Performance Oriented Packaging Testing of Container, Shipping and Storage, Mk 176 Mod 1 for Packing Group II Solid Hazardous Materials

J. Mike Dwyer

Naval Weapons Station Earle Test and Evaluation Branch (Code 5023)
Colts Neck, NJ 07722-5000

Commander, Naval Sea Systems Command (SEA-06U312)
Department of the Navy
Washington, DC 20362-5160

This Performance Oriented Packaging (POP) test was conducted to ascertain whether the Mk 176 Mod 1 Shipping and Storage Container meets the Packing Group II requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The packaged commodity used for the test was a simulated ignition and separation assembly weighing 14 kg (30 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in commodity and/or packaging, 1 kg (3 pounds) were added. Gross weight of the loaded container was 27 kg (58 pounds). The test results indicate that the container has conformed to the POP requirements.

14. SUBJECT TERMS
POP Test of Mk 176 Mod 1 Shipping and Storage Container

15. NUMBER OF PAGES
7

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UL

19. SECURITY CLASSIFICATION OF ABSTRACT
UL

20. LIMITATION OF ABSTRACT
UL

This document has been approved for public release and sale; its distribution is unlimited.
PERFORMANCE ORIENTED PACKAGING TESTING
OF CONTAINER, SHIPPING AND STORAGE, MK 176 MOD 1
FOR PACKING GROUP II SOLID HAZARDOUS MATERIALS

Author: J. Mike Dwyer
Mechanical Engineering Technician

Performing Activity: Naval Weapons Station Earle
Colts Neck, New Jersey 07722-5000

August 1992

FINAL

DISTRIBUTION UNLIMITED

Sponsoring Organization: Naval Sea Systems Command
(Code SEA-06U312)
Department of the Navy
Washington, DC 20362-5160
INTRODUCTION

This Performance Oriented Packaging (POP) test was performed to ascertain whether the Mk 176 Mod 1 Shipping and Storage Container (Packing Group II) meets the requirements specified by the Code of Federal Regulations, Title 49 CFR, Parts 107 through 178, dated 31 December 1991. The packaged commodity used for the test was a simulated ignition and separation assembly weighing 14 kg (30 pounds). This represents the current maximum commodity weight. To compensate for future growth variations in commodity and/or packaging, 1 kg (3 pounds) were added. Gross weight of the loaded container was 27 kg (58 pounds).

Due to unavailability only one container was used for testing. This is less than the number required by the regulations. Approval for this deviation has been granted by the Under Secretary of Defense, Memorandum for the Joint Logistics Commanders dated 22 February 1990.

TESTS PERFORMED

1. Base Level Vibration Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.608. The container was placed on a repetitive shock platform which has a vertical linear motion of 1-inch double amplitude. Movement of the container was restricted during vibration in all but the vertical direction. The frequency of the platform was increased until the container left the platform 1/16 of an inch at some instant during each cycle. Test time was 1 hour.

2. Stacking Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.606. The container was subjected to a force applied to its top surface equivalent to the total weight of identical packages stacked to a minimum height of 3 meters (including the test container). A weight of 211 kg (464 pounds) was stacked on the test container. The test was performed for 24 hours. The weight was then removed and the container examined.

3. Drop Test

This test was performed in accordance with Title 49 CFR, Part 178, Subpart M, Sec. 178.603. Six drops were performed from a height of 1.2 meters (4 feet) in the following orientations (three drops for each orientation):

a. Horizontally.

b. Diagonally on the edge between the cover assembly and the top ring of the container.
PASS/FAIL

1. Base Level Vibration Test

The criteria for passing the base level vibration test is outlined in Title 49 CFR, Sec. 178.608(c): No test sample should show any deterioration which could adversely affect transportation safety or any distortion liable to reduce packaging strength.

2. Stacking Test

The criteria for passing the stacking test is outlined in Title 49 CFR, Sec. 178.606(d): No test sample may show any deterioration which could adversely affect transportation safety or any distortion likely to reduce its strength, cause instability in stacks of packages, or cause damage to inner packagings likely to reduce safety in transportation.

