SPEAR II Space Power Data Analysis

John R. Bayless
Pulse Sciences, Inc.
5330 Derry Avenue
Suite J
Agoura Hills, CA 91301

April 1992

Technical Report

CONTRACT No. DNA 001-90-C-0084

Approved for public release; distribution is unlimited.
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: CSTI, 6801 TELEGRAPH ROAD, ALEXANDRIA, VA 22310-3398, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

☐ Add the individual listed to your distribution list.
☐ Delete the cited organization/individual.
☐ Change of address.

NOTE:
Please return the mailing label from the document so that any additions, changes, corrections or deletions can be made more easily.

NAME: ____________________________

ORGANIZATION: ____________________________

OLD ADDRESS

__

__

CURRENT ADDRESS

__

__

TELEPHONE NUMBER: (___)

SUBJECT AREA(s) OF INTEREST:

__

__

__

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: ____________________________

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA):

SPONSORING ORGANIZATION: ____________________________

CONTRACTING OFFICER OR REPRESENTATIVE: ____________________________

SIGNATURE: ____________________________
Abstract

This project provided data analysis and support for the SPEAR II payload tests at the NASA Plum Brook Station in June, 1990. It also provided support for test preparation and overall data review.

Independent analysis of the payload chamber tests with and without plasma indicated that: (1) when plasma is not present, the probability of arcing in the pulse transformer approached zero monotonically and (2) with plasma present, pulse conditioning of the transformer was erratic and, at the highest voltages, arc-free operation appeared not to be attainable.
11. SUPPLEMENTARY NOTES (Continued)

Additional support and funding provided by the Strategic Defense Initiative Office.
<table>
<thead>
<tr>
<th>Length</th>
<th>Meter (m)</th>
<th>Kilometer (km)</th>
<th>Inch (in)</th>
<th>Foot (ft)</th>
<th>Yard (yd)</th>
<th>Mile (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.0033333</td>
<td>39.3701</td>
<td>3.28084</td>
<td>1.09361</td>
<td>0.00062</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>0.001</td>
<td>39.3701</td>
<td>32.8084</td>
<td>10.9361</td>
<td>0.62137</td>
</tr>
<tr>
<td>0.00254</td>
<td>0.00003</td>
<td>0.001</td>
<td>1</td>
<td>0.03333</td>
<td>0.011784</td>
<td>0.00002</td>
</tr>
<tr>
<td>0.00488</td>
<td>0.00008</td>
<td>0.001</td>
<td>19.6850</td>
<td>1.96850</td>
<td>0.65660</td>
<td>0.00019</td>
</tr>
<tr>
<td>0.01144</td>
<td>0.00011</td>
<td>0.001</td>
<td>36</td>
<td>36</td>
<td>12</td>
<td>0.00057</td>
</tr>
<tr>
<td>1.60934</td>
<td>1</td>
<td>1</td>
<td>63.5029</td>
<td>52.4931</td>
<td>17.5975</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area</th>
<th>Meter (m)</th>
<th>Are (a)</th>
<th>Hectare (ha)</th>
<th>Square Kilometer (km²)</th>
<th>Square Yard (yd²)</th>
<th>Acre (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.001</td>
<td>0.001</td>
<td>0.00010</td>
<td></td>
<td>0.00010</td>
<td>0.00002</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td>0.01</td>
<td>0.00035</td>
</tr>
<tr>
<td>10000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>0.24711</td>
</tr>
<tr>
<td>0.83613</td>
<td>0.00836</td>
<td>0.00010</td>
<td>0.00004</td>
<td></td>
<td>0.00004</td>
<td>0.00021</td>
</tr>
<tr>
<td>4046.86</td>
<td>40.4691</td>
<td>40.4691</td>
<td>0.00405</td>
<td></td>
<td>0.00405</td>
<td>0.00210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Cubic Meter (m³)</th>
<th>Kiliter (L)</th>
<th>U.S. Gallon (gal)</th>
<th>Cubic Foot (cu ft)</th>
<th>Imperial Gallon (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>264.171</td>
<td>6.3027</td>
<td>219.978</td>
</tr>
<tr>
<td>0.001</td>
<td>1</td>
<td>1</td>
<td>0.26418</td>
<td>0.06302</td>
<td>0.21998</td>
</tr>
<tr>
<td>0.000254</td>
<td>0.000254</td>
<td>0.000254</td>
<td>0.0006302</td>
<td>0.0001622</td>
<td>0.0006302</td>
</tr>
<tr>
<td>0.00488</td>
<td>0.00488</td>
<td>0.00488</td>
<td>0.001968</td>
<td>0.000488</td>
<td>0.001968</td>
</tr>
<tr>
<td>0.01144</td>
<td>0.01144</td>
<td>0.01144</td>
<td>0.004546</td>
<td>0.001144</td>
<td>0.004546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>Gram (g)</th>
<th>Kilogram (kg)</th>
<th>Ton (t)</th>
<th>Carat (ct)</th>
<th>Ounce (oz)</th>
<th>Pound (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.00100</td>
<td>-</td>
<td>0.001</td>
<td>0.03527</td>
<td>0.00220</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>35.270</td>
<td>2.20462</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0002</td>
<td>0.0002</td>
<td>-</td>
<td>0.0001</td>
<td>0.000305</td>
<td>0.000184</td>
</tr>
<tr>
<td>28.3495</td>
<td>0.02835</td>
<td>0.0002835</td>
<td>1</td>
<td>141.748</td>
<td>1</td>
<td>0.06250</td>
</tr>
<tr>
<td>453.592</td>
<td>0.45359</td>
<td>0.004535</td>
<td>-</td>
<td>2267.95</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

