Stability of Boundary Layers at High Supersonic And Hypersonic Speeds

Thorwald Herbert
Department of Mechanical Engineering

Air Force Office of Scientific Research
Bolling Air Force Base, D.C. 20332-6448

Contract No. F49620-88-C-0082
Final Report

April 1992

92-13727
The thrust of this research program has been the improvement of our capabilities for analyzing stability and transition of boundary layers at supersonic speeds. During the first phase, our efforts were primarily directed toward analytical studies, establishing the elements of the numerical approach, and evaluating existing and new concepts to tackle the variety of problems. The second, and final, phase has been devoted to combining selected elements into codes, verification of these codes, comparison with previous results, and computing the basic flow over realistic geometries. The latter task has consumed the bulk of our resources. Analytical and numerical studies have been performed to investigate the role of the shock on both stability and receptivity characteristics of the flow. Development of the parabolized stability equations (PSE) for compressible flows has been a major goal. A new code incorporating many of the latest concepts and open to extensions is largely completed.
Stability of Boundary Layers at High Supersonic And Hypersonic Speeds

Thorwald Herbert
Department of Mechanical Engineering

Air Force Office of Scientific Research
Bolling Air Force Base, D.C. 20332-6448

Contract No. F49620-88-C-0082
Final Report
RF Project No. 766854/721010

April 1992
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary (DD Form 1473)</td>
<td>1</td>
</tr>
<tr>
<td>1. Objectives</td>
<td>2</td>
</tr>
<tr>
<td>2. Achievements</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Computation of the Flow over Sphere-Cone Combinations</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Stability Equations in General Coordinates</td>
<td>5</td>
</tr>
<tr>
<td>2.3 The Disturbed Shock</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Parabolized Stability Equations (PSE) for Supersonic Flow</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Transition Analysis and Prediction</td>
<td>7</td>
</tr>
<tr>
<td>3. Personnel</td>
<td>8</td>
</tr>
<tr>
<td>4. Publications</td>
<td>9</td>
</tr>
<tr>
<td>5. Technical Presentations</td>
<td>10</td>
</tr>
<tr>
<td>6. References</td>
<td>11</td>
</tr>
<tr>
<td>7. Figures</td>
<td>13</td>
</tr>
</tbody>
</table>
Summary

The thrust of this research program has been the improvement of our capabilities for analyzing stability and transition of boundary layers at supersonic speeds. During the first phase, our efforts were primarily directed toward analytical studies, establishing the elements of the numerical approach, and evaluating existing and new concepts to tackle the variety of problems. The second, and final, phase has been devoted to combining selected elements into codes, verification of these codes, comparison with previous results, and computing the basic flow over realistic geometries. The latter task has consumed the bulk of our resources. Analytical and numerical studies have been performed to investigate the role of the shock on both stability and receptivity characteristics of the flow. Development of the parabolized stability equations (PSE) for compressible flows has been a major goal. A new code incorporating many of the latest concepts and open to extensions is largely completed.
1. Objectives

Our research program aimed at developing and applying theoretical, numerical, and graphical tools for the quantitative description and deeper understanding of stability and transition in supersonic boundary layers. In particular, the program aimed at incorporating and analyzing the effects of nonparallelism, nonlinearity, and secondary instabilities on stability and transition. Toward these goals, we have worked in the following areas:

1. Computation of the basic flow over sphere-cone combinations.
2. Derivation of the nonlinear stability equations in general coordinates and computation of the derivatives from the basic flow.
3. Shock boundary conditions and propagation of disturbances along shocks.
4. Nonlinear parabolized stability equations (PSE) for supersonic flow, including mathematical and numerical aspects.
5. General aspects of transition prediction and bypasses with emphasis on supersonic flows.

2. Achievements

We have made considerable progress in various areas although we have not achieved all the milestones set in the original proposal. One of the main reasons was the discovery of a new approach to boundary-layer stability spearheaded by efforts under Grant AFOSR-88-0186 (for incompressible flows) that appeared very promising, but required much ground work for compressible flows. Working in support of this approach diverted us from the work originally proposed.

