The Synthesis of Thermochromic Dibismuthines with Non-thermochromic Distibine Analogs

Rupert E.v.H. Spence, Donald P. Hsu, William M. Davis, Stephen L. Buchwald, and John F. Richardson

Department of Chemistry
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

Office of Naval Research
Department of the Navy
Arlington, VA 22217-5000

Prepared for publication in *Organometallics*

Octamethylbistibole, octamethylbibismole,
2,2',5,5'-tetra(trimethylsilyl)-3,3',4,4'-tetramethylbistibole and
2,2',5,5'-tetra(trimethylsilyl)-3,3',4,4'-tetramethylbibismole have been prepared by the reductive coupling of their respective precursor phenyl or bromopnictoles. The bibismoles are thermochromic while the bistiboles are not. This is the first observation of differing behavior between analogous distibines and dibismuthines with regard to thermochromicity.
OFFICE OF NAVAL RESEARCH

Grant N00014-91-J-1043

R & T code 4135014

Technical Report No. 2

The Synthesis of Thermochromic Dibismuthines with Non-thermochromic Distibine Analogs

by

Rupert E.v.H. Spence, Donald P. Hsu, William M. Davis, Stephen L. Buchwald, and John F. Richardson

Prepared for Publication

in

Organometallics

Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

May 25, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale, its distribution is unlimited.
The Synthesis of Thermochromic Dibismuthines with Non-thermochromic Distibine Analogs

Rupert E. v. H. Spence, Donald P. Hsu, William M. Davis and Stephen L. Buchwald*

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

John F. Richardson
Department of Chemistry
University of Louisville
Louisville, Kentucky 40292
Abstract.
Octamethylbistibole (4a), octamethylbibismole (4b), 2,2',5,5'-tetra(trimethylsilyl)-
3,3',4,4'-tetramethylbistibole (5a) and 2,2',5,5'-tetra(trimethylsilyl)-3,3',4,4'-
tetramethylbibismole (5b) have been prepared by the reductive coupling of their
respective precursor phenyl or bromopnictoles. The bibismoles are thermochromic
while the bistiboles are not. This is the first observation of differing behavior between
analogous distibines and dibismuthines with regard to thermochromicity.
Certain distibines and dibismuthines display a dramatic color change upon melting. This change has been labeled thermochromic, although it is associated with a phase change. The thermochromic compounds also show color changes on solvation. To date, when a dibismuthine has been thermochromic, its antimony analog has also displayed the same behavior, and vice versa. However, there are no reasons to anticipate that this should always be the case. The crystal structures of these thermochromic species, when available, reveal the pnictogen centers to be ordered in a stacked linear arrangement with short intermolecular pnictogen-pnictogen contacts (Figure 1). This packing arrangement is not observed in non-thermochromic dipnictines and is believed to be responsible for the thermochromic behavior. Since the van der Waals radius of bismuth is considerably greater than that of antimony, it seems likely that dibismuthines might more readily achieve the intermolecular contacts necessary for thermochromicity.

Continuing our interest into the synthesis and unusual structural properties of main group heterocycles, we report here the first thermochromic dibismuthines which have non-thermochromic distibine analogs.

![Figure 1](image)

The bipnictoles 4 and 5 were prepared according to Scheme 1. Utilizing the transmetallation procedures of Fagan and Nugent, reaction of zirconacycles with PhSbCl₂, PhBiBr₂ or BiBr₃ in benzene or ether (3b), gave the known phenylpnictoles and 3a and the bromobismole 3b. After removal of solvent, the products were isolated simply by extraction with hexane or ether (3b), filtration to remove zirconocene dihalide, and concentration in vacuo (3b was recrystallized from ether). Compounds 2 and 3 were then coupled using standard
procedures3,21 to give octamethylbistibole (4a), octamethylbibismole (4b), 2,2',5,5'-tetra(trimethylsilyl)-3,3',4,4'-tetramethylbistibole (5a), and 2,2',5,5'-tetra(trimethylsilyl)-3,3',4,4'-tetramethylbibismole (5b) in reasonable yield.

Bistiboles 4a and 5a both show the colors and behavior typical of non-thermochromic distibines.2 They form orange solids that melt22 to identically colored liquids and give orange/yellow solutions. In contrast, bibismoles 4b and 5b are thermochromic, forming lustrous deep green crystalline solids that melt22 reversibly to orange and red oils, respectively. Furthermore, compound 4b gives yellow/orange solutions, while 5b appears red in hexane and benzene.

The bipnictoles 4 and 5 have been characterized spectroscopically (1H and 13C NMR and IR) and by elemental analysis. It is noteworthy that bibismole 5b gives a single sharp signal in the 1H NMR spectrum for the protons of the trimethylsilyl groups, while its antimony analog, 5a, gives a very broad peak, indicative of restricted rotation.23 This differing spectral feature of 5a and 5b is likely a consequence of the shorter pnictogen-pnictogen bond (Sb-Sb = 2.84-2.88 Å, cf. Bi-Bi = 2.99-3.12 Å)4-10,13 in the distibine forcing the trimethylsilyl groups of the two stibole rings into close proximity. Preliminary X-ray crystallographic information suggests that, in the solid state, compound 4b displays a linear construction of bismuth atoms, as observed in other thermochromic compounds.4-10

Ashe has prepared the antimony and bismuth 2,2',5,5'-tetramethylbipnictoles and found them to be thermochromic.5,8 Addition of further methyl groups to the 3 and
4 positions of the bipnictoles, as in compounds 4, is apparently a great enough change to prevent thermochromicity in the bistibole 4a but not in the bibismole 4b.

Compounds 4 and 5 importantly demonstrate, for the first time, that antimony and bismuth dipnictogen analogs can behave differently with regard to thermochromicity. Further results, from our laboratories, on distibine and dibismuthine compounds will be reported in due course.

Acknowledgment. We thank the Office of Naval Research for partial support of this research. JFR acknowledges the award of an NSF equipment grant (CHE-9016978). SLB is an Alfred P. Sloan Fellow (1988-92) and a Camille & Henry Dreyfus Teacher-Scholar. We thank Professor Arthur J. Ashe, III for stimulating discussions and for a mutual exchange of manuscripts prior to publication. We also thank Professor Stephen J. Lippard for useful discussions.

Supplementary Material Available: Full experimental details to the preparation of compounds 2, 3, 4 and 5. NMR, elemental analysis and IR characterization of compounds 3, 4 and 5. Ordering information is given on any current masthead page.
References

17. Compounds 1a and 1b are readily prepared by the addition of 2-butyne and 1-trimethylsilyl-1-propyne, respectively, to Cp2ZrBu2. See Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2829.
20. Compound 3a and the phenyl derivative of 3b were recently prepared by Ashe:
21. NH4Cl, used to remove phenylsodium, was not necessary in the coupling of 3b.
22. Melting points: 4a, 84-85 °C; 4b, 128-129 °C; 5a, 95-100 °C; 5b, 121-122 °C.
23. 1H NMR (300 MHz, C6D6) data: 5a, δ 2.07 (s, 12H), 0.29 (v. br., 36H); 5b, δ 2.03 (s, 12H), 0.30 (s, 36H). The signal for the protons of the trimethylsilyl groups in 5a sharpened considerably when the spectrum was obtained at 65 °C.