WAVE PROPAGATION IN LATERALLY VARYING MEDIA: A MODEL EXPANSION METHOD

Charles B. Archambeau

University of Colorado/CIRES
Campus Box 449
Boulder, CO 80309

1 May 1991

Final Report
1 August 1988-1 February 1991

Approved for Public Release; distribution unlimited
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Solid Earth Geophysics Branch
Earth Sciences Division

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
A general approach, using modes defined on subregions of the medium, has been developed to model seismic wave propagation in media with vertically and horizontally variable elastic and anelastic properties. The approach is also applicable to acoustic waves in fluid media and electromagnetic wave propagation in laterally varying media. The restriction on the medium variability is that it can be represented by step function variations in its properties in both the vertical and horizontal directions.

The basic method makes use of normal mode expansion of the wave field in each partitioned sub-region of the medium within which the medium is uniform in the lateral directions. Thus the medium is partitioned into laterally uniform zones and complete normal mode solutions are obtained for each horizontally layered zone. In the analytical development the "zonal eigenvalues and eigenfunctions" are generated by treating each zone as a layered half space or radially layered sphere, as is appropriate for medium geometry. The resulting set of modes are then used as bases for expansions of the wave fields in the layered subregions. The modes are then used as bases for expansions of the wave fields in each zone at the common boundaries.
between the zones where continuity of displacement and traction is required. This results in the definition of a "lateral propagator" of the wave field when applied to all the zones making up the entire medium and is, in application, very similar to the classical "vertical propagator" method. The method is exact when the lateral variations are actually discontinuous step changes in properties. When the actual changes can be approximated as a sequence of steps the method should be superior in computational accuracy and speed to numerical methods.
Table of Contents

Zonal Partitioning and Green's Function Representations 1

"Forward" and "Backward Propagating" Mode Expansions 5

Orthogonality and Normalization Relations for Zonal Eigenfunctions 8

Zonal Boundary Conditions, Projections and Lateral Propagators 12

Summary and Conclusions ... 20

References .. 21
Wave Propagation in Laterally Varying Media: A Modal Expansion Method

by

Charles B. Archambeau

Zonal Partitioning and Green's Function Representations

Consider a two dimensionally varying elastic-anelastic medium, as indicated in Figure 1. In each zone \(V_\alpha, \alpha = 1, 2, \ldots, M \), the medium varies in the vertical direction \((z) \), but is uniform in the horizontal direction \((y \) or \(\rho) \). The supposition is that the laterally varying medium can be approximated by a series of step variations in material properties in the same way as is done in the vertical direction.

In \(V_\alpha \) we have for the frequency domain displacement field \((a)u\) at any point \(r \) within \(V_\alpha \):

\[
(a)u_i(r, \omega) = \frac{1}{4\pi} \int_{\Sigma_\alpha} \left[t_j(r_0) (a)G_j(r, r_0; \omega) - (a)g_j(r, r_0; \omega) \right] d\alpha_o
\]

(1)

where \((a)G_j\) and \((a)g_j\) are the zonal displacement and traction Greens' functions appropriate for the zone or region \(V_\alpha \). The vertical boundary surfaces of \(V_\alpha \) are \(\Sigma_\alpha \) and \(\Sigma_{\alpha-1} \), as indicated in Figure 1. Here we assume no sources inside \(V_\alpha \) and that the Green's functions satisfy all internal boundary conditions on all horizontal layers in \(V_\alpha \). (In this case there are no surface integrals over internal boundaries in (1)). Green's functions in \(V_\alpha \) can be written in terms of the eigenvalues \(k_\alpha \) and eigenfunctions \((a)\psi\) for this zone as **:

* Summation over repeated coordinate indices is used throughout. Coordinate indices will appear as lower case latin subscripts and superscripts. The summation convention does not apply to any indices appearing in parenthesis.
** Throughout this development the “sum” over the eigenvalues \(K_\alpha \) will be written as a discrete summation but it should be understood that in an unbounded medium, such as a layered half space, part of the wave number spectrum will be continuous. In this case the “sum” over \(K_\alpha \) must be interpreted as a generalized summation involving a regular sum over the discrete part of the spectrum plus an integration over the continuous part of the wave number spectrum.
Figure 1. Zonal partitioning of a vertically and laterally varying medium into subregions of uniform horizontal layering.
\[(a)G_j(r, r_o; \omega) = 4\pi \sum_{m,k,} \frac{(a)\psi_j(r_o, k_\alpha) (a)\psi_i(r, k_\alpha)}{N_{\alpha}(k_\alpha, \omega)}\]

where \((a)\psi_i\) is the complex conjugate of \((a)\psi_i\) and \(N_\alpha\) is a normalization constant which may be a function of frequency \(\omega\) and the wave number \(k_\alpha\). Since the \((a)\psi_j\) are eigenfunctions for the region \(V_\alpha\), this Green's function satisfies all boundary conditions along the horizontal boundaries in \(V_\alpha\). (For details see Harvey, 1983.)

Further, since:

\[(a)g_j(r; r_o; \omega) = n_k^{(o)} \left[C_{k,}^{(o)} \frac{\partial (a)G_j(r, r_o; \omega)}{\partial x_{j}^{(o)}} \right] \]

where \(n_k^{(o)}\) is the surface normal to \(\Sigma_\alpha\) and \(\Sigma_{\alpha-1}\) and \(x_{j}^{(o)}\) are source coordinate variables, then

\[(a)g_j(r; r_o; \omega) = 4\pi \sum_{m,k,} \frac{(a)\psi_j(r_o, k_\alpha) (a)\psi_i(r, k_\alpha)}{N_{\alpha}(k_\alpha, \omega)}\]

Here \(m\) is the angular index for cylindrical coordinates, \(k_\alpha\) the horizontal wave number corresponding to the modes in \(V_\alpha\) and where:

\[(a)\psi_j(r_o, k_\alpha) = n_k^{(o)} C_{k,}^{(o)} \frac{\partial (a)\psi_n(r_o, k_\alpha)}{\partial x_{j}^{(o)}}\]

Because of the horizontal layering in \(V_\alpha\), the eigenfunctions \((a)\psi_j\) and \((a)\Psi_j\) are defined sectionally, that is:

\[(a)\psi_j = \left\{(a)\psi_j^{(s)}(z) \mid z_{s-1} \leq z \leq z_s \right\}_j^{N_s}\]

with \((s)\) the horizontal layer index in \(V_\alpha\).

For the horizontally layered region \(V_\alpha\) we have that:

\[
(a)G_j = (a)g_j + (a)\tilde{g}_j
\]

\[
(a)g_j = (a)Rg_j + (a)\tilde{g}_j
\]
Here \((r)G_j \) and \((l)G_j \) are the Rayleigh and Love type Green's displacement functions (with similar names for the associated Green's tractions) and where

\[
\begin{align*}
(r)G_j(r, r_0; \omega) &= 4\pi \sum_{m,k_\alpha} \frac{(r)\psi_j(r_0, r, k_\alpha)}{N_\alpha^{(r)}(k_\alpha, \omega)} \\
(l)G_j(r, r_0; \omega) &= 4\pi \sum_{m,k_\alpha} \frac{\overline{(l)\psi_j(r_0, r, k_\alpha)}}{N_\alpha^{(l)}(k_\alpha, \omega)}
\end{align*}
\]

with \(r k_\alpha \) and \(l k_\alpha \) representing the Rayleigh and Love type mode eigenvalues. Likewise

\[
\begin{align*}
(r)\hat{g}_j(r, r_0; \omega) &= 4\pi \sum_{m,k_\alpha} \frac{(r)\overline{\psi_j(r_0, r, k_\alpha)}}{N_\alpha^{(r)}(k_\alpha, \omega)} \\
(l)\hat{g}_j(r, r_0; \omega) &= 4\pi \sum_{m,k_\alpha} \frac{\overline{(l)\overline{\psi_j(r_0, r, k_\alpha)}}}{N_\alpha^{(l)}(k_\alpha, \omega)}
\end{align*}
\]