There are various good reasons for delays in other areas. The field of compressible flows has made relatively little progress over the past decades and much analytical, methodological, and numerical work had to be done to prepare the basis for future progress. The literature is difficult to access and often only available in Russian or in unreliable translations. The formalism for compressible flows is voluminous and most steps require unexpectedly intense efforts to obtain a clean formulation with access to physical reasoning. Various published results, including recent approaches and results lack the required rigor and cause tedious search for explanations and re-derivations. Numerical work on flows over realistic geometries in the past has been largely conducted to obtain surface data which may be in reasonable agreement with experiments. Accurate field computations necessary for stability analysis are unavailable and cannot be obtained with the numerical methods in common use (this conclusion agrees with the findings of Mack (1986)). Experimental work is insufficiently documented for theoretical analysis. Fortunately, we were able to clarify the results of Stetson and his co-workers in telephone discussions and through unpublished tables and graphs.

Another major difficulty has been the long startup period required for students to become involved in this research. Both the area of stability and the area of supersonic flows are too complex to be covered in undergraduate or entry graduate courses to the extent necessary for this work. In addition, the work demands skills in symbolic
manipulation, computation, and visualization. While our team exhibited good potential, the continuous intense advice imposed a heavy burden on the principal investigator.

The final reason for virtually slow progress have been the tremendous efforts to develop and speed-up the code for computing an accurate basic flow and to obtain the necessary computer resources from the Ohio Supercomputer Center. The run time for a single field on a single Cray YMP processor amounts to a few hundred hours although the code performs near the theoretically possible speed. Since the code requires up to 50 Mwords of memory (our YMP has a total of only 64 Mwords for all eight processors), we were charged multiples of the actual CPU time and could run only at lowest priority. However, we have reached the final station 250 nose radii downstream to cover the full range of the experiments of Stetson et al. (1984)

Some details on progress in the various areas of interest are reported below.

2.1. Computation of the Flow over Sphere-Cone Combinations.

The analysis of stability and transition requires the basic flow to be known. The stability characteristics depend not only on the flow variables but also on their first and partly on their second derivative normal to the boundary. Stability studies are usually performed for similarity solutions (e.g. Blasius flow) that can be calculated from ordinary differential equations with arbitrary accuracy. Flows over realistic geometries such as the sphere-cone combinations studied by Stetson et al. (1984), however, require solution of partial differential equations to obtain the overall flow field. The resolution is usually sufficient for calculation of the surface-pressure yet not for resolving the viscous boundary layer. We have spent intense efforts in this problem area and have evaluated the utility of numerical methods for solving the full Navier-Stokes equations (NS), thin-layer Navier-Stokes equations (TLNS), parabolized Navier-Stokes equations (PNS), viscous shock-layer equations, and boundary-layer equations. We have also evaluated the available TLNS codes to obtain blunt-body flows and their PNS continuation downstream. The efforts to compute a clean flow field with existing codes were useless. The TLNS codes converge only for a body length of the order of a few nose radii while we are interested in lengths of typically 150 to 250 radii where instabilities are observed in Stetson's experiments. The PNS continuation provides a field with jumps and wiggles (as reported by Malik et al.) unacceptable for stability analysis. The effect of these wiggles can be suppressed by removing terms from the stability equations. This drastic step (Malik et al.) is unacceptable, however, since it may affect the physics.

The traditional boundary-layer approach cannot be exploited because of the presence and crucial importance of the entropy layer. V. Esfahanian has therefore written a new TLNS code using the Beam-Warming method and shock fitting. The code has been extensively verified for the standard test case of a hemisphere-cylinder combination at Mach number 2.94 and for the blunt cone with 0.15 in nose radius and 7 degree half-angle at Mach number 8 (Stetson et al.). Numerous improvements to previous techniques have been made and the flow field can be obtained for the required region without encountering convergence failures. The computational demand, however, increases
dramatically with the length of the body. A first run with a 1500 streamwise by 100 cross-stream grid provided results in good agreement with all theoretical benchmark data (sharp-cone flow, Euler solution, etc.) and with the experimental field of Stetson et al. However, as shown in figure 1, the cross-stream resolution was still insufficient to resolve the detail of the flow near the edge of the boundary layer - a region critical for the second-mode disturbances in the experiments. To make further improvements feasible, the code has been thoroughly vectorized and various routines run near the theoretically achievable speed. In return for these successful and exemplary efforts, the Ohio Supercomputer Center has awarded us in excess of 2200 resource units, the equivalent of about 700 CPU hours to perform runs at higher resolution. A first run on a 3000 by 200 grid was stopped before the solution fully converged owing to an unexplainable error message that meanwhile turned out to appear when a certain amount of CPU time is exceeded. The final output is reusable and can be converged if resources will still be available. A new run at 1500 by 200 is fully converged up to 250 nose radii and covers the full range of the experiments.

