Final Report

Heterocycles as Laser Dyes

Joseph H. Boyer
Department of Chemistry
University of New Orleans
New Orleans, LA 70148-2820

June 2, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Title: Heterocycles as Laser Dyes

Author(s): J. H. Boyer

Type of Report: Final

Time Covered: From 3/1/91 to 2/28/92

Date of Report: June 2, 1992

Page Count:

Subject Terms:
- Heterocycles, laser dyes, pyrromethene-BF2 complexes,
- Nitrobenzotriazolobenzotriazoles

Abstract:

See attached
Heterocycles as Laser Dyes: Final Report

Laser activity from pyromethene–BF$_2$ complexes and nitro derivatives of benzotriazolo[2,1-a]benzotriazole was discovered and reported.

Certain pyromethene–BF$_2$ dyes were superior to rhodamine–6G and thereby became the most power efficient laser dyes known. The results were described in Technical Reports 1, 2, and 4.

Fluorescence was enhanced and laser activity introduced by substitution in benzotriazolo[2,1-a]benzotriazole to give certain nitro derivatives. The results were described in Technical Report 3.

Technical Reports

1. Laser Action from 2,6,8-trisubstituted-1,3,5,7-tetramethyl-pyromethene–BF$_2$ complexes: part 2
2. Pyromethene–BF$_2$ Complexes as Laser Dyes: 2
4. Laser Dye Spectroscopy of Some Pyromethene–BF$_2$ Complexes

Technical Reports 2, 3, 4 have been accepted for publication:

Personnel

Principal investigator: J. H. Boyer, Research Professor.

Research Associates: Anthony Haag, undergraduate. Dr. Q. Lu, Dr. G. Sathyamoorthi, Dr. M. P. Shah, Dr. M.-L. Soong, Dr. K. Thangaraj, Dr. L. T. Wolford.

Research Collaborator: Dr. T. G. Pavlopoulos, U. S. Naval Ocean Systems Center, San Diego, CA.