In cylindrical coordinates \((r, \phi, z)\), the eigenfunctions are (see, for example, Harvey, 1981):

\[
\begin{align*}
(r)\psi(r, r_0, k_\alpha) &= (a)D_m(z; r k_\alpha) P(r k_\alpha \rho, \phi) \\
&\quad + (a)E_m(z; r k_\alpha) B(r k_\alpha \rho, \phi) \\
(l)\psi(r, r_0, k_\alpha) &= (a)R_m(z; l k_\alpha) P(l k_\alpha \rho, \phi) \\
&\quad + (a)S_m(z; l k_\alpha) B(l k_\alpha \rho, \phi)
\end{align*}
\]

\[
\begin{align*}
(r)\psi(r, l k_\alpha) &= (a)F_m(z; l k_\alpha) C_m(l k_\alpha \rho, \phi) \\
(l)\psi(r, l k_\alpha) &= (a)T_m(z; l k_\alpha) C_m(l k_\alpha \rho, \phi)
\end{align*}
\]

Here \(P, B \) and \(C \) are the vector cylindrical harmonics defined as:

\[
\begin{align*}
P_m(kp, \phi) &= \hat{e}_z J_m(kp) e^{im\phi} \\
B_m(kp, \phi) &= \hat{e}_p \frac{\partial}{\partial kp} + \hat{e}_\phi \left[\frac{1}{kp} \frac{\partial}{\partial \phi} - \hat{e}_\phi \frac{\partial}{\partial kp} \right] J_m(kp) e^{im\phi} \\
C_m(kp, \phi) &= \hat{e}_p \left[\frac{1}{kp} \frac{\partial}{\partial \phi} - \hat{e}_\phi \frac{\partial}{\partial kp} \right] J_m(kp) e^{im\phi}
\end{align*}
\]

where
\[J_m(kp) = H_m^{(1)}(kp) + H_m^{(2)}(kp) \]

with \(J_m \) the cylindrical Bessel function and \(H_m^{(1)} \) and \(H_m^{(2)} \) the cylindrical Hankel functions.

These vector functions are clearly such that \(P_m \cdot B_m = P_m \cdot C_m = B_m \cdot C_m = 0 \) and also have the usual functional orthogonality. (e.g. Stratton 1941, Morse and Feshbach, 1953). Here \(\hat{e}_z, \hat{e}_\rho \) and \(\hat{e}_\phi \) are the unit vectors in cylindrical coordinates. The various "stress-displacement" functions \((\alpha)D_m, (\alpha)E_m, (\alpha)R_m \ldots (\alpha)T_m \) in (8) are the same as those usually appearing in the ordinary developments for a laterally homogeneous layered half space -- such as described in Harkrider (1964); Ben Menahem and Singh (1972), or Harvey (1981).

Similar representations for the eigenfunctions can be given in cartesian and spherical coordinates. (In the latter case the eigenfunctions \(k\psi \) and \(l\psi \) are usually termed spheroidal and torsional; and \(P, B \) and \(C \) become vector spherical harmonics). The choice of cylindrical coordinates implies rotational symmetry, that is that the medium is partitioned into zones \(V_\alpha \) which are cylindrical shells, with Figure 1 depicting a cross section at fixed \(\phi \). If cartesian coordinates are used, then Figure 1 represents a cross section at constant \(y \), with properties constant in the \(\pm y \) directions. In the development that immediately follows cylindrical coordinates will be used; however the cartesian and spherical representations are also appropriate and the development and results are analogous to those for the cylindrical choice.

"Forward" and "Backward Propagating" Mode Expansions

In addition to the eigenfunction expansions of the Green's functions in \(V_\alpha \), we can also expand the displacements and tractions, appearing in (1) in terms of eigenfunctions in \(V_\alpha \). In particular, \((\alpha)\tilde{u}_{(r_o)} \) and \((\alpha)\tilde{t}_{(r_o)} \) may be expanded in terms of "forward" and "backward" propagating modes as:
where the superscripts (1) and (2) denote modes propagating in the positive and negative radial (p) directions. Specifically,

\[
\begin{align*}
(a)u_i(r_o, \omega) &= (a)u_i^{(1)}(r_o, \omega) + (a)u_i^{(2)}(r_o, \omega) \\
(a)v_i(r_o, \omega) &= (a)v_i^{(1)}(r_o, \omega) + (a)v_i^{(2)}(r_o, \omega)
\end{align*}
\] (11)

where

\[
\begin{align*}
(a)u_i^{(1)}(r_o, \omega) &= \sum_{m', k_{\alpha}^{*}} \left[(a)D_{m'}(z_0; k_{\alpha}^{*}) P_{m'}^{(p)} + (a)E_{m'}(z_0; k_{\alpha}^{*}) B_{m'}^{(p)} + (a)F_{m'}(z_0; k_{\alpha}^{*}) C_{m'}^{(p)} \right] e^{im\phi} \\
(a)v_i^{(1)}(r_o, k_{\alpha}^{*}) &= \sum_{m', k_{\alpha}^{*}} \left[(a)G_{m'}(z_0; k_{\alpha}^{*}) P_{m'}^{(p)} + (a)H_{m'}(z_0; k_{\alpha}^{*}) B_{m'}^{(p)} + (a)I_{m'}(z_0; k_{\alpha}^{*}) C_{m'}^{(p)} \right] e^{im\phi}
\end{align*}
\] (12)

with

\[
\begin{align*}
P_{m'}^{(p)} &= \hat{e}_z H_{m'}^{(p)}(k_{\alpha}^{*} \rho) ; p = 1, 2 \\
B_{m'}^{(p)} &= \left[\hat{e}_p \frac{\partial}{\partial (k_{\alpha}^{*} \rho)} + \hat{e}_z \left[\frac{im'}{k_{\alpha}^{*} \rho} \right] \right] H_{m'}^{(p)}(k_{\alpha}^{*} \rho) \\
C_{m'}^{(p)} &= \left[\hat{e}_p \left[\frac{im'}{k_{\alpha}^{*} \rho} \right] - \hat{e}_z \frac{\partial}{\partial (k_{\alpha}^{*} \rho)} \right] H_{m'}^{(p)}(k_{\alpha}^{*} \rho)
\end{align*}
\] (14)

The coefficients \((a)D_{m'}^{(p)}(k_{\alpha}^{*})\) are to be determined from boundary conditions at \(\Sigma_\alpha\) and \(\Sigma_{\alpha-1}\). these conditions bring the continuity of displacement and traction on these surfaces. On the other hand, of course, all the functions \((a)D_{m'}^{(p)}\), \((a)E_{m'}^{(p)}\), \((a)F_{m'}^{(p)}\), \((a)G_{m'}^{(p)}\), \((a)H_{m'}^{(p)}\), \((a)I_{m'}^{(p)}\), and \((a)T_{m'}^{(p)}\) are known functions of the coordinate variables and the intrinsic material properties of the internal horizontal layers, since they are provided by the usual one-dimensional propagator approach in a layered half space (e.g., Harvey, 1981). The explicit forms of the functions are included in the
Appendix 1.

Given that G_j^1 and g_j^1 in (1) can be split into Rayleigh and Love type Green's functions, as defined in (5)-(9), then it follows that $(a)u_j$ can also be split into modal sums involving only $(a)\psi_j$ and $(a)\psi_j$. Therefore:

$$(a)u_j = \sum_{p=1}^{2} (a)u_j^{(p)} = \sum_{p=1}^{2} \left[(a\psi_j^{(1)}) + (a\psi_j^{(2)}) \right]$$

where

$$(a\psi_j^{(p)}(r_o, \omega) = \sum_{m', \mu k_a} \left[(a\psi_j^{(1)}(\mu k_a) - (a\psi_j^{(2)}(\mu k_a)) \right]$$

with

$$
\begin{align*}
(a\psi_j^{(1)}(r_o, \omega) &= \left[\frac{1}{2} D_{m'}(z_o : \omega k_a) P_{m'}^{(p)} + \frac{1}{2} E_{m'}(z_o : \omega k_a) B_{m'}^{(p)} \right] e^{ik_a r} \\
(a\psi_j^{(2)}(r_o, \omega) &= \left[\frac{1}{2} F_{m'}(z_o : 1 k_a) C_{m'}^{(p)} \right] e^{ik_a r}
\end{align*}
$$

A similar decomposition applies to the traction $(a)t$.