The effort and expense for these runs has been justified by the concerns discussed in the U.S. Transition Study Group at the meetings in Seattle 1990 and Reno 1991 that the stability results for supersonic flows over realistic bodies may be biased or flawed by the inaccuracies of the numerical solution for the basic flow. The Study Group plans a detailed code comparison for computation of supersonic flows to remove the current uncertainty about the value of stability results for realistic flows. Our results have been generated with sufficient attention to every aspect that could affect the stability analysis to use them as a benchmark for evaluation of other methods.

Besides providing the basis for stability analysis, the flow field reveals the interesting physics caused by bluntness. The compression waves arising near the sphere-cone junction cause an inflection point in the shock further downstream, as shown in figure 2. The shock angle recovers to the inviscid sharp-cone value at about 150 radii. Further downstream, the angle is slightly larger owing to the viscous displacement effects. Visualizations of the flow quantities on color-graphics workstations reveals the extent of the entropy layer and the downstream propagation of the pressure disturbance caused by the abrupt change in curvature at the sphere-cone junction. The wall-pressure distribution is in excellent agreement with the measurements of Stetson et al. as shown in figure 3. The same holds for the shock shape as good as it can be read from schlieren photographs. In contrast, the wall temperature (figure 4) in the experiments deviates by about 15% from the computed values which assume an adiabatic wall. While this deviation is significant, it is not expected to change the stability characteristics drastically. Velocity distributions outside and in the outer parts of the boundary layer agree well between computation and experiment, as shown in figure 5. The lack of agreement closer to the cone is due to the size of the probe and increasing interference with the wall (Stetson, personal communication).
2.2. Stability Equations in General Coordinates

Previous work has either neglected or only partially accounted for the curvature effects on basic flow and stability characteristics. While the step-by-step inclusion of curvature in previous work has provided the opportunity for follow-up publications of minor value, we have decided to account for the curvature terms completely and from the beginning. We have derived the nonlinear stability equations including transverse and longitudinal curvature as functions of the distance from the wall. The linearized equations have been coded for use with both spectral method or compact finite-difference method. The coded insert files are consistent with the file format used by the stability code linear.x (Herbert 1990).

Various procedures have been coded and compared to obtain the metric terms and flow quantities as well as their derivatives as accurately as possible. This task is non-trivial since the finite-difference method is only of second order in space. There are certain trade-offs between spectral and compact treatment of the stability problem. The spectral method is advantageous by requiring lower derivatives than the 4th-order compact scheme. The compact scheme, however, can utilize the data at the grid points directly while the spectral method uses less points in a different distribution. Suitable procedures have been developed for both cases since the spectral method is far superior for calculating eigenvalue spectra needed to identify the complete set of unstable modes. The compact finite-difference method, however, is more efficient for tracing a specific mode over variable parameters.

In general, our results for the test cases discussed by Malik (1990), and conclusions regarding the accuracy achievable with a given number of polynomials or grid point differ from Malik's. We suspect that Malik's spectral codes suffer from round-off errors. All our stability results have been cross-checked between different numerical methods and different codes.

While the stability analysis for the flow of Stetson et al. has not been completed by the end of the working period, the results for station 175 allow major conclusions. Figure 6 compares the experimental results for the spatial growth rates with the theoretical results of Malik et al. (1990) for the first and second mode and our results (for the second mode only). Although both theoretical studies are for the computed blunt-body flow and include boundary conditions at the shock, the results are remarkably different. The difference is due to various approximations introduced in the work of Malik et al., which include the neglect of the mean variation, the neglect of the difference between the flow parallel to the computational grid and the flow parallel to the wall, use of the PNS instead of the TLNS equations, and others. A detailed analysis cannot be made since basic flow and stability procedures of Malik et al. are insufficiently documented.

