FULL POSE AND PARTIAL POSE CALIBRATION OF A SIX DEGREE OF FREEDOM ROBOT MANIPULATOR ARM

by

Scott A. Potter

September 1991

Thesis Advisor: Morris R. Driels

Approved for public release; distribution is unlimited.
Title: Full Pose and Partial Pose Calibration of a Six Degree of Freedom Robot Manipulator Arm

Abstract:
A six degree of freedom robot manipulator arm, a PUMA 560, is calibrated using full pose and partial pose methods in order to improve the accuracy of the manipulator arm. The theory applicable to modeling of mechanisms is introduced. A thirty parameter kinematic model is developed for use in the full pose calibration method and a twenty-six parameter kinematic model is developed for the partial pose calibration. A simulation study is performed to determine the applicability and feasibility of each model. Experimental pose measurements are performed using each method to obtain data with which to perform an actual calibration of the manipulator and compare with the predicted results. The effects of noise in each measurement system employed and in the manipulator's joint position encoders are discussed. The measurement systems employed are examined in detail and a comparison between the two is performed.

The measured kinematic parameters of each model are presented as results.

Keywords: Robot Manipulator Calibration
Approved for public release; distribution is unlimited.

Full Pose and Partial Pose Calibration of a Six Degree of Freedom Robot Manipulator Arm

by

Scott Alton Potter
Lieutenant, United States Navy
B.E., Vanderbilt University, 1986

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Author: Scott A. Potter

Approved by: Morris Driels
Morris Driels, Thesis Advisor

Anthony J. Healey, Chairman
Department of Mechanical Engineering
ABSTRACT

A six degree of freedom robot manipulator arm, a PUMA 560, is calibrated using full pose and partial pose methods in order to improve the accuracy of the manipulator arm. The theory applicable to modeling of mechanisms is introduced. A thirty parameter kinematic model is developed for use in the full pose calibration method and a twenty-six parameter kinematic model is developed for the partial pose calibration. A simulation study is performed to determine the applicability and feasibility of each model. Experimental pose measurements are performed using each method to obtain data with which to perform an actual calibration of the manipulator and compare with the predicted results. The effects of noise in each measurement system employed and in the manipulator's joint position encoders are discussed. The measurement systems employed are examined in detail and a comparison between the two is performed.

The measured kinematic parameters of each model are presented as results.
TABLE OF CONTENTS

I. INTRODUCTION ...1

II. THEORY ..5
 A. MODELING ..5
 1. Homogeneous Transformations ..5
 2. Application of Basic Homogeneous Transformations to Simple Kinematic
 Mechanisms ...11
 3. Links, Joints, and Assignment of Coordinate Frames13
 4. The Denavit-Hartenburg Transformation ...17
 5. The Modified Denavit-Hartenburg Transformation19
 6. The Euler Transformation ..20
 7. Application to the PUMA ..21
 B. IDENTIFICATION METHODOLOGY ..27
 1. Introduction ...27
 2. The IMSL routine ZXSSQ ...29
 3. Application to the Calibration Process ..33

III. FULL POSE CALIBRATION ...35
 A. THEORY ..35
 1. Introduction ...35
 2. Full Model of the PUMA, World Coordinate Frame, and Coordinate
 Measuring Machine ..37
 B. SIMULATION ..39
 1. The Suite of Programs Used and the Strategy Involved39
 a. The program JOINT ...41
VI. CONCLUSIONS ... 75
APPENDIX A .. 76
APPENDIX B .. 78
APPENDIX C .. 83
APPENDIX D .. 86
APPENDIX E .. 91
APPENDIX F .. 98
APPENDIX G .. 102
APPENDIX H .. 109
APPENDIX I .. 111
LIST OF REFERENCES .. 118
INITIAL DISTRIBUTION LIST ... 120
LIST OF FIGURES

Figure 1. A Homogeneous Transformation .. 5
Figure 2. Position of Point A with respect to a World Coordinate Frame 6
Figure 3. Translation of a Point in Space from Point A to Point B 8
Figure 4. Rotation of Point A 90 Degrees about the Z-axis. Rot(z,90) 10
Figure 5. A Multiple Translation and Rotation Transformation of Point A 11
Figure 6. A Two-Link Kinematic Mechanism .. 12
Figure 7. The Length, a, and Twist, α, of a Link .. 13
Figure 8. Illustration of Link Dimensions a and α .. 14
Figure 9. Link Parameters θ, d, a, and α .. 15
Figure 10. Revolute Joint .. 16
Figure 11. Prismatic Joint ... 17
Figure 12. Homogeneous Transformation Loop .. 22
Figure 13. Links and Joints of the PUMA 560 Robot Manipulator Arm 23
Figure 14. PUMA Frame Allocation ... 24
Figure 15. Generic Function in the x-y Plane ... 27
Figure 16. Example of Two-Variable Function G(x,y) 28
Figure 17. Flowchart of the Operation of ZXSSQ .. 30
Figure 18. Determination of the Center of a Ball in Space 31
Figure 19. Base Transformations .. 36
Figure 20. Full Pose Calibration Apparatus: PUMA, World Coordinate Frame and Coordinate Measuring Machine ... 38
Figure 21. Flowchart for Full Pose Simulation ... 40
Figure 22. Tooling Ball End Effector ... 47
LIST OF TABLES

Table 1. Nominal Kinematic Parameters for the PUMA 560............................... 26
Table 2. Nominal Kinematic Parameters for the Full Pose Calibration............... 39
Table 3. Full Pose Identified Parameters.. 54
Table 4. Nominal Kinematic Parameters for the Partial Pose Calibration............ 58
Table 5. Partial Pose Identified Parameters.. 66
Table 6. Comparison Between Full and Partial Pose Identified Kinematic Parameters 70
In the calibration of a manipulator the desired result is to significantly improve the manipulator's accuracy. Accuracy is defined as the ability of a robot to move to a commanded pose defined in the manipulator's working volume [Ref. 1]. Stated simply, how accurately can the origin of a coordinate frame and the orientation of the coordinate axes attached to the end effector of the manipulator arm, to be termed achieving a certain pose, be positioned in relation to a commanded point and orientation in the manipulator's working volume? Present experimentation shows that manipulators have an accuracy of about 10.0 mm [Ref. 2].

Another indication of a manipulator's ability to achieve a pose is it's repeatability. Repeatability is the ability of a manipulator to return to a previously achieved pose [Ref. 3]. To illustrate repeatability, consider the following. A manipulator arm's end effector, termed the tool, is moved to a certain position and orientation in the working volume. After the position of each joint angle of the manipulator is recorded, the tool's position and orientation is altered. The manipulator is commanded to assume the previously recorded joint angles. Examination will reveal that the tool's position and orientation will differ from the originally learned pose. This is the error in repeatability of a manipulator arm. Present experimentation shows that manipulators have a repeatability of around 0.3 mm [Ref. 4].

To summarize, the fundamental difference between accuracy and repeatability is that repeatability is the ability of the manipulator to return to a previously achieved pose and accuracy is the ability of the manipulator to move to a pose that is specified in the working volume and that may have never been previously reached. It is apparent that a more accurate manipulator is desired over a more repeatable manipulator. The accurate manipulator's working volume is unconstrained while the repeatable manipulator does not
have a working volume, only discrete positions which must be taught to the manipulator. Correspondingly, the objective of the calibration process is to improve the accuracy of the manipulator.

In order to understand how a calibration is performed on a manipulator one must understand how a commanded pose would be achieved by any manipulator. When a specific position and orientation is commanded to the manipulator, it must be specified relative to a world coordinate frame defined by the user. To the manipulator this defined world coordinate frame is, as described, the center of the universe. By means of several mathematical operations the coordinate frame originally attached to the world coordinate frame is moved from the world coordinate frame to the manipulator’ base and through each arm of the manipulator until it reaches the tool. This implies a knowledge of a mathematical model of the manipulator which includes a world coordinate frame.

As it is prohibitively expensive to manufacture and assemble each manipulator to the exact specifications required for desired accuracy, every manipulator built has a unique geometry. Since each manipulator has this unique geometry, each will have a unique mathematical model. The calibration process will identify the kinematic parameters embedded within the manipulator in order that the individual mathematical model will accurately represent the physical manipulator.

In the calibration process, several sequential steps enable the precise kinematic parameters of the manipulator to be identified, leading to improved accuracy. These steps are described as follows [Ref. 5]:

1. A kinematic model of the manipulator and calibration process is developed. The resulting model is used to define a pose error quantity based on a nominal kinematic parameter set, an unknown parameter set representing the true geometry of the manipulator and a set of joint angles. The nominal kinematics would be supplied by the manufacturer of
the manipulator, while the unknown, actual parameter set will be identified in the calibration process.

2. Experimental measurements of the robot pose, which could be either full pose or partial pose, are taken in order to obtain data which correspond to the actual kinematic parameters of the manipulator.

3. The actual kinematic parameters are identified by systematically changing the nominal parameter set so as to reduce the error quantity defined in the modeling phase. This is performed as a multidimensional optimization search in which the identified kinematic parameters are changed in order to reduce an error function to a minimum amount.

4. The final step involves incorporating the identified parameters into the actual controlling software of the manipulator.

Once the calibration process is complete the next step is to implement the identified kinematic parameters into the operation of the manipulator arm. In an operational setting the required position and orientation of the manipulator arm's end effector would be input to a controlling software program. This control program would perform an inverse kinematic solution through the mathematical model of the manipulator encoded within the control scheme, calculating the required joint angles to position and orient the end effector as dictated by the operator.

This work addresses the issue of developing the kinematic model which represents the PUMA manipulator arm and gathering the experimental data used in the calibration process. Two methods will be described in this thesis: a full pose calibration process and a partial pose calibration process.

The full pose calibration process will provide the benchmark calibration since the full pose of the end effector will be measured in each observation.
Once the benchmark kinematic parameters are identified the second method of calibration, the partial pose calibration will be performed. The resulting kinematic model produced by this calibration will be contrasted with the values identified in the benchmark.
II. THEORY

A. MODELING

The theory presented and several of the diagrams in this chapter follows closely that presented by Paul [Ref. 6] in Chapters I through III. Also, several diagrams and explanations in this chapter are based on readings from Mooring, Roth, and Driels [Ref. 7].