It is important to note that the eigenfunctions used to expand the Green's functions in equations (2) - (7) are appropriate for the horizontally layered zone in V_{α} and are themselves normalized such that:

$$
\langle (a)\psi_j^{(p)}(k_\alpha), (a)\psi_j^{(p)}(k_\alpha') \rangle = \oint_{\gamma} (a)\psi_j^{(p)}(k_\alpha) (a)\overline{\psi}_j^{(p)}(k_\alpha') dV = \delta(k_\alpha - k_\alpha') \delta_{m'm'}
$$

$$
\langle (a)\psi_j^{(p)}(k_\alpha), (a)\psi_j^{(p)} \rangle = \oint_{\gamma} (a)\psi_j^{(p)}(k_\alpha) (a)\overline{\psi}_j^{(p)}(k_\alpha') dV = \delta(k_\alpha - k_\alpha') \delta_{m'm'}
$$

where $(a)\overline{\psi}_j$ denotes the complex conjugate of $(a)\psi_j$ and the right hand side involves the usual
delta functions. Therefore the normalization factors appearing in the Green's function expansions are free parameters that may be chosen so as to appropriately normalize the zonal Green's functions in \(V_\alpha, \alpha = 1, 2, \ldots M \).

To obtain the appropriate normalization factors for \(\psi_j^\alpha \) and \(\xi_j^\alpha \) and, in addition, to express these Green's functions in forms that are convenient for use with the expanded form for \((\alpha)u_j \) in (15)-(16), it is useful to adopt an expansion form for the Green’s functions that is similar to that for \((\alpha)u_j \) in (15). That is, using both \(\ldots \psi_j^{(1)} \) and \(\ldots \psi_j^{(2)} \) in the expansion for \((\alpha)G_j \), we express the Green's functions as:

\[
(\xi_j^\alpha (r, ro; \omega) = (\xi_j^\alpha 0 + (\xi_j^\alpha 2) \ldots \psi_j^{(1)}(r, ro; \omega) = (\xi_j^{(1)} 1 + (\xi_j^{(2)} 2)
\]

where:

\[
(\xi_j^\alpha 0 = 4\pi \sum \frac{\ldots \psi_j^{(p)}(r_o, \omega)}{\ldots N_j^{(p)}(r_o, \omega)} (\alpha)_{j, m}(r, \omega) \]

\[
(\xi_j^\alpha 2 = 4\pi \sum \frac{\ldots \psi_j^{(p)}(r_o, \omega)}{\ldots N_j^{(p)}(r_o, \omega)} (\alpha)_{j, m}(r, \omega) \]

and similarly for \(\psi_j^\alpha \) and \(\xi_j^\alpha \), the Green’s tractions.

Orthogonality and Normalization Relations for Zonal Eigenfunctions

We can use (15)-(16) in (1) and also substitute (20)-(21) into this representation integral. Since the representation given by (1) should be of the form of the expansion in (15), we should obtain by proper choice of the normalization factors, \(\ldots N_j^{(p)}(r_o, \omega) \) and \(\ldots N_j^{(p)}(r_o, \omega) \), exactly the expansion given in (15) in terms of forward and backward propagating modes. In particular, from (1) we have:

\[
(\alpha)u_j (r, \omega) = (\alpha)u_j (r, \omega) + (\alpha)u_j (r, \omega)
\]
Introducing the explicit eigenfunction expansions from (15)-(16) and (20)-(21), we get:

\[
(q) u_j(r, \omega) = \sum_{p=1}^{3} (q) u_j^{(p)}(r, \omega)
\]

(24)

\[
(q) u_j^{(p)}(r, \omega) = \sum_{m', \ell' k'_{\alpha}} (q) \alpha_m^{(p)}(\ell' k'_{\alpha}) \sum_{m, \ell k_\alpha} \left\{ \frac{1}{R N_{\ell}^{(q)}(k_\alpha, \omega)} \right\} \left\{ <(q) \Psi_j^{(p)}(k_\alpha), (q) \Psi_j^{(1)}(k_\alpha)>_{\alpha, \alpha-1} \right. \\
\left. - <(q) \Psi_j^{(p)}(k_\alpha), (q) \Psi_j^{(1)}(k_\alpha)>_{\alpha, \alpha-1} \right\} <(q) \chi_j^{(1)}(r, k_\alpha) + \left\{ <(q) \Psi_j^{(p)}(k_\alpha), (q) \Psi_j^{(2)}(k_\alpha)>_{\alpha, \alpha-1} \right. \\
\left. - <(q) \Psi_j^{(p)}(k_\alpha), (q) \Psi_j^{(2)}(r, k_\alpha)>_{\alpha, \alpha-1} \right\} <(q) \chi_j^{(2)}(r, k_\alpha) >
\]

(25)

Here terms of the form:

\[
<\psi_j(k'_{\alpha}), \chi_j(k_\alpha)>_{\alpha, \alpha-1} = <\psi_j(k'_{\alpha}), \chi_j(k_\alpha)>_{\alpha} + <\psi_j(k'_{\alpha}), \chi_j(k_\alpha)>_{\alpha-1}
\]

are introduced, where the inner product is defined over the surface \(\Sigma_{\alpha}\) (or \(\Sigma_{\alpha-1}\)) as:

\[
<\psi_j(k'_{\alpha}), \chi_j(k_\alpha)>_{\alpha} = \int_{\Sigma_{\alpha}} \psi_j(r_o, k'_{\alpha}) \overline{\chi_j(r_o, k_\alpha)} d\sigma_o
\]

with summation over the repeated coordinate index (j) implied. An exactly analogous result holds for \(L u_j\) with the suffix "R" replaced by "L" in (24) and (25).

Comparing (25) with the equivalent expressions in (15) - (16), it is clear that the inner products appearing in (25) must reduce to delta functions over the angular index \(m\) and the mode eigenvalues \(k_\alpha\). In particular, the following orthogonality conditions apply*:

*Where it is obvious from context, the R and L identifying subscripts on the wave numbers \(k_\alpha\) and \(l k_\alpha\) will be suppressed in order to reduce clutter in the equations.
\[\langle \Phi_{y}(p)(k_{\alpha}), \Phi_{y}(q)(k_{\alpha}) \rangle_{\beta} - \langle \Phi_{y}(p)(k_{\alpha}), \Phi_{y}(q)(k_{\alpha}) \rangle_{\beta} = \int_{\alpha} \left[\langle \Phi_{y}(p)(k_{\alpha}r_{\alpha}) \cdot \Phi_{y}(p)(k_{\alpha}r_{\alpha}) \rangle - \langle \Phi_{y}(p)(k_{\alpha}r_{\alpha}) \cdot \Phi_{y}(q)(k_{\alpha}r_{\alpha}) \rangle \right] d\alpha_{o} \]

