Optical Metrology of Magnetically Trapped Hydrogen

Title and Subtitle:

OPTICAL METROLOGY OF MAGNETICALLY TRAPPED HYDROGEN

Authors:

Professor Daniel Kleppner

Performing Organization Name(s) and Address(es):

Massachusetts Inst of Technology
Dept of Physics
Cambridge, MA 02139

Sponsoring/Monitoring Agency Name(s) and Address(es):

AFOSR/NE
Bldg 410
Bolling AFB DC 20332-6448
Dr Kelley

Subject Terms:

MOMBRMA OP PAGES

Distribution/Availability Statement:

UNLIMITED

Report Date:

01 Feb 91 to 31 Jan 92

Report Type and Dates Covered:

FINAL

Funding Numbers:

AFOSR-90-0127

Sponsoring/Monitoring Agency Report Number:

2301/A4

Security Classification of Report:

UNCLASS

Security Classification of This Page:

UNCLASS

Security Classification of Abstract:

UNCLASS

Distribution Statement:

Approved for public release
Distribution Unlimited

DTIC Distribution:

ELECTED

JUL 24 1992

SBD:

92-19951

Number of Pages:

15

Price Code:

UL
During the period of this grant, 2/1/91-1/31/92, we completed the new version of our cold hydrogen trap and brought into operation our highly stabilized 243 nm laser system. The new trap has provisions for passing laser light through it, and reflecting it back by a steerable mirror. The light is brought to a focus on the axis of the trap where the hydrogen density is highest. Servo systems control the frequency of the laser light to within a few kilocycles of the frequency of a reference cavity, and also the position of the light beam in the cell. The excited atoms are detected by quenching them with a small electric field and observing the radiated Lyman-alpha photons with a microchannel plate detector mounted on the bottom of the trap.

We had one test run in which we searched for an optical signal from the cold trapped hydrogen, without success. Considering that this represented the first attempt to integrate laser spectroscopy with trapped hydrogen, it is not remarkable that we ran into a problem on our first attempt.

Our difficulty arose from a small amount of absorption of the 243 nm laser light in a MgF window at low temperature. There was enough heating to boil off the liquid helium film that coated the window, and the evaporating helium knocked the atoms out of the trap. As a result, we had to reduce our laser power to about 10% of the available power. Since we are attempting to observe a two-photon signal (1S → 2S) which depends on the square of the power, this loss was prohibitive. We have a number of approaches for overcoming this technical problem, and are working on it.

Work on the proposed method for measuring frequency of the 243 nm has continued, chiefly with the development of a new and simpler method for employing optical parametric oscillators. An oscillator at operating at about 540 nm has been constructed and is being adapted for operation at 486 nm, the frequency of our pump laser.