CONVERSION TABLE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Table</td>
<td>iii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Inspection of Payload at Space Data Corp.</td>
<td>2</td>
</tr>
<tr>
<td>3 Participation in the SPEAR II Tests at Plum Brook</td>
<td>3</td>
</tr>
<tr>
<td>4 Participation in the SPEAR II Tests at White Sands Missile Range</td>
<td>7</td>
</tr>
<tr>
<td>5 Participation in the SPEAR II Meeting at W. J. Schaeffer Assoc. during September 24-25, 1990</td>
<td>8</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

The subject contract started on May 17, 1990. The original objective of this effort was to provide support in the analysis of the SPEAR II experiments, with primary emphasis on the space tests. As it turned out, substantially more effort was expended in performing the chamber tests at the NASA Plum Brook Station and no data was obtained from the flight tests. Thus, the products of this effort were limited to involvement in and analysis of laboratory evaluations of the SPEAR II payload.

The capability of Pulse Sciences, Inc. to perform this function is based on extensive experience in studying the interactions between high voltage devices and simulated space plasmas in chamber tests.
SECTION 2
INSPECTION OF PAYLOAD AT SPACE DATA CORPORATION

Dr. Bayless, the PSI Program Manager, visited Space Data Corp. on May 24, 1990 to inspect the SPEAR II payload and to generally become familiar with its design and characteristics. He discussed the payload design with other program participants (including John Antoniades, Doug Johnson, Randy Cooper, and Mark Wilkinson), reviewed the payload drawings, and participated in a payload status meeting.
SECTION 3
PARTICIPATION IN THE SPEAR II TESTS AT PLUM BROOK STATION

Dr. Bayless participated in the SPEAR II payload tests at the NASA Plum Brook Station during the period of June 15-18, 1990. He made contributions to the analysis of system fault modes that led to the payload malfunction and test termination on June 17. This included analysis of the electrical circuitry, component design and transient circuit response, and the definition of the possible scenarios that led to the malfunction.

Dr. Bayless also participated in the Plum Brook tests during the period of June 22-25. He contributed to the analysis of data pertaining to payload conditioning. In particular, he analyzed data that he obtained from the video monitors to determine the characteristics of the conditioning process.

