Data Acquisition Applications for Long Duration Electromagnetic Launcher Experiments

Mark W. Heyse, James B. Cornette

Wright Laboratory, Armament Directorate
Analysis and Strategic Defense Division
Electromagnetic Launcher Technology Branch (WL/MNSH)
Eglin AFB FL 32542-5000

Jere L. Brown
Science Applications International Corporation
North Eglin Parkway
Shalimar FL 32579

JULY 1992

FINAL REPORT FOR PERIOD MARCH 1991 - APRIL 1992

Approved for public release; distribution is unlimited.

WRIGHT LABORATORY, ARMAMENT DIRECTORATE
Air Force Systems Command ■ United States Air Force ■ Eglin Air Force Base
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise as in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service (NTIS), where it will be available to the general public, including foreign nationals.

FOR THE COMMANDER

Even though this report may contain special release rights held by the controlling office, please do not request copies from the Wright Laboratory, Armament Directorate. If you qualify as a recipient, release approval will be obtained from the originating activity by DTIC. Address your request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria VA 22304-6145

If your address has changed, if you wish to be removed from our mailing list, or if your organization no longer employs the addressee, please notify WL/MNSH, Eglin AFB FL 32542-5000, to help us maintain a current mailing list.

Do not return copies of this report unless contractual obligations or notice on a specific document requires that it be returned.
Title and Subtitle: Data Acquisition Applications for Long Duration Electromagnetic Launcher Experiments

Authors:
- James B. Cornette
- Mark W. Heyse, WL/MNSH
- Jere L. Brown, SAIC
- WL Program Manager: James B. Cornette (WL/MNSH)

Performing Organization:
Wright Laboratory, Armament Directorate
Analysis and Strategic Defense Division
Electromagnetic Launcher Technology Branch (WL/MNSH)
Eglin AFB FL 32542-5000

Abstract:
Investigation of the basic physics associated with Electromagnetic Launcher (EML) operation requires accurate measurement of a number of diverse phenomena. Monitoring and recording EML phenomena during operation over relatively long time frames places unusual demands on a Data Acquisition System (DAS). While the sampling rate requirement is modest by DAS standards of today, the combination of the sampling rate and the number of events to be monitored presents challenges. This paper describes the evolution of a data acquisition approach in use for basic research in the EML area, discusses data acquisition capabilities and requirements, and presents examples of the data that has been obtained using this approach.
PREFACE

This report documents research conducted using a battery charged capacitor power supply to produce long duration power pulses for rapid fire Electromagnetic Launcher (EML) burst fire experiments. Specifically, this paper discusses the data acquisition system that has been developed for the analysis of long duration EML experiments and the unique problems associated with them and how they were solved. This technical report was presented at the 6th Electromagnetic Launcher Conference in Austin, TX 28 April to 1 May 1992.

This work was funded by the Electromagnetic Launcher Technology Branch (WL/MNSH) of the Analysis and Strategic Defense Division of the Wright Laboratory, Armament Directorate at Eglin AFB, FL under the Kinetic Energy Weapons program of the Strategic Defense Initiative. Mr. James B. Cornette and Mr. Mark W. Heyse from WL/MNSH and personnel from Science Applications International Corporation (SAIC) in Shalimar, FL performed the work during the period March 1991 to April 1992 at Eglin AFB FL 32542-5000.
Data Acquisition Applications for Long Duration Electromagnetic Launcher Experiments

Mark W. Heyse
James B. Cornette
Wright Laboratory/Armament Directorate (WL/MNSH)
Eglin Air Force Base, Florida 32542-5000

Jere L. Brown
Douglas Burkett
Science Applications International Corporation
Shalimar, FL 32579

Abstract - Investigation of the basic physics associated with Electromagnetic Launcher (EML) operation requires accurate measurement of a number of diverse phenomena. Monitoring and recording EML phenomena during operation over relatively long time frames places unusual demands on a Data Acquisition System (DAS). While the sampling rate requirement is modest by today's DAS standards, the combination of the sampling rate and the number of events to be monitored presents challenges. This paper describes the evolution of a data acquisition approach in use for basic research in the EML area, discusses data acquisition capabilities and requirements, and presents examples of the data which has been obtained using this approach.

