investigates the effect of perturbations in the matrix.
Theorem 6 Given a matriz A of full column rank and b # 0 such that Az = b, let the computed

solution Z # 0 satisfy (A+ F)Z = b.

Denote by ¢; the angle between r; and FZ. Then
L | FZ|| cos v

flaill cosa;
Ifz; #0 and ¢4 = Af’ﬂ then
-z 1 ||Fz||
= — = cos Y
z; cos f3; |jbl} v

z
= =B g i ca cos
1
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Proof: In Theorem 2 we set f = —FZ% to get

s —p o TFs = g (1oL lFEl )
Fi=zi~-r; Fz = z (1 B 0l cos ¥
_IF3)cos s

laill cos o ~

Dividing the whole equation by z; gives the expressions for the component-wise relative error.
|

The first expression for the component-wise error says that the more b lies in spani'# {a:}, the
more sensitive is z; to relative perturbations. However a large 1/ cos §; does not necessarily imply
that b has little contribution in a;. In fact, if b = a; and 1/ cosa; is large then 1/ cos 8; will also be
large — in this case cos g; reflects the linear dependence of the columns of A.

We interpret the second expression for the component-wise relative error in Theorem 6 as follows:
the first term, ||z||/z;, represents the relative magnitude of z;; the second term, ||Al| ||r:|| = “—GTH%OHE,
represents the linear dependence of the ith column of A on all other columns; and the last term
€4 €08 Y; represents a relative perturbation for the matrix in the context of the given linear system.
The component-wise relative error tends to be large for those components z; whose size is small in
compatison to ||Z]|, or whose associated column is short in length or nearly linearly dependent on
the other columns. The two amplification factors in the second expression for the relative error in
Theorem 6 provide a clear separation of the factors responsible for loss of accuracy in the computed
solution: relative magnitude of solution components and linear dependence of matrix columns.

In comparison to the error from right-hand side perturbations in Theorem 2, the error from matrix
perturbations in Theorem 6 does not contain the term b —r, which describes the relationship
between matrix and right-hand side. According to Theorem 3 we conclude that there always exists
a component z; whose sensitivity to relative perturbations in the matrix is on the order of x(A).
This is in contrast to right-hand side perturbations, where b has to lie in a certain direction for the
sensitivity to be proportional to the condition number.

Before resolving this apparent contradiction (in particular, wheun the perturbations are due to
backward errors from algorithms, which can be shuffled back and forth between matrix and right-
hand side), we first give an expression for the component-wise relative error for a linear system when
matrix and right-hand side are perturbed simultaneously.

Corollary 1 Given a mairiz A of full column rank, and b # 0 such that Az =b. Let T # 0 satisfy
(A+F)z=b+f.
Denote by Yr; the angle between r; and Fz, and by ;; the angle between r; and f. Then

[|fllcos ¥y i — || FE|| cos YF;
[lail] cos a; )

Ti=z; +

Ifz; # 0 and
_ha P
T Al 1]

€

then

zi -z 1 7 (1FZ(| cos ¥r,i — [Ifll cos ¥y.i]

zi  ||bljcos
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The second expression for the relative error allows us to state that, in general, for every linear
system there exists a solution component whose sensitivity is proportional to the condition number,
because the term that could avoid this, 1 b =r, multiplies only the right-hand side perturbations
but not the matrix perturbations. In addition, the following theorem shows that for any z # 0 the
perturbations can always be allocated to the matrix.

The following theorem helps to resolve the discrepancies in the réles of right-hand side and matrix

Fz

perturbations. It also justifies the representation of the matrix perturbation in the forme, = “ﬁ-"-"lzl-".

The bounds on the norm-based relative error {12, 23], usually contain the term p4 = ||F||/|| Al as
the representative for the matrix perturbation. But ¢4 < p4 and, as it turns out, €4 constitutes the
smallest possible matrix perturbation.

Theorem 7 Given a matriz A of full column rank and b # 0 such that Az = b, and a computed
solution ¥ # 0, let Fr;n be the perturbation of smallest Frobenius norm among all perturbations F
that satisfy (A+ F)Z = b (Fpin also has smallest two-norm among all such perturbations).

