AD-A251 034

OFFICE OF NAVAL RESEARCH

CONTRACT: N0001492WX24249

R&T Code 413101

Technical Report No. 21

Triplet Extinction Coefficients of some Organic Compounds

by

T. G. Pavlopoulos

Prepared for Publication in

Journal of Applied Physics

Naval Command, Control and Ocean Surveillance Center

Research, Development, Test and Evaluation Division

24 May 1992

Reproduction in whole, or in part, is permitted for the purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION
Unclassified

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approval for public release; distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
Technical Report (TR) No. 21

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Naval Comm., Contr. and Ocean Surveillance Ctr., NROD

6b OFFICE SYMBOL

7a NAME OF MONITORING ORGANIZATION
Office of Naval Research

7b ADDRESS (City, State, and ZIP Code)
800 North Quincy Street
Arlington, VA 22217-5000

8a NAME OF FUNDING/SPONSORING ORGANIZATION
Office of Naval Research

8b OFFICE SYMBOL (If applicable)

8c ADDRESS (City, State, and ZIP Code)
800 North Quincy Street
Arlington, VA 22217-5000

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
#N0001492WX24249; R&T Code 4131011

10 SOURCE OF FUNDING NUMBERS

11 TITLE (Include Security Classification)
Triplet Extinction Coefficients of some Organic Compounds

12 PERSONAL AUTHOR(S)
Theodore G. Pavlopoulos

13a TYPE OF REPORT
Technical

13b TIME COVERED
FROM 1 Jun TO 31 May

14 DATE OF REPORT (Year, Month, Day)
24 May 1992

15 PAGE COUNT
18

16 SUPPLEMENTARY NOTATION
Accepted for publication
Journal of Applied Physics

17 COSATI CODES

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Triplet extinction coefficients of some organic compounds.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
See attached

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Theodore G. Pavlopoulos

22b TELEPHONE (Include Area Code)
(619) 553-2792

22c OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

Unclassified
ABSTRACT
The triplet extinction coefficients ϵ_T of acridine, anthracene, benzanthracene, dibenzanthracene, chrysene, pyrene, and pyrene-carboxaldehyde were measured at the visible spectral region at maximum triplet-triplet absorption. We used McClure's method together with cw lasers as excitation sources to obtain the ϵ_T values. Because these triplet extinction coefficients were measured with improved accuracy, we suggest that these compounds be used as standards. We wanted to compare the accuracy of our values with the ones suggested as tentative standards. Further, we tested the validity of McClure's method on anthracene by increasing the cw laser excitation intensities (power) I_{ex} and recording triplet optical densities OD_T. Under the experimental conditions we used, about 100 mW of cw laser power appears to be the upper limit.
Inroduction

Visible/UV absorption spectroscopy of organic compounds is widely used to characterize the physical as well as chemical properties of organic compounds.

In chemistry, absorption spectra of organic compounds are generally presented as extinction coefficients and expressed in ℓ/mole cm. These (conventional) absorption spectra are referred to as singlet-singlet (S-S) absorption spectra. Here, the molecule has its two outer-orbit electrons with their spins aligned antiparallel with each other. The corresponding triplet-triplet (T-T) absorption spectra, where the two outer electrons are aligned parallel with each other, have not been as widely studied. In a recent review paper on T-T absorption spectra of organic compounds in condensed phases, Carmichael and Hug [1] listed only 1143 compounds in which triplet optical densities OD_T and triplet extinction coefficients α_T (about 30% of the total number) had been measured. These data were obtained by using different excitation sources and seven different methods for measuring triplet extinction coefficients. Each of these methods has its own range of measurement accuracy and sensitivity. Advantages, disadvantages, limitations, etc., for each of the seven methods are discussed in detail.

Some of the methods employed to obtain α_T values are not too accurate, and one observes a rather wide variation for α_T values. From the 1143 compounds listed, Carmichael and Hug selected 32 of the most widely studied (measured) compounds. A rather exhaustive
statistical analysis was performed and the 95% confidence intervals (c.i.) of the average \(<\langle T \rangle\) values (tentative standards) were calculated and also listed in Table 5 of ref. 1 (referred to as Table 5 in this text).