1. Homogeneous Transformations

The most basic premise on which the calibration process is associated is the movement of a set of coordinate axes from one position and orientation in space to another position and orientation, as illustrated in Figure 1. In Figure 1, the coordinate axes at point \(A \) are transformed, via translations and rotations, to point \(B \).

![Figure 1. A Homogeneous Transformation](image-url)
In addition to the translation of the origin of the coordinate axes from one position in space to another there is a change in the orientation of the coordinate axes. The process of the movement of the coordinate axes is known as a homogeneous transformation. This homogeneous transformation is accomplished by a series of translational transformations and rotational transformations.

The first type of transformation is the translational transformation. Given a point in space, A, illustrated in Figure 2, the point's position is fixed and known relative to a fixed, three axis coordinate frame, defined as the world coordinate frame, by means of the following vector, \mathbf{u}:

$$\mathbf{u} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

(1)

![Figure 2. Position of Point A with respect to a World Coordinate Frame](image)

The matrix element w is any non-zero scale factor. In the applications reported in this thesis w will be set equal to unity, producing the following vector:
The transformation from point \(A \) to point \(B \), illustrated in Figure 3, requires the transformation matrix \([H]\):

\[
H = \text{Trans}(x,y,z) = \begin{bmatrix}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(3)

The translation from point \(A \) to point \(B \) is represented by the vector \(\vec{v} \):

\[
\vec{v} = ai + bj + ck
\]

(4)

The transformed vector is the product of the transformation matrix, \(H \), and the original position vector, \(\vec{u} \).

\[
\vec{v} = H \cdot \vec{u}
\]

(5)

The translation is to be interpreted as the summation of the vectors \(\vec{u} \) and \(\vec{v} \). This is illustrated in Figure 3 and described in equation form by equation (6).
Figure 3. Translation of a Point in Space from Point A to Point B

\[\vec{u} + \vec{v} = \binom{x}{y}{w} \vec{i} + \binom{y}{z}{w} \vec{j} + \binom{z}{w} \vec{k} + ai + bj + ck \]

(6)

The second type of transformation is the rotational transformation. Given the fixed coordinate frame of the previously discussed translational transformation the transformation corresponding to a rotation, \(\theta \), about the x-axis is:

\[
\text{Rot}(x, \theta) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(7)

The transformation corresponding to a rotation, \(\theta \), about the y-axis is:
The transformation corresponding to a rotation, \(\theta \), about the z-axis is:

\[
\text{Rot}(z, \theta) = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 & 0 \\
\sin(\theta) & \cos(\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(8)

As an illustration of a rotational transformation consider the following. Given another point in space, \(\mathbf{A} \), illustrated in Figure 4, if it was desired to rotate the point around the z-axis by 90 degrees the Rot\((z)\) matrix above would be used. The value for \(\theta \), 90 degrees, would be entered into the matrix, producing:

\[
\text{Rot}(z, 90^\circ) = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(10)

This matrix would multiply the vector representing the original position of point \(\mathbf{A} \):

\[
\begin{bmatrix}
\mathbf{x}^t \\
\mathbf{y}^t \\
\mathbf{z}^t \\
1
\end{bmatrix}
\]

producing the new position vector, \(\mathbf{v} \), of the point \(\mathbf{A} \):

\[
\begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}^t \\
\mathbf{y}^t \\
\mathbf{z}^t \\
1
\end{bmatrix}
\]

(12)
Figure 4. Rotation of Point A 90 Degrees about the Z-axis. Rot(z,90)

Translational and rotational transformations are performed right to left as they are read, for example:

\[
\begin{bmatrix}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(13)

The transformation illustrated in Figure 5 is a rotation of 90 degrees about the z-axis, a rotation of 90 degrees about the y-axis, a translation of 'a' mm in the x direction, of 'b' mm in the y direction, and of 'c' mm in the z direction.
It is clear that an infinite number of translations or rotations are permitted. Each transformation is simply represented by another matrix multiplication operation.

2. Application of Basic Homogeneous Transformations to Simple Kinematic Mechanisms

Armed with the knowledge of homogeneous translations and rotations, a generic two link kinematic mechanism will be analyzed. When homogeneous transformations are applied to the linkage shown in Figure 6, equations (3) and (9) will be utilized to move coordinate frame 1, located at point 1, to coordinate frame 2, located at point 2, by specifying the multiple transformation:

\[A = \text{Trans}(d_1,0,0) \ \text{Rot}(z,\theta_1) \ \text{Trans}(d_2,0,0) \]

(14)
The product of the three matrix multiplications, a frame to frame homogeneous transformation, is known as an A matrix. Referring to Figure 6, the coordinate frame at point 1 has been assigned such that the x-axis lies along the centerline of link 1. As illustrated in equation (14), the homogeneous transformation moves the coordinate frame along the x-axis a distance d_1, rotates the frame about the z-axis θ_1 degrees, and then translates the coordinate frame a distance d_2 along the newly rotated x-axis.

![Figure 6. A Two-Link Kinematic Mechanism](image)

For more general link structures, which most likely will be three dimensional, the coordinate frame transformations are more complex than the example shown in Figure 6. Due to this complexity, a standardization of the allocation of coordinate frames and the transformation process of the coordinate frames is required. These standardizations will be discussed in the next section.
3. Links, Joints, and Assignment of Coordinate Frames

Any manipulator can be described as a series of links connected together by joints. A coordinate frame is placed on each link in the manipulator and, as discussed earlier, homogeneous transformations are used to describe the relative position and orientation difference between two successive links. Each homogeneous transformation matrix operation rotates or translates the coordinate frame to various positions in the manipulator.

The base of a manipulator is defined to be link 0 and is not considered to be one of the defined number of links composing the manipulator. In between the base of the manipulator, link 0, and the first joint of the manipulator is link 1. Thus, link 0 is attached to link 1 by joint 1. Link 2 is attached to link 1 by joint 2, and so on.

A link is characterized by two dimensions: the common normal distance, \(a_n \), and the angle, \(\alpha_n \), between the axes in a plane perpendicular to \(a_n \). The common normal distance is known as the length of the link and the angle is known as the twist of the link. These two link dimensions are illustrated in Figure 7.

![Figure 7. The Length, \(a \), and Twist, \(\alpha \), of a Link](image-url)
To aid in the visualization of these two parameters perform the following. Visualize a small diameter bar of reasonable length. At each end of the bar is a joint which pivots. Now the bar looks like a goal post with short uprights and a long crossbar. Take the uprights and bend them in. The bar will appear as Figure 8.

![Figure 8. Illustration of Link Dimensions a and α](image)

The next step is to grasp the uprights and twist them in opposite directions. The length of the line which connects the left upright to the right upright, while maintaining right angles with each, is a_n. To visualize α_n, draw a line which is parallel to the left upright through the point where the crossbar is attached to the right upright. The angle between the line which has been drawn and the right upright is the angle of twist, α_n.

As stated earlier, any manipulator is composed of a series of links which are attached by joints. The relationship between links is described using the distance and angle between links. The distance between the links is defined as d_n and the angle between two successive links is defined as θ_n. Refer to Figure 9 in the following discussion.

Two links will be connected at a joint. The joint will have a joint axis, around which the two links will rotate. A normal from each link intersects the joint axis. The relative position of two successive links is defined as d_n, the distance separating the points of intersection on the joint axis of the normals of the two links under consideration. Define the normal of the link to the left of the joint as N_1. Define the normal of the link to the right
of the joint as N_2. Extend N_1 through the intersection of the joint axis. Draw a line parallel and coplanar to N_2 through the point of intersection of N_1 with the joint axis. The angle between the extension of N_1 and the line parallel to N_2 is defined as θ_n.

![Figure 9. Link Parameters θ, d, a, and α](image)

In order to describe the relationships between links, a coordinate frame will be assigned to each link, based on the type of joint to which the link is attached. There are two types of joints, revolute and prismatic.

Consider a revolute joint, illustrated in Figure 10. Revolute joints are characterized by θ_n, the joint variable. The origin of the coordinate frame of link n is set to be at the intersection of the common normal between the axes of joints n and $n+1$, which will be the same line as the one measured for the length of link n, extended if necessary.
and the axis of joint n+1. In the case of intersecting joint axes, the origin is at the point of intersection of the joint axes. If the axes are parallel the coordinate origin is not uniquely defined if the above specifications are used, so the origin is chosen to make the joint distance zero for the next link whose coordinate origin is defined. The z-axis for link n will be aligned with the axis of joint n+1. The x-axis will be aligned with any common normal which exists and is directed along the normal from joint n to joint n+1. In the case of intersecting joints, the direction of the x-axis is parallel or antiparallel to the vector cross product $z_{n-1} \times z_n$.

![Figure 10. Revolute Joint](image)

Now consider prismatic a joint, which is illustrated in Figure 11. A prismatic joint is characterized by the distance d_n being the joint variable. The direction of the joint...
axis is the direction in which the joint moves. The direction of the axis is defined but, unlike a revolute joint, the position in space is not defined. In the case of a prismatic joint the link length, a_n, has no meaning and is set to be zero. The origin of the coordinate frame for the prismatic joint is coincident with the next defined link origin. The z-axis of the prismatic link is aligned with the axis of joint $n+1$. The x_n-axis is parallel or antiparallel to the vector cross product of the direction of movement of the prismatic joint and z_n.

![Prismatic Joint Diagram](image)

Figure 11. Prismatic Joint

4. **The Denavit-Hartenburg Transformation**

Now that a coordinate frame has been assigned to each joint of the manipulator, the next step is to develop the relationship between coordinate frames. The relationship between coordinate frame n and $n-1$ will now be examined in detail. In the calibration
processes reported in this thesis two types of relationships will be used. They are known as the modified Denavit-Hartenburg (MDH) transformation, a frame to axis transformation, and the Euler transformation, a frame to frame transformation.

