SUSTAINING HEALTH AND PERFORMANCE IN THE COLD:

ENVIRONMENTAL MEDICINE GUIDANCE FOR COLD-WEATHER OPERATIONS

U.S. ARMY RESEARCH INSTITUTE OF ENVIRONMENTAL MEDICINE
Natick, Massachusetts

JULY 1992
The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DTIC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from Commander, Defense Technical Information Center (DTIC) (formerly DDC), Cameron Station, Alexandria, Virginia 22314.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed.
Do not return to the originator.
SUSTAINING HEALTH & PERFORMANCE IN THE COLD:
Environmental Medicine Guidance for Cold-Weather Operations.

Prepared by
A.J. Young, D.E. Roberts, D.P. Scott,
J.E. Cook, M.Z. Mays and E.W. Askew

July 1992

US Army Research Institute of Environmental Medicine
Natick, Massachusetts 01760-50007
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVIRONMENTAL STRESS DURING COLD-WEATHER OPERATIONS</td>
<td>1</td>
</tr>
<tr>
<td>SUSTAINING HEALTH DURING COLD WEATHER</td>
<td>2</td>
</tr>
<tr>
<td>Cold</td>
<td>2</td>
</tr>
<tr>
<td>Sun, Wind, Rain, Snow and Low Humidity</td>
<td>11</td>
</tr>
<tr>
<td>Food and Water During Cold-Weather Operations</td>
<td>13</td>
</tr>
<tr>
<td>Wounds, Disease and Nonbattle Injuries</td>
<td>17</td>
</tr>
<tr>
<td>SUSTAINING PERFORMANCE DURING COLD WEATHER</td>
<td>22</td>
</tr>
<tr>
<td>Soldier Tasks</td>
<td>22</td>
</tr>
<tr>
<td>NBC Operations</td>
<td>24</td>
</tr>
<tr>
<td>Leadership</td>
<td>29</td>
</tr>
<tr>
<td>PREPARATION FOR COLD-WEATHER OPERATIONS</td>
<td>32</td>
</tr>
<tr>
<td>KEY POINTS DURING COLD-WEATHER OPERATIONS</td>
<td>34</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>36</td>
</tr>
<tr>
<td>A. Wind Chill Chart</td>
<td>37</td>
</tr>
<tr>
<td>B. Cold-Weather Training Guidelines</td>
<td>38</td>
</tr>
<tr>
<td>C. Individual Cold-Weather Survival Kit</td>
<td>39</td>
</tr>
<tr>
<td>D. Further Reading</td>
<td>40</td>
</tr>
<tr>
<td>INITIAL DISTRIBUTION LIST</td>
<td>41</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>60</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL STRESS DURING COLD-WEATHER OPERATIONS

History is filled with examples of the significant impact of cold on military operations. Among U.S. Army and Army Air Force troops, there were over 90,000 cold injuries requiring medical treatment during World War II, and another 10,000 during the Korean War, accounting for 10% of all casualties experienced during these conflicts. German casualties due to cold injury during World War II were comparable or greater than experienced by the U.S. Army. Given that the average air temperature recorded when cold injuries were experienced during World War II was 30 °F, and that temperatures this low are experienced over about 60% of the earth's surface, leaders must appreciate cold-weather effects on soldier health and performance. Prevention of cold injuries is the responsibility of commanders at all levels.

During cold weather, the environment can directly affect an individual's health and performance. Cold can lower body temperature, resulting in cold injuries and impaired performance. Moreover, cold weather is often accompanied by wind, rain, snow and ice, which can worsen the effects of cold, as well as contribute to injury and performance impairments in and of themselves. Cold-weather conditions impair many aspects of normal military functioning in the field, which can in turn influence soldier health and performance. Food and water problems are common during cold weather, since requirements are high and supply is difficult. Cold weather contributes to increased disease and nonbattle injury, since maintaining proper field sanitation and personal hygiene is difficult, sick and injured individuals are susceptible to cold injuries, and the use of indoor stoves may lead to burns or suffocation. Operational problems often arise in cold weather. Heavy clothing restricts movements, equipment often malfunctions, travel can be difficult, cold-weather clothing and NBC protective clothing and equipment are difficult to integrate, and fogging and freezing of eyepieces and windows occur frequently.

While cold makes military tasks more difficult, it does not make them impossible. Viewing cold as a challenge to be overcome is the key to the positive attitude required to successfully complete the mission. The purpose of this Technical Note is to describe how the environmental conditions stress soldier health and performance during cold weather operations, and to explain ways of overcoming that stress.
SUSTAINING HEALTH DURING COLD WEATHER

Cold

Heat flows from places with high temperature to those with lower temperature. When a person is surrounded by air or water having a lower temperature than body temperature, the body will lose heat. If heat escapes faster than the body produces heat, body temperature will fall. Normal body temperature is 98.6°F, and if body temperature falls much below this, performance decrements and cold injuries can result.

How Cold Affects the Body:

1. The colder the surrounding temperature is, the greater the potential for body heat to escape. When the skin is exposed to cold, the brain signals the blood vessels in the skin to tighten, and blood flow to the skin decreases. This is the body’s attempt to prevent heat inside the body from being carried to the skin where it will be lost. However, due to reduced blood flow to the skin, the skin temperature falls.

2. When cold exposure lasts for more than an hour, cooling of the skin and reduced blood flow to the hands leads to blunted sensations of touch and pain and loss of dexterity and agility. This can impair ability to perform manual tasks and lead to more severe cold injuries, since symptoms may go unnoticed.

3. Nonfreezing cold injuries can occur when conditions are cold and wet (air temperatures between 32° and 55 °F) and the hands and feet cannot be kept warm and dry. The most prominent nonfreezing cold injuries are chilblain and trenchfoot.

   a. Chilblain is a nonfreezing cold injury which, while painful, causes little or no permanent impairment. It appears as red, swollen skin which is

FIRST AID FOR CHILBLAIN AND TRENCHFOOT

1. PREVENT FURTHER EXPOSURE
2. REMOVE WET, CONSTRICITIVE CLOTHING
3. WASH AND DRY INJURY GENTLY
4. ELEVATE, COVER WITH LAYERS OF LOOSE, WARM CLOTHING AND ALLOW TO REWARM (PAIN AND BLISTERS MAY DEVELOP)
5. DO NOT POP BLISTERS, APPLY LOTIONS OR CREAMS, MASSAGE, EXPOSE TO EXTREME HEAT OR ALLOW VICTIM TO WALK ON INJURY
5. REFER FOR MEDICAL TREATMENT
tender, hot to the touch and may itch. This can worsen to an aching, prickly ("pins and needles") sensation and then numbness. It can develop in only a few hours in skin exposed to cold.

b. Trenchfoot is a very serious nonfreezing cold injury which develops when skin of the feet is exposed to moisture and cold for prolonged periods (12 hours or longer). The combination of cold and moisture softens skin, causing tissue loss and, often, infection. Untreated, trenchfoot can eventually require amputation. Often, the first sign of trenchfoot is itching, numbness or tingling pain. Later the feet may appear swollen, and the skin mildly red, blue or black. Commonly, trenchfoot shows a distinct "water-line" coinciding with the water level in the boot. Red or bluish blotches appear on the skin, sometimes with open weeping or bleeding. The risk of this potentially crippling injury is high during wet weather or when troops are deployed in wet areas. Soldiers wearing rubberized or tight-fitting boots are at risk for trenchfoot regardless of weather conditions, since sweat accumulates inside these boots and keeps the feet wet.

5. Freezing cold injuries can occur whenever air temperature is below freezing (32°F). Freezing limited to the skin surface is frostnip. When freezing extends deeper through the skin and flesh, the injury is frostbite.

   a. Frostnip involves freezing of water on the skin surface. The skin will become reddened and possibly swollen. Although painful, there is usually no further damage after rewarming. Repeated frostnip in the same spot can dry the skin, causing it to crack and become very sensitive. It is difficult to tell the difference between frostnip and frostbite. Frostnip should be taken seriously since it may be the first sign of impending frostbite.

   b. Skin freezes at about 28° F. As frostbite develops, skin will become numb and turn to a grey or waxy-white color. The area will be cold to the touch and may feel stiff or woody. With frostbite, ice

---

**FIRST AID FOR FROSTBITE**

1. **PREVENT FURTHER EXPOSURE**
2. **REMOVE WET, CONstrictive Clothing**
3. **REWARM GRADUALLY BY DIRECT SKIN-TO-SKIN CONTACT BETWEEN INJURED AREA AND NONINJURED SKIN OF THE VICTIM OR A BUDDY**
4. **EVACUATE FOR MEDICAL TREATMENT (FOOT INJURIES BY LITTER)**
5. **DO NOT ALLOW INJURY TO REFREEZE DURING EVACUATION**

**NOTE:** 1) DO NOT REWARM A FROSTBITE INJURY IF IT COULD REFREEZE DURING EVACUATION; 2) DO NOT REWARM FROSTBITTEN FEET IF VICTIM MUST WALK FOR MEDICAL TREATMENT; 3) DO NOT REWARM INJURY OVER OPEN FLAME
crystal formation and lack of blood flow to the frozen area damages the tissues. After thawing, swelling may occur, worsening the injury.

6. Body temperature falls when the body cannot produce heat as fast as it is being lost. **Hypothermia** is a life threatening condition in which deep-body temperature falls below 95°F.

   a. Generally, deep-body temperature will not fall until after many hours of continuous exposure to cold air, if the individual is healthy, physically active and reasonably dressed. However, since wet skin and wind accelerate body heat loss, and the body produces less heat during inactive periods, body temperature can fall even when air temperatures are above freezing if conditions are windy, clothing is wet, and/or the individual is inactive.

   b. Hypothermia can occur rapidly during cold-water immersion (one hour or less when water temperature is below 45°F). Because water has a tremendous capacity to drain heat from the body, immersion in water considered even slightly cool, say 60°F, can cause hypothermia, if the immersion is prolonged for several hours.

   c. **Hypothermia is a medical emergency.** Untreated, it results in death. Hypothermia may be difficult to recognize in its early stages of development. Things to watch for include unusually withdrawn or bizarre behavior, irritability, confusion, slowed or slurred speech, altered vision, uncoordinated movements and unconsciousness. Even mild hypothermia can cause victims to make poor decisions or act drunk (e.g., removing clothing when it is clearly inappropriate).

   d. **Hypothermia victims may show no heart beat, breathing or response to touch or pain when in fact they are not really dead.** Sometimes, the heart beat and breathing of hypothermia victims will be so faint that it can go undetected. If hypothermia has resulted from submersion in cold water, cardiopulmonary resuscitation (CPR) should be initiated without delay. However, when hypothermia victims are found on land, it is important to take a little extra time searching for vital signs to determine

---

**FIRST AID FOR HYPOTHERMIA**

1. **PREVENT FURTHER COLD EXPOSURE**
2. **REMOVE WET CLOTHING**
3. **INITIATE CPR, ONLY IF REQUIRED**
4. **REWARM BY COVERING WITH BLANKETS, SLEEPING BAGS AND WITH BODY-TO-BODY CONTACT**
5. **HANDLE GENTLY DURING TREATMENT AND EVACUATION**
whether CPR is really required. Hypothermia victims should be treated as gently as possible during treatment and evacuation, since the function of the heart can be seriously impaired in hypothermia victims. Rough handling can cause life-threatening disruptions in heart rate. All hypothermia victims, even those who do not appear to be alive, must be evaluated by trained medical personnel.