Remarkable is the discrepancy between the experimental and theoretical results for the blunt cone. In fact, the theoretical blunt-cone results are quite similar to the sharp-cone results of Mack (1987). Mack provides some explanation for the difference between the data in this figure which can also be applied to the blunt-cone experiment. The theoretical results, however, give no clue why sharp-cone (Stetson et al. 1983) and blunt-cone (Stetson et al. 1984) experiments exhibit different local stability characteristics.
Our analysis has revealed various weaknesses of the traditional stability theory in context with the flow studied here. The flow is certainly not parallel and the role of the nonparallelism inside and outside the boundary layer has not yet been investigated. Also, the implementation of the boundary conditions at the (oblique) shock causes difficulties and loss of physical impact. The history of the disturbances cannot be studied with the local analysis. The absence of the theoretically predicted cut-off frequency for instability may indicate elimination of branch II by nonlinear effects, as it occurs in incompressible boundary layers. This hypothesis, though not yet substantiated by quantitative analysis, is in line with Stetson's discussion of nonlinear effects.

We currently analyze the neutral curve for first and second modes in the computed basic flow. If this analysis verifies the observed increase of the critical Reynolds number, the more pronounced nonlinearity of disturbances in the blunt-cone flow should be caused by increased receptivity - provided the experimental environment has been the same as for the sharp-cone runs. We will continue to search for the source of the different transitions observed for sharp and blunt cones. It appears, however, that in absence of an independent verification of the observed facts (Guideline No. 4 of the U.S. Transition Study Group) this search will not lead to clear physical conclusions without filling deep gaps in our understanding of high-speed transition by theoretical and numerical results.

2.3. The Disturbed Shock

The presence of a shock as the outer boundary of the shear flow is a major difference from the situation at subsonic speeds. This difference becomes more pronounced as the Mach number increases. The shock shape for sharp and blunt cones is different up to about 150 nose radii where instability occurs. Further, shocks are not as steady as they appear in the short-time exposed schlieren photographs. Disturbances impacting the shock lead to shock corrugations that are associated with entropy and pressure waves. Local disturbances of the shock propagate along the shock. Disturbances may exist inside the shock layer or in the free stream. In both cases, we are faced with a receptivity problem rather than a traditional stability issue. We have studied various aspects of the shock corrugation.

We have derived and analyzed the boundary conditions at the shock from the generalized Rankine-Hugoniot conditions. The linearized conditions have been implemented in a study of the temporal instability of the viscous flow over a wedge with adiabatic wall at Mach number 8. The growth rate of the second mode is affected in two ways, first by the finite domain between wall and shock, second by the different boundary conditions. Both effects cause a moderate stabilization at small wave numbers as shown in figure 7. The growth rate near maximum amplification, however, remains unchanged. Considered the propagation of information along (unsteady) characteristics, the local stability analysis can capture only a part of the physics near the shock. We have studied various models to find better ways of accounting for the effect of the shock. Starting from the corrugation instability of plane shock waves (see Landau & Lifshitz 1959), we have attempted to
analyze the propagation of disturbances along oblique shocks. This study has made good progress but was not led to conclusive results during the working period.

2.4. Parabolized stability equations (PSE) for supersonic flow

The work on extending the concept of parabolized stability equations (Herbert & Bertolotti 1987, Bertolotti, Herbert & Spalart 1990) to supersonic flows has been successful. A first report on linear first-mode disturbances has been published (Bertolotti & Herbert 1990). While F. Bertolotti joined Princeton University (Orszag & Kamiadakis) as a post-doctoral associate in September 1990, and ICASE/ NASA Langley in September 1991, we have attempted to build a new group with expertise in this promising area. Numerical difficulties with single-domain spectral methods encountered at higher Mach numbers in Bertolotti's work have been overcome. In addition, we have further developed the two-domain spectral method (Hartonas 1990) and successfully applied second- and fourth-order compact method to the local problem. These techniques have been implemented in a new version of the marching code. This new modular version is compatible with the linear stability code linear.x and fully integrates the setup of initial conditions for different models of transition. The introduction of terms that contain the inverse of the velocity normal to the boundary (that is zero at the wall and may be zero elsewhere) is still a disadvantage of the compact method and cause for studies in different directions.