The modified Denavit-Hartenburg transformation is a derivative of the standard Denavit-Hartenburg transformation. The standard Denavit-Hartenburg (DH) transformation incorporates the translations and rotations introduced earlier in the thesis, and result in an A matrix of the following form:

$$A_n = \text{Rot}(z, \theta_n) \times \text{Trans}(z, d_n) \times \text{Trans}(x, a_n) \times \text{Rot}(x, \alpha_n)$$ (15)

This is to be interpreted as:
1. A rotation of angle θ_n about the z-axis.
2. A translation of length d_n along the z-axis.
3. A translation of length a_n along the newly rotated x-axis.
4. A rotation of angle α_n about the newly rotated x-axis.

The standard Denavit-Hartenburg transformation is not implemented in the modeling of manipulator arms for use in the calibration procedures described in this thesis. As described earlier, the location of coordinate frames are functions of manipulator geometry. Any variation in the manipulator geometry will cause a cascading change in the positions of the coordinate frames. This results in three effects which are undesirable for manipulator calibration:

1. Selection of the base frame is not arbitrary.
2. The zero position of the manipulator is not arbitrary.
3. If two joints having nominally parallel axes are found to have non-parallel axes, then the transformation parameters will dramatically change.
The third result is the most important. Many manipulators are designed to have consecutive parallel axes. In this case, there is no common normal between the two axes. In conforming to the rules introduced earlier the coordinate frame is chosen such that the joint distance will be zero for the next link whose coordinate link whose origin is defined. In almost every calibration procedure a misalignment of the two nominally parallel joint axes will be identified. A misaligned pair of joint axes produces a common normal between them, and the common normal fixes the position of the coordinate frame. The new, fixed position of the coordinate frame could be quite different from the user defined position of the coordinate frame based on the joint distance being zero. This could cause a cascading change in position of coordinate frames downstream of the coordinate frame in question. Such significant changes in several positions of coordinate frames causes difficulty in the kinematic parameter identification program.

The problem with the parallel axes is eliminated by using the MDH transformation, which introduces a fifth matrix multiplication in the A matrix, as described in the following section.

5. The Modified Denavit-Hartenburg Transformation

The MDH transformation is, as stated earlier, a frame to axis transformation and is represented by the following A matrix,

\[
A_n = \text{Rot}(z,\theta_n) \times \text{Trans}(z,d_n) \times \text{Trans}(x,a_n) \times \text{Rot}(x,\alpha_n) \times \text{Rot}(y,\beta_n) \tag{16}
\]

This is to be interpreted as:

1. A rotation of angle \(\theta_n \) about the z-axis.
2. A translation of length \(d_n \) along the z-axis.
3. A translation of length \(a_n \) along the newly rotated x-axis.
4. A rotation of angle \(\alpha_n \) about the newly rotated x-axis.
5. A rotation of angle θ_n about the newly rotated y-axis.

In reduced matrix form, for a rotational joint, the operation is as follows:

$$
A_n = \begin{bmatrix}
\cos(\theta) & -\sin(\theta)\cos(\alpha) & \sin(\theta)\sin(\alpha) & a\cos(\theta) \\
\sin(\theta) & \cos(\theta)\cos(\alpha) & -\cos(\theta)\sin(\alpha) & a\sin(\theta) \\
0 & \sin(\alpha) & \cos(\alpha) & d \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

(17)

In reduced matrix form, for a prismatic joint, the operation is as follows:

$$
A_n = \begin{bmatrix}
\cos(\theta) & -\sin(\theta)\cos(\alpha) & \sin(\theta)\sin(\alpha) & 0 \\
\sin(\theta) & \cos(\theta)\cos(\alpha) & -\cos(\theta)\sin(\alpha) & 0 \\
0 & \sin(\alpha) & \cos(\alpha) & d \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

(18)

6. The Euler Transformation

The Euler transformation is a frame to frame transform which requires six parameters:

$$
A_n = \text{Rot}(z,\phi_n) \times \text{Rot}(y,\theta_n) \times \text{Rot}(x,\psi_n) \times \text{Trans}(p_x, p_y, p_z)
$$

(19)

This will be interpreted as a rotation ϕ_n about the z-axis, followed by a rotation θ_n about the newly rotated y-axis, followed by a rotation ψ_n about the newly rotated x-axis. At the conclusion of these rotations the axes of frame n, the coordinate frame to which the transform is occurring, will be perfectly aligned with the transforming coordinate frame. The translations p_x, p_y, and p_z will move the aligned coordinate axes from the origin of coordinate frame n-1 to coordinate frame n.
7. Application to the PUMA

It has been established that an A matrix is a homogeneous transformation from one coordinate frame to the next. This A matrix can either be, in applications described in this thesis, a modified Denavit-Hartenburg transformation matrix or an Euler transformation matrix. Matrix A_1 will describe the position and orientation of the first coordinate frame with respect to the world coordinate frame. The coordinate frame attached to link 0 is translated and rotated such that it is aligned in the proper position and orientation, in accordance with the rules described earlier, on link 1 of the manipulator. Matrix A_2 will describe the position and orientation of the second coordinate frame with respect to the first coordinate frame. The coordinate frame attached to link 1 is translated and rotated such that it is aligned in the proper position and orientation on link 2 of the manipulator. Thus, the position and orientation of the second coordinate frame with respect to the base coordinate frame is defined to be:

$$T_2 = A_1 \times A_2$$ \hspace{1cm} (20)

Since the PUMA 560 manipulator is a six link manipulator, the T_6 matrix, which indicates the position and orientation of the tool frame with respect to the world coordinate frame, will be represented by:

$$T_6 = A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$$ \hspace{1cm} (21)

Figure 12 illustrates that any coordinate frame may be reached from any other coordinate frame by executing the matrix multiplications between the initial coordinate frame and the final coordinate frame, moving clockwise or counter-clockwise.
Moving clockwise would generate a forward kinematic solution, equivalent to moving through the manipulator from, for example, coordinate frame 3 to the tool frame. Moving counter-clockwise will generate an inverse kinematic solution, equivalent to moving backwards through the manipulator from coordinate frame 4 to coordinate frame 2.

With the acquired knowledge of links, joints, how to assign reference frames and transform from one reference frame to the next, the PUMA 560’s coordinate frames and the nominal kinematic parameters will be introduced.

Figure 13 illustrates individual links and joints of the PUMA 560.
Figure 13. Links and Joints of the PUMA 560 Robot Manipulator Arm

If all of the rules governing the placement of coordinate frames are followed, the position and orientation of the coordinate frame corresponding to each joint may be displayed. Figure 14 illustrates the allocation of each coordinate frame.
The internal kinematics of the PUMA will remain constant regardless of the world coordinate frame used or type of measurement system employed. Refer to Figure 14.
to follow the discussion of the transformation from the base coordinate frame of the manipulator to frame 5. Note that the position of the manipulator depicted in Figure 14 does not show the manipulator in its zero position. The transforms which will be described in the next paragraph will move from joint n-1's zero position to joint n's zero position. All of the transformations within the PUMA are MDH transformations. In both of the calibration procedures reported in this thesis the transformation from the world coordinate frame to the base frame and the transformation from frame 5 to frame 6, the tool frame, is an Euler transformation. The details of those transformations will be discussed during the simulation phase of each calibration procedure.

1. Base frame, frame 0, to frame 1: No rotation about Z0, no translation along the Z0-axis, no translation along the X0-axis, rotate -90° about X0. This fixes coordinate frame 1.

2. Frame 1 to frame 2: No rotation about Z1, no translation along the Z1-axis, translate along the X1-axis 431.85 mm, no rotation about X1. This fixes coordinate frame 2.

3. Frame 2 to frame 3: No rotation about Z2, translate along the Z2-axis 149.09 mm, translate along the X2-axis -20.33 mm, rotate 90° about X2. This fixes coordinate frame 3.

4. Frame 3 to frame 4: No rotation about Z3, translate along the Z3-axis 433.0 mm, no translation along the X3-axis, rotate -90° about X3. This fixes coordinate frame 4.

5. Frame 4 to frame 5: No rotation about Z4, no translation along the Z4-axis, no translation along the X4-axis, rotate 90° about X4. This fixes coordinate frame 5.

Since the coordinate frames have been assigned to each joint and the relationship between each frame has been determined, a table of nominal kinematic parameters may be constructed. Note that the transform from the base frame to frame 1 and
the transform from frame 5 to the tool frame are Euler transformations. All other transformations are Modified Denavit-Hartenburg transformations. The bold entries are defined to be zero.

TABLE 1. NOMINAL KINEMATIC PARAMETERS FOR THE PUMA 560

<table>
<thead>
<tr>
<th>link</th>
<th>(\Delta \theta_i)</th>
<th>(d_i)</th>
<th>(a_i)</th>
<th>(\alpha_i)</th>
<th>(\beta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td>degrees</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0</td>
<td>431.85</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>149.09</td>
<td>-20.33</td>
<td>90.0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>433.00</td>
<td>0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>90.0</td>
<td>0</td>
</tr>
</tbody>
</table>

At this point the concept of the forward kinematic solution and the inverse kinematic solution will be introduced. A forward kinematic solution is necessary to determine the position and orientation of the tool frame with respect to the world coordinate frame if all six joint angles are known. Given six joint angles, the pose can be determined using a forward kinematic solution. An inverse kinematic solution is necessary to determine the six required joint angles which would place the tool frame in a specified position and orientation. Given the tool pose, the six joint angles can be determined using an inverse kinematic solution.
B. IDENTIFICATION METHODOLOGY

1. Introduction

Consider a generic function in the x-y plane, illustrated in Figure 15.

![Diagram of a generic function in the x-y plane]

Figure 15. Generic Function in the x-y Plane

If a relative maxima of the function was to be determined within a range of \(x \) then the derivative of the function could be calculated at some \(x \) within that range. If the derivative was positive then the maxima would be to the right of the \(x \) value and if the derivative was negative then the maxima would be to the left. The \(x \) value would be incremented and the derivative calculated until the derivative equaled zero. The function would be optimized at this point within the specified range of \(x \).