7. Susceptibility to cold injury (non-freezing, freezing or hypothermia) is affected by many factors.

   a. Poorly conditioned soldiers are more susceptible to cold injury. They tire more quickly and are unable to stay active to keep warm as long as fit soldiers.

   b. Dehydration reduces skin blood flow. This increases susceptibility to cold injury.

   c. Fat is an excellent insulator against heat loss. Therefore, a very lean person may be susceptible to the effects of cold, if clothing is inadequate or wet and/or the individual is relatively inactive such as during sentry duty.

   d. Persons 45 years old or older may be less cold tolerant than younger persons, due to the decline in physical fitness that often occurs with aging. This emphasizes the importance of physical fitness training, particularly for older soldiers.

   e. Alcohol, and to a lesser extent caffeine, cause the blood vessels in the skin to open which may accelerate body heat loss. Also, alcohol and caffeine both increase urine formation, leading to dehydration which can further degrade the body’s defenses against cold. Most importantly, alcohol blunts the senses and impairs judgement, so the individual may not feel the signs and symptoms of developing cold injury.

   **COLD INJURY RISK FACTORS:**

   **ENVIRONMENT RELATED:**
   - COLD TEMPERATURES
   - WIND
   - RAIN

   **MISSION RELATED:**
   - SUSTAINED OPERATIONS
   - INADEQUATE SHELTER
   - INACTIVITY (e.g. SENTRY)
   - WETLAND OPERATIONS

   **INDIVIDUAL:**
   - INADEQUATE TRAINING
   - PRIOR COLD INJURY
   - POOR CLOTHING & EQUIPMENT
   - ILLNESS, INJURY, WOUNDS
   - FATIGUE
   - DEHYDRATION
   - ALCOHOL
   - POOR NUTRITION
   - LOW BODY FAT
   - CAMOUFLAGE PAINT ON SKIN
f. Nicotine decreases blood flow to the skin, therefore smoking or chewing tobacco can increase susceptibility to frostbite.

g. Inadequate nutrition, illness and injury compromise the body’s responses to cold and the ability to recognize and react appropriately to the symptoms of developing cold injury.

h. In defensive fighting positions like foxholes or small vehicle crew compartments, movement is very restricted and soldiers must often remain inactive inside them for long periods of time, which can greatly increase risk of cold injury.

i. Individuals who have experienced a cold injury in the past are at greater risk of experiencing a cold injury than other soldiers. These soldiers may be more sensitive to the effects of cold, or they may not have learned how to properly protect themselves.

j. When the face and other exposed skin areas are covered by camouflage paint, it is difficult to see the changes in skin color which signal the early development of frostbite.

8. For any given air temperature, the potential for body-heat loss, skin cooling and decreased internal temperature is increased by wind.

a. Wind increases heat loss from skin exposed to cold air, in effect lowering the temperature. The wind-chill index integrates windspeed and air temperature to provide an estimate of the cooling power of the environment and the associated risk of cold injury. The wind-chill is the equivalent still-air (i.e., no wind) temperature at which the heat loss through bare skin would be the same as under the windy conditions. Appendix A depicts the Equivalent Chill Temperature for different wind speeds and air temperatures. To find the equivalent chill temperature in the table, find the row corresponding to the windspeed, and read across until reaching the column corresponding to the air temperature.

b. Wind-chill temperatures obtained from weather reports do not take into account man-made wind. Man-made winds worsen the wind-chill effect of natural wind. Individuals riding in open vehicles or exposed to propeller/rotor-generated wind can be subject to dangerous windchill, even when natural winds are low.

8. When assessing weather conditions for troops operating in mountainous regions or for flight personnel in aircraft, altitude may need to be considered, if weather measurements are obtained from stations at low elevations. Temperatures, windchills and the risk of cold injury at high altitudes can differ considerably from those at low elevations.
a. In general, it can be assumed that air temperature is 3.6° F lower with every 1000 feet above the site at which temperature was measured.

b. Winds are usually more severe at high altitude and there is less cover above the tree line.

c. Individuals are more susceptible to frostbite and other cold injuries at altitudes above 8,000 feet than at sea level, due to the lower temperatures, higher winds and lack of oxygen.

9. Water can conduct heat away from the body much faster than air of the same temperature.

a. When clothing becomes wet due to snow, rain, splashing water, or accumulated sweat, the body's loss of heat accelerates. For example, when air temperature is 40 °F, heat loss in wet clothing is double what it is in dry clothing.

b. Swimmers and persons working or wading in water can lose a great deal of body heat even when water temperatures are only mildly cool. Individuals working in cold water should be closely watched while they enter the water, since sudden plunging into cold water can produce irregular heart beats, gasping and hyperventilation which could cause inhalation of water, heart failure and drowning.

10. Metal objects and liquid fuels that have been left outdoors in the cold can pose a serious hazard. Both can conduct heat away from the skin very rapidly. Fuels and solvents remain liquid at very low temperatures. Skin contact with fuel or metal at below freezing temperatures can result in nearly instantaneous freezing. Fuel handlers should use great care not to allow exposed skin to come into contact with spilled fuel or the metal nozzles and valves of fuel delivery systems.

**Minimizing Effects of Cold on the Body:**

1. Cold-weather clothing systems are designed to change with the wearer's needs. Cold-weather clothing protection is based on the principles of insulation, layering and ventilation. By understanding these principles, soldier can vary their clothing to regulate protection and stay comfortable.

   a. **Insulation** depends on the clothing thickness, properties of the garment material, and the amount of air trapped within the garment. When clothing is dirty, the material tends to be packed down, which compromises insulation.

   b. Wearing clothing ensembles in multiple layers allows the wearer to remove or add clothes to adjust the insulation to changes in environment or workload as well as to the individual's own needs and preferences. Wearing layered clothing is especially
important for soldiers whose duties require them to frequently move in and out of heated shelters, or to periodically undertake vigorous physical activity.

\[
\text{WHEN USING COLD-WEATHER CLOTHING, REMEMBER C-O-L-D:}
\]
\begin{itemize}
  \item keep it—\text{C}lean
  \item avoid—\text{O}verheating
  \item wear it—\text{L}oose in layers
  \item keep it—\text{D}ry
\end{itemize}

c. Physically active people can sweat even in extremely cold weather. Sweat will be able to evaporate if clothing allows ventilation. Proper clothing will be made of material that water vapor can pass through, and will allow the wearer to unzip and open the clothing periodically to increase ventilation. If sweat cannot evaporate, it will accumulate, wet the clothing, compromising insulation. Sweat evaporation will be compromised when clothing is dirty.

2. The US Army has two different clothing systems in the inventory for issue to troops operating in cold-weather conditions: a Cold/Wet-Cold/Dry Clothing System (FM 31-70), and an Extended Cold-Weather Clothing System (FM 21-15).

a. Soldiers deployed to cold-weather areas from stations in warm regions are usually issued the combination Cold/Wet-Cold/Dry Clothing System which can be configured into two ensembles. The cold/wet ensemble is worn above 14° F, and the cold/dry ensemble is worn below 14° F. The cold/dry ensemble protects down to -60° F. The cold/wet configuration differs from the cold/dry in the number of layers and the choice of boots. The system uses layers of wool/cotton fabrics to trap air for insulation, and a water-repellent outer garment to maintain dryness.

b. Soldiers regularly stationed in cold-weather regions are usually issued the Extended Cold-Weather Clothing System (ECWCS) which protects from +40° F to -60° F. ECWCS consists of 5 layers: polypropylene underwear, a polyester fiberpile shirt and bib overalls, polyester coat liner and nylon/cotton field pants, nylon/GORE-TEX® laminate parka and trousers, and white nylon/cotton overgarments (parka and trousers). The inner layers are made of fabrics which draw perspiration away from the skin. The outer layer is made of a material which repels outside water while allowing perspiration to be evaporated. Either the cold-weather vapor barrier boot (Type I) or the extreme cold-weather vapor barrier boot (Type II) can be worn with one pair of nylon/cotton/wool socks (OG-106). The Combat Vehicle Crewman’s Hood (Balaclava) is worn under the PASGT helmet. The polypropylene layer and the nylon/GORE-TEX® Parka and trousers should always be worn to prevent perspiration from building up inside the clothes. Wool or wool blends should not be worn in the intermediate layers of the ECWCS because they retain moisture.
3. Several varieties of handwear protection are available for issue.
   
   a. Most soldiers receive the standard light-duty leather glove which is worn with a 50% wool, 50% nylon liner inserted. This handwear ensemble provides inactive persons with about 30 minutes of protection from frostbite when air temperature is 0°F. If temperatures are warmer and/or soldiers are physically active, the handwear ensemble will provide effective protection for longer periods. The light-duty leather glove is not waterproof.

   b. When the standard light-duty leather glove provides inadequate protection, (i.e. air temperature below 0°F, or more than 30 minutes of inactive exposure anticipated) trigger finger or Extreme Cold Weather mittens and liners can be worn.

4. Because cold-weather clothing is heavy and cumbersome, it greatly increases the energy required for physical activity.
   
   a. The increased effort can result in overheating and sweating especially during hard work, and can contribute to increased fatigue.
   
   b. Perspiration buildup should be minimized by opening clothing and removing layers during heavy work and scheduling frequent short rest breaks.

5. Wind-chill temperatures are widely reported by television and radio meteorologists, but they really only estimate the danger of cooling the exposed flesh of inactive persons. Windproof clothing greatly reduces windchill effects. Rather than cancel outdoor training at some arbitrary temperature limit, training should be modified and safety surveillance should be increased as the weather becomes more severe, and the danger of tissue freezing increases, as indicated in Appendix B.

6. The US Army has several heaters for use inside tents during cold weather.
   
   a. The type of heater required depends on the size of the tent or shelter to be heated. Usually, the Yukon stove is used to heat the Arctic 10 Man Squad Tent, 5 man tents and GP small tents. The Squad stove M1950 is used in improvised shelters or small tents housing 2 to 5 men. Larger capacity stoves are available for the bigger tents. All these stoves provide heat and can be used to melt ice and snow or to heat water.

   b. Care must be used to prevent melting the frozen ground beneath or around the stove. By using a tent liner, removing loose snow and ice from the ground before setting up the tent, and preventing the tent from overheating melting can be minimized. If available, plywood tent flooring and metal trays under the stove can be used to reduce melting.
6. Shelter from weather is critical. The standard shelter is the tent, but improvised shelters (snow caves, snow trenches, lean-tos etc.) can be constructed from local materials.

