Formation Of Highly Dispersed Metals Via Chemical Reduction Methods

by

D. Zeng, M. J. Hampden-Smith, and A. Datye

Prepared for Publication

in

Chemical Processes in Inorganic Materials: Metal and Semiconductor Clusters and Colloids
Eds J.S. Bradley, P.D. Persons, G. Schmid and R.R. Chianelli
Materials Research Society, Pittsburgh, PA 1992

Departments of Chemistry and Chemical Engineering
and
Center for Micro-Engineered Ceramics
University of New Mexico,
Albuquerque NM 87131, USA

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
A new reduction method for the preparation of the molybdenum halides MoCl₃(THF)₃ and MoCl₄(THF)₂ in high yield and with high purity directly from MoCl₅ is described. The preparation of pure starting materials is crucial to the success of the subsequent chemical reduction. Reduction of MoCl₃(THF)₃, MoCl₄(THF)₂ or WCl₄ in THF with LiBE₃H at room temperature did not result in formation of Mo and W as anticipated but instead resulted in formation of nanophase M₂C M = Mo and W binary metal carbides. These species were characterized by SEM, TEM, energy dispersive spectroscopy, electron diffraction, elemental analysis, thermogravimetric analysis and X-ray diffraction. These techniques showed the black solids were crystalline and comprised 1-2 nm sized crystallites which could be grown by heating to higher temperatures (450 - 500°C). The solids isolated from these experiments could be redispersed in THF to form colloidal black solutions.
FORMATION OF HIGHLY DISPERSED METAL CARBIDES, M_2C (M=Mo,W) VIA CHEMICAL REDUCTION METHODS

DONGSHUI ZENG†, M.J. HAMPDEN-SMITH† AND A. DATYE††
† Department of Chemistry and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque NM 87131, USA
†† Chemical Engineering and Center for Micro-Engineered Ceramics, University of New Mexico, Albuquerque NM 87131, USA

ABSTRACT

A new reduction method for the preparation of the molybdenum halides $\text{MoCl}_3(\text{THF})_3$ and $\text{MoCl}_4(\text{THF})_2$ in high yield and with high purity directly from MoCl_5 is described. The preparation of pure starting materials is crucial to the success of the subsequent chemical reduction. Reduction of $\text{MoCl}_3(\text{THF})_3$, $\text{MoCl}_4(\text{THF})_2$ or WC_4 in THF with LiBEt$_3$H at room temperature did not result in formation of Mo and W as anticipated but instead resulted in formation of nanophase M_2C $M = \text{Mo}$ and W binary metal carbides. These species were characterized by SEM, TEM, energy dispersive spectroscopy, electron diffraction, elemental analysis, thermogravimetric analysis and X-ray diffraction techniques. These techniques showed the black solids were crystalline and comprised 1-2 nm sized crystallites which could be grown by heating to higher temperatures (450-500°C). The solids isolated from these experiments could be redispersed in THF to form colloidal black solutions.

INTRODUCTION

In the previous paper, the chemical reduction of a rhodium(I) compound to form 2 nm sized crystalline rhodium(0) colloids was described. This result is consistent with that described in the literature for the general reduction of metal salts with LiBEt$_3$H, where Bonnemann et al.[1,2] have shown that trialkylborohydride reducing agents can be used to reduce a variety of metal complexes to form the corresponding metal colloids. The metals are reasonably pure (70% - 98%), the particle size was approximately 10-100nm and generally crystalline materials were formed depending on the specific system as determined by X-ray diffraction. In this work, we report the reduction of $\text{MoCl}_3(\text{THF})_3$, $\text{MoCl}_4(\text{THF})_2$ and WC_4 in THF with LiBEt$_3$H, which does not result in the formation of the corresponding metal particles as anticipated but rather resulted in the formation of the nanophase binary metal carbides M_2C, $M = \text{Mo}$, W. These materials comprise a class of interstitial metal carbides which are generally prepared under much more forcing conditions including high temperature (> 1200°C) reduction of the corresponding metal oxide[3-6] or halide[7] or ball-milling mixtures of elemental powders for extended periods at lower
temperatures.[8,9] The method described here represents a high yield, low-temperature alternative that results in formation of crystalline particles smaller than those prepared by any other technique.

RESULTS AND DISCUSSION

Initial studies focused on the development of new high yield routes for the preparation of high purity MoCl₃(THF)₃ as a precursor for the reduction with LiBEt₃H. We have found that the literature methods for the formation of this species, which involve the tin reduction of MoCl₄(THF)₂ result in contamination of the final product (after LiBEt₃H reduction) with tin. [10] Direct reduction of MoCl₅ with diphenylsilane in THF produced MoCl₃(THF)₃ in high yield (85%) based on MoCl₅ as described by equation 1. [11]

\[
\text{MoCl}_5 + 2 \text{Ph}_2\text{SiH}_2 \rightarrow \text{THF} \rightarrow \text{MoCl}_3(\text{THF})_3 + 2 \text{Ph}_2\text{SiHCl} + \text{H}_2 \quad (1)
\]

