Psychophysical threshold measures were used in combination with precisely located lesions of the sub-cortical visual pathway to examine segregation of function between P and M pathways. Scleral search coils monitored fixation locus in the tested monkeys, to insure that test stimuli were presented in visual field regions corresponding to the lesion location. Results of these studies indicated that the P pathway (or color-opponent pathway) is the major contributor to visual acuity, color vision, and luminance contrast sensitivity. On the other hand, the M pathway (or broad contours), as well as sensitivity to rapidly shifting visual stimuli.

This document has been approved for public release and sale, its distribution is unlimited.
1. Abstract

Psychophysical threshold measures were used in combination with precisely located lesions of the sub-cortical visual pathway to examine segregation of function between P and M pathways. Scleral search coils monitored fixation locus in the tested monkeys, to insure that test stimuli were presented in visual field regions corresponding to the lesion location. Results of these studies indicated that the P pathway (or color-opponent pathway) is the major contributor to visual acuity, color vision, and luminance contrast sensitivity. On the other hand, the M pathway (or broadband pathway) appeared crucial for the visibility of low spatial frequencies (broad contours), as well as sensitivity to rapidly drifting visual stimuli.

2. Research objectives

The goal of this project was to determine if there is a segregation of function between the sub-cortical P and M visual pathways of the macaque. Lesions were made by the injection of ibotenic acid (a glutamate agonist) into carefully selected regions of the parvocellular and magnocellular layers of the lateral geniculate nucleus. Visual function was assessed by the measurement of psychophysical thresholds in portions of the visual field corresponding to the lesions.

3. Status of the research

As part of our assessment of the pre-lesion vision of two monkeys, we determined spatial resolution across the horizontal meridian of the visual field. As was expected from preliminary results in humans, acuity declined monotonically with distance from the fovea. The rate of this decline, and the absolute acuity at each eccentric location were in close agreement with the resolution limits imposed by sampling density of retinal ganglion cells of the P pathway. Later results (below) on the effects of lesions of the P pathway on visual acuity confirmed that the P pathway limits visual acuity.

In initial studies, lesions were made in the parvocellular layers of the lateral geniculate of two monkeys. Psychophysical testing was followed by physiological and anatomical reconstruction of the lesion. Fortunately, both lesions fully destroyed the parvocellular and spared the magnocellular layers in the region corresponding to the tested locus in the visual field. Results of these studies showed clearly that the P pathway plays a dominant role in spatial resolution and chromatic contrast sensitivity as well as luminance contrast sensitivity over a broad range of spatial and temporal frequencies.

Determining the effect of M pathway lesions on visual function has proven to be somewhat more complex. In our first studies, we found that temporal resolution was not reduced by lesions of the M pathway. This result was somewhat counter-intuitive, since visual system physiologists have generally considered the M pathway to be the basis of temporal resolution. Effects on contrast sensitivity were consistent with the findings for temporal resolution. Low spatial and higher temporal frequency vision was devastated by M lesions. However, at moderate or higher spatial frequencies, lesions of the M pathway had no measurable effect on contrast sensitivity.
4. Publications

5. Participating personnel

John H. R. Maunsell Associate Professor Physiology Univ. Roch. Med. Ctr.

Thomas A. Eskin Associate Professor Pathology Univ. Roch. Med. Ctr.

6. Oral presentations and conferences

7. Discoveries and inventions

None

8. Significance of accomplishments

Our earlier studies, proposed in the original application, and supported by AFOSR to completion, showed that subcortical visual pathways in the macaque, and possibly in the human, are quite independent, and appear specialized primarily for the transmission of different portions of the spatio-temporal visual specturm. In addition, the P pathway appears to be the sole conduit for color vision. Future work will examine specific suggestions that the M pathway may be the substrate for motion perception.