7. The recommended sleeping system is the Extreme Cold-Weather Sleeping Bag (NSN 8465-01-033-8057), on top of a polyfoam sleeping mat (NSN 8465-01-109-3367).

   a. Layers of tree boughs or mats under the sleeping bag help prevent heat loss to the ground. The sleeping bag should be shaken out before using to add air to the lining, which improves its insulation.

   b. In tents, soldiers should sleep in long underwear and socks with all other clothing hung up to dry. In improvised shelters, only boots and the outermost clothing layer should be removed. Place clothing under the sleeping bag where it can add insulation without accumulation moisture from the body. Ice should be removed from vapor barrier boots, and they should be wiped dry on the inside and, if possible allowed to air out before putting them on again. In extreme cold, a balaclava or some other head cover should be worn while sleeping to protect the ears, neck and face. The arctic mittens can be worn on the feet while inside the sleeping bag to help keep the feet warm. The head should not be put inside the sleeping bag, since moisture from the breath will accumulate in the bag.

   c. Air out the sleeping bag as often as possible to evaporate moisture.

8. Feet, hands and exposed skin must be kept dry. Feet are particularly vulnerable and extra foot care is required for cold-weather operations. Feet should be washed, dried and dusted with a dry, antifungal powder (NSN 6505-01-008-3054) daily. Socks must be changed whenever they become wet from exposure to rain or snow, or from excess sweat. This may require changing into dry socks at least 2-3 times daily. Extra socks can be air dried and then carried under BDU’s to warm.

9. Humans protect themselves from cold primarily by avoiding or reducing cold exposure using clothing and shelter. When this protection proves inadequate, the body has biological defense mechanisms to help maintain correct body temperature. The body’s internal mechanisms to defend its temperature during cold exposure include vasoconstriction and shivering. When these responses are triggered, it is a signal that clothing and shelter are inadequate.

   a. Vasoconstriction is the tightening of blood vessels in the skin when it is exposed to cold. The reduced skin blood flow conserves body heat, but, as described earlier, can lead to discomfort, numbness, loss of dexterity in hands and fingers, and eventually cold injuries.
b. Cold triggers shivering. Shivering increases internal heat production which helps to offset the heat being lost. Internal heat production is also increased by physical activity, and the more vigorous the activity, the greater the heat production. In fact, heat production during intense exercise or strenuous work is usually sufficient to completely compensate for heat loss, even when it is extremely cold. However, high intensity exercise and hard physical work are fatiguing, can cause sweating and cannot be sustained indefinitely. Moreover, most military occupational activities are less vigorous than high-intensity exercise, so internal heat production will probably not be adequate to offset heat loss.

c. Susceptibility to cold injuries can be minimized by maintaining proper hydration and nutrition, avoiding alcohol, caffeine and nicotine, minimizing periods of inactivity in cold conditions. Minimize the risk of cold injuries in fighting positions, sentry points and observation points by placing pads, sleeping bags, tree boughs, etc. inside these positions to allow occupants to insulate themselves from the ground or snow. High levels of physical fitness are also beneficial for soldiers participating in cold-weather operations.

10. Humans do not acclimatize to cold weather nearly as well as they can acclimatize to hot weather, although repeated cold exposure does produce what is referred to as habituation. Proper training before deploying into cold-weather regions is more important for prevention of cold injuries than repeatedly being exposed to cold temperatures.

a. Following habituation, shivering is much less vigorous. This is advantageous because shivering is inefficient, and most of the heat produced is lost. Also, shivering can interfere with sleep causing fatigue.

b. With habituation to repeated cold exposure, humans adjust mentally and emotionally. Training outdoors in cold weather before deployment will help build confidence in soldiers’ ability to physically, mentally and emotionally contend with the stress of cold-weather conditions.

Sun, Wind, Rain, Snow and Low Humidity

Besides cold temperatures, other environmental stressors will be encountered during cold-weather operations. For example, winter operations in the coastal regions of the eastern United States (or even the Arabian Gulf of Southwest Asia) may be conducted during periods of near-freezing temperatures, rain and wind. Heavy snow may be encountered during winter operations in areas of northern Europe and America, and throughout the year in mountainous regions. In desert, arctic and high altitude regions, very low temperatures are often accompanied by high winds, low humidity, very bright sun, or a combination of those conditions. The influence of wind and rain on the severity
of cold stress has been discussed in the last section. However, sun, wind, snow, rain and low humidity each present environmental health threats in and of themselves.

Understanding the Problems:

1. Exposure of unprotected skin and eyes to sunlight may cause sunburn and snow blindness.

   a. The threat of sunburn and snow blindness depends on the intensity of sunlight, not the air temperature.

   b. Snow, ice and lightly colored objects reflect the sun's rays, increasing the potential for injury.

   c. Sunburned skin will appear red, hot to the touch, possibly swollen and blistered, and will be painful.

   d. Solar radiation can "sunburn" unprotected eyes resulting in snow blindness. Sunburned eyes are painful. There is often a gritty feeling, profuse tearing, blurred vision and headache.

   e. Sunburn and snow blindness can last hours to days and can cause temporary incapacitation.

2. Cold weather is often accompanied by winds and low humidity.

   a. Wind blown debris entering the eyes can lead to eye irritation, injury and infection.

   b. Low humidity and windy conditions cause drying of the lining (mucous membranes) of the nose, mouth and throat causing nosebleeds, sore throat and minor respiratory difficulties. Low humidity and wind can dry and cause chapping of the skin, increasing the sensitivity to sunburn and chaffing.

---

**FIRST AID FOR OVEREXPOSURE TO SUN AND WIND:**

1. PREVENT FURTHER EXPOSURE

2. TREAT MILD SUNBURN, WINDBURN AND CHAPPING WITH MOISTURIZING LOTIONS, AND ASPIRIN OR TYLENOL, BUT EVACUATE FOR MEDICAL TREATMENT IF LARGE AREAS OF SKIN ARE INJURED OR BLISTERED

3. FOR SNOW BLINDNESS, HAVE VICTIM REST IN DARK AREA WITH EYES COVERED WITH COOL, WET BANDAGES UNTIL EVACUATED
3. Working in snow, ice or mud is very strenuous. Building fighting positions and moving troops requires more time and physical effort. Digging may be very difficult or impossible in frozen ground.

**Coping with the Problems:**

1. Prevent overexposing skin and eyes to solar radiation and wind.
   a. Using sunscreen which contains para amino benzoic acid (PABA) or other chemicals capable of blocking ultraviolet radiation (at least 15 Sun Protection Factor) and covering exposed skin will prevent most sunburns. In cold weather, use alcohol-free sunscreen lotion (Sunscreen Prep, NSN 6505-01-121-2336).
   
   b. The use of protective eye-wear (Sunglasses, Polarized, NSN 8465-00-161-9415) or goggles that block at least 90% of ultraviolet radiation helps to prevent snow blindness. *Not all commercially available sunglasses block enough solar radiation to protect against snow blindness.*
   
   c. Chapped lips and skin can be prevented through the use of lip balm (Cold Climate Lipstick, Antichap, NSN 6508-01-277-2903) and limiting exposure of skin to the environment. Skin moisturizing lotion may help the skin retain water.
   
   d. Covering the nose and mouth using a balaclava or scarf will limit the drying of mucous membranes.

2. Snowshoes or skis should be used for dismounted troop movement when loose snow is deeper than 15 inches. Although easier than walking through deep snow, snowshoeing and skiing are hard work and troops require proper equipment and training to use these techniques.

3. Building defenses in hard frozen ground may require engineer support in the form of heavy equipment for digging and plowing.

**Food and Water During Cold-Weather Operations**

Although warm clothing and proper shelter are the first line of defense in protecting against the effects of cold weather, adequate food and water consumption are next in importance. Food and water requirements of soldiers are high during cold-weather operations and the effects of dehydration and inadequate diet are as serious as in hot climates.
Understanding the Problems:

1. Soldiers often become dehydrated during cold-weather operations.
   a. Dehydration increases susceptibility to cold injuries.
   b. Dehydration reduces work capacity, appetite, alertness, and can lead to other medical problems such as constipation, kidney disorders and urinary infections.

2. The body’s requirement for water is high during cold-weather operations.
   a. Even in cold weather, sweating can contribute to body water losses. Heavy clothing can cause overheating, especially during heavy work, which in turn leads to sweating. In cold dry conditions, sweat may evaporate readily without the individual sensing it.
   b. Unless water intake exceeds body water losses, dehydration will result.

3. Soldiers reduce their fluid intake during all field operations, but especially during cold weather.
   a. Because field rations contain less water than garrison food, soldiers take in less water with the food they eat, and they usually do not drink enough to compensate.
   b. Most people do not feel thirsty until they are already significantly dehydrated, and thirst may even less noticeable in cold as in hot weather.
   c. When weather is particularly cold and/or rainy, many soldiers purposely allow themselves to become dehydrated to avoid having to leave comfortable shelter to urinate outdoors.
   d. When temperatures are extremely low, water in canteens and bulk supply containers may freeze, restricting water availability.

4. Water consumption requirements are more difficult to predict for cold-weather operations than hot, because the effects of the environment are greatly modified by an individual’s own bodily responses, the workload and the amount of clothing worn. This individual variability affects the amount of water required to maintain proper hydration.

5. Caloric requirements of soldiers are 25 to 50% higher during cold-weather operations than in warm or hot weather.
a. Soldiers expend more energy during cold weather, due to wearing heavy cold-weather gear and the increased effort required for working or walking in snow or mud or for preparing positions in frozen ground.

b. The body uses more calories keeping itself warm when the weather is cold which also contributes to the increased energy requirement.

6. Ensuring that soldiers in the field receive adequate amounts of hot rations is a major challenge for leaders during cold-weather operations, especially when soldiers are not stationed close to field feeding facilities or kitchens where rations can be heated and kept warm.

7. Other field-feeding problems often arise from freezing of rations and a lack of readily available liquid water to rehydrate dry ration components.

- The most common individual ration soldiers receive during cold-weather operations is the Meal-Ready-To-Eat (MRE). Four standard MREs per day must be eaten to supply a soldier the necessary calories during cold weather, if no other rations are provided. The MREs include liquid-containing components which can freeze during cold-weather operations if these items are not kept warm by carrying them inside the clothing.

- Two other individual rations that U.S. soldiers may receive during cold-weather operations are the Ration, Cold Weather (RCW) and the Long-Life Ration Packet (LLRP). Soldiers must eat one RCW per day or three LLRPs per day to obtain the necessary calories during cold-weather operations.

- Even when troops in the field are served hot rations, meal items which are not normally heated (e.g. milk, juice, fruit cocktails, etc) can freeze making it difficult to serve and consume these items.