If 2; # 0 and emin = ||Fminll/||Al] then

z;—zi _ Az} 1
= €EminCOS V5,
zi “b" cosﬂ;’ mn 1/’;
where v; is the angle between FninZ and r;.
If €res = |6 — AZ||/||b]| is the relative residual then
el 1 =]l HEd]
in = T res < €min < TTCres-
min S AN w@ R T S =

Proof: If f = b— AZ is the residual then F,n is given by, [18] and Theorem I11.2.16 in [23],

=T
£
Fmin = ""{?
Tz
and satisfies
= s _ Al
f = —Fmint and ”Fmin” =0
(&l
where the second equality comes about because F;, has rank one. Substituting ||f|| = ||Fminll |IZ]|

into the first expression for the component-wise relative error from Theorem 2 yields the expression
for the error.

The relation between €min and €., comes about as €., = ||f||/|6]| and || Fmin|l = || f|I/|Z]|. ®

The proof of Theorem 7 makes clear that, given Az = & and Z, the smallest matrix perturbation

satisfies [Fminll _ IIFE]
A Fmin = bv min ~ min = -z- y
(A4 Frnin)2 ‘ Al = TATTE

which is exactly the matrix perturbation ¢4 in Theorem 6.
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Moreover, for a given computed solution Z one can define two perturbations: the minimal matrix
perturbation €,n; and the relative residual ¢,.,, which reflects the relationship between matrix and
right-hand side. If the magnitude of the computed solution is not totally off, i.e. if ||z|] = ||Z]|, then
€min is of the same order of magnitude or smaller than ¢,.,. According to Sections 2.1 and 2.2, ¢,
is much larger than €nin whenever b lies nearly in the direction of a singular vector associated with
the smallest singular value of A (provided the directions of z and Z are not too different).

Regarding the interpretation of error bounds and the determination of amplification factors, one
must therefore be careful about deciding whether to allocate the perturbations to the matrix or
to the right-hand side. We continue this discussion in the context of norm-wise error bounds in
Section 3.4.

In Theorem 7 the relative errors in the different components differ only in cos ¥;/ cos i, while
the term || A]]]|Z||/]1%]] is common to all components. Because 1/ cos§; > 1,

12 — =il  HAllZ)
ERT]

so all components of z are sensitive to matrir perturbations if {|A|| [|Z||/||8]] is large. In particular,
if b lies along the direction of a singular vector associated with the smallest singular value of A
then || A} ||z]|/1]b]l = x(A). Together with the results from Section 2.3 this implies that the solution
components are extremely sensitive to matrix perturbations exactly when they are insensitive to
right-hand side perturbations.

€min]| o8 ¥,

The expressions for the component-wise errors in this section contain not only the data A and b,
but also the result Z. In Appendix 2 we show how to express the relative errors entirely in terms of
the data; although the perturbations take a slightly different form, the magnification factors for the
perturbations continue to be 1/ cosa; and 1/ cosf3;.

3.2 Examples

Now we give two examples to illustrate the previous results. The first example demonstrates that a
matrix with perfectly conditioned columns may give rise to a linear system with extremely sensitive
solution components.

Example 1 If A is an orthogonal matriz then HT.'H%!.LT. = 1 and, according to Theorem 6, ||Z|]/z;
18 the sole term responsible for error magnification. Thus, as we already know from the norm-wise
bounds, a solution vector with small as well as large components suffers from large error amplification
in the small components.

This also comes oul if we consider instead the angles

1 1 _ 1 el 1 _1
cosa;  |laifjcosa; ~ ' cosfB;  zi ' ||bllcosB Tz’
where the nezt to last equality comes about because ||b]| = ||z|.

In contrast to the first example, the second one shows that even a very ill-conditioned matrix
may have robust solution components. It is a generalisation of the example presented in Section 1.1.
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Example 2 Consider a 4 x4 orthogonal matriz A = (a; a3 a3 a4) and define a one-parameter
family of matrices by

A(/\) = (01 az asz m(z\a3 +a4)) .
We see that A(0) = A, a well-conditioned matriz, and that A(co) is a singular matriz. For all A,
JJAQQ))| < 2. When X < oo, the inverse is given by

al
AN)]! a
[ ( )] - al — Aa'{ ’
1+ A%2a]
from which we can compule
cosay = |jayf|cos ay = cosaz = [lay||cosaz = 1

cos ag = ||agl| cos(as) = cos ay = ||ag|| cos(aq) = 1:-«\ .