(26)

\[\theta_{n_{p}} \left[P_{m}(k_{\alpha}d_{p}) \cdot \Phi_{y}(p)(k_{\alpha}d_{p}) + \Phi_{y}(p)(k_{\alpha}d_{p}) \cdot \Phi_{y}(p)(k_{\alpha}d_{p}) \right] \delta_{k_{m}} \delta_{m} = \]

with \(\beta = \alpha, \alpha - 1 \) and \(p = 1,2 \) and where \(\theta_{n_{p}} = 2\pi d_{p} \). (\(d_{p} \) is the constant value of the radial coordinate on the surface \(\Sigma_{p} \).) In addition,

\[\langle \Phi_{y}(p)(k_{\alpha}), \Phi_{y}(q)(k_{\alpha}) \rangle_{\beta} - \langle \Phi_{y}(p)(k_{\alpha}), \Phi_{y}(q)(k_{\alpha}) \rangle_{\beta} = \int_{\alpha} \left[\langle \Phi_{y}(p)(k_{\alpha}r_{\alpha}) \cdot \Phi_{y}(q)(k_{\alpha}r_{\alpha}) \rangle - \langle \Phi_{y}(p)(k_{\alpha}r_{\alpha}) \cdot \Phi_{y}(q)(k_{\alpha}r_{\alpha}) \rangle \right] d\alpha_{o} = 0 \]

(27)

for \(\beta = \alpha, \alpha - 1 \) and \(p \neq q \). Formally identical relations hold for the eigenfunctions \(\Phi_{y}(p) \) and are obtained by replacing the suffix "R" by "L" in (26) and (27). Here we observe that the forward and backward propagating modes are completely orthogonal sets. These conditions are equivalent to those obtained by Herrera (1964) and McGarr and Alsop (1967) and were used by Kennett (1983) in his development of a formalism for wave propagation in laterally varying media. In more explicit form, equations (26) and (27) are equivalent to:

\[\int_{0}^{\infty} \left[(\alpha)R_{m}(z_{0} ; k_{\alpha}') (\alpha)D_{m}(z_{0} ; k_{\alpha}) - (\alpha)D_{m}(z_{0} ; k_{\alpha}') (\alpha)R_{m}(z_{0} ; k_{\alpha}) \right] dz_{0} = \delta_{k_{m}'} \delta_{k_{m}} \]

\[\int_{0}^{\infty} \left[(\alpha)S_{m}(z_{0} ; k_{\alpha}') (\alpha)E_{m}(z_{0} ; k_{\alpha}) - (\alpha)E_{m}(z_{0} ; k_{\alpha}') (\alpha)S_{m}(z_{0} ; k_{\alpha}) \right] dz_{0} = \delta_{k_{m}'} \delta_{k_{m}} \]

where the subscript "R" on the P-SV wave number has also been suppressed in these expressions. For the SH modes the analogous orthogonality relation is easily seen to be

\[\int_{0}^{\infty} \left[(\alpha)T_{m}(z_{0} ; k_{\alpha}') (\alpha)\overline{E}_{m}(z_{0} ; k_{\alpha}) - (\alpha)\overline{E}_{m}(z_{0} ; k_{\alpha}') (\alpha)T_{m}(z_{0} ; k_{\alpha}) \right] dz_{0} = \delta_{k_{m}'} \delta_{k_{m}} \]
where the wave numbers and \(k_\alpha \) and \(k_\alpha' \) now refer to the SH wave number set \(L_k \). The "vertical eigenfunctions" in \(V_\alpha \) are those defined in (13) and are simple exponentials in \(z_\alpha \). (See Harvey, 1981.) Here also we consider the \(k_\alpha \) to be discrete infinite sets, so that orthogonality is expressed by the Kronecker delta \(\delta_{k_\alpha}^{k_\alpha} \).

Using these orthogonality relations in (25) gives:

\[
(\Psi_\alpha^{(1)}(r, \omega) = \sum_{m, k_\alpha} (\alpha, \Psi_\alpha^{(1)}(k_\alpha) \sum_{m, k_\alpha} \left[\frac{\delta_{k_\alpha}^{k_\alpha} \delta_{m}^{m'}}{R_{N_1}^{(\alpha)}} \right] \left[n_\alpha \left\{ P_m^{(1)}(k_\alpha) \cdot \bar{P}_m^{(1)}(k_\alpha) + B_m^{(1)}(k_\alpha) \cdot \bar{B}_m^{(1)}(k_\alpha) \right\}

+ n_{\alpha-1} \left\{ P_{m'}^{(1)}(k_{\alpha-1}) \cdot \bar{P}_m^{(1)}(k_{\alpha-1}) + B_{m'}^{(1)}(k_{\alpha-1}) \cdot \bar{B}_m^{(1)}(k_{\alpha-1}) \right\} \right] (\alpha, \Psi_\alpha^{(1)}(r, k_\alpha)
\]

So

\[
(\Psi_\alpha^{(1)}(r, \omega) = \sum_{m, k_\alpha} (\alpha, \Psi_\alpha^{(1)}(k_\alpha) (\alpha, \Psi_\alpha^{(1)}(r, k_\alpha))
\]

provided we take:

\[
R_{N_1}^{(\alpha)} = \left[n_\alpha \left\{ P_m^{(1)}(k_\alpha) \cdot \bar{P}_m^{(1)}(k_\alpha) + B_m^{(1)}(k_\alpha) \cdot \bar{B}_m^{(1)}(k_\alpha) \right\}

+ n_{\alpha-1} \left\{ P_{m'}^{(1)}(k_{\alpha-1}) \cdot \bar{P}_m^{(1)}(k_{\alpha-1}) + B_{m'}^{(1)}(k_{\alpha-1}) \cdot \bar{B}_m^{(1)}(k_{\alpha-1}) \right\} \right] \]

(28)

Similarly,

\[
(\Psi_\alpha^{(2)}(r, \omega) = \sum_{m, k_\alpha} (\alpha, \Psi_\alpha^{(2)}(k_\alpha) (\alpha, \Psi_\alpha^{(2)}(r, k_\alpha))
\]

provided

\[
R_{N_2}^{(\alpha)} = \left[n_\alpha \left\{ P_m^{(2)}(k_\alpha) \cdot \bar{P}_m^{(2)}(k_\alpha) + B_m^{(2)}(k_\alpha) \cdot \bar{B}_m^{(2)}(k_\alpha) \right\}

+ n_{\alpha-1} \left\{ P_{m'}^{(2)}(k_{\alpha-1}) \cdot \bar{P}_m^{(2)}(k_{\alpha-1}) + B_{m'}^{(2)}(k_{\alpha-1}) \cdot \bar{B}_m^{(2)}(k_{\alpha-1}) \right\} \right] \]

(29)
The results for \(u \) are analogous and the normalization factors are:

\[
I_N^1(\alpha) = \left[n_\alpha C_m^{(1)}(k_\alpha \rho_{\alpha-1}) \cdot \bar{C}_m^{(1)}(k_\alpha \rho_{\alpha}) + n_{\alpha-1} C_m^{(1)}(k_\alpha \rho_{\alpha-1}) \cdot \bar{C}_m^{(1)}(k_\alpha \rho_{\alpha-1}) \right]
\]

(30)

\[
I_N^2(\alpha) = \left[n_\alpha C_m^{(2)}(k_\alpha \rho_{\alpha}) \cdot \bar{C}_m^{(2)}(k_\alpha \rho_{\alpha}) + n_{\alpha-1} C_m^{(2)}(k_\alpha \rho_{\alpha-1}) \cdot \bar{C}_m^{(2)}(k_\alpha \rho_{\alpha-1}) \right]
\]

(31)

Thus, the form of the displacement field in any one of the zones \(V_\alpha \) is given by

\[
(\alpha)u_i(r, \omega) = \sum_{m, \pm k_\alpha} \left[(\hat{q})A_m^{(1)}(\pm k_\alpha) \psi_1^{(1)}(r, \pm k_\alpha) + (\hat{q})A_m^{(2)}(\pm k_\alpha) \psi_1^{(2)}(r, \pm k_\alpha) \right] + \sum_{m, \pm k_\alpha} \left[(\hat{q})A_m^{(1)}(\pm k_\alpha) \psi_1^{(1)}(r, \pm k_\alpha) + (\hat{q})A_m^{(2)}(\pm k_\alpha) \psi_1^{(2)}(r, \pm k_\alpha) \right] ; \ r \cdot V_\alpha
\]

(32)

which is (merely) a sum of P-SV modes propagating in the forward and backward horizontal directions, plus a similar sum of SH modes. Further, the displacement field in \(V_\alpha \) is connected to its values on the boundary surfaces \(\Sigma_\alpha \) and \(\Sigma_{\alpha-1} \) by the representations in (23), with the Greens functions given by the eigenfunction expansions of (20) - (21) and with the normalizations specified by (28) - (31). Use of these latter representations provide the means of determining the coefficients \((\hat{q})A_m^{(p)}\) and \((\hat{q})A_m^{(p)}\) in (32), and thereby an explicit expression of the displacement field in \(V_\alpha \) in terms of the modes of this horizontally layered region. As will be shown, the coefficients between all the zones \(V_\alpha, \alpha = 1, 2, \cdots, \), \(M \), are linked by a propagator formalism.