   WATER REQUIREMENTS FOR RECONSTITUTING DIFFERENT RATIONS:

   1. MEAL-READY-TO-EAT - ABOUT HALF A QUART FOR ALL DEHYDRATED COMPONENTS

   2. RATION, COLD WEATHER -
      A. ABOUT HALF A QUART FOR THE MAIN ENTREES ALONE
      B. ABOUT THREE QUARTS FOR ALL RATION COMPONENTS

   3. LONG-LIFE RATION PACKAGE - ABOUT ONE QUART FOR ALL COMPONENTS
Coping with Food and Water Problems

1. Soldiers must drink even when they are not thirsty. Leaders should establish a program of regularly scheduled enforced drinking.
   a. Inactive persons in comfortable climates need a minimum of 2 quarts of water a day to prevent dehydration.
   b. Using this as a basis, a general recommendation for soldiers participating in cold-weather operations is to consume about a half a quart (half a canteen) of water with breakfast, lunch, dinner and before going to sleep at night, with an additional half quart drunk every hour during the workday (more if the work is strenuous enough to cause the individual to sweat) for a total of at least 5-6 quarts per day.

2. Hydration status can be monitored by noting the color and volume of a soldier's urine.
   a. Soldiers should be taught that the lighter the urine color, the better hydrated; and that dark yellow urine is a sure indicator that fluid consumption should be increased.
   b. Squad leaders should attempt to monitor urine color of squad members. This is easiest if the ground is snow covered or frozen and a specific site is designated for squad members to urinate. The appearance of a dark yellow stain will be noticeable. Even if the particular individual cannot be identified, the squad leader can intensify efforts to encourage all squad members to increase fluid consumption.

3. In extremely cold weather (below -10 °F), standard issue canteens and the 5 gallon metal water containers can freeze.
   a. It may be possible to wear the canteen or a spare water bottle inside one's clothing, perhaps tied by a string around the neck. Spare canteens should be kept inside heated vehicles or tents.
   b. At least one full 5 gallon water container per squad should be kept thawed at all times. When that container begins to be dispensed, another full container should be brought inside for thawing. It can take several hours to thaw these containers in heated vehicles or tents.

4. Unmelted snow and ice should not be consumed for water.
   a. Eating snow and ice irritates the mouth, wastes body heat, and if enough is consumed, body temperature can be lowered.
b. When snow or ice is the only available source of water, it should be thawed before being consumed. Melted snow and ice should not be considered as potable water until appropriately purified.

5. There may be no better investment for the health, strength and morale of troops participating in cold-weather operations than to provide ample amounts of hot palatable food supplemented with warm beverages. Proper prior planning is critical to successfully ensure that food is still hot when received by the individual soldier.

   a. When soldiers are cold, they will naturally consume more food and beverages if served hot. Therefore, providing hot food and beverages offsets the usual reduced consumption in the field, helps to warm the soldier and improves morale.

   b. The 30-50% extra calories most individuals need per day during cold weather can be obtained by eating a "normal" breakfast, lunch, and dinner, and then supplementing with frequent snacks throughout the day.

   c. It is a good idea to save food items issued with regular meals to be eaten as between-meal snacks. Keep items such as MRE pouch bread, granola bars, candies, cookies, crackers, cheese and peanut butter spreads in your pocket, handy for frequent snacking.

   d. A good tip for soldiers participating in cold-weather operations is to eat a large snack before bed at night. This will help keep the individual warmer during sleep which prevents shivering and allows sounder, more restful sleep.

   e. There are many "old soldier's" tales concerning the best foods to eat during cold weather, but most soldiers simply need to eat larger amounts of a balanced diet than they do in garrison. Soldiers who must hike, ski or snowshoe for very long distances will benefit by concentrating on eating more starchy foods such as crackers, potatoes, cereals, bread and noodles.

6. Whenever possible, latrines should be sheltered to protect users from the wind and rain. Soldiers are less likely to restrict food and fluid intake, if they can use the latrines without being overly exposed to the elements.

Wounds, Disease and Nonbattle Injuries

Cold weather seriously degrades medical operations in the field. Combat casualties are more susceptible to cold injuries, and at the same time the cold weather can constrain field medical treatment and evacuation. Furthermore, the incidence of disease and nonbattle injuries is increased during cold-weather operations.
Understanding the Problems:

1. Cold weather seriously affects care of battle casualties.

   a. Medical equipment, medications and medication containers (e.g. IV containers, drug ampules) may freeze. Administration of intravenous medications or fluids is difficult in subfreezing temperatures due to freezing of solutions in lines or containers. Cold-weather clothing can make it more difficult to check the casualty for wounds and initiate treatment.

2. The widespread use of stoves and heaters in tents, other types of shelters and vehicles during cold-weather operations poses a risk of burns and injuries from unventilated exhaust fumes.

   a. Burns result from contacting hot surfaces, fires or explosions of stoves and fuel sources. Improper fueling and lighting techniques, or inadequate ventilation can result in the accumulation of flammable fumes into the tent or shelter. When ignited, these gases may cause potentially fatal fires.

   c. "Tent eye" is an inflammation and irritation of the eyes caused by exposure to fuel fumes which can accumulate in poorly ventilated shelters. Rubbing "itchy" eyes can subsequently lead to eye infection.

   b. Shock may develop more rapidly and more severely when casualties are exposed to cold weather. Blood loss and shock increase susceptibility to frostbite and hypothermia. Sick or injured persons are often unable to sense the development of frostbite.

   c. Evacuation procedures may require modification. Litter bearers fatigue quickly in snow, ice or mud, slowing evacuation and putting the rescuers at risk of overexertion and cold injury. Mobile ground transport may be limited by road conditions. Air evacuation is limited by weather conditions. Open vehicles and aircraft can create tremendous windchill requiring measures to protect patients from cold injury during transport.

TREATMENT FOR SHOCK:

1. **KEEP WARM BY PLACING IN SLEEPING BAG OR SUBSTITUTE**

2. **RAISE LEGS ABOVE HEAD LEVEL, UNLESS PATIENT'S HEAD IS INJURED**

3. **LOOSEN CLOTHING WITHOUT COMPROMISING PROTECTION FROM COLD**

4. **IF CONSCIOUS, PROVIDE WARM DRINKING FLUIDS**

5. **MINIMIZE DISCOMFORT AND PROVIDE REASSURANCE**
Carbon monoxide (CO) is a poisonous gas which cannot be seen or smelled, and is contained in exhaust from stoves and vehicles. CO can build up in closed spaces without being noticed. Soldiers seeking shelter from the cold in poorly ventilated shelters or vehicles with the engine idling often become victims of CO poisoning. Early signs of CO poisoning are headache, confusion, dizziness or drowsiness. The lips and skin can become bright red. Victims will lose consciousness, and eventually die. Any person found unconscious in a closed tent or vehicle should be suspected of possible CO poisoning.

Proper field sanitation is very difficult to maintain during cold-weather operations. However, poor sanitation can lead to outbreaks of disease. Frequent close contact with others in shelters, combined with increased individual susceptibility due to fatigue, also contributes to the spread of disease.

a. Digging latrines and garbage pits can be difficult or impossible when the ground is frozen and covered with snow and ice.

b. Soldiers are not inclined to walk far to use the latrine or garbage pit when it is cold outside.

c. Improper food storage or garbage disposal will attract wildlife which can destroy clothing and equipment and bring disease.

d. The limited availability of hot water and the discomforts associated with undressing in the cold may discourage soldiers from maintaining proper personal hygiene.

e. It is difficult to maintain dish or hand washing water hot enough to keep it sanitary in cold weather, which can contribute to the spread of disease.
f. Untreated drinking water obtained by melting snow and ice can contain disease.

4. Accidents due to slipping, sliding, falling and vehicular accidents will be more frequent during cold-weather operations.
   
   a. Paths, walkways and roads are frequently muddy or frozen. Heat escaping from the entrances of tents and buildings can cause cycles of thawing and freezing of the ground surface which makes these areas particularly hazardous.
   
   b. Fatigue, the hobbling effect of clothing, and the effect of hoods and hats on vision and hearing will also contribute to accidents and falls.

Avoiding the Problems:

1. Keep liquid medications and medical equipment from freezing.
   
   a. Store medications and medical equipment in heated areas of vehicles and shelters whenever possible to prevent freezing.
   
   b. Some liquid medications can be carried inside the clothing of medical personnel where body heat will prevent freezing. IV fluid bags (with required tubing attached by tape) can be distributed to individual soldiers who can carry the bag inside their clothing.
   
   c. Extra clothing and blankets should be available for use by patients during treatment and evacuation, especially when their clothing has become torn or soaked in blood. Check patients awaiting treatment and evacuation for cold injuries frequently.

2. Proper precautions will prevent injuries associated with use of stoves and heaters.
   
   a. Only properly trained soldiers should be permitted to set up, light, refuel and maintain stoves.
   
   b. When a stove is being used, a fire guard should be posted, horseplay in the tent should be prohibited and the tent doorway should be kept clear to allow easy escape.
   
   c. The stove pipe should be kept clean and be tall enough to draft properly. Air intake to the stove should be unobstructed.
   
   d. Shelters and tents should not be sealed so tightly that ventilation is completely blocked.
e. Sleeping in running vehicles should not be permitted. When vehicles are parked for long waits, occupants should ensure exhaust pipes are not blocked by snow banks, and a window should be opened slightly.

3. The principles of proper field sanitation are the same as in warm weather (FM 21-10-1), but their application during cold weather may require some modification of procedures.

   a. Locate latrines and garbage pits at minimum allowable distances from the food service sites (100 yds, downwind) and unit water supply (100 feet), and clear snow and ice from paths leading to these areas making them more accessible. Provide latrines with as much shelter as possible. Commanders should prohibit indiscriminate waste disposal, and insist that soldiers use only properly designated latrine and garbage areas.

   b. Snow and ice covering the ground may disguise the natural slope, and extra attention is required to ensure drainage from latrines and garbage pits is away from living areas. Freshly fallen snow can hide ice patches or other hazards.

   c. If the ground is too frozen to dig latrines and garbage pits, employ above ground containers (such as an empty MRE box lined with a plastic bag) to collect refuse. Ensure these containers are clearly marked to indicate the contents for proper disposal. Urinals can be cut into snow walls outside the bivouac.

   d. Leaders should provide warm water frequently to encourage personal hygiene. Soldiers should wash hands, feet, face, and groin daily, whether or not heated water is available. During training exercises lasting several weeks, commanders should consider whether the health (and morale) benefits of arranging for troops to leave the field briefly for a break at a heated shower site might outweigh the temporary suspension of a realistic training scenario.

   e. Food handlers should wash hands before serving and wear serving gloves when serving rations. Maintain larger stocks of large sizes of food serving gloves for food handlers to wear over glove liners when they are serving food outdoors.

   f. Chlorine or iodine purification of cold water requires twice the usual amount of chemical and an extra 15 minutes waiting period before the water is safe to drink. Flavor enhancers should be added just before consuming the water.