I. INTRODUCTION

EML diagnostic techniques which include: instrumentation, signal conditioning, signal transmission, calibration, and data acquisition have been addressed to some extent by many EML researchers. In fact, workshops focusing on these topics for several EML subsystems have detailed the requirements and approaches commonly used [1,2]. Where data acquisition is concerned, the most commonly used approach has been the storage oscilloscope. The storage scope offers the advantages of built-in signal conditioning, high resolution for monitoring relatively fast pulse events and portability. This combination of features provides a degree of user friendliness which has made the storage scope the device of choice. The principle disadvantages have been post experiment data manipulation for analysis as well as limited memory capacity. Both of these disadvantages are magnified as the number of signals to be monitored or the duration of the experiment increases.

Data acquisition for long duration experiments involving multiple EML discharges was first approached using a combination of the traditional storage scope set-up with a separate set of scopes for each discharge and an FM tape recorder [3]. While this approach met the needs of these early experiments (1984-85), which were typically viewed over a two second window, real time correlation of the various signals during analysis, post experiment processing and archiving of the data was hampered by the number of discrete instruments used and the fact that they were not centrally controlled. Following approaches used custom combinations of waveform digitizers and minicomputer systems to address these issues. Early digitizer memory limitations again resulted in large numbers of instruments and a significant software development task. The potential advantages in data processing and archiving offered by evolving digitizer technology provided an attractive approach for future experiments which would be more demanding. For these reasons the Electromagnetic Launcher Technology Branch of Wright Laboratories (WL/MNSH) has pursued the application of digitizer technology in support of basic research conducted with the Battery Powered Capacitor and the CHECMATE EMLs where high data throughput is required.

II. REQUIREMENTS

Data collection for EML research is an activity that is complicated by both the diverse nature of the data to be acquired and the duration during which this occurs. Fig. 1 illustrates the diversity of typical signals that are monitored in EML research. These signals can be generally grouped in two categories: burst and event. Burst signals are those which are monitored for the complete experiment duration where as event signals are focused on a discrete event within the overall experiment. This division is brought about by the conflicting requirements for sampling rate and sampling duration of the signals concerned.
BURST SIGNALS (CONTROLLER TIMING)

EVENT SIGNALS

Fig. 1. Typical Signals Monitored for EML Research
Event signals are potentially the most demanding in terms of storage and handling requirements. Signals in this category result from transient phenomena that occur in micro to millisecond time frames, usually during the EML discharge. These rapid events require high sampling rates, usually hundreds of kHz, to provide adequate waveform resolution. Maintaining such high sampling rates for a long duration, several seconds, experiments require large data storage capacity. For example, continuous sampling at 200kHz (5 microseconds/point) for a typical five second experiment requires 1 megabyte of memory. A typical EML experiment requires approximately 20 such signals to be monitored as a minimum.

Burst signal sampling rate requirements vary over a broader range than do event signals. Generally, signals in this category result from phenomena that occur over relatively long time frames, hundreds of milliseconds to seconds. Usually these signals are associated with EML support systems such as pneumatic and power subsystems where tens of kilohertz sampling will provide adequate waveform resolution. However, depending on the scale and scope of the experiment, hundreds of signals in this category may need to be monitored for a single experiment. In addition, some burst signals, power supply switching and control signals for example, may require sampling rates as high as the event signals. The net result is yet another large data processing and storage requirement.

Table I summarizes the event and burst signal requirements that are typical of the EML experiments conducted with the Battery Powered Capacitor and CHECMATE EMLs. Experiments of two to seven seconds in duration are routinely conducted with these EMLs.