This concept can be extended to surfaces. The problem of climbing a hill in the most efficient manner is one example. Consider a generic two variable function illustrated in Figure 16.
Figure 16. Example of Two-Variable Function $G(x,y)$

It is desired to find maximum G. To determine the direction of maximum increase of the function G at a specific point, calculate the gradient of the function and evaluate the gradient at the point in question:

$$
\nabla G(x_1,y_1) = \left(\frac{\partial G}{\partial x}\right)_{x_1,y_1} \mathbf{i} + \left(\frac{\partial G}{\partial y}\right)_{x_1,y_1} \mathbf{j}
$$

Calculating the gradient provides the direction of maximum increase based on $(x_1+\Delta x)$, $(x_1-\Delta x)$, $(y_1+\Delta y)$, and $(y_1-\Delta y)$.

A question arises: How is the gradient calculated if $G(x,y)$ is not specifically known? The only way to determine the gradient is through a method of orderly estimation and elimination. For a two-dimensional function this provides a challenge. If the problem
is extended to n-dimensional space the problem is extremely difficult to solve. The
difficulty in n-dimensional optimization is the development of an algorithm which will
change the n variables of the function in an efficiently and orderly manner in order that the
gradient can be determined.

2. The IMSL routine ZXSSQ

The optimization procedure used in this thesis is an IMSL routine called
ZXSSQ. ZXSSQ is a routine which will vary the n variables of a function in order that the
function will be minimized. As a basic example of the operation of ZXSSQ consider the
following equation:

\[y = (X_1 \times Z) + \sin(X_2 \times Z) \]

(23)

This equation will be the model of some physical system. The parameters \(X_1\) and \(X_2\) are to be determined based on the observation of \(y\) at incremental values of \(Z\). The following observations are taken:

\[
\begin{align*}
y_1 &= 1 + \sin(1) + (-0.1) = 1.74 \\
y_2 &= 2 + \sin(2) + (0.1) = 3.00 \\
y_3 &= 3 + \sin(3) + (-0.1) = 3.04 \\
y_4 &= 4 + \sin(4) + (0.1) = 3.34 \\
y_5 &= 5 + \sin(5) + (-0.1) = 3.94 \\
\end{align*}
\]

(24)

which is:

\[y = X_1 \times Z + \sin(X_2 \times Z) \pm 0.1 \]

(25)

with:

\[
\begin{align*}
X_1 &= 1 \\
X_2 &= 1 \\
\end{align*}
\]

(26)

The model predicts:
\[y_1 = 1 + \sin (1) = 1.84 \]
\[y_2 = 2 + \sin (2) = 2.91 \]
\[y_3 = 3 + \sin (3) = 3.14 \]
\[y_4 = 4 + \sin (4) = 3.24 \]
\[y_5 = 5 + \sin (5) = 4.04 \]

ZXSSQ will not discriminate the addition or subtraction of 0.1. This is equivalent to the presence of noise in a measurement system. So, ZXSSQ will use the flowchart in Figure 17 to select the values of \(X_1 \) and \(X_2 \) which will best fit the above data.

![Flowchart of the Operation of ZXSSQ](image)

Figure 17. Flowchart of the Operation of ZXSSQ

30
The initial values of \(X_1 \) and \(X_2 \) are defined by the user. For each observation, producing a \(y_{\text{measured}} \) and a \(y_{\text{predicted}} \) will be calculated based on the current \(X_1 \) and \(X_2 \). The difference between \(y_{\text{predicted}} \) and \(y_{\text{measured}} \) will be calculated for each observation and the sum of these differences will be calculated. If this sum is less than the user defined convergence criteria the current values of \(X_1 \) and \(X_2 \) are acceptable. If not ZXSSQ selects new values for \(X_1 \) and \(X_2 \) and the process begins again. The process of the selection of the values of \(X_1 \) and \(X_2 \) performed by ZXSSQ is a mathematical consideration which is not important to the results reported in this thesis, but it must be understood that ZXSSQ makes the identification of the kinematic parameters of the PUMA within a reasonable period period of time possible.

As an illustration of the implementation of ZXSSQ in this thesis, consider the following. Suppose a ball is suspended in space in an unknown position relative to a defined set of coordinate axes, as illustrated in Figure 18.

![Figure 18. Determination of the Center of a Ball in Space](image)

\((x_1, y_1, z_1) \)
\((x_2, y_2, z_2) \)
\((x_3, y_3, z_3) \)
\((x_{\text{center}}, y_{\text{center}}, z_{\text{center}}) \)
It is possible to use a touch probe to measure \((x_i, y_i, z_i)\), the coordinates of an \(i^{th}\) position on the surface of the ball relative to the fixed coordinate frame. However, the exact position of the center of the ball is required in order to assist in the determination of the pose of the tool. ZXSSQ accepts the coordinates of at least three surface positions on the ball and calculates the coordinates of the center of the ball. The procedure is as follows.

The end effector used in the experimental phase of the initial calibration has a pattern of precision tooling balls which have a known radius, \(R_{tb}\). The touch probe also has a known radius, \(R_{tp}\). That means that the center of the ball will be \((R_{tb} + R_{tp})\) from each measured position of the touch probe. If only one touch probe measurement is made the actual position of the center of the ball could be at any position on a sphere of \((R_{tb} + R_{tp})\) radius surrounding the single measurement. As more measurements are taken the position of the center of the ball can be determined more accurately. It has been determined that a minimum of three touch probe measurements are required to accurately determine the coordinates of the center of the ball. Each measurement produces an error function:

\[
F_1 = \sqrt{(R_{tb} + R_{tp}) - (x_c - x_1)^2 + (y_c - y_1)^2 + (z_c - z_1)^2}
\]

\[
F_2 = \sqrt{(R_{tb} + R_{tp}) - (x_c - x_2)^2 + (y_c - y_2)^2 + (z_c - z_2)^2}
\]

\[
F_3 = \sqrt{(R_{tb} + R_{tp}) - (x_c - x_3)^2 + (y_c - y_3)^2 + (z_c - z_3)^2}
\]

(28)

ZXSSQ will systematically vary \((x_c, y_c, z_c)\) until each \(F_i\) is minimized. If there is no noise in the system, each \(F_i\) will be reduced to zero. If noise is present the best fit \((x_c, y_c, z_c)\) will be calculated. Once the functions are minimized, the coordinates of the center of the ball are known.

32
3. Application to the Calibration Process

The kinematic parameter identification of the PUMA 560 will be performed as a multi-dimensional minimization process performed by ZXSSQ. The process will proceed in the following manner.

1. Begin with the nominal set of kinematic parameters. This set will most likely be the manufacturer's predicted parameters based on the design and construction of a generic manipulator.

2. Select a set of six joint angles, \(\theta_1 \) through \(\theta_6 \), for the manipulator.

3. Perform a forward kinematic solution for the PUMA, using the nominal set of kinematic parameters. This will calculate the predicted pose of the end effector of the manipulator.

4. Measure the actual pose of the end effector of the manipulator. In most cases measured pose will be different from the predicted pose.

5. Modify the kinematic parameters such that the predicted pose, determined by the forward kinematic solution using the modified kinematic parameters, matches the measured pose [Ref. 8].

This process will be applied to several sets of joint angles. The number of physical measurements, meaning the number of sets of joint angles required, must satisfy:

\[
K_p \leq N \times D_f
\]

(29)

where:

\(K_p \) = number of kinematic parameters to be identified

\(N \) = number of measurements (poses) taken

\(D_f \) = number of degrees of freedom present in each measurement

Two calibration processes will be reported in this thesis. Each of the calibration procedures will have a simulation phase and an experimental phase. The details of each
kinematic identification process will be described in each section of the appropriate calibration procedure. Refer to the preceding paragraph for a general explanation of the kinematic parameter identification procedure.
III. FULL. POSE CALIBRATION

A. THEORY

1. Introduction

As stated earlier, the nominal coordinate transformations from the base frame to frame 5 will not change, regardless of the type of calibration process used or the type of measurement system used in the calibration. The transformation from the world coordinate frame to the base frame is an Euler transform, as well as the transform from frame 5 to frame 6, the tool frame.

The transformation from the world coordinate frame to frame 1 of the manipulator needs to be carefully considered, since there are potential parameter dependencies if certain transforms are chosen. Consider Figure 19 which shows the world coordinate frame \(x_w, y_w, z_w\), frame \(x_0, y_0, z_0\), frame \(x_b, y_b, z_b\), and frame \(x_1, y_1, z_1\).

Frame \(x_0, y_0, z_0\) is defined by a DH transform from the world frame to the first joint axis of the manipulator, frame \(x_b, y_b, z_b\) is the PUMA manufacturer's base frame and frame \(x_1, y_1, z_1\) is the second DH frame of the manipulator. What are the minimum number of parameters that are required to move from the world frame to frame \(x_1, y_1, z_1\)? There are two transformation paths which will accomplish this transform [Ref. 9].

Path 1: A DH transform from the world coordinate frame to frame \(x_0, y_0, z_0\) involving four parameters followed by another DH from frame \(x_0, y_0, z_0\) to frame \(x_b, y_b, z_b\) which will involve only two parameters \(\Phi'\) and \(d'\) in the transform:

\[
T_0^b = \text{rot}(z_0, \Phi')\text{trans}(z_0, d')
\]

(30)
Another DH transform from \(x_b, y_b, z_b \) to \(x_1, y_1, z_1 \) which involves four parameters. Note that \(\Delta \theta_1 \) and \(\phi' \) both rotate about \(z_0 \). That means that a rotation \(\Delta \theta_1 \) about the \(z_0 \)-axis is indiscernible. Any rotation about the \(z_0 \)-axis can be accomplished using an infinite number of combinations of values of \(\Delta \theta_1 \) and \(\phi' \), which means that \(\Delta \theta_1 \) and \(\phi' \) can not be identified independently. This leads to a conclusion that eight independent kinematic parameters are required to move the coordinate frame from the world frame to the first frame of the PUMA using this path.

Path 2: A transform can be defined directly from the world coordinate frame \(x_w, y_w, z_w \) to the base frame \(x_b, y_b, z_b \). This is a frame to frame transform so an Euler transform is required:
\[A_b = \text{rot}(z, \phi_b)\text{rot}(y, \theta_b)\text{rot}(x, \psi_b)\text{trans}(p_{xb}, p_{yb}, p_{zb}) \]

(31)

The DH transform from \(x_b, y_b, z_b \) to \(x_1, y_1, z_1 \) which will follow would normally involve four parameters, but there is another dependency involving \(\Delta \theta_1 \) and \(\Delta d_1 \). \(\Delta \theta_1 \) can be resolved into \(\Phi_b, \theta_b, \psi_b \) and \(\Delta d_1 \) can be resolved into \((p_{xb}, p_{yb}, p_{zb}) \). This reduces the number of parameters required for the transform from the base frame to frame 1 from four to two. Coupled with the six parameters required to transform from the world frame to the base frame it is seen again that eight parameters are required to transform from the world frame to frame 1, but a different set of parameters than found in path 1. In this simulation the second path is chosen.