The MoCl₃(THF)₃ formed was separated by filtration and purified by washing with THF to remove all the silicon containing by-products. The silicon products were isolated by evaporating the solvents from the washings in vacuo. Both ¹H NMR and ²⁹Si NMR show that Ph₂SiHCl is the main silicon component. During this experiment, a yellow solid was observed as an intermediate during the early stages of the reaction. An IR spectrum of this yellow solid, showed a strong absorption at 810 cm⁻¹, consistent with formation of MoCl₄(THF)₂. An experiment in which one equivalent of Ph₂SiH₂ was reacted with MoCl₅ resulted in formation of MoCl₄(THF)₂, as shown in equation 2 below.

\[
\text{MoCl}_5 + \text{Ph}_2\text{SiH}_2 \rightarrow \text{THF} \rightarrow \text{MoCl}_4(\text{THF})_2 + \text{Ph}_2\text{SiHCl} + \frac{1}{2} \text{H}_2 \quad (2)
\]

The yellow product formed was easily separated by filtration and washed with THF. The identity of MoCl₄(THF)₂ was confirmed by IR spectroscopy and elemental analysis. The silicon containing products were analyzed by ¹H and ²⁹Si NMR spectroscopy and revealed the presence of Ph₂SiHCl as the only by-product. The reactions are summarized in Scheme 1.
The reduction of THF suspensions of MoCl₄(thf)₂, MoCl₃(thf)₃ and WCl₄ at -10°C with a slight excess of the stoichiometric amount of LiBEt₃H resulted in the formation of a black solution accompanied by gas evolution. After stirring for 24 hr., the colloidal solutions generally aggregated and black powders could be isolated by centrifugation. Under some conditions, the black powders could be isolated and redispersed in THF to give black colloidal solutions. For WCl₄, the black powder isolated had a particle size of approximately 1-2μm (SEM) and contained only W by energy dispersive spectroscopy. Closer examination by transmission electron microscopy revealed that the 1-2μm sized particles were agglomerates of smaller, 2nm sized particles. Energy dispersive spectroscopy revealed only W and electron diffraction revealed a diffuse ring at a d-spacing corresponding to ~2.3Å, consistent with the very broad peak observed for the same sample by X-ray powder diffraction. The broadening observed by X-ray diffraction is consistent with the particle size observed by TEM. Unfortunately, due to the broadness of the X-ray diffraction peak and the similarity between the crystal structures of W and W₂C, a distinction between these species could not be made at this stage. To distinguish these two possibilities, the sample was sintered at a number of different temperatures, in vacuo, to increase the size of the crystallites. On heating to 450°C, the X-ray diffraction pattern sharpened and corresponded to that of W₂C. No evidence for W was observed. Similar observations were made for the formation of Mo₂C from MoCl₃(thf)₃ and MoCl₄(thf)₂. The X-ray diffraction data for as-prepared Mo₂C at room temperature and after heating to 500°C in vacuo are presented in Figure 1.

Higher temperature (750°C) sintering of Mo₂C at 10⁻² torr resulted in partial oxidation to form traces of crystalline Mo, MoO₂, as determined by X-ray diffraction, and presumably CO₂. Thermogravimetric analysis in air quantitatively confirmed this oxidation to MoO₂ via an observed weight gain of 25% (calculated, 26%) as shown in Figure 2.
Figure 1: Variable temperature X-ray diffraction data showing the crystallization behavior of Mo2C. From bottom to top, 100°C, 200°C, 300°C, 400°C, 500°C.

Figure 2: Thermogravimetric analysis of Mo2C showing a weight increase corresponding to the formation of MoO2 and CO2.
CONCLUSIONS

These data show that crystalline metal carbide phases can be formed by chemical reduction of molybdenum and tungsten halides, MoCl$_4$(THF)$_2$, MoCl$_3$(THF)$_3$ and WCl$_4$ at room temperature with LiBEt$_3$H in THF solution. The origin of the carbide is not known at this stage, but we speculate that it is more likely to be derived from the reducing agent than from the solvent. Further studies are in progress to investigate the generality of these reactions.

ACKNOWLEDGMENTS

We thank the Office of Naval Research, Chemistry and Department of Materials Research for funding this research (ONR N00014-91-J-1258) and the National Science Foundation Chemical Instrumentation program for the purchase of a low-field NMR spectrometer.

REFERENCES

<table>
<thead>
<tr>
<th>Office of Naval Research (2)*</th>
<th>Dr. Richard W. Drisko (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 1113</td>
<td>Naval Civil Engineering</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>Laboratory</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>Code L52</td>
</tr>
<tr>
<td>Dr. James S. Murday (1)</td>
<td>Port Hueneme, CA 93043</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
</tbody>
</table>

Dr. Robert Green, Director (1)	Dr. Harold H. Singerman (1)
Chemistry Division, Code 385	Naval Surface Warfare Center
Naval Air Weapons Center	Carderock Division Detachment
Weapons Division	Annapolis, MD 21402-1198
China Lake, CA 93555-6001	

Dr. Elek Lindner (1)	Dr. Eugene C. Fischer (1)
Naval Command, Control and Ocean	Naval Surface Warfare Center
Surveillance Center	Carderock Division Detachment
RDT&E Division	Annapolis, MD 21402-1198
San Diego, CA 92152-5000	

Dr. Bernard E. Douda (1)	Defense Technical Information
Crane Division	Center (2)
Naval Surface Warfare Center	Building 5, Cameron Station
Crane, Indiana 47522-5000	Alexandria, VA 22314

* Number of copies to forward