3. Drop Test

The criteria for passing the drop test is outlined in Title 49 CFR, Sec. 178.603(f): A package is considered to successfully pass the drop tests if for each sample tested, no rupture occurs which would permit spillage of loose explosive substances or articles from the outer packaging.

TEST RESULTS

1. Base Level Vibration Test

Satisfactory.

2. Stacking Test

Satisfactory.

3. Drop Test

Satisfactory.

DISCUSSION

1. Base Level Vibration Test

The input vibration frequency was 3.5 Hz. Immediately after the vibration test was completed, the container was removed from the platform, turned on its side and inspected. No unfavorable distortion or deterioration was observed.
2. **Stacking Test**

The container was inspected after the 24-hour period was over. No unfavorable distortion or deterioration was observed.

3. **Drop Test**

After each drop, the container was inspected. The contents were completely retained by the container.

**REFERENCE MATERIAL**


B. Bureau of Explosives Tariff No. BOE 6000K Hazardous Materials Regulations of the Department of Transportation by Air, Rail, Highway, Water including Specifications for Shipping Containers.

**DISTRIBUTION LIST**

Defense Technical Information Center (2 copies)
ATTN: DTIC/FDA
Bldg. 5, Cameron Station
Alexandria, VA 22304-6145

Defense General Supply Center
ATTN: DDRV-TMPA, D. Gay
Richmond, VA 23219

Commander
Naval Surface Warfare Center
ATTN: Crane Division (Code 4053)
Crane, IN 47522-5000
# TEST DATA SHEET

## POP MARKING:

UN 1A2/Y27/S/**/USA/DOD/NAD

***YEAR LAST PACKED OR MANUFACTURED

<table>
<thead>
<tr>
<th>Container:</th>
<th>Mk 176 Mod 1 Shipping and Storage Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>1A2</td>
</tr>
<tr>
<td>Drawing Number:</td>
<td>1806327</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>14-1/2&quot; H x 16-1/2&quot; Dia</td>
</tr>
<tr>
<td>Closure (Method/Type):</td>
<td>Cover and Locking Ring</td>
</tr>
</tbody>
</table>

### Container P/N or NSN:

NSN 8140-00-788-3903

### Outer Packaging Material:

Steel

### Gross Weight:

27 kg (58 pounds)

### Tare Weight:

11.3 kg (25 pounds)

### Additional Description:

PACKAGED COMMODITY:

Name: See table 1

NSN(s): See table 1

United Nations Number: See table 1

United Nations Packing Group: II

Physical State (Solid, Liquid, or Gas): Solid

Vapor Pressure (Liquids Only): N/A

At 50 °C: N/A

At 55 °C: N/A

Consistency/Viscosity: N/A

Density/Specific Gravity: N/A

Amount Per Container: See table 1

Flash Point: N/A

Net Weight: See table 1

PACKAGED COMMODITY USED FOR TEST:

Name: Ignition and Separation (Steel Shapes)

Physical State: Solid

Consistency: N/A

Density/Specific Gravity: N/A

Test Pressure (Liquids Only): N/A

Net Weight: 15 kg (33 pounds)

Additional Description:

The net weight includes the current maximum product weight plus an additional 1.3 kg (3 pounds).
<table>
<thead>
<tr>
<th>NALC/ DODIC</th>
<th>NSN</th>
<th>Product Nomenclature</th>
<th>Packing Drawing Number</th>
<th>Haz Class/Div</th>
<th>UN Number</th>
<th>Units/Cntr</th>
<th>Total Net Weight (lb)</th>
<th>Total Gross Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW81</td>
<td>1356-00-978-2726</td>
<td>Ignition and Separation Assembly, Mk 3 Mod 1</td>
<td>1806327</td>
<td>001.4</td>
<td>0257</td>
<td>1</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>QW90</td>
<td>1356-00-234-6896</td>
<td>Ignition and Separation Assembly, Mk 3 Mod 2</td>
<td>LD 497947</td>
<td>001.4</td>
<td>0257</td>
<td>1</td>
<td>30</td>
<td>55</td>
</tr>
</tbody>
</table>