4. Snow should be removed from the ground before tents are set up. Slippery paths and walkways should be marked with warning signs, and sand, salt, ashes or straw should be spread to increase traction.
SUSTAINING PERFORMANCE DURING COLD WEATHER

Soldier Tasks

Clothing and equipment malfunctions occur more often during cold-weather. Simply wearing bulky cold-weather clothing restricts peripheral vision, movement, coordination and manual dexterity. In combination, these effects can adversely impact on the ability of soldiers to satisfactorily perform various aspects of their tasks.

Appreciating the problems:

1. The properties of materials used to make the clothing and equipment are altered by low temperatures. Rubber, plastic, other manmade fabric and materials and even metal can become brittle and break more easily when cold. Zippers will freeze and break rendering garments unusable.

2. Moisture condensation is a common source of problems during cold-weather operations.
   a. Moisture from sweat or breathing can become trapped in clothing or sleeping bags, condense and degrade insulation.
   b. Condensation accumulates inside tents when they are occupied. This adds to the weight and makes it more difficult to pack and move them later.

3. Restricted visibility during cold-weather operations hampers many soldier tasks and, particularly compromises operation of vehicles or weapons systems.
   a. Cold eyeglasses, goggles, and eyepiece sights fog over easily when warm moist breath passes over them or when the wearer comes in from cold to warmed areas. If this condensation freezes, it is difficult to remove.
   b. Hoods, balaclavas and other cold-weather head gear can restrict vision, particularly peripheral vision.
   c. Depth perception is reduced when air temperature is below 0 °F and/or windspeed is over 10 mph. Visual acuity is reduced when air temperature is below -20 °F and/or windspeed is over 20 mph. These effects become particularly significant for viewing distances greater than 20 feet.
   d. Fog, rain, and blowing snow further restrict visibility. Ice fog is an unusual condition which occurs when the air temperature is extremely low (usually -40° F), and moisture arises from burning of fuels in engines, stoves, and firing weapon systems. The
fog is produced when the moisture is trapped under a layer of cold air and wind is not present to disperse it.

4. Weapon use in extreme cold creates problems that can affect the health and performance of the operators.
   a. Hangfires are more frequent, especially when the weapon has not recently been fired, due to effect of cold temperatures on ammunition burning. The M72A2 Light Antiassault Weapon (LAAW) is particularly susceptible to hangfires in the cold.
   b. Backblast danger area is doubled for the LAAW and tripled for the Dragon.

5. Metal can be dangerous to touch (contact frostbite) in extreme cold. Also, moisture will condense on cold metal exposed to heat. Unless removed, it will freeze upon being returned to the cold, and it can eventually lead to rusting. This is especially a problem with individual weapons.

6. Wearing gloves and mittens causes a significant loss of manual dexterity.
   a. Conventionally-sized toggle switches, push-buttons, and control knobs, are difficult to operate when wearing gloves or mittens.
   b. The decreased dexterity might encourage individuals to remove these protective items while working. However, removing the gloves will allow the fingers to cool and reduce blood flow to the hands, which will, in turn, eventually degrade manual dexterity.
   c. Blowing warm breath into mittens or gloves can cause the hands to become even colder. Air from the lungs contains moisture which will condense on the hands and wet the inside of the handwear, contributing to further hand cooling.

**Optimizing Ability to Perform Soldier Tasks:**

1. Whenever possible, avoid using clothing and equipment not specifically designed or tested for use in cold weather. Do not force frozen or stuck parts to move when they are cold. Lubricate zippers with wax.

2. Problems resulting from moisture trapped in clothing can be avoided.
   a. Minimize overdressing, and remove clothing layers upon entering heated areas from the outside.
   b. Dry clothing by hanging in the updraft of the tent to minimize condensation within the tent.
c. Ensure tents and other shelters have adequate ventilation to prevent accumulation of moisture.

3. Compensate for decreased visibility by increasing vigilance and slowing down. Avoid placing troops near traffic areas during periods of low visibility. Use antifogging compounds on eyeglasses and goggles.

4. Increase backblast areas and warm weapons by firing at a slow rate at first to minimize the chance of a hangfire or other malfunction.

5. To avoid condensation on small arms and ammunition, they should not be brought inside warm areas, unless outside storage and security is not practical.
   a. If weapons are brought inside, they should be covered and placed near the floor to minimize condensation.
   b. Clean and dry the weapon after it warms and before returning to cold.

6. For tasks requiring manual dexterity, commercially-available light-weight polypropylene glove liners can be worn beneath heavier gloves or mittens. The bulky outer glove can be removed to perform a task. Periodically, the outer glove can be replaced to allow the fingers to rewarm.

7. Many tasks can be divided into shorter segments to allow rewarming breaks.
   a. Brief rewarming periods in a heated shelter or even time spent with the gloves replaced may maintain sufficient manual dexterity that the task can be completed.
   b. It may be necessary to complete the task using a two team approach, where one team works while the other rewarms.
   c. Work should be planned to avoid extended periods of inactivity (e.g. in formation or awaiting transportation) while troops are outside in the cold.

8. With practice, soldiers will learn to compensate for the effects of gloves and other cold-weather clothing on manual dexterity, movement and performance of various tasks.

**NBC Operations**

Cold weather makes all facets of military operations more difficult than in comfortable climates, but the impact on military functions during nuclear, biological or chemical warfare operations can be particularly significant. Problems should be anticipated and contingency plans should be developed before deploying.
Appreciating the Problems:

1. Nuclear weapon effects may be different in cold-weather operations than under other conditions. Troops operating in the open on frozen ground are especially vulnerable since they will be unable to dig in rapidly.

   a. Blast effects increase over frozen or ice-covered terrain due to the high reflectivity. Therefore, the radius of nuclear blast is increased, and minimum safe distances are increased.

   b. Loose new fallen snow is a poor blast-reflecting surface, but a good thermal and flash reflecting surface. Nuclear (and conventional) blasts can trigger avalanches.

   c. Packed snow and ice as well as the frozen trunks and limbs of trees can be converted into many small missiles from the blast of nuclear and conventional warheads.

   d. Snow, frost and rain generally reduce thermal effects on combustible materials on the ground surface, but subsurface fires may be ignited by nuclear detonations in heavy tundra.

   e. Fallout patterns are difficult to predict in cold, windy conditions, and snowstorms can concentrate radioactive fallout.

2. Chemical agents can be used in cold environments.

   a. The high freezing point of some agents (HO mustard, 59°F; Hydrogen Cyanide, 77°F) limits their effectiveness during cold weather. However, the freezing point of certain nerve and choking agents is low (-40 to -77 °F), and some vaporize appreciably at temperatures as low as -44 °F.

   b. Frozen and unvaporized droplets of liquid chemical agents in snow will thaw and vaporize when contacting warm skin or when carried into heated shelters on clothing and equipment.

3. Many biological agents are resistant to low temperatures and may retain their potency for weeks or months, becoming active hazards during periods of warming and thawing or when the agents are carried into shelter on an individual's clothing.

4. During thaws, radioactive fallout, chemical and biological agents can be spread far from the areas of weapon deployment by natural run-off, and they can concentrate in areas of poor drainage.
5. The function of certain NBC protective clothing and equipment used to detect radiation and chemical agents is degraded in the cold.
   a. Eyepiece fogging is very common when protective masks are worn in cold weather.
   b. The material used in the chemical protective masks becomes stiff and brittle as temperature falls below freezing, allowing them to be torn more easily than in warm weather, and making it difficult to achieve a proper seal.
   c. The drinking tube on the M17 series mask will become unusable when temperatures are below freezing.
   d. The batteries in the IM 27 used to check for radiation fail when the instrument is not protected from below freezing temperatures.
   e. The M8 chemical agent alarm requires the M253 winterization kit for use below -18°F and has a 50 minute warm-up time.
   f. Chemical agent detectors sense volatilized agent vapors. Agents do not vaporize readily when it is cold, therefore the detectors respond more slowly to the presence of agents.
   g. The solution in the capsules of the M256/M256A1 chemical detection kit can freeze, and once frozen, thawing may not restore their operability.

6. Autoinjectors containing nerve agent antidote (atropine/pralidoxime) or anticonvulsant (diazepam) freeze at temperatures below 29°F. Injection using the autoinjector is more difficult when soldiers are wearing cold-weather clothing in addition to the NBC protective clothing.

7. Wearing NBC individual protective clothing and equipment during cold-weather operations increases the risk of injuries due to cold, and even heat stress.
   a. NBC protective clothing can restrict the blood flow to the fingers and areas of the face, increasing the susceptibility of these areas to frostbite and limiting the ability to visually inspect for signs of cold injury.
   b. When mask carriers are worn outside the clothing at below freezing temperatures, donning the cold mask can cause a contact freezing injury, especially at the points where exposed rivet heads contact the face.
   c. Wearing the impermeable NBC protective Battle Dress Overgarment (BDO) over heavy cold-weather clothing creates the unexpected situation where heat exhaustion
becomes a real possibility for soldiers working hard, even in cold weather. The added insulation and decreased ventilation of NBC protective clothing can result in heavy sweating and wetting of the clothing during hard work, eventually degrading cold protection.

8. NBC decontamination procedures are extremely difficult under cold-weather conditions.

   a. Water and decontamination solutions can freeze and may limit effective decontamination of vehicles or equipment.

   b. Skin decontamination with the M258A1 kit may result in frostbite during cold weather. Use of the alcohol pads in the M258A1 kit will cool the skin.

Minimizing Effects of Cold on NBC Operations:

1. Brush off or remove outer clothing before entering tents and heated shelters to avoid bringing snow containing frozen contaminants inside to thaw and create an active hazard. Whenever practical, shovel or plow away the top layer of snow on trails, roads within occupied areas to limit the spread of contamination.

2. When NBC weapons have been employed in a region during the winter, avoid low-lying areas where run-off from rain or melting snow accumulates and concentrates toxic substances.

3. Practice integrating NBC protective clothing with cold-weather clothing. Some adjustments to procedure will be required.

   a. Generally, the BDO is worn outside the cold-weather clothing, therefore, it may be necessary to remove insulating clothing layers before putting the BDO on to prevent overheating.

   b. It may be necessary to add additional clothing layers over the BDO after it is donned, if changes in weather or activity warrant additional warmth. However, any garment worn over the BDO will become contaminated during chemical exposure and will have to be discarded and replaced with new issue clothing (leaders should anticipate this by having replacement clothing supplies on hand).

   c. Vapor barrier boots or issue overboots are authorized replacements for chemical protective boots.

   d. Chemical protective gloves are worn underneath cold-weather gloves and/or mittens. Individuals whose tasks require a high degree of manual dexterity may be unable to wear cold-weather gloves or mittens over the rubber gloves. In this case,
polypropylene glove liners worn beneath the protective gloves may provide some protection from the cold for brief periods.