The combined effects of sampling rate, sampling duration, and number of signals to be monitored not only result in very large data storage requirements they also directly effect the rate at which research can progress. Post experiment processing of large quantities of data to facilitate analysis can be a significant overhead burden. Data processing hardware requirements and more importantly custom software development requirements increase at least linearly with the quantity of data. As the sophistication, duration, and scale of EML experiments increase simultaneously the need to minimize these impacts becomes more and more important. The preferred approach to satisfying the data acquisition requirements then must address achieving the desired waveform resolution and at the same time minimize the overall volume of data.

III. CAPABILITIES

The data acquisition approach presently in use for EML basic research by MNSH consists of a fully integrated waveform digitizer DAS. In it’s present configuration 32 input modules provide 64 digitizer channels which are centrally controlled by a 386 PC. Characteristics and features of this DAS are summarized in Table II. The key features in terms of the EML research data requirements are it’s ability to sample high rate signals in a segmented fashion while maintaining a continuous time base, expansion potential, and level of integration.

Overall data volume is reduced considerably by the DAS’s ability to acquire high speed data in segments. Fig. 2 shows a one second window of an EML experiment which illustrates the efficiency of this approach. The upper plot shows several waveforms sampled on a continuous basis over the duration of

TABLE I.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Category</th>
<th>Number of Signals</th>
<th>Signal Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-dot</td>
<td>Event</td>
<td>10-20</td>
<td>1-1msec</td>
</tr>
<tr>
<td>Breech Current</td>
<td>Event</td>
<td>2</td>
<td>1-4msec</td>
</tr>
<tr>
<td>Breech Voltage</td>
<td>Event</td>
<td>1</td>
<td>1-4msec</td>
</tr>
<tr>
<td>Muzzle Voltage</td>
<td>Event</td>
<td>1-4</td>
<td>1-4msec</td>
</tr>
<tr>
<td>Heat Flux</td>
<td>Burst</td>
<td>3</td>
<td>1-7msec</td>
</tr>
<tr>
<td>Bore Pressure</td>
<td>Event</td>
<td>3</td>
<td>1-4msec</td>
</tr>
<tr>
<td>Capacitor Voltage</td>
<td>Burst</td>
<td>4-16</td>
<td>1-7msec</td>
</tr>
<tr>
<td>Control</td>
<td>Burst</td>
<td>5-10</td>
<td>1-7msec</td>
</tr>
</tbody>
</table>

TABLE II.

<table>
<thead>
<tr>
<th>Characteristics and Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>38620 MHz PC Controller</td>
</tr>
<tr>
<td>4060 Digitizer Capacity</td>
</tr>
<tr>
<td>Channel Configurations Stored & Recalled</td>
</tr>
<tr>
<td>Built-in Interactive Math Functions</td>
</tr>
<tr>
<td>Independent & Bus Triggering</td>
</tr>
<tr>
<td>On Screen Quick Look Capability</td>
</tr>
<tr>
<td>8 Four Channel 1 MHz Digitizers</td>
</tr>
<tr>
<td>1-2-4 Channel Configurations</td>
</tr>
<tr>
<td>256k Memory (Expandable to 1 Meg)</td>
</tr>
<tr>
<td>1024 Segments With Separate Timebases</td>
</tr>
<tr>
<td>3 Digitizing Rates per Segment</td>
</tr>
<tr>
<td>30mV - 12 V Input</td>
</tr>
<tr>
<td>8 Single Channel 2 MHz Digitizer</td>
</tr>
<tr>
<td>1 Meg Memory</td>
</tr>
<tr>
<td>30mV - 12 V Input</td>
</tr>
<tr>
<td>16 Single Channel 10 MHz Digitizers</td>
</tr>
<tr>
<td>1 Meg Memory</td>
</tr>
<tr>
<td>30mV - 120 V Input</td>
</tr>
</tbody>
</table>
the experiment while the lower plot shows the same signals sampled in segments. This feature allows high sampling rate data acquisition over user specified windows which are small compared to the overall experiment. Data is not acquired during the time between the windows, however, a continuous time base is maintained. Using this approach has resulted in an order of magnitude reduction in the data storage requirements for event signals.