Thus as A — oo the matriz A()\) becomes increasingly singular. Its condition number behaves like
O()). Note that the matriz A()) is column equlibrated, so the ill-conditioning is a result of small
angles rather than short columns.

Consider a linear system A(A)z()) = b, where the right-hand side is independent of A and can
be represented as b = 1ya) + a3 + T3a3 + T4as. Then

T T2 T3—AT4 T4
cos —_— -—’ cos — —’ cos et —_—, cos —_— —
Pe= P2 = 1 s IBlVI + A2 Ba= T

The solution vector is given by
2(/\) = (1'1 T2 T3 — 1\1'4 V14 /\21'4 )T .

The values of z; and z3 are independent of A, and so are ||a;]| cosa; and cosfB; for j = 1,2. So the
sensitivity of the components z, and z, depends solely on their size relative to z. If, for instance,
|z1] > |zi| for i # 1 then Corollary 1 says that the error in z, is not amplified - independent of the
values of A and the condition number of A()).

3.3 Condition Numbers and Column Scaling

For a linear system Az = b with full-rank coefficient matrix A and non-zero right-hand side b,
Corollary 1 presents two different expressions for the component-wise relative error in the computed
solution Z: suppose £ # 0 satisfies (A + F)z = b+ f, and

_ _lIFz|
S A ATz
then
Ti—=z 1 - . .
5 = Tiblicosg WFalcosvri —lifllcos ]
=l el |
= Ll pagn feacos ve AL cos vy
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Sections 2.2 and 3.1 explain that under certain circumstances the factor Wﬁjﬂzﬂ?ﬂ causes the sensi-
tivity of large solution components to right-hand side perturbations to be independent of matrix
conditioning. We now ignore “-}H;" because it does not affect the sensitivity of the solution to
perturbations in the matriz.

The term || Al} ||=l} = ||All lleF At)] < ||Al}[|At]] represents a condition number ‘restricted to’ z;.
Already in 1970 van der Sluis [25, 26] realised the need to distinguish the conditioning of individual
components of z and the fact that the conditioning depends on the relative size of a component. He
introduces the notion of ‘ith column condition number of A’, [|A~!|]||a;]|, and derives the similar
looking norm-wise relative error bound (here f = 0)

= 2ll _ Bl g oy g2
T < fan oA el

He also acknowledges the importance of angles on the conditioning of the matrix: if each column
is well separated from the space spanned by the other columns then the solution components are
likely to be insensitive to perturbations, page 251 in [26].

According to van der Sluis’s bounds one naturally concludes that column equilibrated matrices
(all of whose columns have identical norm) should give rise to solution components with identical
sensitivity to perturbations. Yet, the amplification factor W in the first expression for the
component-wise relative error is independent of column scaling. So essentially the conclusions of
Section 2.5 remain valid when, in addition to the right-hand side, the matrix is also perturbed: the
component-wise relative error decreases under column scaling only if column scaling manages to
reduce the perturbation ||Fz]|cos yr; — ||f]|| cos ¥y ;. Note that we could have also expressed the

error as _ ) ||F"||
Ty — I z
= - cos i — €5 COS il
= coshy [ oll <% VFe ‘”"']

in which case the amplification factors for the relative perturbations ||FZ||/||4|| and €; remain invari-
ant under column scaling. However, when f = 0 we know from Theorem 7 that

F=] _ Jib~ Azl] _ jlAy izl

fell ll5li T2
where ||A[[||Z])/1|b]| can be as large as x(A). This means that the perturbation [|FZ||/[|b|| may be
proportional to the condition number of the matrix. Finally, Lemma 1 of Appendix 2 states that

the amplification factors for the error (Z; — z;)/z; remain invariant under column scaling when
perturbations are restricted to column i of the matrix.

Although the amplification factors in the second expression for the error above do change under
column scaling, they have the advantage of representing easily computable a posteriori error esti-
mates: we show in Section 6 how to estimate [|A|| ||r;|| efficiently with available condition number
estimators.

Due to the deliberations in this and the previous sections we feel justified in introducing a new
set of condition numbers.

Definition 1 Let Az = b be a linear system with n x m matriz A of rank m and b # 0, and let
£ # 0 be the computed solution. Denote by rT = eT At the ith row of the left-inverse of A and by 5;
the angle between b and r;, 1 < i< m.

The quantities

=

=l NAlInll,  1<i<m,
l
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