4. Using the protective mask during cold weather requires some additional procedural modification.

   a. Before deploying, rivet heads inside the mask should be covered with adhesive tape to prevent contact frostbite. M3/M4 winterization kits should be installed on chemical protective masks when temperatures are below 23°F. This kit contains an ice particle prefilter fitted over inlet valves to prevent frost accumulating on the inlet caps. It also includes two inlet valves and two nose cup valves of a softer rubber which do not become hard and brittle in the cold.

   b. When it is cold, the protective mask should be donned normally. However, clearing the mask by the usual procedure of quickly exhaling maximally will fog the lens. Instead, exhale steadily and slowly.

   c. The M6A2 hood should not cover the mask voicemeter outlet valve when the temperature is below freezing. The hood voicemeter outlet valve assembly cover should be pulled open below the voicemeter outlet valve assembly cover to allow moisture to escape.

   d. To prevent the outlet valve from freezing and sticking to the seat, lift the outlet valve cover and rotate the disc while exhaling.

   e. In extreme cold weather (0°F), mask carriers must be worn under the parka to keep the mask warm and flexible enough to provide an adequate seal. Practice donning the mask when the carrier is worn under the parka.

   f. CAUTION! Do not adjust the harness straps on the mask too tight. This will reduce blood flow to skin of the head and face and can cause frostbite.

   g. The mask should be wiped thoroughly dry after use to remove condensation which could freeze inside.

5. Radiation detectors (IM27), chemical agent alarms (M8), and chemical agent detectors (M256/M256A1) should be kept warm to ensure that batteries remain operational, and liquid containing components (M256/M256A1) do not freeze. Carry spare batteries inside clothing to keep them warm.

6. Chemical agent detector paper and tape and the M256/M256A1 detection kits all require more time in the presence of agents to give a positive indication when temperatures are below freezing.
a. Store the detector paper, tape and kits inside the parka during the day and in sleeping bags at night to keep them warm.

b. In extreme cold, chemical agents may not vaporize sufficiently to be sensed by detectors, so samples may need to be warmed in the presence of the detector, or the vapors concentrated by placing a box or bag over the suspected contaminant, and sampling from a small hole in the container.

7. Protect nerve agent antidote and anticonvulsant autoinjectors from freezing.

a. Autoinjectors should not be carried in the external pocket on the BDO when the temperature is below freezing. Place them in an inner pocket where body heat will keep them warm. A string should be tied to the autoinjector, and threaded through the outer layers of clothing and tied to an outside pocket or belt. The autoinjector can be rapidly extracted from within the clothing by pulling the string (practice this).

b. Frozen autoinjectors are still usable after being thawed if they do not appear broken or cracked.

8. When it is cold enough to freeze decontamination solutions or if using the alcohol pads from the M258A1 kit on the skin would risk frostbite, alternative dry decontamination can be accomplished.

a. Combining 2 parts supertropical bleach (STB) and 3 parts diatomaceous earth makes a dry mix that will inactivate chemical agents. This mixture can be used directly on skin. Decontamination of footwear and skis is accomplished by using shuffle boxes containing the dry mix. Other clothing and equipment can be dusted with the mix.

b. Heated air blown over contaminated items removes chemical agents by evaporation. When decontamination solutions and/or water are frozen or not available, decontamination of vehicles and equipment can be accomplished using high temperature vehicle exhaust or forced air heaters. This decontamination method should only be performed outdoors. The use of heated air will increase the contamination threat downwind.

Leadership

The principles of leadership are unaffected by the weather, but challenges for leaders, especially of company and smaller-sized units, can be profound during cold-weather. To accomplish their mission, leaders must contend with not only the enemy soldier, but also the stress of the environment on their men and equipment. The preceding sections have focused on the effects of cold-weather on the soldier's biological functioning. However, the stress of cold can also adversely affect attitudes and morale,
and leaders must recognize and cope with these effects to maintain their unit's effectiveness.

**Leadership Challenges During Cold-Weather Operations:**

1. Many soldiers come from regions where winters are not severe, and few have experience in living outdoors during cold weather. Initially, these soldiers may lack confidence in their ability to cope with and survive in cold weather.

2. The cold can seem inescapable. Even when soldiers are able to stay warm, the effects of cold are felt in awkward cold-weather clothing, confinement to small shelters and problems with vehicles and equipment. These effects can lead to anger, frustration and depression, which can be intensified by fatigue, periods of isolation, and shortened daylight hours.

3. When conditions are extremely cold and soldiers have been out for a long time, the need to stay warm tends to become the individual's most important concern.
   a. Soldiers may appear confused or forget how to do things they are trained to do.
   b. Some soldiers may attempt to shirk their duties in order to avoid the cold and stay warm.

4. The need to wear multiple layers of clothing or remain bundled in sleeping bags and blankets when it is cold, combined with extended periods of darkness can intensify the sense of isolation soldiers often experience when they are separated from home, family and friends. Some individuals respond to these feelings by "huddling up" to keep warm, and withdrawing within themselves away from the unit. This can lead to mental sluggishness, increased susceptibility to cold injuries and degraded individual effectiveness, unit discipline and cohesion.

**Positive Leadership and the Right Attitude:**

1. Leaders are responsible for prevention of cold injury among their troops.
   a. Susceptibility to cold injury varies considerably, and safe exposure times for different soldiers exposed to the same cold-weather conditions also varies considerably.
   b. Newly assigned individuals, who have little or no cold-weather training and experience, often sustain cold injuries.
   c. Individuals with considerable cold-weather experience (often those in leadership positions) can become nonchalant or desensitized to the threat of cold injury.
Leaders must be alert for carelessness even in soldiers experienced in cold weather operations.

2. Soldiers need to be taught that when it is cold, tasks may be more difficult, but they are not impossible. This knowledge comes from confidence in their abilities to survive and perform their mission during cold weather.

   a. Leaders can build this confidence in their men by having them practice tasks and survival skills outdoors in the cold, and by conducting cold-weather training exercises.

   b. After several weeks of training and experience in cold weather, most soldiers learn to cope fairly well.

   c. Leaders must be alert and avoid the common trap of allowing cold-weather training exercises to become a camping trip. If this occurs, soldiers will become distracted from accomplishing their mission. Leaders must remind soldiers that their job is to fight, and the purpose of the training exercise is to teach them how to carry out their mission under cold-weather conditions.

3. A positive "can do" attitude helps in coping with cold-weather problems. Leadership must be aggressive and emphasize personal example to demonstrate that cold conditions are beatable.

   a. Direct supervision should be emphasized.

   b. Ensure duties are properly performed and work is equitably distributed among all unit members.

   c. Be alert for individuals who have withdrawn from the group. Leaders should keep talking to their troops and encourage them to talk among themselves. Use the buddy system to maintain communication, and to watch for cold injuries.

   d. Keep soldiers busy and physically active. Plan operations carefully to avoid unnecessary periods where troops are left standing in the open.

   e. Use hot food to improve morale.

   f. Allow soldiers more time to accomplish tasks and more discretion regarding how to accomplish them. However, do not allow them to use the cold as an excuse for failing to carry out orders, comply with unit SOP's or properly perform their duties.
PREPARATION FOR COLD-WEATHER OPERATIONS

1. Units preparing for deployment to cold-weather regions must anticipate the effects of the environment on the functioning of the individual as well as the unit. Preparation should involve steps to minimize those effects.

2. Units deploying to cold-weather regions should conduct training for their soldiers on basic winter skills and cold-weather survival.

   a. It is especially important that soldiers practice wearing the cold-weather clothing to ensure that the fit is correct and the individual knows how to wear the gear.

   b. Soldiers should practice performing their duties while wearing cold-weather clothing, since this gear restricts movement considerably. It is also important that soldiers practice donning individual NBC protective gear while wearing cold-weather clothing.

3. Winter operations are physically demanding, and troops must be in peak physical condition.

   a. Units on alert, or identified for future deployment, should immediately optimize their physical training program, and spend more time training outdoors in the cold to accustom individuals to the effects of cold.

   b. Outdoor training should not be halted when temperatures are cold. Rather than restrict outdoor activities at certain preselected temperatures, commanders should establish programs in which increasingly protective countermeasures (clothing, surveillance) are initiated as conditions become colder. Such programs build soldiers' confidence in their ability to complete their

COLD-WEATHER PREPARATION

INDIVIDUALS:

1. LEARN TO SURVIVE AND PERFORM DUTIES IN THE COLD
2. OPTIMIZE PHYSICAL FITNESS
3. INSPECT-COLD WEATHER CLOTHING AND SURVIVAL KIT
4. PRACTICE WEARING COLD-WEATHER CLOTHING

UNITS:

5. CONDUCT COLD-WEATHER TRAINING
6. ESTABLISH UNIT BUDDY SYSTEM
7. IDENTIFY SUSCEPTIBLE TROOPS
8. EXPECT SUPPLY PROBLEMS (STOCK LARGE SIZE NBC INDIVIDUAL PROTECTIVE CLOTHING)
9. REASSESS SOPs FOR FIELD FEEDING, FIELD SANITATION, MEDICAL EVACUATION

32
missions, regardless of weather. Appendix B shows recommended guidance for conducting, modifying, restricting or canceling training according to wind chill conditions.

4. Each soldier must have an individual cold-weather survival kit (Appendix C) and all required cold-weather clothing in proper working condition.

5. In addition to conducting training to help soldiers prepare to operate and survive under cold-weather conditions, unit leaders should anticipate how the disruption of normal unit procedures due to the weather conditions will affect unit operations.

   a. Identify unit members who have previously experienced cold injuries. These soldiers should receive intensive retraining in cold-injury prevention, and should be monitored closely while deployed.

   b. Establish a buddy system within the unit to increase unit cohesiveness by minimizing the sense of isolation that individuals may experience during cold weather. A buddy system will also help to monitor for signs of cold injury among unit members.

   c. Field sanitation procedures should be reviewed and modified as necessary if weather conditions are extreme. Aspects requiring particular re-emphasis include placement, maintenance, and closure of latrines, water purification and sanitary food handling.

   d. Anticipate supply difficulties, and stockpile emergency stores of critical items. During cold-weather operations, units will need more of the larger sizes of NBC protective clothing, since soldiers wear NBC clothing over multiple layers of bulky cold-weather clothing. Develop storage and transportation procedures for food and water which prevent freezing, and determine measures for thawing frozen supplies. Set up procedures for keeping rations hot until received by individual soldiers in the field.

   e. Establish safety SOPs for personnel travelling by vehicle away from the unit's bivouac site. At a minimum, these SOPs should require all vehicle occupants to have their sleeping bag, extra clothing and individual survival kit with them whenever they leave the unit area. The SOPs should also designate what actions are to be taken in case the vehicle is disabled or the driver becomes lost.
KEY POINTS DURING COLD-WEATHER OPERATIONS

1. SHELTER FROM THE ELEMENTS IS SECONDARY ONLY TO DEFENDING AGAINST ENEMY ACTIONS.

2. EAT AND DRINK MORE FOOD AND WATER THAN NORMAL.

3. BE PREPARED FOR SUDDEN WEATHER CHANGES.

4. AVOID COLD INJURIES BY USING A BUDDY SYSTEM AND FREQUENT SELF CHECKS ESPECIALLY WHEN INDIVIDUALS ARE NOT ACTIVE OR THEIR DUTIES REQUIRE THEM TO REMOVE THEIR GLOVES.