Zonal Boundary Conditions, Projections and Lateral Propagators

Continuity conditions expressing conservation of momentum, mass and energy apply throughout the medium, however complex the intrinsic material properties. In particular such conditions apply along the control surfaces \(\Sigma_\alpha \) separating the zones of uniform lateral properties.
in Figure 1. In the case of a solid medium, with welded contacts at all layer boundaries, the continuity conditions along the surface Σ_α are:

$$\begin{bmatrix} (\alpha)_{uj} \\ (\alpha)_{lj} \end{bmatrix}_\alpha = \begin{bmatrix} (\alpha+1)_{uj} \\ (\alpha+1)_{lj} \end{bmatrix}_\alpha ; j = 1, 2, 3$$

(33)

where the subscript α on the matrix brackets is used to indicate evaluation on the vertical boundary Σ_α between the zones V_α and $V_{\alpha+1}$.

The displacements and tractions in (33) can be expressed in terms of the eigenfunction expansion of (32). However, since the P-SV and SH modes are decoupled in V_α and $V_{\alpha+1}$, then (33) can also be expressed by the decoupled set of relations:

$$\sum_m \sum_{r\alpha} \sum_{p=1}^2 \begin{bmatrix} (q)_{R}A_{m_i}^{(p)}(r\kappa_\alpha) \\ (q)_{L}\psi_j^{(p)}(r\kappa_\alpha) \end{bmatrix}_\alpha = \sum_m \sum_{r\alpha+1} \sum_{p=1}^2 \begin{bmatrix} (\alpha+1)_{R}A_{m_i}^{(p)}(r\kappa_{\alpha+1}) \\ (\alpha+1)_{L}\psi_j^{(p)}(r\kappa_{\alpha+1}) \end{bmatrix}_\alpha ; j = 1, 2$$

(34a)

$$\sum_m \sum_{i\kappa_\alpha} \sum_{p=1}^2 \begin{bmatrix} (q)_{R}A_{m_i}^{(p)}(i\kappa_\alpha) \\ (q)_{L}\psi_j^{(p)}(i\kappa_\alpha) \end{bmatrix}_\alpha = \sum_m \sum_{i\kappa_{\alpha+1}} \sum_{p=1}^2 \begin{bmatrix} (\alpha+1)_{R}A_{m_i}^{(p)}(i\kappa_{\alpha+1}) \\ (\alpha+1)_{L}\psi_j^{(p)}(i\kappa_{\alpha+1}) \end{bmatrix}_\alpha ; j = 3$$

(34b)

where the expansions in P-SV and SH modes have been substituted for u_j and t_j on both sides of (33). A similar set of boundary equations apply to the other vertical boundary of V_α, on the surface $\Sigma_{\alpha-1}$, in Figure 1. (In this case the matrices are evaluated on $\Sigma_{\alpha-1}$ so the matrix indices in (34) change to $(\alpha - 1)$ throughout, while on the right side of (34) all the eigenvalue and eigenfunction indices change from $\alpha + 1$ to $(\alpha - 1)$.)

We can extract expressions for individual mode coefficients $(q)R_{A_{m_i}^{(p)}}$ and $(q)L_{A_{m_i}^{(p)}}$, appropriate to the zone V_α, in terms of the mode coefficients in the zone $V_{\alpha+1}$ by taking integral inner products ("project ons") between the displacement and traction eigenfunctions on both sides of
Then we can use the (P-SV) orthogonality relations in (26) - (27), along with comparable orthogonal relations for SH modes. Specifically, using inner product bracket notation as before in equation (25) and taking the inner products between displacement and traction eigenfunctions on both sides of (34), we have:

$$
\sum_{m, \alpha} \sum_{p=1}^{n} (\alpha)A_{n}\delta(p)(k_{\alpha}) \begin{pmatrix}
\langle (\alpha)\Psi_{j}(p)(k_{\alpha}), (\alpha)\Psi_{j}(s)(k_{\alpha}) \rangle \\
\langle (\alpha)\Psi_{j}(p)(k_{\alpha}), (\alpha)\Psi_{j}(s)(k_{\alpha}) \rangle
\end{pmatrix} = \sum_{m, \alpha} \sum_{p=1}^{n} (\alpha+1)A_{n}\delta(p)(k_{\alpha+1}) \begin{pmatrix}
\langle (\alpha+1)\Psi_{j}(p)(k_{\alpha+1}), (\alpha+1)\Psi_{j}(s)(k_{\alpha}) \rangle \\
\langle (\alpha+1)\Psi_{j}(p)(k_{\alpha+1}), (\alpha+1)\Psi_{j}(s)(k_{\alpha}) \rangle
\end{pmatrix}
$$

(35)

where indices R or L have been suppressed but are implied, with appropriate use depending on whether j = 1, 2 or j = 3, as indicated by (34a) and (34b). (That is, this equation applies to either (34a) or (34b)). For specificity, one uses P-SV eigenfunctions and eigenvalues and a subscript "R" when considering component equations with j = 1 2 and uses SH eigenfunctions and eigenvalues with subscript "L" when considering the j = 3 component equation.) Here $k_{\alpha}^{(n)}$ denotes the specific n^{th} eigenvalue of one particular mode with angular index m'.

Now we can subtract the upper matrix equation in (35) from the lower one and then make use of the orthogonality relations for P-SV modes in (26) - (27), and the obvious similar pair for the SH modes, to obtain:

$$
(\alpha)A_{n}\delta(p)(k_{\alpha}) = \frac{1}{N_{s}(\alpha)} \sum_{k_{\alpha+1}} \sum_{p=1}^{n} (\alpha+1)A_{n}\delta(p)(k_{\alpha+1}) \begin{pmatrix}
\langle (\alpha+1)\Psi_{j}(p)(k_{\alpha+1}), (\alpha)\Psi_{j}(s)(k_{\alpha}) \rangle \\
\langle (\alpha+1)\Psi_{j}(p)(k_{\alpha+1}), (\alpha)\Psi_{j}(s)(k_{\alpha}) \rangle
\end{pmatrix} -

\langle (\alpha+1)\Psi_{j}(p)(k_{\alpha+1}), (\alpha)\Psi_{j}(s)(k_{\alpha}) \rangle_{\alpha} ; s = 1, 2
$$

(36)

where we have equated the sums over m, on each side of (35), term by term. This equation again applies to either P-SV or SH modes; however, for P-SV modes j = 1, 2 and for SH modes, then j = 3. Therefore in (36) the implied summation over the coordinate index is over j = 1 and 2, for the P-SV case, and for SH modes only the one term, for which j = 3, occurs. The free
index (s) denotes the forward and backward horizontally propagating modes, so that (36) expresses a relationship for both mode types. The factor \(N'_{\alpha}^{(s)} \) is the normalization "constant" appropriate for the different mode types. These factors are given in (28) - (29), for the forward and backward propagating P-SV modes, and in (30) - (31) for the SH modes.