Over the last few years, we have reported \(\epsilon_T(\lambda)\) values on organic compounds, including many laser dyes [3,4]. We employed the intensity variation method introduced by McClure to obtain \(\epsilon_T(\lambda)\) values [5]. The lines from cw lasers were used as excitation sources [6,7]. This combination, in our opinion, results in the simplest as well as most accurate method for obtaining \(\epsilon_T(\lambda)\) values. From the 32 organic compounds listed in Table 5, we selected those that had the following characteristics: most strongly absorbed the cw laser UV lines we had available, were of good photostability under UV cw laser excitation, and showed strong T-T absorption. It should be noted that all the compounds we used have a rather long triplet state (phosphorescence lifetime) \(\tau_T\), ranging from a fraction of a second to seconds. Because of their strong T-T absorption over the spectral region studied, together with good photochemical stability, these compounds are among a rather small number of compounds in which the triplet extinction coefficients are most easily measured and, consequently, these compounds are those that have been most widely studied. We believe that our \(\epsilon_T\) values for the compounds we studied are an improvement in accuracy compared to the tentative standards, i.e., the statistical values (average\(\langle\rangle\) \(<\langle T \rangle\) shown in Table 5.
a. Spectroscopic Equipment and Experimental Procedures

The same equipment and experimental procedures as described in [2] were employed. We present the experimental arrangement in Figure 1. The sample S is submerged in liquid nitrogen (dewar LND). The triplet-state lifetime τ_T of organic compounds is much longer in a solid than in a liquid solution. Therefore, to generate high concentrations of triplet-state molecules N_T, organic compounds are dissolved in a solvent (the glassy solvent) that forms a glassy solid at liquid nitrogen temperature. A cw laser is focused on the sample S with the aid of the lens L_3, generating high a concentration of triplet-state molecules N_T. For excitation, we used the laser lines at $\lambda_{CW} = 351.1/363.8$ nm from a Spectra Physics model 2025-05 cw argon-ion laser or $\lambda_{CW} = 325$ nm from a Liconix He/Cd cw laser. The monitoring (probing) light MLS was an Oriel model 6341 point source lamp. The measurements consisted of recording four triplet optical densities OD_T as functions of different excitation intensities (power) I_{ex} of the laser beam. The power I_{ex} was recorded with a laser power meter PM from Liconix (model 45 PM). The measurements were performed at the wavelength of maximum T-T absorption, as listed in Table 5. One plots $1/OD_T$ versus $1/I_{ex}$ and extrapolates to the ordinate to obtain $1/OD_T^\infty$. After OD_T^∞ has been determined, according to McClure's method, only the thickness d of the sample and the concentration N_S has to be known. The following simple relationship holds:

$$\tau_T = \frac{OD_T^\infty}{N_S} \cdot d.$$ \hfill (1)
Because measurements are made at the temperature of liquid nitrogen, besides the contraction factor ρ, one has to guard against saturation. The solubility of an organic compound in a glassy solvent at room temperature might be rather high. However, by cooling the solution to the temperature of liquid nitrogen, solubility in the glassy solid is very often considerably reduced. We used the following general rule: For each compound, we measured the ϵ_T values at two different concentrations [2-4]. Starting with two different concentrations, say $A > B$, and cooling to liquid nitrogen temperature, there are three cases to consider: (1) The unknown saturation concentration is lower than both A and B. In this case, one would observe the same triplet optical density ODT_∞ for both concentrations. This is because the saturation concentrations would be the same. In the case, (2) not A, but B is lower than the saturation concentration. The obtained ϵ_T value for the A concentration would be smaller than the ϵ_T value obtained from the B concentration. This is simply the result of Eq. (1). In the case, (3), if both concentrations A and B are below the saturation concentration, one should measure ϵ_T values that are about the same.

b. Chemicals

Acridine, 99%; anthracene, 99.9% Gold Label; 1,2-benzanthracene, 99%; 1,2,5,6-dibenzanthracene, 97%; chrysene, 95%; pyrenecarboxaldehyde, 99%; and methanol, spectroscopic grade, were obtained from Aldrich Chemical Company. Pyrene was obtained from Eastman Kodak and several times zone-refined. 2-methyl-
tetrahydrofuran was purchased from Lancaster Synthetic Ltd., and ethanol (190-proof punctilious) from Quantum Chemical Ltd., USI Division.

RESULTS AND DISCUSSION

a. Triplet Extinction Coefficients

To provide some information on measurement reproducibility, we present in Table 1 α_T values and their averages for two different concentrations of pyrene. For every concentration, we made three separate experimental runs and present each of the three α_T values together with the mean square error. Each of these values were obtained by varying I_{ex} by a factor of four to measure the corresponding $1/OD_T$ and extrapolating $1/I_{ex} \to 0$, to obtain $1/OD_T$. Each OD_T was measured twice. The α_T value obtained with the 2×10^{-4} molar solution was discarded, because it is somewhat lower than the one obtained with the lower concentration. It is not shown in Table 2.