Various theoretical studies have been conducted to shed light on the mathematical structure of the PSE approach. The results have led to significant improvements in formulating the method and in the algorithms for solving the system of nonlinear equations. These studies also concern the extension of the PSE approach to three-dimensional boundary layers.

Additional work in the supersonic area is now supported by WPAFB under Contract No. F33615-90-C-3009 with DynaFlow, Inc. This work aims at developing the PSE approach as an engineering method for transition prediction.

2.5. Transition Analysis and Prediction

With the forthcoming capabilities for efficient simulation of the transition process under given initial conditions, we have performed a systematic analysis of the problem areas and requirements for transition prediction in engineering design. An overview of this work has been given as an invited talk at the AIAA 28th Aerospace Sciences Meeting, Reno, Nevada, January 1991 (AIAA Paper No. 91-0737). A more complete version of this paper will be prepared for publication.

In the past, the critical evaluation of transition prediction (by Morkovin, Reshotko, and others) under the aspects of linear results for parallel flows and the inability to tackle the nonlinear problem has created a negative image of attempts for improvements and wide-spread confusion about realistic expectations. It appears important that this bias be removed before broader interest can create the demand and support for more powerful engineering tools that would justify the training of a qualified work force. The
presentation and paper at the AIAA meeting have been a first step in this direction. The cleanup and reorganization of Morkovin's "pathways to turbulence" into the "systems view of transition" in figure 8 has been a second step that found the approval of the "experts." A slightly different version of figure 8 has been published in Morkovin's contribution to the ASME Symposium on boundary-layer stability in Oregon, 1991 (my contribution to this symposium was canceled since ASME did not accept the camera-ready manuscript except on the antique large mats that I cannot process with my equipment). A detailed block-by-block and line-by line description of the issues indicated in figure 8 is in preparation. We have also started to apply the PSE technique to forced problems to evaluate the chance for resolving some of the bypass problems that may interfere with an otherwise correct design. The ability to incorporate both initial conditions and inhomogeneous boundary conditions into the PSE approach makes this method suitable not only for inexpensive transition simulations and as a replacement for the commonly used e^N method, but also as an engineering method for advanced design. Such methods can be very useful in evaluating environmental (wind tunnel vs. free flight) effects on concepts such as hybrid laminar flow control.

Our efforts so far have awakened encouraging interest of commercia' airplane companies in longer-term cooperation and support of further research and development toward engineering applications of the PSE.

3. Personnel

The following personnel has participated in the work and has been partially supported under this contract:

Th. Herbert, principal investigator
Fabio P. Bertolotti, PhD student
Vasiliki Hartonas, MS student
Vahid Esfahanian, PhD student
Ron Bayless, MS student
Mengjie Wang, PhD student
Charlotte Hawley, Systems Programmer 2

V. Hartonas has received her M.S. in June 1990. She has since been a consultant for massively parallel computations on the Connection Machine at the Pittsburgh Supercomputer Center. F. P. Bertolotti has received his Ph.D. in Spring 1991. He has been working since September 1990 as a post-doctoral associate with S. A. Orszag and G. Kama-dakis at Princeton University. In September 1991 he joined ICASE/NASA Langley to work on PSE problems. V. Esfahanian has completed the computation and stability analysis of the flow over sphere-cones and received his Ph.D. in Spring 1991. Since then he has been working as a research scientist at DynaFlow, Inc., to develop an engineering method for stability and transition analysis. R. Bayless who studied the stability of shock waves has graduated in Fall 1991 within the non-thesis option. M. Wang
cooperates in the studies on nonparallel flows in preparation for work on the PSE code.

4. Publications
The following publications were completed or originated from work under support by this contract:

5. Technical Presentations

6. References

Figure 1. Comparison of density profiles for a 7° blunted cone with adiabatic wall, $M_\infty = 8.0$, $Re_\infty = 31250$, and $T_\infty = 54.3^\circ$ K at station $S/R_N = 175$ (Stetson et al.) for different grids normal to the wall.