5. IMMEDIATELY TREAT PERSONS SHOWING ANY SIGN/SYMPHOM OF COLD INJURY.

6. SICK, INJURED, AND WOUNDED INDIVIDUALS ARE VERY SUSCEPTIBLE TO COLD INJURIES.

7. EACH SOLDIER SHOULD CARRY AN INDIVIDUAL COLD-WEATHER SURVIVAL KIT AT ALL TIMES.

8. DRIVERS AND PASSENGERS SHOULD ALWAYS HAVE A SLEEPING BAG AND EXTRA COLD-WEATHER CLOTHING WHEN TRAVELING BY VEHICLE AWAY FROM THE UNIT BIVOUAC LOCATION.
IF SEPARATED FROM YOUR UNIT DURING COLD WEATHER:

**KEEP CALM**

YOU MAY ONLY BE DISORIENTED. STOP, LOOK AND LISTEN FOR SIGNS OF THE MAIN UNIT. ATTEMPT TO RETRACE YOUR PATH BACK TO YOUR LAST KNOWN POSITION.

**KEEP TOGETHER**

GROUPS MUST NOT SPLIT UP. IF SCOUTING PARTIES ARE REQUIRED, THEY SHOULD CONSIST OF AT LEAST TWO SOLDIERS WHO GO ONLY SHORT DISTANCES AHEAD AND MARK THEIR TRAIL VERY CLEARLY.

**KEEP WARM**

ASSEMBLE OR IMPROVISE SHELTERS WHENEVER STOPPING, EVEN IF ONLY FOR A SHORT TIME. WHENEVER POSSIBLE, USE WOOD OR OTHER LOCALLY AVAILABLE FUEL FOR FIRES AND CONSERVE POL SUPPLIES. BURNING A SINGLE CANDLE INSIDE A TENT OR VEHICLE CAN PROVIDE ENOUGH HEAT TO KEEP THE OCCUPANTS WARM.

**KEEP FED AND HYDRATED**

COLLECT ALL INDIVIDUAL FOOD AND WATER SUPPLIES AND INSTITUTE RATIONING.

**KEEP SAFE**

USE CAUTION WHEN TRAVELING AND AVOID NATURAL HAZARDS SUCH AS CLIFFS, ROCK SLIDE OR AVALANCHE AREAS. IF TRAVEL ON FROZEN RIVERS OR LAKES CANNOT BE AVOIDED, STAY NEAR THE BANKS, DO NOT STAND CLOSE TOGETHER AND WATCH FOR SPOTS OF UNSUPPORTED ICE RESULTING FROM CHANGES IN WATER LEVEL.
APPENDICES
## APPENDIX A. Wind Chill Chart

<table>
<thead>
<tr>
<th>WIND SPEED (IN MPH)</th>
<th>ACTUAL TEMPERATURE (°F)</th>
<th>EQUIVALENT CHILL TEMPERATURE (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>CALM</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>11</td>
</tr>
</tbody>
</table>

(WIND SPEEDS GREATER THAN 40 MPH HAVE LITTLE ADDITIONAL EFFECT)

- LITTLE DANGER (In less than 5 hrs with dry skin. Greatest hazard from false sense of security)
- INCREASING DANGER (Exposed flesh may freeze within 1 minute)
- GREAT DANGER (Exposed flesh may freeze within 30 seconds)

---

1To determine the windchill temperature, enter the chart at the row corresponding to the windspeed and read right until reaching the column corresponding to the actual air temperature.
APPENDIX B. Cold-Weather Training Guidelines

<table>
<thead>
<tr>
<th>Windchill Category</th>
<th>Little Danger</th>
<th>Increased Danger</th>
<th>Great Danger</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Work Intensity</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Increased surveillance by small unit leaders; Black gloves optional - mandatory below 0 °F; Increased hydration</td>
<td>ECWCS or equivalent; Mittens with liners; No facial camouflage; Exposed skin covered and kept dry; Rest in warm, sheltered area; Vapor barrier boots below 0 °F</td>
<td>Postpone non-essential training; Essential tasks only with &lt;15 minute exposure; Work groups of no less than 2; Cover all exposed skin</td>
</tr>
<tr>
<td>Low</td>
<td>Increased surveillance; Cover exposed flesh when possible; Mittens with liner and no facial camouflage below 10 °F; Full head cover below 0 °F. Keep skin dry - especially around nose and mouth.</td>
<td>Restrict Non-essential training; 30-40 minute work cycles with frequent supervisory surveillance for essential tasks. See above.</td>
<td>Cancel Outdoor Training</td>
</tr>
<tr>
<td>Sedentary</td>
<td>See above; Full head cover and no facial camouflage below 10 °F; Cold-weather boots (VB) below 0 °F; Shorten duty cycles; Provide warming facilities</td>
<td>Postpone non-essential training; 15-20 minute work cycles for essential tasks; Work groups of no less than 2 personnel; No exposed skin</td>
<td>Cancel Outdoor Training</td>
</tr>
</tbody>
</table>

These guidelines are generalized for worldwide use. Commanders of units with extensive extreme cold-weather training and specialized equipment may opt to use less conservative guidelines.

General Guidance for all Cold-Weather Training

**Skin:** Exposed skin is more likely to develop frostbite. Covering skin lessens risk, that skin is kept dry. Avoid wet skin (common around the nose and mouth).

**Clothing:** Soldiers must change into dry clothing at least daily and whenever clothing becomes wet, and must wash and dry feet and put on dry socks at least twice daily.

**Nutrition:** 4500 calories/day/soldier. Equivalent to 1 ration-cold weather (RCW) or 4 MRE’s.

**Hydration:** 3-6 Liters (canteens)/day/soldier. Warm, sweet, non-caffeinated drinks preferable.

**Camouflage:** Prevents detection of cold injuries; Not recommended below 10 °F.

**Responsibilities:** Soldiers are responsible for preventing individual cold injuries. Unit NCO’s are responsible for the health and safety of their troops. Cold Injury prevention is a command responsibility.
APPENDIX C. Individual Cold-Weather Survival Kit

1. Waterproof matches and fire starter (eg. candle, magnesium match)
2. Signaling devices (eg. mirror and whistle)
3. Knife
4. Pressure Bandage, cold-climate lip balm, sunglasses
5. Compass
6. Water container (metal for use in fire)
7. Small amount of concentrated food (eg. MRE or Trail mix)
8. Foil survival blanket (NSN 7210-00-935-6667)
APPENDIX D. Further Reading

Department of the Army, FM 31-70, Basic Cold Weather Manual

Department of the Army, FM 31-71, Northern Operations

Department of the Army, FM 31-72, Mountain Operations

Department of the Army, FM 21-10, Field Hygiene and Sanitation

Department of the Army, FM 21-11, First Aid for Soldiers

Department of the Army, TC 21-3, Soldiers Handbook for Individual Operations & Survival in Cold Weather Areas


Department of the Navy, FMFM 7-23, Small Unit Leader's Guide to Cold Weather Operations
INITIAL DISTRIBUTION LIST

4 Copies to:

Defense Technical Information Center
ATTN: DTIC-DDA
Alexandria, VA 22304-6145

HQDA
Office of the Surgeon General
Preventive Medicine Consultant
ATTN: SGPS-PSP
5109 Leesburg Pike
Falls Church, VA 22041-3258

HQDA
Office of the Deputy Chief of Staff for Personnel
ATTN: DAPE-HR-PR
Washington, D.C. 20310-0330

Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-OP
Fort Detrick
Frederick, MD 21701-5012

JCS
Medical Plans and Operations Division
Deputy Director for Medical Readiness
ATTN: RAD Smyth
Pentagon, Washington, D.C. 20310

2 Copies to:

Office of the Assistant Secretary of Defense (Health Affairs)
ATTN: Medical Readiness
Washington, DC 20301-1200

Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-PLC
Fort Detrick
Frederick, MD 20701-5012

41
Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-PLE
Fort Detrick
Frederick, MD 20701-5012

Commandant
Academy of Health Sciences
ATTN: HSHA-FM Bldg 2840
Fort Sam Houston, TX 78236

Director
U.S. Army Safety Center
Fort Rucker, Alabama 36362

Commander
U.S. Army Aviation Center
Aviation Branch Safety Office
ATTN: ATZQ-S
Fort Rucker, Alabama 36362-5034

Dean
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20814-4799

Department of Military and Emergency Medicine
Uniformed University of Health Sciences
4301 Jones Bridge Road
Bethesda, Maryland 20814-4799

Commander
U.S. Air Force School of Aerospace Medicine
Brooks Air Force Base, TX 78235-5000

Commanding Officer
Naval Health Research Center
P.O. Box 85122
San Diego, CA 92138-9174
Commanding Officer  
U.S. Naval Aerospace Medical Research Laboratory  
Naval Air Station  
Pensacola, Florida 32508-5700

U.S. Army Scientific Liaison Officer to DCIEM 
(U.S. Army Medical R&D Command)  
1133 Sheppard Avenue W.  
P.O. Box 2000  
Downsview, Ontario  
CANADA M3M 3B9

1 Copy to:

Office of Undersecretary of Defense for Acquisition  
ATTN: Director, Defense Research and Engineering  
   Deputy Undersecretary for Research & Advanced Technology  
   (Environmental and Life Sciences)  
Pentagon, Rm. 3D129  
Washington D.C. 20301-3100

HQDA  
Assistant Secretary of the Army for  
Research, Development and Acquisition  
ATTN: SARD-ZT  
Pentagon, Washington, D.C. 20310

HQDA  
Assistant Secretary of the Army for  
Research, Development and Acquisition  
ATTN: SARD-TM  
Pentagon, Washington, D.C. 20310

HQDA  
Deputy Chief of Staff for Operations and Plans  
Director of Training  
ATTN: DAMO-TR  
Pentagon, Washington, D.C. 20310
HQDA
Deputy Chief of Staff for Operations and Plans
Director of Space and Special Weapons
ATTN: DAMO-SWC
Pentagon, Washington, D.C. 20310

HQDA
Office of the Deputy Chief of Staff for Logistics
ATTN: DALO-ZX
Pentagon, Washington, D.C. 20310

HQDA
Office of the Deputy Chief of Staff for Logistics
ATTN: DALO-TST
Pentagon, Washington, D.C. 20310

HQDA
Office of the Deputy Chief of Staff for Personnel
MANPRINT Office
ATTN: DAPE-MRP
Pentagon, Washington DC 20310-0300

HQDA
Office of the Surgeon General
ATTN: DASG-ZA
5109 Leesburg Pike
Falls Church, VA 22041-3258

HQDA
Office of the Surgeon General
Directorate of Health Care Operations
ATTN: DASG-HCO
5109 Leesburg Pike
Falls Church, VA 22041-3258

HQDA
Office of the Surgeon General
Assistant Surgeon General
ATTN: DASG-RDZ
5109 Leesburg Pike
Falls Church, VA 22041-3258
HQDA
Office of the Surgeon General
ATTN: DASG-MS
5109 Leesburg Pike
Falls Church, VA 22041-3258