Figure 1 shows plots of data taken during tests performed on the morning of June 24. The data was obtained by rating the intensity of transformer arcs, as viewed on the low-light video monitor, on a qualitative scale of 0-10, with 10 indicating the highest intensity and 0 indicating that no light was observed. The x-axis indicates the number of the flight sequence and the number of the test sequence. For these tests, a flight sequence consisted of 1 sec periods. Data recording was started after two 50 kV, one 80 kV and one 100 kV flight sequence had been completed. Individual curves are provided for nominal pulse transformer output voltages of 50, 80 and 100 kV.

The data shown in Figure 1 indicates that the transformer quickly conditioned at the lowest voltages. However, as the voltage was increased, the time required to achieve reliable conditioning increased. At the highest voltage, conditioning steadily improved, however, reliable conditioning was not
Figure 1. Results from the SPEAR II payload chamber tests without plasma.
achieved after thirteen 20-pulse bursts at that voltage (35 20-pulse bursts in total).

Figure 2 shows the results from tests on June 24 (8 p.m.) in which the SPEAR II payload was operated in a simulated space plasma. In this case the visually observed arc intensity was rated on a scale of 0-3 and the flight sequence was plotted along the x-axis.

These results indicate that the transformer conditioning proceeded more slowly and with less of a monotonic trend toward reliable conditioning. Even at the lowest voltage, it is seen that more pulses are required to reduce arcing to zero than was the case without plasma. But, after several sequences without arcing, more arcs were observed. At the highest voltage, the conditioning rate was slow and erratic; these results suggest that reliable conditioning may never be attained at 100 kV. Based on these results, which do not distinguish different pulse lengths, we conclude that some arcing should be expected when the SPEAR II pulse transformer is operated in a plasma environment.
Figure 2. Results from the SPEAR II payload chamber tests with plasma.
Dr. Bayless participated in the SPEAR II tests at WSMR during July 20-21, 1990. During these tests he contributed to test preparation by participating in: (1) definition and prioritization of test abort conditions and (2) discussions of expected test observations with other test observers. This test was aborted and, in a subsequent launch attempt, the payload had to be destroyed in mid-flight.
Dr. Bayless participated in the SPEAR Products Review meeting at W.J. Schaeffer Assoc. on September 25-26, 1990.
DISTRIBUTION LIST
DNA-TR-91-71

DEPARTMENT OF DEFENSE

DEFENSE INTELLIGENCE AGENCY
ATTN: DB-6

DEFENSE NUCLEAR AGENCY
2 CYS ATTN: MAJ W BEATTY
2 CYS ATTN: TITL

DEFENSE TECHNICAL INFORMATION CENTER
ATTN: DTIC/FDAB

STRATEGIC DEFENSE INITIATIVE ORGANIZATION
ATTN: LT COL RUSTAN

DEPARTMENT OF THE NAVY

NAVAL POSTGRADUATE SCHOOL
ATTN: DR R OLSEN PHYSICS DEPT

NAVAL RESEARCH LABORATORY
ATTN: CODE 4750 DR J ANTONIADES

OTHER GOVERNMENT

NASA
LEWIS RESEARCH CENTER
ATTN: DR D FERGUSON
ATTN: DR N GRIER

DEPARTMENT OF DEFENSE CONTRACTORS

APPLIED PHYSICAL ELECTRONICS RESEARCH CENTER
ATTN: DR W NUNNALLY

KAMAN SCIENCES CORP
ATTN: DASIAC

KAMAN SCIENCES CORPORATION
ATTN: DASIAC

POLYTECHNIC UNIVERSITY
ATTN: E E KUNHARDT

PULSE SCIENCES, INC
2 CYS ATTN: JOHN R BAYLESS

S-CUBED
ATTN: I KATZ

UTAH STATE UNIVERSITY
ATTN: CASS DR W J RAITT

W J SCHAFER ASSOCIATES, INC
ATTN: DR HERB COHEN

Dist-1