In Table 2 we present all the α_T values for the organic compounds we measured. Again, each value is the average of three α_T values, together with the mean square error.

In all our measurements, we always discarded the α_T values obtained at the 2×10^{-4} molar concentrations, because the resulting α_T values were always lower than the ones obtained at 1×10^{-4} molar. The only exceptions were anthracene and chrysene, were we had to go as low as a 5×10^{-5} molar solution to stay below the saturation concentration. In some cases, where the α_T values taken at the higher concentration were only some
what smaller, but within measurement error, we still enforced the above criteria and discarded the values.

In Table 2 we also present the highest cw laser power I_{ex} used for excitation to obtain the highest OD_T (smallest $1/OD_T$) value and the corresponding fraction in percent of triplet-state molecules of N_T generated. For example, for acridine, 10.0 mW of cw laser power I_{ex} would convert 73% of the original molecules into triplet-state molecules N_T. However, the highest cw laser power I_{ex} employed was strictly determined by the lowest laser power I_{ex} necessary to obtain the lowest OD_T value. In this case, $I_{ex} = 2.5$ mW (yielding the point 0.4). This power was sufficient to generate an OD_T value that was considerable above the noise level (I_0/I about 2) of the monitoring light intensities. The noise level of I_0 was about ±1 to 2%. The next I_{ex} value was 3.3 mW (yielding the point 0.3), then $I_{ex} = 5$ and 10 mW (yielding the points 0.2 and 0.1, respectively). As indicated, one extrapolates to the point $1/I_{ex} = 0.0$ to obtain $1/OD_T^∞$.

Our $ τ_T $ values shown in the Table 2, according to the measurement error estimation given in [4], should be within ±10 to 15%. As mentioned before, a careful evaluation of the accuracy of the different experimental methods to measure $ τ_T $ values is provided in [1], and we do not repeat the evaluations. We only wanted to present our data side-by-side with the tentative standard $ <τ_T> $ values shown in Table 5.

In the Table 2, our $ τ_T $ value for acridine is 14% lower than the one listed in Table 5, but stays within the 95% confidence
interval (c.i.). For anthracene, our \(c_T \) value is 15% higher. There may be two possible reasons for this discrepancy: (1) Our measurements were performed at the liquid nitrogen temperature, whereas the value listed in Table 5 is the average of different measurements, some of them taken at room temperature. Room temperature measurements yield broader T-T absorption spectra with lower values for the intensity maxima. (2) Some of the measurement may have been performed at low temperatures with concentrations possibly above the saturation point.

In Figure 2A, we present a typical \(1/I_{ex} \) versus \(1/OD_T \) (presented as crosses) plot for anthracene. The highest-power \(I_{ex} \) used is 2 mW (the point 0.5), and the lowest is 0.5 mW (the point 2.0). The extrapolated \(1/OD_T^\infty \) value is 0.66 or \(OD_T^\infty = 1.52 \), which presents a 100% conversion of the original concentration \(N_S \) into triplet-state molecules \(N_T \). At 2 mW, we have \(OD_T = 0.76 \), presenting a 50% conversion ratio of singlet-state molecules \(N_S \) into triplet molecules \(N_T \). The 2 mW are sufficient to extrapolate to the ordinate and to obtain a reasonable accurate \(1/OD_T^\infty \) value. One can also say that the smallness of the \(I_{ex} \) values used for producing the smallest \(1/OD_T \) value is a measure of how easily (efficiently) one generates triplet-state molecules \(N_T \) of a compound. As a general rule, one uses the lowest-excitation power \(I_{ex} \) possible in order to keep photodecomposition to a minimum. Anthracene is an exceptional case. In the glassy solvent we employed, it is among the most photostable compounds we studied.
Our χ_T value of 91.5 listed in Table 2 agrees with $\chi_T = 88 \times 10^{-4} \, \text{l/mole cm}$ (wrongly listed as $82 \times 10^{-4} \, \text{l/mole cm}$) in [2]. Our χ_T value of benzanthracene is 14% higher than the one listed in Table 5, and again within the c.i. In addition, the dibenzanthracene χ_T value is 13% lower than the one in Table 5, but again falls within the c.i. The χ_T value we obtained on chrysene agrees well with the one listed in Table 5. The χ_T value we reported for pyrene is about 20% lower than the one listed in Table 5 and the one reported in [2]. Pyrenecarboxaldehyde yields an χ_T value that is about 20% lower than the one listed in Table 5 and does not fall within the c.i.