It can be seen from (36) that a particular mode in \(V_\alpha \), at a particular eigenvalue (or wave number), will be "excited" by all the forward and backward propagating modes in \(V_{\alpha+1} \) in the manner described by the expression on the right side in (36). Thus, all the modes in \(V_{\alpha+1} \), at all wave number, will contribute to the excitation of any one mode in \(V_\alpha \) (at a particular wave number) in proportion to the sum of the mode coefficients, \((\alpha+1)A_{\alpha}^{(p)}(k_{\alpha+1}) \), weighted by the inner product factors given by the bracket term on the right side of (36). Thus the weight factors in (36) will be called coupling coefficients.

Considering the \(k_{\alpha+1} \) eigenvalues as a discrete (infinite) set \(\{k_{\alpha+1}^{(q)}\} \), as was implied for \(k_\alpha \) by the use of \(k_\alpha^{(n)} \), then we can define the discrete coupling coefficients as

\[
C_{\alpha}^{(p,s)}(\alpha + 1 ; \alpha) = \frac{1}{N'_{\alpha}^{(s)}} \left[\langle (\alpha+1)\psi_j^{(p)}(k_{\alpha+1}) \rangle, (\alpha)\psi_j^{(s)}(k_{\alpha}) \rangle \alpha - \langle (\alpha+1)\psi_j^{(p)}(k_{\alpha+1}) \rangle, (\alpha)\psi_j^{(s)}(k_{\alpha}) \rangle \alpha \right]
\]

(37)

and (36) becomes:

\[
(\alpha)A_{\alpha}^{(s)}(k_{\alpha}^{(n)}) = \sum_{p=1}^{2} \sum_{s=1}^{2} C_{\alpha}^{(p,s)}(\alpha+1 ; \alpha)(\alpha+1)A_{\alpha}^{(p)}(k_{\alpha+1}) ; s = 1, 2
\]

(38)

The coupling coefficients can be expressed in more detail when the specific functional forms of the eigenfunctions appearing in the inner products are used in (37). In this case we can use the orthogonality of the vector cylindrical harmonics to reduce the coupling factors to simple integrals over the vertical (z) coordinate on the boundaries of each zone \(V_\alpha \). Specifically, from (37) for the P-SV case, using the eigenfunction expressions given earlier in (13) - (14), one
has:

\[
\begin{align*}
\mathbf{r} C_{\text{in}}^{(a)} (\alpha+1 ; \alpha) &= \frac{n_\alpha}{\mathbf{r} N_s(\alpha)} \left[\begin{array}{c}
\langle (\alpha+1) D_1, (\alpha) R_n \rangle - \langle (\alpha+1) R_1, (\alpha) D_n \rangle \\
\langle (\alpha+1) E_1, (\alpha) S_n \rangle - \langle (\alpha+1) S_1, (\alpha) E_n \rangle
\end{array} \right] \varepsilon_n^{(p)}(k_{\text{dr}}[\rho_\alpha]) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \\
&+ \left[\begin{array}{c}
\langle (\alpha+1) D_1, (\alpha) R_n \rangle - \langle (\alpha+1) R_1, (\alpha) D_n \rangle \\
\langle (\alpha+1) E_1, (\alpha) S_n \rangle - \langle (\alpha+1) S_1, (\alpha) E_n \rangle
\end{array} \right] \mathbf{B}_m^{(s)}(k_{\text{dr}}[\rho_\alpha]) \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \end{align*}
\]

(39)

where \(n_\alpha = 2\pi\rho_\alpha \), with \(\rho_\alpha \) denoting the value of the radial coordinate on the surface \(\Sigma_\alpha \). Further, the various inner products involve the "vertical eigenfunctions" defined in (13) and (17); where these inner products have explicit forms of the type:

\[
\begin{align*}
\langle (\alpha+1) D_1, (\alpha) R_n \rangle &= \int (\alpha+1) D_m(z_0 : k_{\text{dr}}[\rho_\alpha]) \mathbf{P}_m^{(s)}(z_0 : k_{\text{d}}[\rho_\alpha]) dz_0 \\
\langle (\alpha+1) E_1, (\alpha) S_n \rangle &= \int (\alpha+1) S_m(z_0 : k_{\text{dr}}[\rho_\alpha]) \mathbf{S}_m^{(s)}(z_0 : k_{\text{d}}[\rho_\alpha]) dz_0
\end{align*}
\]

(39a)

with similar expressions for the other products in (39). If these products are compared to those in (26) and (27) - or more directly to the orthogonality relations involving the vertical eigenfunctions given by the equations following equation (27) - it can be seen that the inner products in (39) reduce to delta functions if the eigenfunctions in the zones \(V_\alpha \) and \(V_{\alpha+1} \) are the same; that is, if \((\alpha+1) D_m = (\alpha) D_m\), \((\alpha+1) R_m = (\alpha) R_m\), etc. This, of course, is as it must be, since only when the physical properties in the two zones are identical will the eigenfunctions be the same and it then follows that the coupling matrix must be diagonal - that is that the boundary between the two zones produces no cross mode excitation and is transparent. We see, therefore, that the analytical expression in (39) for the coupling does indeed have this required property.

The normalization factor for \(\mathbf{r} N_s^{(a)} \) is the ratio \(\mathbf{r} N_s^{(a)} / n_\alpha \) which can be redefined as \(\mathbf{r} \tilde{N}_s^{(a)} \), where from the previous expressions for \(\mathbf{r} N_s^{(a)} \), in (28) and (29), this constant has the form:

\[
\begin{align*}
\mathbf{r} N_s^{(a)} &= \left[\begin{array}{cc}
\mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) + \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \\
\left(\frac{\rho_{\alpha-1}}{\rho_\alpha} \right) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) + \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}])
\end{array} \right]^{-1} \\
&+ \left[\begin{array}{cc}
\mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) + \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_\alpha]) \\
\left(\frac{\rho_{\alpha-1}}{\rho_\alpha} \right) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) \mathbf{P}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) + \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}]) \mathbf{B}_m^{(s)}(k_{\text{d}}[\rho_{\alpha-1}])
\end{array} \right]^{-1}
\end{align*}
\]

(40)
In an exactly analogous fashion the coupling coefficients for the SH modes are found to be:

\[lC^{(n.s)}_{(n1)}(\alpha + 1 ; \alpha) = \frac{n_\alpha}{\tilde{N}_{n1}} \left[\langle (\alpha + 1)F_1 , (\alpha)T_n \rangle - \langle (\alpha + 1)T_1 , (\alpha)F_n \rangle \right] C^{(n)}_{m}(k_{\alpha + 1}^{(n)}\rho_{\alpha}) \tilde{C}^{(n)}_{m}(k_{\alpha}^{(n)}\rho_{\alpha}) \]

(41)

where the inner products are again of the simple form:

\[\langle (\alpha + 1)F_1 , (\alpha)T_n \rangle = \int_{0}^{\infty} (\alpha + 1)F_m(z_o : k_{\alpha + 1}^{(n)}) (\alpha)T_m(z_o : k_{\alpha}^{(n)}) dz_o \]

(41a)

Further, we can again define a new normalization factor \(\tilde{N}_{n1}(\alpha) = \tilde{N}_{n1}^{(n)} / n_\alpha \) which has the form:

\[\tilde{N}_{n1}(\alpha) = C^{(n)}_{m}(k_{\alpha}^{(n)}\rho_{\alpha}) \tilde{C}^{(n)}_{m}(k_{\alpha}^{(n)}\rho_{\alpha}) + \left[\frac{\rho_{\alpha - 1}}{\rho_{\alpha}} \right] C^{(n)}_{m}(k_{\alpha}^{(n)}\rho_{\alpha - 1}) \tilde{C}^{(n)}_{m}(k_{\alpha}^{(n)}\rho_{\alpha - 1}) \]

(42)

The computations involved in determining these coefficients are straightforward, since the cylindrical harmonics are tabulated and the integrals over the vertical coordinate \(z_o \) involve simple integrals of exponentials that can be evaluated analytically, in closed form, for the general case.