Input capacity of the DAS is expandable to 4080 input modules which would provide over 16,000 data channels. In addition, further capacity can be achieved by using another feature of the DAS. Each segment, as discussed above, can be divided into three zones and separate sampling rates can be specified for two zones. In this way high rate sampling can be more narrowly focused.

The DAS system includes both hardware and software to provide a high degree of overall integration. A 20 MHz 386 personal computer controller is interfaced with the digitizers. Pre-experiment channel setup is accomplished centrally via the controller and provision is made for storage and recall of all channel configurations. Built-in interactive math functions such as differentiation, integration, and smoothing are combined with an on-screen quick look capability to facilitate post experiment data analysis.
IV. DATA

Fig. 3 shows some event data typical of the experiments conducted with the Battery Powered Capacitor EML. Note that the data time line is not continuous. Each discharge into the EML is windowed to only the time of interest. Here, a typical experiment consisting of 30 events is shown with eight of the 26 event signals recorded superimposed on the same plot. The sampling rate used to monitor these signals was 143 kHz. The total duration of this experiment was 6.6 seconds. If data had been acquired on a continuous basis approximately 1 Mbyte of memory would have been needed for each channel. Segment times of 14.7 msec were used which only required 63 kbytes of memory per channel.

The expanded plots in Fig. 3 provide an indication of the resolution and nature of the data embedded within each event. These expanded sections were selected from random launch events. The EML current rises to a peak value of approximately 200 kA in about 1 ms. From the muzzle voltage trace, we can see the voltage rises until the plasma armature ignites and then drops to a relatively constant armature voltage during acceleration. After launch package exit, the voltage rises again. The B-dot data shows the progression of the armature down the bore.

B-dot signals present one of the more demanding data acquisition requirements. One application of the B-dot is to sense the position of the EML armature. As the speed of the armature increases so does the sampling rate needed to maintain the desired resolution. Fig. 4 shows an example of B-dot taken during recent experiments with the CHECMATE EML. Seven of the 19 B-dot signals sampled during this experiment are shown superimposed on the same plot. One pulse from the first event is expanded to more clearly show the waveform resolution. These signals were sampled at a 1 MHz rate over a 4 msec segment for each of the two events. The total memory required per channel was approximately eight kbytes. One Mbyte of memory would have been required to continuously sample at this rate over the duration of the complete experiment.

V. CONCLUSION

The data acquisition approach described in this paper provides the required performance for long duration EML research experiments. Integrated DAS systems which employ digitizer technology successfully address present waveform resolution and data processing demands with considerable reserve capacity for the future. Full capacity of the present DAS configuration with respect to throughput and data storage has not been required to date in a single experiment. However,
as the duration and scale of these EML experiments increase in the near term it is anticipated that all of the capabilities offered in the present DAS, to include segmenting with multiple sampling rates, will be used.

REFERENCES

<table>
<thead>
<tr>
<th>Distribution</th>
<th>WL-TP-92-007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Tech Info Center</td>
<td>Attn: DTIC-DDAC</td>
</tr>
<tr>
<td>Cameron Station</td>
<td>Alexandria VA 22304-6145</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AUL/LSE</td>
<td>Maxwell AFB AL 36112-5564</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>AFSAA/SAI</td>
<td>The Pentagon, Room 1D363</td>
</tr>
<tr>
<td></td>
<td>Washington DC 20330-5420</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DARPA/TTO</td>
<td>Tactical Technology Office</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. Peter Kemmy</td>
</tr>
<tr>
<td></td>
<td>1400 Wilson Blvd.</td>
</tr>
<tr>
<td></td>
<td>Arlington VA 22209-2308</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td>Attn: Mr. P. T. Adams, Code G-35</td>
</tr>
<tr>
<td></td>
<td>Dahlgren VA 22448</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SDIO/TNC</td>
<td>Attn: Mr. Mick Blackledge and</td>
</tr>
<tr>
<td></td>
<td>Maj Donna Stromecki</td>
</tr>
<tr>
<td></td>
<td>Washington DC 20301-7100</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SDIO/TNI</td>
<td>Attn: Dr. Dwight Duston and</td>
</tr>
<tr>
<td></td>
<td>Lt Col Pedro Rustan</td>
</tr>
<tr>
<td></td>
<td>Washington DC 20301-7100</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Auburn Research Foundation</td>
<td>Office of the Vice Pres. for Research</td>
</tr>
<tr>
<td></td>
<td>Attn: Ms. Barbara Ausharian</td>
</tr>
<tr>
<td></td>
<td>202 Samford Hall</td>
</tr>
<tr>
<td></td>
<td>Auburn University AL 36849-5160</td>
</tr>
<tr>
<td></td>
<td>DAL: 29335; CCAL: 0001689</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>General Dynamics Pomona Division</td>
<td>Attn: Ms. Dottie Patterson</td>
</tr>
<tr>
<td></td>
<td>1675 W. Mission Blvd.</td>
</tr>
<tr>
<td></td>
<td>Pomona CA 91769-2507</td>
</tr>
<tr>
<td></td>
<td>DAL: 01461; CCAL: 0001182</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Eglin AFB FL 32542-5000