b. Experimental Limits of McClure's Equation

When exciting organic compounds with intense light into their spectral regions of absorption, and depending on the experimental conditions (solid, liquid, or gas phase), the following effects are often observed: One may detect from some to a considerable number of molecules present in their lowest triplet state T_1. One will also observe various amounts of photodecomposition, which is generally the result of first generating radicals, which react further to produce photoproducts. The question we are concerned with is the following: When does McClure's method break down? The higher the excitation intensity (power) I_{ex}, the higher the number (concentration) of triplet-state molecules N_T generated. This allows one to come closer to the ordinate, and the more accurate the extrapolation to $1/I_{ex} \rightarrow 0$ will be. Ideally, if, at a certain I_{ex} power level, one could transform,
say, 98% of all molecules into the triplet state, one actually would not need to use McClure's method. With 2% error, the recorded OD_T value is practically the same as the extrapolated OD_T^{∞}.

However, performing experiments at higher excitation intensities I_{ex}, one always observes increased photodecomposition. In addition, triplet-singlet backtransfer may occur. At a certain power level, melting of the sample and/or blooming is also observed. To obtain some quantitative data on the limit of the power I_{ex} one can employ, we again used the 5×10^{-5} molar solution of anthracene dissolved in MTHF. The excitation power I_{ex} was stepwise increased, and the corresponding OD_T values were recorded.

In Figure 2B, we have again plotted $1/I_{ex}$ versus $1/OD_T$ (as circles), with the lowest cw laser power starting at 2 mW and going up to 90 mW. At higher I_{ex} intensities, excessive blooming was observed. At about 40 mW, we observed some increase in the rate of photodecomposition. Because of the rather small triplet-state lifetime τ_T of anthracene (a fraction of a second), the steady state is quickly reached, allowing one to obtain OD_T values quickly, before photodecomposition becomes effective. Judging from experiments performed in the past, about 100 mW is the highest power I_{ex} one can use, before blooming/melting or excessive photodecomposition starts. From Figure 2B, one may conclude that McClure's method holds up very well to about 100 mW, at least for anthracene. As can be seen from Figure 2B, the
points taken at higher power levels converge quite well into the point \(1/\text{OD}_T = 0.66 \). At 90 mW, we measure \(\text{OD}_T = 1.48 \), presenting a 97\% conversion ratio. With \(\text{OD}_T = 1.48 \), one would commit only a small error using it instead of \(\text{OD}_T^\infty = 1.52 \).

We did not put error bars on the average \(1/\text{OD}_T \) values presented in Figure 2A as circles and 2B as crosses. Instead we selected the size of the circles/crosses to be not larger than the largest measurement error. As it can be seen from Table 2, for anthracene, its \(\epsilon_T \) has a measurement error of about \(\pm 3\% \). Each \(1/\text{OD}_T \) value used to extrapolate for \(1/\text{OD}_T^\infty \) showed measurement errors of no more than 3\%, often 2\% or less. Small errors are difficult to present accurately by error bars in a graph.

Instead of plotting \(1/\text{OD}_T \) versus \(1/I_{\text{ex}} \) to obtain \(1/\text{OD}_T^\infty \) by extrapolation, we plotted \(\text{OD}_T \) versus \(I_{\text{ex}} \) and present the obtained curve in Figure 3. This Figure illustrates well of how \(\text{OD}_T^\infty \) is approached with increasing excitation power \(I_{\text{ex}} \). Even if one could double the excitation power \(I_{\text{ex}} \) to 200 mW, the conversion to triplet state molecules \(N_T \) would be only about 99\%.

In summary (and in something of a generalization), one could have obtained rather accurate \(\epsilon_T \) values of the compounds we studied without using McClure's method. High conversion ratios were obtained with rather low excitation powers \(I_{\text{ex}} \), as shown in Table 2. Using higher powers, ranging for example from 10 to 100 mW, and assuming no excessive photodecomposition occurs, conversion ratios of 98 to 99\% should be obtainable for most of the compounds we studied. On the other hand, only very few
organic compounds possess all the necessary photophysical properties such as strong T-T absorption and long triplet-state \(\tau_T \) lifetime, together with good photostability. For the many other organic compounds that do not possess these properties, using McClure's method together with cw laser excitation presents experimentally a very convenient way to obtain rather reliable \(\alpha_T(\lambda) \) values.