Since (3.:) constitutes a set of two equations for \(s = 1 \) and \(s = 2 \), corresponding to forward and backward propagating modes and since the sums on the right can clearly be expressed as a product of matrices, it is natural to write the results in matrix form. Therefore we define:

\[
\begin{bmatrix}
 (\alpha)\vec{a}_m^{(1)} \\
 (\alpha)\vec{a}_m^{(2)} \\
 \vdots \\
 (\alpha)\vec{a}_m^{(N)}
\end{bmatrix}
\]

\[; \text{for } s = 1 \text{ and } 2 \]

(43a)

and a similar column matrix of length (L) denoted \([\alpha + 1]P_{a}^{(p)}\), where the angular index \(m \) has been suppressed in writing the mode excitation matrices. Further, we can define coupling
matrices by:

\[
[C_{in}^{(p,s)}] = \begin{bmatrix}
C_{11}^{(p,s)} & C_{12}^{(p,s)} & \cdots & C_{1N}^{(p,s)} \\
C_{21}^{(p,s)} & C_{22}^{(p,s)} & \cdots & C_{2N}^{(p,s)} \\
\vdots & \vdots & \ddots & \vdots \\
C_{N1}^{(p,s)} & \cdots & \cdots & C_{NN}^{(p,s)}
\end{bmatrix}
\] \hspace{1cm} (43b)

for each s and p value, where s = 1, 2 and p = 1, 2. With these definitions one can write the system of equations implied by (38) in the form:

\[
\begin{bmatrix}
\{[\alpha]a_n^{(1)} \} \\
\{[\alpha]a_n^{(2)} \}
\end{bmatrix} = \begin{bmatrix}
[C_{in}^{(1,1)}] & [C_{in}^{(1,2)}] \\
[C_{in}^{(2,1)}] & [C_{in}^{(2,2)}]
\end{bmatrix}
\begin{bmatrix}
\{[\alpha+1]a_i^{(1)} \} \\
\{[\alpha+1]a_i^{(2)} \}
\end{bmatrix}
\] \hspace{1cm} (44)

where the forward and backward propagating mode excitation coefficients are displayed explicitly. In defining the \([C_{in}^{(p,s)}]\) matrices, and in writing the matrix result in (44), the "\(\alpha\) indices" have been suppressed. However, when confusion can arise they should be written as \([C_{in}^{(p,s)} (\alpha + 1; \alpha)]\), etc., since the \(\alpha\) indices change when the matrix refers to a boundary other than \(\Sigma_\alpha\). (eg. Between the zones \(V_{\alpha-1}\) and \(V_{\alpha}\), on the surface \(\Sigma_{\alpha-1}\), the coupling matrix is expressed as \([C_{in}^{(p,s)} (\alpha; \alpha-1)]\).

Obviously the coupling matrices are square only if \(L = N\), that is if we use as many modes in \(V_\alpha\) as in \(V_{\alpha+1}\) to represent the propagating waves. This choice will be adhered to, from this point forward, although it is not a necessary condition.

It is evident that the partitioned matrices can also be written in unpartitioned form as well, where, with \(L = N\), the mode coefficient matrices are of dimension \((2N \times 1)\) and the coupling matrix is square and of dimension \((2N \times 2N)\). Thus, we can also define mode coefficient matrices consisting of the (ordered) mode coefficients for the forward and backward propagating modes in the zones \(V_\alpha\) and \(V_{\alpha+1}\) as (say):
\[
\begin{bmatrix}
(a) m_n \\
(a+1) m_n
\end{bmatrix} = \begin{bmatrix}
(a) a_n^{(1)} \\
(a) a_n^{(2)}
\end{bmatrix}
\] (45a)

\[
\begin{bmatrix}
(a+1) m_n
\end{bmatrix} = \begin{bmatrix}
(a+1) a_n^{(1)} \\
(a+1) a_n^{(2)}
\end{bmatrix}
\]

and, similarly, we can define what can appropriately be called a horizontal propagator matrix:

\[
\begin{bmatrix}
H_n(\alpha+1 ; \alpha)
\end{bmatrix} = \begin{bmatrix}
C_n^{(1,1)} & C_n^{(2,1)} \\
C_n^{(1,2)} & C_n^{(2,2)}
\end{bmatrix}
\] (45b)

Now the equation (44) can be written in the more compact form:

\[
\begin{bmatrix}
(a) m_n
\end{bmatrix} = \begin{bmatrix}
H_n(\alpha+1 ; \alpha)
\end{bmatrix} \begin{bmatrix}
(a+1) m_n
\end{bmatrix}
\] (46)

and expresses the required conditions between the mode coefficients in neighboring zones.

If we take successive values of \(\alpha \), with \(\alpha \) ranging from 1 to \(M-1 \) say, then we get

\[
\begin{bmatrix}
(1) m_n \end{bmatrix} = [H_n(2 ; 1)][(2) m_1] \\
\begin{bmatrix}
(2) m_n \end{bmatrix} = [H_n(3 ; 2)][(3) m_1] \\
\vdots
\begin{bmatrix}
(M-1) m_n \end{bmatrix} = [H_n(M ; M-1)][(M) m_1]
\]

Clearly, by noting in these equations that the indices \(l \) and \(n \) are just dummy indices providing a numbering system for the eigenvalues, then

\[
\begin{bmatrix}
(1) m_n \end{bmatrix} = [H_n(2 ; 1)] [H_n(3 ; 2)] \cdots [H_n(M ; M-1)] \begin{bmatrix}
(M) m_1
\end{bmatrix}
\]

by successive substitutions. Consequently, we can write, for any \(\beta \geq \alpha + 1 \):

\[
\begin{bmatrix}
(\alpha) m_n
\end{bmatrix} = \left\{ \prod_{q=\alpha+1}^{\beta-1} [H_n(q ; q-1)] \right\} \begin{bmatrix}
(\beta) m_1
\end{bmatrix}
\] (47)
This is a propagator equation that connects the mode coefficients in any zone \(V_\beta \) with those in any other zone \(V_\alpha \). In case \(\beta = \alpha + 1 \) the equation (47) reduces to equation (46), which connects the coefficients in any two neighboring zones. Since the coupling coefficients composing \([H_{in}] \) can be computed from the simple eigenfunction inner products at the zone interfaces, this equation provides the means of computing mode coefficients that produce displacements and tractions satisfying all the boundary conditions along the vertical boundaries of the medium. Since the eigenfunctions used already satisfy the boundary conditions along the horizontal boundaries in each zone, then by use of the horizontal propagator relation all the boundary conditions in the laterally and vertically "layered" medium being considered can be satisfied.

Summary and Conclusions

The basic method described here makes use of normal mode expansions of the wave field in each partitioned sub-region of the medium within which the medium is uniform in the lateral directions. Thus the medium is partitioned into laterally uniform zones and complete normal mode solutions are obtained for each horizontally layered zone. In the analytical development the "zonal eigenvalues and eigenfunctions" are generated by treating each zone as a layered half space or radially layered sphere, as is appropriate for the medium geometry. The resulting set of modes are then used as bases for expansions of the wave fields in the layered subregions. The mode expansions defined on the zones are then "connected" by matching (equating) the exact Green's function representations of the wave fields in each zone at the common boundaries between the zones where continuity of displacement and traction is required. This results in the definition of a "lateral propagator" of the wave field when applied to all the zones making up the entire medium and is, in application, very similar to the classical "vertical propagator" method.
The method is exact when the lateral variations are actually discontinuous step changes in properties. When the actual changes can be approximated as a sequence of step the method should be superior in computational accuracy and speed to numerical methods.