The tool transform is an Euler transform, requiring the specification of six parameters:

\[A_o = \text{rot}(z, \phi_o)\text{rot}(y, \theta_o)\text{rot}(x, \psi_o)\text{trans}(p_{xo}, p_{yo}, p_{zo}) \]

(32)

2. Full Model of the PUMA, World Coordinate Frame, and Coordinate Measuring Machine

Figure 20 shows the full pose calibration apparatus. The operation of the coordinate measuring machine will be explained in the experimental section of this chapter.
Figure 20. Full Pose Calibration Apparatus: PUMA, World Coordinate Frame and Coordinate Measuring Machine

Table 2 represents the kinematic parameters of the full pose model [Ref. 10]. In the full pose model all thirty parameters not previously defined to be zero, indicated in boldface type, are able to be determined. Note the transform from the world coordinate frame to the base frame of the PUMA.
TABLE 2. NOMINAL KINEMATIC PARAMETERS FOR THE FULL
POSE CALIBRATION

<table>
<thead>
<tr>
<th>ϕ_b</th>
<th>θ_b</th>
<th>γ_b</th>
<th>P_{xb}</th>
<th>P_{yb}</th>
<th>P_{zb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees</td>
<td>degrees</td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>180.0</td>
<td>0.0</td>
<td>90.0</td>
<td>-394.0</td>
<td>-383.0</td>
<td>474.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>link number</th>
<th>$\Delta \theta_i$</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>β_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td>degrees</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0</td>
<td>431.85</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>149.09</td>
<td>-20.33</td>
<td>90.0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>433.00</td>
<td>0.0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>90.0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ_b</th>
<th>θ_b</th>
<th>γ_b</th>
<th>P_{x6}</th>
<th>P_{y6}</th>
<th>P_{z6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees</td>
<td>degrees</td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>134.0</td>
</tr>
</tbody>
</table>

B. SIMULATION

1. The Suite of Programs Used and the Strategy Involved

In performing a simulation study of a proposed experimental calibration procedure the objectives are to:

1. Confirm that the numerical algorithm proposed for the identification converges to the correct values.

2. Predict the number of experimental poses required to identify the kinematic parameters to a defined degree of accuracy.

3. Estimate the resulting accuracy of the manipulator if the new kinematic model was embedded in the control software of the manipulator [Ref. 11].
Several computer programs were written to perform the simulation. These programs, and their relationships to each other are shown in Figure 21.

The complete simulation may be regarded as a tool to plan the experiment in which the independent variables are the number of observations and the range of joint angles allowed by the common work volume of the PUMA and the coordinate measuring machine, while the dependent variables are the accuracy of the parameter identification and

Figure 21. Flowchart for Full Pose Simulation

40
the resulting manipulator accuracy [Ref. 12]. A detailed explanation of each program follows.

a. **The program JOINT**

Program JOINT does not require an input data file.

Program JOINT generates sets of six joint angles which comprise a simulated pose of the PUMA. The program can be modified such that the simulated working volume of the PUMA is restricted from the maximum possible to either one-half of one-quarter of the maximum volume.

The joint angles are selected using a random number generator. For instance, if the working volume of the PUMA has been selected as the maximum possible, the program takes the difference between the extreme joint angles possible, $+180 - (-180) = 360$, then multiplies this value by a number between 0 and 1, which has been generated randomly, thus generating one joint angle. Since six independent joint angles are required, six different random numbers and six different joint angles are generated for each pose, or observation.

The output of program JOINT is a data file, PUMA-VAR.DAT. PUMA-VAR.DAT will have n sets of six joint angles, which comprise n simulated poses of the PUMA. In the verification phase program JOINT is run again, with the output data file being renamed POSEVER.DAT for use in program VERIFY.

b. **The program POSE**

Program POSE requires two input data files, PUMA-VAR.DAT, the output data file from program JOINT, and INPUT.DAT, the nominal kinematic parameters of the PUMA, listed in Table 1. POSE also inputs values "dangle" and "dlenth." The value assigned to "dangle" is added to all of the angular parameters except for the ones which are defined to be zero. The value assigned to "dlenth" is added to all of the length
parameters. Adding these values creates a manipulator which is significantly different from the manipulator reflected in the nominal kinematic parameter table, and is equivalent to supplying the kinematic identification program with pseudo-experimental data. Creating this different manipulator tests the integrity of the kinematic parameter identification program. Since the initial guess of the parameters will be the nominal parameters the identification program must rigorously solve for the actual kinematic parameters, which will be the nominal parameters plus "dangle" and "dlenth" as appropriate.

Program POSE generates a T_6 matrix, representing the simulated position and orientation of the tool frame of the PUMA, for each set of joint angles which were generated by program JOINT.

When the joint angles are read from PUMA-VAR.DAT they are added to the parameters read from the nominal kinematic table which apply to the individual joint. For example, in POSE the variable THI equals the sum of $DT1$ and $THETA1$. $DT1$ is input from the nominal kinematic table and $THETA1$ has been generated by JOINT. The nominal kinematic parameters are added to the simulated actual joint angles as any non-zero $THETA$ value at any joint represents a movement from the zero position of that joint.

Once the joint angles are calculated and the nominal kinematic parameters are adjusted, a forward kinematic solution is calculated. This will produce one T_6 matrix for each set of joint angles. In order to accurately model an actual measurement in the laboratory noise is added to the position vector of the T_6 matrix and the six joint angles of each simulated pose. The position noise arises from the uncertainty of the precision with which the coordinate measuring machine and associated software is capable of identifying the position of the center of a tooling ball. The position noise is generated by multiplying a random number which is generated in the same manner as in JOINT by a number read from INPUT.DAT, "magnx." The joint angle noise, called the encoder error, is generated by
multiplying a random number by another value which is read from INPUT.DAT. "magn1."
The position noise is 100 times the magnitude of the encoder noise.

The output of POSE will be the six joint angles for each simulated pose
and the corresponding T_6 matrix for each set of joint angles. This data is stored in the
output file PUMA-POS.DAT.

c. The program ID6

Program ID6 requires two input files, INPUT.DAT and PUMA-
POS.DAT. The nominal kinematic parameters are read from INPUT.DAT in order to
provide the kinematic parameter identification with a beginning point. The T_6 matrices
contained in PUMA-POS.DAT which were generated by program POSE contain the
simulated poses with which the actual kinematic parameters will be identified in this
program.

ZXSSQ will perform the kinematic parameter identification. The function
to be minimized by ZXSSQ is actually an array of six functions. Each pose will have six
functions to be minimized, so if there are ten poses, or observations, ZXSSQ will have
sixty functions to minimize using thirty variables.

A subroutine within ZXSSQ, PUMA_ARM, calculates the T_6 matrix
corresponding to the current kinematic parameters for each set of six joint angles input from
PUMA-POS.DAT. The simulated measured T_6 matrix read from PUMA-POS.DAT for
each set of joint angles is known. Since the original nominal kinematic parameters were
altered before the simulated measured T_6 matrix was calculated, the simulated measured T_6
matrix will be different from the T_6 matrix calculated using the generated joint angles and
the nominal kinematic parameters. Also, the added measurement noise is present,
providing more of a difference in the two matrices. For each observation the array of six F
functions is calculated. After performing the matrix subtraction:
\[\Delta T = T_{\text{measured}} - T_{\text{calculated}} \]

(33)

the six F functions are determined for each observation:

\[F_1 = \Delta T(1.4) \]
\[F_2 = \Delta T(2.4) \]
\[F_3 = \Delta T(3.4) \]
\[F_4 = \frac{\Delta T(3.2) - \Delta T(2.3)}{2} \times \text{scaling factor} \]
\[F_5 = \frac{\Delta T(1.3) - \Delta T(3.1)}{2} \times \text{scaling factor} \]
\[F_6 = \frac{\Delta T(2.1) - \Delta T(1.2)}{2} \times \text{scaling factor} \]

(34)

The scaling factor which multiplies the functions in equation (34) is used to remove the emphasis from the position error. The position error in a pose will be much larger than the orientation error between two \(T_6 \) matrices. For this reason the emphasis in the optimization program will be on eliminating the position error, while largely ignoring the orientation error. This is unacceptable, since the orientation error is equally important as the position error. The scaling factor places the orientation error at the same level of magnitude as the position error.

The F functions in equation (34) represent the error matrix [Ref. 13]:

\[
\Delta = \begin{bmatrix}
0 & -\delta_z & \delta_y & \delta_x \\
\delta_z & 0 & -\delta_x & \delta_y \\
-\delta_y & \delta_x & 0 & \delta_z \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

(35)

It must be noted that equation (35) can only be used when the two matrices being subtracted are almost equal. In an actual experimental process the measured poses usually significantly differ from the predicted pose. This difference causes the \(\Delta \)
matrix, equation 35, to have relatively large elements. ZXSSQ is often unable to converge under these conditions. The different version of ID6 will be introduced in the Experimental section of this chapter.

After all the observations have been calculated for each pose, ZXSSQ compares each F value with a user defined convergence criteria. Convergence is defined when the kinematic parameters selected from one iteration to the next agree to four significant digits. If every F for each pose is less than this convergence criteria, then the current kinematic parameters are saved as the correct parameters. If not, ZXSSQ changes the thirty kinematic parameters and performs the process again until the convergence criteria is satisfied.

The output of ID6 is RESULT.DAT. The identified kinematic parameters will be stored in the same format as INPUT.DAT. In the simulation the identified kinematic parameters will be the parameters of INPUT.DAT plus dangle for orientation parameters and dlenth for length parameters plus some small error value created by the addition of the simulated measurement noise.

d. The program VERIFY

Program VERIFY requires three input programs. The first, POSEVER.DAT, is the output from program JOINT, and includes sets of six joint angles. The other two are kinematic parameters, INPUT.DAT and RESULT.DAT. INPUT.DAT, as explained earlier, contains the nominal kinematic parameters, and RESULT.DAT contains the kinematic parameters identified in program ID6.