![Graph showing density profiles for different grids at station 175.](image)
Figure 2. Shock shape (top) and shock angle (bottom) for the flow on a 7° blunted cone with adiabatic wall, $M_a = 8.0$, $Re_a = 31250$, and $T_a = 54.3^\circ K$ up to station $S/R_N = 250$ (Stetson et al.)
Figure 3. Comparison of the surface pressure distribution for a 7° blunted cone with adiabatic wall, $M_\infty = 8.0$, $Re_\infty = 31250$, and $T_\infty = 54.3\,^\circ\,K$ with experimental data of Stetson et al.
Figure 4. Comparison of the surface temperature distribution for a 7° blunted cone with adiabatic wall, $M_a = 8.0$, $Re_a = 31250$, and $T_a = 54.30$ K with experimental data of Stetson et al.
Figure 5. Comparison of velocity profiles for a 7° blunted cone with adiabatic wall, $M_\infty = 8.0$, $Re_\infty = 31250$, and $T_\infty = 54.3°$ K with experimental data of Stetson et al.

Station 228

- Stetson Experiment (Run No. 74)
- Stetson Experiment (Run No. 101)
- Present Computation

Station 195

- Stetson Experiment (Run No. 75)
- Stetson Experiment (Run No. 102)
- Present Computation
Figure 6. Comparison of calculated and measured spatial growth rates for a 7° blunted cone with adiabatic wall, $M_\infty = 8.0$, $Re_\infty = 31250$, and $T_\infty = 54.3° K$ at station $S/R_N = 175$.

Station 175

$\frac{\partial^2 u}{\partial x^2} = 0$

Linear Stability Theory (Present Computation)

Linear Stability Theory (Malik et. al. [34])

STDS Experiment

$Re_\ast = 2338.536$

Shock Thickness = 152.300

Mach Number behind the Shock = 7.00

Mach Number at B.L. Edge = 6.8 (approximately)

Frequency (10^{-5} Hz)
Figure 7. Temporal growth rate vs. wavenumber for the flow on a 5° wedge with adiabatic wall, $M_\infty = 8.0$, $Re = 1557.77$, $T_\infty = 54.3^\circ$ K, and $y_s = 159.50$ with different boundary conditions at the shock.
Figure 8. System view of transition, developed in cooperation with M. V. Morkovin.

OUTER DISTURBANCES
- AC and DC input
- Poor observability and control
 - Fluctuations of vorticity, temperature, concentration
 - Large-scale 3D nonhomogeneity
 - Sound
 - Particles, aerosols

SURFACE DISTURBANCES
- AC and DC input
- Moderate observability and control
 - Waviness
 - 2D and 3D roughness
 - Vibrations

BASIC FLOW
- Laminar, (quasi-) steady
- Outer: free-stream conditions
- Surface: geometry, curvature, angles of attack and yaw, leading-edge sweep, temperature, mass transfer

RECEPTIVITY
- Response to forcing on multiple parallel channels

<table>
<thead>
<tr>
<th>BYPASS</th>
<th>PRIMARY INSTABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear?</td>
<td>Race between instability modes</td>
</tr>
<tr>
<td>Nonparallel?</td>
<td>Orr-Sommerfeld modes</td>
</tr>
<tr>
<td>Unknown mechanism?</td>
<td>TS waves, Squire modes</td>
</tr>
<tr>
<td>Poiseuille channel flow</td>
<td>Mack modes in supersonic flow</td>
</tr>
<tr>
<td>Pipe-flow</td>
<td>Görtler vortices</td>
</tr>
<tr>
<td>Slugs, puffs</td>
<td>Crossflow vortices</td>
</tr>
<tr>
<td>Blunt-body paradox</td>
<td>Attachment-line instability</td>
</tr>
<tr>
<td>Lateral contamination</td>
<td>SECONDARY INSTABILITY</td>
</tr>
<tr>
<td>Certain roughness conditions</td>
<td>Activation of disturbances in x,y,z,t</td>
</tr>
<tr>
<td></td>
<td>TS: K-type, C-type, H-type combination resonance</td>
</tr>
</tbody>
</table>

TERTIARY INSTABILITY
- High-frequency, small-scale disturbances
- K-type: spikes

TURBULENT FLOW
- Spots, near-wall bursts, large-scale structure

System View of Transition
Th. Herbert, Jan. 17, 1991