In implementations of this method it is only necessary to compute the "zonal" normal modes once, and subsequently these zonal mode solutions can be combined in a variety of ways, using the lateral propagator equation, to produce theoretically predicted wave fields in many different laterally varying structures without the necessity of a complete recomputation of wave fields in each new structure. Further, the propagators are analytically defined so that manipulations related to inversion and perturbation calculations can be considered. For these reasons, and because of its inherent high accuracy, this method should prove useful in modeling seismic wave fields in complex media and in inversion studies. In the present study the method is developed in detail for two dimensionally variable media, using cylindrical coordinates and wave functions. However, analogous results in rectangular and spherical coordinates may be obtained using the same procedure and are appropriate for media with variability in all three spatial dimensions.

References

Morse, P.M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.

Prof. Terry C. Wallace
Department of Geosciences
Building #77
University of Arizona
Tucson, AZ 85721

Dr. William Wortman
Mission Research Corporation
8560 Cinderbed Rd.
Suite # 700
Newington, VA 22122

Prof. Francis T. Wu
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901
Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Michael Browne
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Mr. Roy Burger
1221 Serry Road
Schenectady, NY 12309

Prof. Shelton S. Alexander
Geoscience Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Dr. Robert Burridge
Schlumberger-Doll Research Center
Old Quarry Road
Ridgefield, CT 06877

Dr. Kenneth Anderson
BBNSTC
Mail Stop 14/1B
Cambridge, MA 02238

Dr. W. Winston Chan
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314-1581

Dr. Ralph Archuleta
Department of Geological Sciences
University of California at Santa Barbara
Santa Barbara, CA 93102

Dr. Theodore Cherry
Science Horizons, Inc.
710 Encinitas Blvd., Suite 200
Encinitas, CA 92024 (2 copies)

Dr. Susan Beck
Department of Geosciences
Bldg. #77
University of Arizona
Tucson, AZ 85721

Prof. Jon F. Claerbout
Department of Geophysics
Stanford University
Stanford, CA 94305

Dr. T. J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 20201

Dr. Robert W. Clayton
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Mr. William J. Best
907 Westwood Drive
Vienna, VA 22180

Prof. F. A. Dahlen
Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. N. Biswas
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Mr. Charles Doll
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton St.
Cambridge, MA 02142

Dr. Stephen Brutt
Center for Seismic Studies
1300 North 17th Street
Suite 1420
Arlington, VA 22209

Prof. Adam Dziewonski
Hoffman Laboratory, Harvard Univ.
Dept. of Earth Atmos. & Planetary Sciences
20 Oxford St.
Cambridge, MA 02138
Prof. John Ebel
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Prof. Roy Greenfield
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Eric Fielding
SNEE Hall
INSTOC
Cornell University
Ithaca, NY 14853

Dan N. Hagedorn
Battelle
Pacific Northwest Laboratories
Battelle Boulevard
Richland, WA 99352

Dr. John Foley
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. James Hannon
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Prof. Donald Forsyth
Department of Geological Sciences
Brown University
Providence, RI 02912

Prof. Robert B. Herrmann
Dept. of Earth & Atmospheric Sciences
St. Louis University
St. Louis, MO 63156

Dr. Cliff Frolich
Institute of Geophysics
8701 North Mopac
Austin, TX 78759

Ms. Heidi Houston
Seismological Laboratory
University of California
Santa Cruz, CA 95064

Dr. Anthony Gangi
Texas A&M University
Department of Geophysics
College Station, TX 77843

Kevin Hutchenson
Department of Earth Sciences
St. Louis University
3507 Laclede
St. Louis, MO 63103

Dr. Freeman Gilbert
IGPP, A-025
Scripps Institute of Oceanography
University of California
La Jolla, CA 92093

Dr. Hans Israelsson
Center for Seismic Studies
1300 N. 17th Street, Suite 1450
Arlington, VA 22209-2308

Mr. Edward Giller
Pacific Sierra Research Corp.
1401 Wilson Boulevard
Arlington, VA 22209

Prof. Thomas H. Jordan
Department of Earth, Atmospheric
and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. Jeffrey W. Given
SAIC
10260 Campus Point Drive
San Diego, CA 92121

Pro. Alan Kafka
Department of Geology & Geophysics
Boston College
Chestnut Hill, MA 02167

Prof. Stephen Grand
University of Texas at Austin
Department of Geological Sciences
Austin, TX 78713-7909

Robert C. Kemerait
ENSICO, Inc.
445 Pineda Court
Melbourne, FL 32930
GOVERNMENT

Dr. Ralph Alewine III
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Dr. Dale Glover
DIA/DT-1B
Washington, DC 20301

Mr. James C. Battis
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. T. Hanks
USGS
Nat'l Earthquake Research Center
345 Middlefield Road
Menlo Park, CA 94025

Harley Bens
U.S. Geological Survey, MS-977
345 Middlefield Rd.
Menlo Park, CA 94025

Dr. Roger Hansen
AFTAC/TI
Patrick AFB, FL 32925

Dr. Robert Blandford
AFTAC/TI
Center for Seismic Studies
1300 North 17th St. Suite 1450
Arlington, VA 22209-2308

Paul Johnson
ESS-4, Mail Stop 1979
Los Alamos National Laboratory
Los Alamos, NM 87545

Eric Chesa
Division 9241
Sandia Laboratory
Albuquerque, NM 87185

Janet Johnston
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. John J. Cipar
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. Katharine Kadinsky-Cade
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Cecil Davis
Group P-15, Mail Stop D406
P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87544

Ms. Ann Kerr
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Mr. Jeff Duncan
Office of Congressman Markey
2133 Rayburn House Bldg.
Washington, DC 20515

Dr. Max Koonz
US Dept of Energy/DP 5
Forrestal Building
1000 Independence Avenue
Washington, DC 20585

Mr. Jack Evernden
USGS - Earthquake Studies
345 Middlefield Road
Menlo Park, CA 94025

Dr. W.H.K. Lee
Office of Earthquakes, Volcanoes,
& Engineering
345 Middlefield Road
Menlo Park, CA 94025

Art Frankel
USGS
922 National Center
Reston, VA 22092

Dr. William Leith
U.S. Geological Survey
Mail Stop 928
Reston, VA 22092
CONTRACTORS (FOREIGN)

Dr. Ramon Cabre, S.J.
Observatorio San Calixto
Casilla 5939
La Paz, Bolivia

Prof. Hans-Peter Harjes
Institute for Geophysik
Ruhr University/Bochum
P.O. Box 102148
4430 Bochum 1, FRG

Prof. Eystein Husebye
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Prof. Brian L.N. Kennett
Research School of Earth Sciences
Institute of Advanced Studies
G.P.O. Box 4
Canberra 2601, AUSTRALIA

Dr. Bernard Massinon
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Pierre Mecheler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE

Dr. Svein Mykkelteit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 copies)
Dr. Peter Basham
Earth Physics Branch
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Eduard Berg
Institute of Geophysics
University of Hawaii
Honolulu, HI 96822

Dr. Michel Bouchon
I.R.I.G.M.-B.P. 68
38402 St. Martin D'Heres Cedex, FRANCE

Dr. Hilmar Bungum
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA M5S 1A7

Dr. Alan Douglas
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Manfred Henger
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Ms. Eva Johannisson
Senior Research Officer
National Defense Research Inst.
P.O. Box 27322
S-102 54 Stockholm, SWEDEN

Dr. Fekadu Kebede
Geophysical Observatory, Science Faculty
Addis Ababa University
P. O. Box 1176
Addis Ababa, ETHIOPIA

Dr. Tormod Kvaerna
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Peter Marshall
Procurement Executive
Ministry of Defense
Blacknest, Brimpton
Reading FG7-4RS, UNITED KINGDOM

Prf. Ari Ben-Menahem
Department of Applied Mathematics
Weizman Institute of Science
Rehovot, ISRAEL 951729

Dr. Robert North
Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Frode Ringdal
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Jorg Schlittenhardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Universita Degli Studi Di Trieste
Facolta Di Ingegneria
Istituto Di Miniere E. Geofisica Applicata, Trieste, ITALY

Dr. John Woodhouse
Oxford University
Dept of Earth Sciences
Parks Road
Oxford 0X13PR, ENGLAND