VERIFY measures the position and orientation difference between poses calculated using the nominal kinematic parameters and the nominal kinematic parameters. For each set of joint angles, VERIFY calculates a forward kinematic solution using both the nominal and identified kinematic parameters and takes the difference between the
corresponding T_6 matrices. The position error and orientation error for all of the sets of joint angles are added and these values are divided by the total number of sets of joint angles. This will produce the total position error and total orientation error for a given number of observations.

C. EXPERIMENTATION

1. The Tooling Ball End Effector

The tooling ball end effector is illustrated in Figure 22. Its' purpose is to provide a means for determining the position and orientation of frame 6 of the PUMA. The five balls attached to the effector are precision tooled to a radius of 6.35 mm. This known radius, along with the known radius of the touch probe of the coordinate measuring machine provides the essential information required for identification of the center of each tooling ball by the routine BALL described earlier in the thesis. Also, each of the four tooling balls contained in the plane normal to the axis of the effector are nominally 90 degrees apart, creating orthogonality between any two in series around the circumference of the tool. The fifth tooling ball's center lies on an axis which passes the two lines which attach balls on opposite sides of the tool, creating another orthogonality between the fifth ball and each of the other four. The orientation of frame six is fixed on the tool and is required information for the determination of the position and orientation of the tool frame by program CMMPOSE.
2. The Coordinate Measuring Machine and World Coordinate Frame

a. Construction

The coordinate measuring machine (CMM) used for data acquisition in this thesis is illustrated in Figure 23.
The x-axis lies on the base of the CMM. Rotating the x wheel will move the x-axis receptacle to the left or right, changing the x-value displayed. The y-axis is contained within a post which is attached to the slide that changes the x position. Rotating the y wheel moves the y-axis receptacle up or down, changing the y-value displayed. The z-axis is contained in the y-axis receptacle assembly. Rotating the z wheel moves the z receptacle in or out, changing the z value displayed. Consider the point (1,1,1) relative to a known world reference frame. Rotating the x wheel will produce a change in position (Δx,1,1). Rotating the y wheel will produce a change in position (1,Δy,1). Rotating the z
wheel will produce a change in position \((1, 1, \Delta z)\). It is clear that any point in the working volume of the CMM may be reached by the touch probe.

A significant advantage of this CMM is its ability to zero at any position. Each axis may be zeroed independently or concurrently. This is important in identifying the location of the world coordinate frame. A diagram of the world coordinate frame used in the full pose calibration is shown in Figure 24.

![Figure 24. The Full Pose World Coordinate Frame Cube](image)

The cube itself does not actually contain the world coordinate frame. Using the three faces of the cube which form the corner of the bottom of the cube closest to and most left of the operator, also identified in Figure 24, allow for a procedure which
identifies point (0,0,0) of the world coordinate frame. Once this point is identified, the axes of the world coordinate frame match the axes of the CMM. The procedure for identifying the world coordinate frame is as follows. Note that the order of the identification process of the world coordinate frame is arbitrary.

1. The touch probe is positioned in area near the bottom, left, forward face of the cube.

2. Activate the 'x-zero' mode of the CMM. Move, using all three axes if necessary, the touch probe such that its' position is as close to the forward corner of the bottom of the left face as possible. Slowly move the probe to the right, using the x-axis wheel only, until contact is made with the forward face of the cube. When contact is made the display unit (DU) will beep and the x position will indicate zero.

3. Activate the 'y-zero' mode of the CMM. Move, using all three axes if necessary, the touch probe such that its' position is as close to the forward, left corner of the bottom face of the cube as possible. Slowly move the probe upwards, using the y-axis wheel only, until contact is made with the bottom of the cube. When contact is made the DU will beep and the y position will indicate zero.

4. Activate the 'z-zero' mode of the CMM. Move, using all three axes if necessary, the touch probe such that its' position is as close to the bottom, left corner of the forward face of the cube as possible. Slowly move the probe towards the cube, using the z-axis wheel only, until contact is made with the forward face of the cube. When contact is made the DU will beep and the y position will indicate zero.

Once this procedure is completed a point in space located a distance equal to the diameter of the touch probe along each axis, \((x_{\text{dia}}, y_{\text{dia}}, z_{\text{dia}}) \), will be identified as the location of the world coordinate frame. This process is easily repeatable and has a high
degree of accuracy, so for different sets of experimental measurements the position of the world coordinate frame should not vary to a significant degree.

b. Data Acquisition Using the Coordinate Measuring Machine

Data acquisition using the coordinate measuring machine consists of a repetitive measurement of the position of three different tooling balls on the end effector illustrated in Figure 22. The PUMA is operated in joint mode, which allows each of the six joints to be rotated independently. The end effector, which is attached to the tooling ball assembly, is moved to a variety of positions. When the operator is satisfied with the position of the tool, the measurement process begins.

Execution of the pose measurement program, CMMPOSE, begins by inquiring which tooling ball on the tool is being measured. This information is required in order to determine the orientation of frame 6. The touch probe of the CMM is moved slowly towards the selected tooling ball. As the probe touches the surface of the ball the display unit of the CMM beeps. The position displayed by the unit is the position of the probe at the first instant that the probe touches the surface of the ball, and is displayed in millimeters to two significant digits. If the probe slightly slides after initial contact the displayed position will not change, remaining until one of the three axes of the CMM is moved. CMMPOSE asks for three touch probe measurement sets per ball and determines the center of each tooling ball using the procedure described in section II.B.2. Once the center of each ball is calculated a residual error reflecting the uncertainty of the accuracy of the predicted position of the center of the ball is displayed. An option of storing or purging the data is given at this point. Based on the judgement of the operator, the data is sent for further manipulation by CMMPOSE, or the data is purged and another set of ball measurements is taken. An acceptable residual error has a value near 0.000001 mm. Once the center of three of any of the five tooling balls, P_1, P_2, and P_3, is determined, the
program synthesizes the position of the center of a fourth ball, \(P_4 \), by calculating the vector cross product [Ref. 14]:

\[P_4 = (P_3 - P_1) \times (P_2 - P_1) \]

(36)

The relationship between the coordinates of the center of each ball expressed in terms of the tool frame and the world coordinate frame is

\[[P_i^*] = [A] [P_i] \]

(37)

where \(P_i^* \) is the 4x1 column vector of the coordinates of the \(i \)th ball expressed with respect to the world frame, \(P_i \) is the 4x1 column vector of the coordinates of the \(i \)th ball with respect to the tool frame, and \(A \) is the 4x4 homogeneous transformation matrix from the world frame to the tool frame.

If \(P_i \) is known by precalibrating the tool, and \(P_i^* \) is measured then \(A \) may be calculated and used as the measured pose in the calibration process. The difficulty arises in inverting equation (37) to obtain \(A \). The following information is known:

\[[P_1^*] = [A] [P_1] \]
\[[P_2^*] = [A] [P_2] \]
\[[P_3^*] = [A] [P_3] \]
\[[P_4^*] = [A] [P_4] \]

(38)

Algebraic manipulation produces:

\[[P_1^*] [P_2^*] [P_3^*] [P_4^*] = [A] [P_1] [P_2] [P_3] [P_4] \]

(39)

reducing:

\[[P^*] = [A] [P^] \]

(40)
Since \(\mathbf{P}^*, \mathbf{A}, \) and \(\mathbf{P} \) are all \(4 \times 4 \) matrices, equation (40) can be inverted, producing matrix \(\mathbf{A} \), the pose of the tool:

\[
[\mathbf{A}] = [\mathbf{P}^*][\mathbf{P}^{-1}]
\]
(41)

Two operators can expect to measure one pose in ten minutes. One operator will be utilized to move the PUMA and operate the CMM and the other operator will input data as instructed by program CMMPOSE.

c. Identification of Actual Kinematic Parameters

A modified version of program ID6 is used for the identification of the actual kinematic parameters of the PUMA. The modification is in the functions which are minimized by the IMSL routine ZXSSQ. As mentioned earlier, the delta matrix of equation (35) is suitable for use only when the predicted pose and the measured pose are quite close. Experimentation will usually produce matrices which are dissimilar. For this reason, each element of the matrix resulting from the difference between the predicted and measured pose is minimized:

\[
\begin{bmatrix} F_1 & F_4 & F_7 & F_{10} \\ F_2 & F_5 & F_8 & F_{11} \\ F_3 & F_6 & F_9 & F_{12} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}
\]

\[
\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}_{\text{measured}}
\]