HQDA
Chief, Army Reserve
ATTN: DAAR-TR
Pentagon, Washington, D.C. 20310

HQDA
Chief, National Guard Bureau
ATTN: NGB-ARS
Pentagon, Washington, D.C. 20310

Commandant
US Army Aviation Center and School
ATTN: ATZQ-CDM-S
Fort Rucker, AL 36362-5000

Commandant
U.S. Army Chemical School
ATTN: ATZN-CM-C
Fort McClellan, AL 36205-5020

Commandant
U.S. Army Chemical School
ATTN: ATZN-CM-S
Fort McClellan, AL 36205-5020

Commandant
U.S. Army Chemical School
ATTN: ATZN-CM-N
Fort McClellan, AL 36205-5020

Commander
US Army Chemical and Military Police Centers
ATTN: ATZN-IMS
Fort McClellan, AL 36205-5000
Dean
U.S. Army School of Aviation Medicine
ATTN: HSHA-AVN
Fort Rucker, AL 36362-5377

Commander
JFK Special Warfare Center and School
ATTN: AOJK-PSY
Fort Bragg, NC 28307

Commander
JFK Special Warfare Center and School
ATTN: AOJK-SU
Fort Bragg, NC 28307

Commanding General
National Training Center
ATTN: Medical Group
Fort Irwin, California 92310

Commander
ARNG-Regional Mountain Warfare School
Ethan Allan Firing Range
Jericho, VT 05465-9706

Commander
Northern Warfare Training Center
Fort Greely, AK
APO Seattle 98733

Commander
Marine Corps Mountain Warfare Training Center
Bridgeport, CA 93517-5001

Commander
U.S. Army Training and Doctrine Command
Office of the Surgeon
ATTN: ATMD
Fort Monroe, VA 23651-5000
Commander
U.S. Army Training and Doctrine Command
DCS Training
ATTN: ATTG
Fort Monroe, VA 23651-5000

Commander
U.S. Army Combined Arms Combat Developments Activity
CAC Weather and Environmental Effects Office
ATTN: CAC-WENEFO
Fort Leavenworth, KA 66027-5000

Commander
U.S. Army Combined Arms Training Activity
Center for Army Lessons Learned
ATTN: ATZL-TAL
Fort Leavenworth, KA 66027-7000

Commander
I Corps
Office of the Surgeon
Fort Lewis, Washington

Commander
III Corps
Office of the Surgeon
ATTN: AFZD-MD
Fort Hood, TX 76544

Commander
XVIII Airborne Corps
Office of the Surgeon
Macomb Street
Bldg 2-1148
Fort Bragg, NC 28307

Commander
U.S. Special Operations Command
ATTN: SOSG
MacDill Air Force Base, FL 33608-6001
Commander
WESTCOM
ATTN: Command Surgeon
Fort Shafter, Hawaii

Commander
HQ, U.S. Army Forces Command
Office of the Surgeon
ATTN: FCMDFJ-1
Fort McPherson, GA 30330-6000

Commander
U.S. Army Aeromedical Research Laboratory
ATTN: SGRD-UAX-SI
Fort Rucker, Alabama 36362-5292

Commander
U.S. Army Biomedical Research and Development Laboratory
ATTN: SGRD-UBZ
Fort Detrick
Frederick, MD 21701-5010

Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UVZ
Aberdeen Proving Ground, MD 21010-5425

Commander
U.S. Army Medical Materiel Development Activity
ATTN: SGRD-UMZ
Fort Detrick
Frederick, MD 21701-5009

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USZ
Fort Sam Houston, TX 78234-6200

Commander
U.S. Army Medical Research Institute of Infectious Disease
ATTN: SGRD-UIZ
Fort Detrick, MD 21701-5011
Commander
U.S. Army Natick Research, Engineering and Development Center
ATTN: STNRC-TAN
Natick, MA 01760-5000

Commander
U.S. Army Natick Research, Engineering and Development Center
Technical Library
Natick, MA 01760-5000

Commander
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Director
U.S. Army Engineering Topographic Lab
Geographic Systems Laboratory
Airland Battlefield Environment Division
Environmental Effects Branch
ATTN: CEETL-GL-AE
Fort Belvoir, VA 22060-5546

Director
U.S. Army Laboratory Command
Human Engineering Laboratory
ATTN: SLCHE-SS-TS
Aberdeen Proving Ground, MD 21005-5001

Commander
Readiness Group
ATTN: Medical Team
Fort Indian Town Gap
Annville, PA 17003-5012

Commander
1st Special Operations Command (Airborne)
ATTN: Surgeon
Fort Bragg, NC 28307
Commander
75th Ranger Regiment
ATTN: Surgeon
P.O. Box 55843
Fort Benning, GA 31905-5843

Commander
1st Infantry Division (Mech)
ATTN: Division Surgeon
Fort Riley, KS 66442

Commander
2d Armored Division
ATTN: Division Surgeon
Fort Hood, TX 76546

Commander
4th Infantry Division (Mech)
ATTN: Division Surgeon
Fort Carson, Colorado 80913

Commander
5th Infantry Division (Mech)
ATTN: Division Surgeon
Fort Polk, LA 71549

Commander
6th Infantry Division (Light)
ATTN: APVR-SG
Fort Wainright, Alaska 99703

Commander
7th Infantry Division (Light)
ATTN: Division Surgeon
Fort Ord, CA 93941

Commander
10th Mountain Division (Light)
ATTN: Division Surgeon
Fort Drum, NY 13602
Commander
24th Infantry Division (Mech)
ATTN: Division Surgeon
Fort Stewart, GA  31314

Commander
25th Infantry Division (Light)
ATTN: Division Surgeon
Scholfield Barrecks, Hawaii  96857

Commander
82nd Airborne Division
ATTN: Division Surgeon
Fort Bragg, NC  28307

Commander
101st Airborne Division
ATTN: Division Surgeon
Fort Campbell, KY  42223

Commander
2d Infantry Division
ATTN: Division Surgeon
Camp Casey, Korea
APO SF  96224

Commander
1st Medical Group
Fort Hood, TX  76544-5066

Commander
30th Medical Group
APO New York  09279-0270

Commander
62nd Medical Group
Fort Lewis, Washington  98433-5500
Commander
6th Medical Battalion
6th Infantry Division (Light)
Fort Wainright, AK 99703

Commander
36th Medical Battalion
ATTN: S3
Fort Devens, MA 01433

Commander
307th Medical Battalion
82nd Airborne Division
Fort Bragg, NC 28307-5100

Commander
85th Medical Battalion
Fort George Meade, MD 20755-5600

Commander
56th Medical Battalion
Fort Bragg, NC 28307

Commander
2nd MASH
Fort Benning, GA 31905-5813

Commander
5th MASH
Fort Bragg, NC 28307-5000

Commander
8th EVAC
Fort Ord, CA 93941-6100

Commander
10th MASH
Fort Carson, CO 80913-5000

Commander
12th EVAC
APO New York, 09457
Commander
15th EVAC
Fort Polk, LA  71459

Commander
16th MASH
Fort Riley, KS  66442-5036

Commander
21st EVAC
Fort Hood, TX  76544-5066

Commander
28th CSH
Fort Bragg, NC  28307-5000

Commander
41st CSH
Fort Sam Houston, TX  78234-5000

Commander
42nd Field Hospital
Fort Knox, KY  20121-5401

Commander
46th CSH
ATTN: AFZD-CSH
Fort Devens, MA  01433

Commander
47th CSH
Fort Lewis, WA  98433-5511

Commander
85th EVAC
Fort Lee, VA  23801-5400

Commander
86th EVAC
Fort Campbell, KY  42223-5400
Commander
Ireland Army Community Hospital
Fort Knox, KY  40121-5520

Commander
Irwin Army Community Hospital
Fort Riley, KS  66442-5036

Commander
Bassett Army Community Hospital
Fort Wainright AK  99703-7300

Commander
U.S. Army Environmental Hygiene Agency
Aberdeen Proving Ground, MD  21010-5422

Director
Armed Forces Medical Intelligence Center
ATT: AFMIC-ZA
Fort Detrick, MD  21701-5012

Director, Biological Sciences Division
Office of Naval Research - Code 141
800 N. Quincy Street
Arlington, VA  22217

Commanding Officer
Naval Medical Research and Development Command
NNMC / Bldg. 1
Bethesda, MD  20889-5044

Commanding Officer
U.S. Navy Clothing and Textile Research Facility
ATTN: NCTRF-01
Natick, MA  01760-5000

Commanding Officer
Naval Aerospace Medical Institute (code 32)
Naval Air Station
Pensacola, FL  32508-5600
Commanding Officer  
Naval Medical Research Institute  
Bethesda, MD  20889  

Director  
Armed Forces Radiobiology Research Institute  
Bethesda, MD  20889-5145  

Commander  
Marine Air-Ground Task Force  
Warfighting Center (WF12)  
ATTN: Combat Medical Section  
Marine Corps Combat Development Center  
Quantico, VA  22134-5001  

Commander  
Armstrong Medical Research Laboratory  
Wright-Patterson Air Force Base, Ohio  45433  

Commander  
USAF Armstrong Medical Research Laboratory  
ATTN: Technical Library  
Brooks Air Force Base, Texas  78235-5301  

Commanding Officer  
Navy Environmental Health Center  
2510 Walmer Ave  
Norfolk, VA  23513-2617
ACKNOWLEDGEMENTS

This document does not replace policy and doctrine established by Headquarters, Department of the Army, Training and Doctrine Command, Forces Command, Northern Warfare Training Center or contained in TB Med 508 and other official publications. Rather, information has been integrated from a variety of sources including studies conducted by this Institute, observations made by Institute personnel who have accompanied troops deployed during cold-weather training exercises (e.g., Arctic Warrior), and information extracted from manuals, circulars, and bulletins published concerning aspects of cold-weather operations. A great many persons assisted the authors in the preparation of this Technical Note, and in particular the editorial review and suggestion for revision of COL. G.P. Krueger, LTC J.F. Glenn, LTC E. Davis, CPT E.A. Sheetz and Drs. L.E. Banderet, R.P. Francesconi, M.P. Hamlet, R.W. Hubbard, R.F. Johnson, K.B. Pandolf, J.F. Patton, M.N. Sawka and J.A. Vogel are gratefully acknowledged. We encourage readers to provide critical comments and examples of their own “lessons-learned” about cold-weather operations to:

COMMANDER
U.S. Army Research Institute of Environmental Medicine
ATTN: SGRD-UE-ZA
Natick, MA 01760-5007

Telephone: DSN 256-4811 Fax Number 256-5298
Commercial (508)651-(extension)
E-Mail Address: Commander@NATICK-ILCN.ARMY.MIL
This Technical Note reviews how the environment can impact on soldier health and performance during cold-weather operations. In addition, ways of coping with these environmental stressors are presented.