WL/CA-N

WL/MNOI (Scientific & Tech. Info. Facility)

WL/MNSH

AFDTC/PA

WL/FIES/SURVIAC

Wright Patterson AFB OH 45433-6553

HQ USAF/INATW

APO NY 09012-5001

U.S. Army Strategic Defense Command

Attn: DASD-H-Q (Lt Col Steven Kee)

P.O. Box 1500

Huntsville AL 35807-3801

U.S. Army, ARDEC

SMCAR-FSE, Bldg 329

Attn: Mr. Tom Coradeschi and Dr. Thaddeus Gora

Picatinny Arsenal NJ 07806-5000

U.S. Army Ballistic Research Laboratory

SLCBR-TB-EP

Attn: Dr. John Powell

Aberdeen Proving Ground MD 21005

VL/PPOX

Attn: Dr. Charles E. Oberly

Wright Patterson AFB OH 45433-6553

GA Technologies, Inc.

Attn: Mr. Charles N. Stem

P.O. Box 85608

San Diego CA 92138

DAL: 06785; CCAL: 0002129

Route to Drs. Robert Bourque and L. Holland

General Dynamics Pomona Division

Attn: Ms. Dottie Patterson

1675 W. Mission Blvd.

Pomona CA 91769-2507

DAL: 01461; CCAL: 0001182

Route to Dr. Jaime Cuadros
Boeing Aerospace Company
Attn: Mr. David Wilson
P.O. Box 3999
Seattle WA 98124-2499
DAL: 27984; CCAL: 0005729
1
Route to Dr. J. E. Shrader

Electromagnetic Launch Research, Inc.
Attn: Mr. Thomas R. Fradette
2 Fox Rd.
Hudson MA 01749
DAL: 28861; CCAL: 0001587
1
Route to Drs. Henry Kolm and Peter Mongeau and Mr. William Snow

IAP Research, Inc.
Attn: Mr. David P. Bauer
2763 Culver Ave.
Dayton OH 45429-3723
DAL: 28548; CCAL: 0000927
1
Route to Dr. John P. Barber

Lawrence Livermore Natl. Lab
Attn: Ms. Jean Higby
P.O. Box 808
Livermore CA 94550
DAL: 06635; CCAL: 0001362
1
Route to Dr. R. S. Hawke, L-156

Los Alamos Natl. Laboratory
Attn: Mr. Jack Carter, Report Librarian
P.O. Box 1633, MS-P364
Los Alamos NM 87545
DAL: 31455; CCAL: 0001652
1
Route to Drs. Jerry V. Parker and L. A. Jones

LTV Aerospace and Defense Co.
Attn: Ms. Sherry D. Siler
P.O. Box 650003
Dallas TX 75265-0003
DAL: 00368; CCAL: 0000997
1
Route to Drs. Michael M. Tower and C. H. Haight (M/S TH-83) and Mr. George L. Jackson