This produces twelve functions which are to be minimized. This method provides a more rigorous method for the identification of the kinematic parameters. Table 3 shows the kinematic parameters identified using the full pose calibration procedure [Ref. 15].
TABLE 3. FULL POSE IDENTIFIED PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Value</th>
<th>Identified Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_b</td>
<td>180.0</td>
<td>179.9579</td>
</tr>
<tr>
<td>θ_b</td>
<td>0.0</td>
<td>1.5120</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>90.0</td>
<td>89.0219</td>
</tr>
<tr>
<td>p_{xb}</td>
<td>-394.0</td>
<td>-393.9838</td>
</tr>
<tr>
<td>p_{yb}</td>
<td>-383.0</td>
<td>-405.0608</td>
</tr>
<tr>
<td>p_{zb}</td>
<td>474.0</td>
<td>466.8381</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0</td>
<td>-0.04923</td>
</tr>
<tr>
<td>α_1</td>
<td>-90.0</td>
<td>-89.9977</td>
</tr>
<tr>
<td>$\delta\theta_2$</td>
<td>0.0</td>
<td>-0.4888</td>
</tr>
<tr>
<td>a_2</td>
<td>431.9</td>
<td>432.1216</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0</td>
<td>-0.0303</td>
</tr>
<tr>
<td>β_2</td>
<td>0.0</td>
<td>-0.01515</td>
</tr>
<tr>
<td>$\delta\theta_3$</td>
<td>0.0</td>
<td>-1.2069</td>
</tr>
<tr>
<td>d_3</td>
<td>149.1</td>
<td>149.1455</td>
</tr>
<tr>
<td>a_3</td>
<td>-20.3</td>
<td>-19.2270</td>
</tr>
<tr>
<td>α_3</td>
<td>90.0</td>
<td>90.0512</td>
</tr>
<tr>
<td>$\delta\theta_4$</td>
<td>0.0</td>
<td>-0.9144</td>
</tr>
<tr>
<td>d_4</td>
<td>433.0</td>
<td>432.8899</td>
</tr>
<tr>
<td>a_4</td>
<td>0.0</td>
<td>0.0040</td>
</tr>
<tr>
<td>α_4</td>
<td>-90.0</td>
<td>-89.9909</td>
</tr>
<tr>
<td>$\delta\theta_5$</td>
<td>0.0</td>
<td>2.2364</td>
</tr>
<tr>
<td>d_5</td>
<td>0.0</td>
<td>-0.6629</td>
</tr>
<tr>
<td>a_5</td>
<td>0.0</td>
<td>-0.0258</td>
</tr>
<tr>
<td>α_5</td>
<td>90.0</td>
<td>89.9345</td>
</tr>
<tr>
<td>ϕ_6</td>
<td>90.0</td>
<td>91.2400</td>
</tr>
<tr>
<td>θ_6</td>
<td>0.0</td>
<td>-0.0979</td>
</tr>
<tr>
<td>ϕ_6</td>
<td>0.0</td>
<td>-0.0575</td>
</tr>
<tr>
<td>p_{x6}</td>
<td>0.0</td>
<td>0.1863</td>
</tr>
<tr>
<td>p_{y6}</td>
<td>0.0</td>
<td>-0.2329</td>
</tr>
<tr>
<td>p_{z6}</td>
<td>134.0</td>
<td>133.1557</td>
</tr>
</tbody>
</table>
IV. PARTIAL POSE CALIBRATION

A. THEORY

1. Introduction

As stated earlier, the nominal coordinate transformations from the base frame of the manipulator to frame 5 will not change. These transformations are inherent to the manipulator and are independent of the pose measurement scheme being employed. The transformations from the world coordinate frame to the base frame and from frame 5 to frame 6 are the same transformations as employed in the full pose calibration.

The world coordinate frame is not in the same position, and is not defined in the same manner, as it was in the full pose calibration. The partial pose calibration measurement system uses a linear slide to which the tool frame of the manipulator is attached. The only variable which is measured is the position of the slide relative to a zero position defined at the beginning of each pose measurement session. The world frame is defined as the T_6 matrix of the tool when the slide's position on the slide equals zero. The slide acts as a prismatic joint and hence is defined only in direction. The location of the axis is undefined. The three translational components of the transform from frame five to frame six, T_5^6, are arbitrary and may be set equal to zero. This defines that the origins or frame five and six are coincident, as shown in Figure 25. This will reduce the full thirty parameter model to twenty-seven parameters.

The world coordinate frame's orientation is not known, either. The direction of one axis is able to be defined. In this experiment the axis of the linear slide has been defined as the x axis. The y and z axes of the world coordinate frame are orthogonal to the
x-axis, but their orientation relative to the x-axis is undefinable, arbitrary, and therefore set equal to zero. This further reduces the model to twenty-six parameters.

![Diagram](https://via.placeholder.com/150)

Figure 25. Linear Slide Transformations

The partial pose calibration model dictates that the tool frame pose is invariant. Each pose will have the following orientation:

\[
T_6 = \begin{bmatrix}
1 & 0 & 0 & X \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

(43)

This \(T_6 \) matrix defines the x-axis of the tool frame to be in the same direction as the x-axis of the world coordinate frame, the y-axis of the tool frame to be in the same direction as the z-axis of the world coordinate frame, and the z-axis of the tool frame to be in the same direction as the negative y-axis of the world coordinate frame. Also, the
The position of the origin of frame six is at position (X,0,0), where X is the position of the linear slide. Note that it is still not possible to uniquely define the orientation of the world coordinate frame with respect to any frame on the PUMA. It is only known that the orientation of the world coordinate frame is consistently defined with respect to the orientation of the tool frame.

2. Full Model of the Puma and the Linear Slide

Figure 26 shows the partial pose calibration apparatus. The operation of the coordinate measuring machine as a linear slide will be explained in the experimental section of this chapter.

Figure 26. Partial Pose Calibration Apparatus: PUMA and Linear Slide
Table 4 displays the kinematic parameters of the partial pose model. In the partial pose model twenty-six parameters are able to be determined. The parameters in boldface type are unable to be experimentally determined consequently their value is defined as equaling zero, or, in the case of the four parameters in the sixth transformation, the parameters are not independent, as explained in the previous section. Note the transform from the world coordinate frame to the base frame of the PUMA has changed from the full pose calibration. The world coordinate frame is not at the corner of the cube, as it was in the full pose calibration. The nominal kinematic parameters within the PUMA do not change, regardless of the type model used in the calibration process.

TABLE 4. NOMINAL KINEMATIC PARAMETERS FOR THE PARTIAL POSE CALIBRATION

<table>
<thead>
<tr>
<th>link</th>
<th>$\Delta \theta_i$</th>
<th>d_i</th>
<th>a_i</th>
<th>α_i</th>
<th>β_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>degrees</td>
<td>degrees</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0</td>
<td>431.85</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>149.09</td>
<td>-20.33</td>
<td>90.0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>433.00</td>
<td>0.0</td>
<td>-90.0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>90.0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕ_6</th>
<th>θ_6</th>
<th>γ_6</th>
<th>P_{x6}</th>
<th>P_{y6}</th>
<th>P_{z6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees</td>
<td>degrees</td>
<td>degrees</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>90.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
B. SIMULATION

1. The Suite of Programs Used and the Strategy Involved

As stated earlier, the simulation study is performed to:

1. Confirm that the numerical algorithm proposed for the identification converges to the correct values.

2. Predict the number of experimental poses required to identify the kinematic parameters to a defined degree of accuracy.

3. Estimate the resulting accuracy of the manipulator if the new kinematic model was embedded in the control software of the manipulator.

In the partial pose calibration, the forementioned "correct" values are the kinematic parameters identified using the full pose method. The computer programs written, and their relationships, are illustrated in Figure 27.

![Flowchart for Partial Pose Simulation](image)

Figure 27. Flowchart for Partial Pose Simulation
The complete simulation may be regarded as a tool to plan the experiment in which the independent variables are the number of observations and the range of joint angles allowed by the common work volume of the PUMA and the linear slide, while the dependent variables are the accuracy of the parameter identification and the resulting manipulator accuracy. A detailed explanation of each program follows.

a. The program LINSC

Program LINSC requires the input file INPUT.DAT, the nominal kinematic data for the PUMA, which are listed in Table 1. LINSC also inputs values "dangle" and "dlenth," as did program POSE in the simulation phase of the full pose calibration. It will be instructive to reexamine the function of these two parameters. The value assigned to "dangle" is added to all of the angular parameters except for the ones which are defined to be zero. The value assigned to "dlenth" is added to all of the length parameters. Adding these values creates a manipulator which is significantly different from the manipulator reflected in the nominal kinematic parameter table, and is equivalent to supplying the kinematic identification program with pseudo-experimental data. Creating this different manipulator tests the integrity of the kinematic parameter identification program. Since the initial guess of the parameters will be the nominal parameters the identification program must rigorously solve for the actual kinematic parameters, which will be the nominal parameters plus "dangle" and "dlenth" as appropriate.

Program LINSC generates six joint angles which will produce a T_6 matrix with an orientation that is predefined and fixed and a position on the slide which has been randomly generated. This is done by performing an inverse kinematic solution, since the T_6 matrix is known. The set of joint angles, when used with the nominal kinematic parameters of the PUMA, which will produce the required T_6 matrix is the required data. The IMSL routine ZXSSQ is again used to make this determination.
ZXSSQ uses an initial guess of all six joint angles equaling zero. A forward kinematic solution is calculated based on these joint angles and the nominal kinematic parameters plus dangle and dlength. The difference between each element of the calculated T_6 matrix and the required T_6 matrix is calculated. These elements represent the functions to be minimized:

\[
\begin{align*}
F_1 &= a_{11} a_{12} a_{13} a_{14} \\
F_2 &= a_{21} a_{22} a_{23} a_{24} \\
F_3 &= a_{31} a_{32} a_{33} a_{34} \\
0 &= 0 0 0 1 \\
0 &= 0 0 0 1 \\
0 &= 0 0 0 1 \\
\end{align*}
\]

ZXSSQ modifies the joint angle set until a convergence criteria is satisfied. At convergence the required T_6 matrix and the six joint angles are returned to the main program.

It has been stated that in order to accurately model an actual measurement in the laboratory noise must be added to the simulated T_6 matrix and the six joint angles of each pose. The position noise and encoder noise is generated in the same manner as in program POSE in the full pose simulation. The position noise in the partial pose simulation arises from the uncertainty in the measurement of the position of the slide. The orientation error arises from inconsistencies in the bar supporting the slide. The bar almost certainly will have elements of twist and bend in it. These elements will cause differences in orientation as the slide moves along its' length.

After the noise is added to the T_6 matrix and the joint angles, the data is stored in the output file PUMA-POS.DAT.

b. The program ID6_LINSC

Program ID6_linsc requires two input files, INPUT.DAT and PUMA-POS.DAT. The nominal kinematic parameters are read from INPUT.DAT in order to
provide the kinematic parameter identification with a beginning point. The T_6 matrices and associated joint angles contained in PUMA-POS.DAT which were generated by program LINSC contain the simulated poses with which the actual kinematic parameters will be identified in this program.

ZXSSQ will perform the kinematic parameter identification. Each element of the matrix resulting from the difference between the predicted and measured pose is minimized, as was done during the actual kinematic parameter identification of the full pose calibration method. See equation (43) for the equation of the functions to be minimized.