ACKNOWLEDGMENT

I wish to thank the Office of Naval Research and the NCCOSC Independent Research program for support of this work.
REFERENCES

FIGURE 1

Experimental arrangement. MLS, monitoring light source; L₁-L₄, lenses; PH, pinhole in monochromator dovetail plate; BS, laser beam stop; F₁, filter that absorbs the laser light; LND, liquid nitrogen dewar; S, sample; M, mirror with hole in center; PM, power meter; NDF, neutral density filter; F₂, filter that passes laser light only.
FIGURE 2

Plot of $1/OD_T$ versus $1/I_{ex}$ to obtain $1/OD_T^\infty$ by extrapolation

$1/I_{ex} \rightarrow 0$ for anthracene at the concentration 5×10^{-5} molar, dissolved in 2-methyltetrahydrofuran. A: The highest cw laser excitation power I_{ex} was 2 mW (the point 0.5) and the lowest 0.5 mW (the point 2.0). B: Plot of $1/OD_T$ vs $1/I_{ex}$ to obtain $1/OD_T^\infty$ by extrapolation at high excitation powers I_{ex} to test McClure's method. The highest cw laser excitation power was 90 mW and the lowest 2 mW.
FIGURE 3

Plot of triplet optical density OD_T as function of cw laser excitation intensity (power) I_{ex} to demonstrate how OD_T^{∞} is approached at high I_{ex} powers. The compound studied was anthracene, dissolved in 2-methyltetrahydrofuran, 5×10^{-5} molar concentration.
TABLE 1

Measured triplet extinction coefficients ε_T (l/mole cm) and their averages of pyrene. Measurements were performed at the maximum of T-T absorption at $\lambda_m = 415$ nm, using two different concentrations N_S, and with maximum cw laser power I_{ex} of 10 mW.
TABLE 2

Measured triplet extinction coefficients ϵ_T (l/mole cm) of organic compounds at the maximum λ_m (in nm) of T-T absorption. Each ϵ_T presented is the average of three separately determined (extrapolated) ϵ_T values. λ_{cw} is the wavelength of the exciting cw laser line(s), I_{ex} is the maximum cw laser power (in mW) employed. N_T (%) is the percentage of the original concentration N_S converted into the triplet state at maximum excitation power I_{ex} used. Concentration M of N_S is in mole/l and glassy solvents employed. E:M ethanol:methanol ratio 3:1 and MTHF 2-methyl-trahydrofuran. $<\epsilon_T>$ in l/mole cm is the tentative standard triplet extinction coefficient listed in Table 5 of ref. 1.
TABLE 1

<table>
<thead>
<tr>
<th>Concentration of Pyrene</th>
<th>$\epsilon_T (\ell/\text{mole cm})$</th>
<th>$\epsilon_T (\ell/\text{mole cm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x10^{-4}$ M</td>
<td>28,000</td>
<td>29,700</td>
</tr>
<tr>
<td></td>
<td>26,500</td>
<td>29,900</td>
</tr>
<tr>
<td></td>
<td>27,200</td>
<td>30,200</td>
</tr>
<tr>
<td>Average</td>
<td>$27,200 \pm 1.8%$</td>
<td>$29,900 \pm 0.7%$</td>
</tr>
<tr>
<td>$1x10^{-4}$ M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>λ_m (nm)</td>
<td>λ_{cw} (nm)</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Acridine</td>
<td>440</td>
<td>351.1/363.8</td>
</tr>
<tr>
<td>Anthracene</td>
<td>430</td>
<td>351.1/363.8</td>
</tr>
<tr>
<td>Benzantracene</td>
<td>490</td>
<td>351.1/363.8</td>
</tr>
<tr>
<td>Chrysene</td>
<td>580</td>
<td>325.0</td>
</tr>
<tr>
<td>Dibenzantracene</td>
<td>580</td>
<td>351.1/363.8</td>
</tr>
<tr>
<td>Pyrene</td>
<td>415</td>
<td>351.1/363.8</td>
</tr>
<tr>
<td>Pyrenecarboxaldehyde</td>
<td>440</td>
<td>351.1/363.8</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2)
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, Virginia 22217-5000

Dr. James S. Murday (1)
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Robert Green, Director (1)
Chemistry Division, Code 385
Naval Air Weapons Center
Weapons Division
China Lake, CA 93555-6001

Dr. Elek Lindner (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Dr. Bernard E. Douda (1)
Crane Division
Naval Surface Warfare Center
Crane, Indiana 47522-5000

Dr. Richard W. Drisko (1)
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer (1)
Code 2840
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Defense Technical Information Center (2)
Building 5, Cameron Station
Alexandria, VA 22314

* Number of copies to forward