Maxwell Laboratories
Attn: Ms. Linda N. Thomas
8888 Balboa
San Diego CA 92123
DAL: 19248; CCAL: 0001705
1
Route to Drs. Rolf Dethlefson and Ian McNab and Mr. Mark Wilkinson

General Research Corporation
Attn: Ms. Carol Donner
P.O. Box 6770
Santa Barbara CA 93160-6770
DAL: 10824; CCAL: 0000358
1
Route to Dr. William Isbell

GT Devices
Attn: Ms. Ada Burnette
5705 General Washington Dr.
Alexandria VA 22312
DAL: 29785; CCAL: 0001427
1
Route to Drs. Doug Witherspoon, Shyke Goldstein, and Rodney L. Burton

NASA Lewis Research Center
Attn: L. T. Jarabek, Library
21000 Brookpark Rd.
Cleveland OH 44135
DAL: 00075; CCAL: 0007346
1
Route to Ms. Lynette Zana, MS 501-7

Pacific-Sierra Research Corp.
Attn: Ms. Celia A. Griffin
Suite 1100, 1401 Wilson Blvd.
Arlington VA 22209
DAL: 23323; CCAL: 0002150
1
Route to Dr. Gene E. McClellan

R&D Associates
Attn: Data Custodian
P.O. Box 92500
Los Angeles CA 90009
DAL: 12415; CCAL: 0001219
1
Route to Dr. Peter Turchi

SAIC Advanced Concepts Division
Attn: Ms. Bethany Madden
1519 Johnson Ferry Rd., Suite 300
Marietta GA 30062
DAL: 32383; CCAL: 0009775
1
Route to Dr. Jad Batteh and Messrs W. Smith and L. Thornhill

SAIC
Attn: Mrs. Susan Deonarine
1427 N. Eglin Parkway
Shalimar FL 32579
DAL: 31327; CCAL: 001312
1
Route to Mr. Floyd Graham and Drs. Josh Kolawole, Glenn Rolader, and Keith Jamison
MER Corporation
Attn: Data Custodian
7960 S. Kolb Rd.
Tucson AZ 85706
DAL: 31889; CCAL: 0003169
1
Route to Ms. Lori Leaskey and
Dr. R. Loutfy

Sandia National Laboratory
Attn: Technical Library
P.O. Box 5800
Albuquerque NM 87185
DAL: 22683; CCAL: 0001104
1
Route to Drs. Maynard Cowan (Dept 1220)
and Jim Asay

SPARTA
Attn: Mr. James Poon
9466 Towne Centre Dr.
San Diego CA 92121-1964
DAL: 28397; CCAL: 0001185
1
Route to Dr. Michael M. Holland
and Mr. Stuart Rosenwasser

System Planning Corporation
Attn: Ms. Phyllis W. Moon
1500 Wilson Blvd.
Arlington VA 22209
DAL: 20874; CCAL: 0000279
1
Route to Dr. Michael M. Holland
and Mr. Stuart Rosenwasser

University of Texas
Center for Electromechanics
Balcones Research Center
Attn: Ms. Marcie Powell
P.O. Box 200668
Austin TX 78720-0668
DAL: 00111; CCAL: 0005531
1
Route to Prof. William Weldon and
Mr. Raymond Zowarka

University of Alabama in Huntsville
Research Security Office
Attn: Ms. Gladys B. Jones
P.O. Box 18381
Huntsville AL 35804-8381
DAL: 28339; CCAL: 0002821
1
Route to Dr. C. H. Chen

University of Tennessee
Space Inst/Library
Attn: Ms. Marjorie Joseph
Tullahoma TN 37388-8897
DAL: 15965; CCAL 0000429
1
Route to Dr. Dennis Keefer

Technical Library EE-5
Attn: Riet Blei
P.O. Box 3499
Sunnyvale CA 94088-3499
DAL: 06933; CCAL: 0000703
1
Route to Drs. Dan Omry and Hugh Calvin

University of Tennessee
Space Inst/Library
Attn: Data Custodian
321 Billerica Rd.
Chelmsford MA 01824-4191
DAL: 32309; CCAL: 0001458
1
Route to Dr. George I. Kachen