This produces twelve functions which are to be minimized. Subroutine PUMA_ARM calculates the T_6 matrix corresponding to the current kinematic parameters for each set of six joint angles input from PUMA-POS.DAT. The simulated measured T_6 matrix read from PUMA-POS.DAT for each set of joint angles is known. Since the original nominal kinematic parameters were altered before the simulated measured T_6 matrix was calculated, the simulated measured T_6 matrix will be different from the T_6 matrix calculated using the generated joint angles and the nominal kinematic parameters. Also, the added measurement noise is present, providing more of a difference in the two matrices.

After all the observations have been calculated for each pose, ZXSSQ compares each F value with a user defined convergence criteria. Convergence is defined when the kinematic parameters selected from one iteration to the next agree to four significant digits. If every F for each pose is less than this convergence criteria, then the current kinematic parameters are saved as the correct parameters. If not, ZXSSQ changes the twenty-six available kinematic parameters and repeats the process until the convergence criteria is satisfied.
The output of ID6_linsc is RESULT.DAT. The identified kinematic parameters will be stored in the same format as INPUT.DAT. In the simulation the identified kinematic parameters will be the parameters of INPUT.DAT plus dangle for orientation parameters and dlength for length parameters plus some small error value created by the addition of the simulated measurement noise.

C. EXPERIMENTATION

1. The Coordinate Measuring Machine as a Linear Slide

 a. Construction

 The coordinate measuring machine's base, which supports the x-axis, is mounted on an incline, as illustrated in Figure 28. The incline is placed on the table on which the PUMA is mounted, in an orientation which is significantly different from the x-axis of the PUMA. This position, concurrent with the inclined mounting, provides for the maximum possible joint rotation of all six joints of the PUMA.
Figure 28. Coordinate Measuring Machine as Linear Slide

b. Data Acquisition Using the Linear Slide

Data acquisition using the linear slide is as follows. The PUMA is fixed to the slide using a plate fitted with holes to facilitate attachment to both joint six and the linear slide. The mounting plate has an offset which allows the kinematic parameters associated with the sixth transform to be identified. The PUMA is placed in "Free" mode, allowing unimpeded rotation of each joint, while continually being supported by one member of the measurement team. The PUMA is quite heavy and great care must be taken to prevent abrupt movement of the manipulator arm while joint six is attached to the slide.
The slide is moved to one end of the slide and the x-axis position indicator on the display unit is zeroed. The slide should be positioned at the lower end of the slide when being zeroed in order to have positive x-axis position indications on the display unit. The slide is moved up the scale in incremental distances, and after each increment the six joint angle positions of the PUMA and the x position of the slide is input using program ACDAT. The position which has been input is stored with the orientation matrix, which will not change, regardless of the position of the slide.

Two operators can expect to measure one pose in one minute. One operator is utilized to move and support the PUMA while the other will input the position of the slide and the joint angles of the PUMA, as directed by program ACDAT.

c. Identification of Actual Kinematic Parameters

The same version of program ID6_linsc which was used in the identification of the kinematic parameters in the simulation phase of the partial pose calibration is used in the identification of the actual kinematic parameters. Table 5 shows the kinematic parameters identified using the full pose calibration procedure.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Value</th>
<th>Identified Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_b</td>
<td>151.0</td>
<td>150.4016</td>
</tr>
<tr>
<td>θ_b</td>
<td>-20.0</td>
<td>-18.1370</td>
</tr>
<tr>
<td>Φ_a</td>
<td>90.0</td>
<td>90.1163</td>
</tr>
<tr>
<td>p_{x_b}</td>
<td>-203.0</td>
<td>-167.1160</td>
</tr>
<tr>
<td>p_{y_b}</td>
<td>-254.0</td>
<td>-382.9224</td>
</tr>
<tr>
<td>p_{z_b}</td>
<td>457.2</td>
<td>408.2330</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0</td>
<td>0.3920</td>
</tr>
<tr>
<td>α_1</td>
<td>-90.0</td>
<td>-89.9778</td>
</tr>
<tr>
<td>$\delta\theta_2$</td>
<td>0.0</td>
<td>-0.5600</td>
</tr>
<tr>
<td>a_2</td>
<td>431.85</td>
<td>431.9559</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0</td>
<td>-0.0648</td>
</tr>
<tr>
<td>β_2</td>
<td>0.0</td>
<td>0.0326</td>
</tr>
<tr>
<td>$\delta\theta_3$</td>
<td>0.0</td>
<td>-1.0704</td>
</tr>
<tr>
<td>d_3</td>
<td>149.1</td>
<td>149.4573</td>
</tr>
<tr>
<td>a_3</td>
<td>-20.3</td>
<td>-19.3452</td>
</tr>
<tr>
<td>α_3</td>
<td>90.0</td>
<td>90.1312</td>
</tr>
<tr>
<td>$\delta\theta_4$</td>
<td>0.0</td>
<td>-0.8549</td>
</tr>
<tr>
<td>d_4</td>
<td>433.0</td>
<td>433.0048</td>
</tr>
<tr>
<td>a_4</td>
<td>0.0</td>
<td>0.6809</td>
</tr>
<tr>
<td>α_4</td>
<td>-90.0</td>
<td>-89.5235</td>
</tr>
<tr>
<td>$\delta\theta_5$</td>
<td>0.0</td>
<td>2.3123</td>
</tr>
<tr>
<td>d_5</td>
<td>0.0</td>
<td>-0.3900</td>
</tr>
<tr>
<td>a_5</td>
<td>0.0</td>
<td>-0.8460</td>
</tr>
<tr>
<td>α_5</td>
<td>90.0</td>
<td>89.5360</td>
</tr>
<tr>
<td>Φ_6</td>
<td>90.0</td>
<td>78.6654</td>
</tr>
<tr>
<td>θ_6</td>
<td>0.0</td>
<td>-0.1972</td>
</tr>
</tbody>
</table>
V. DISCUSSION OF RESULTS

A. GENERAL OBSERVATIONS

Both the full pose and partial pose calibration methods successfully provided kinematic parameters which could be used in a control program to use the PUMA most accurately. Each simulation predicted convergence to a unique set of kinematic parameters, thirty for the full pose method and twenty-six for the partial pose method. Poses measured in the laboratory provided the data which proved this prediction.

The results of the kinematic parameter identification using the full pose calibration method indicates that the resulting accuracy of the manipulator is 0.3 mm. The experimentally predicted accuracy was considerably larger than the predicted accuracy from the simulation, which was approximately 0.15 mm. This is most likely attributed to a higher magnitude of noise being present in the pose measurements than predicted in the simulation. It may be concluded that using this type of calibration method will improve the accuracy of the manipulator to about the same value of the manipulator repeatability [Ref. 16].

The results of the kinematic parameter identification using the partial pose calibration method indicate that the resulting accuracy of the manipulator is 0.9 mm. It may be concluded that using this type of calibration method will provide a manipulator which is three times less accurate than a manipulator calibrated using the full pose method, but still more accurate than an uncalibrated manipulator.

The method to determine accuracy of the partial pose calibration method is as follows. A total of 42 poses were measured, 21 in lefty configuration, 21 in righty. The lefty and righty configuration is a description of joint 1’s position. If, while the operator is facing
the PUMA, joint 1 is rotated such that the axis of joint one points to the operator's right, the PUMA is in lefty configuration. The opposite holds for righty configuration. Figure 29 shows the PUMA in lefty, elbow down configuration. Note the tooling ball end effector attached to joint six.

Figure 29. The PUMA 560 in Lefty, Elbow Down Configuration
While all 42 poses were used in the identification of the kinematic parameters shown in Table 5, to determine the accuracy, the poses were divided. The first ten poses measured in the lefty and righty configuration were merged to form a set of twenty poses which were used in program ID6_LINSC to determine a set of identified kinematic parameters, an output file KINPARAM.DAT. The last ten poses measured in the lefty and righty configuration were merged into a data file, MEASURE.DAT, to act as the measured poses. The program EFOR was executed, calculating the predicted poses based on the actual joint angles of the PUMA, read from MEASURE.DAT, and the identified kinematic parameters, read from KINPARAM.DAT. The result is two sets of T_6 matrices, one the actual measured T_6 matrix, the other the predicted T_6 matrix. Program COMP.FOR calculates the RMS position difference and orientation difference between the two sets of T_6 matrices.

B. COMPARATIVE OBSERVATIONS

Table 6 shows the identified kinematic parameters for the PUMA using the full pose calibration method and the partial pose calibration method. A comparison of the two methods of calibration described in this thesis, along with an analysis of the identified calibrated parameters, will follow.
TABLE 6. COMPARISON BETWEEN FULL AND PARTIAL POSE IDENTIFIED KINEMATIC PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal Value</th>
<th>Identified Value</th>
<th>Identified Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FULL POSE</td>
<td>PARTIAL POISE</td>
</tr>
<tr>
<td>a_1</td>
<td>0.0</td>
<td>-0.04923</td>
<td>0.3920</td>
</tr>
<tr>
<td>α_1</td>
<td>-90.0</td>
<td>-89.9977</td>
<td>-89.9778</td>
</tr>
<tr>
<td>$\delta\theta_2$</td>
<td>0.0</td>
<td>-0.4888</td>
<td>-0.5600</td>
</tr>
<tr>
<td>a_2</td>
<td>431.9</td>
<td>432.1216</td>
<td>431.9559</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0</td>
<td>-0.0303</td>
<td>-0.0648</td>
</tr>
<tr>
<td>β_2</td>
<td>0.0</td>
<td>-0.01515</td>
<td>0.0326</td>
</tr>
<tr>
<td>$\delta\theta_3$</td>
<td>0.0</td>
<td>-1.2069</td>
<td>-1.0704</td>
</tr>
<tr>
<td>d_3</td>
<td>149.1</td>
<td>149.1455</td>
<td>149.4573</td>
</tr>
<tr>
<td>a_3</td>
<td>-20.3</td>
<td>-19.2270</td>
<td>-19.3452</td>
</tr>
<tr>
<td>α_3</td>
<td>90.0</td>
<td>90.0512</td>
<td>90.1312</td>
</tr>
<tr>
<td>$\delta\theta_4$</td>
<td>0.0</td>
<td>-0.9144</td>
<td>-0.8549</td>
</tr>
<tr>
<td>d_4</td>
<td>433.0</td>
<td>432.8899</td>
<td>433.0048</td>
</tr>
<tr>
<td>a_4</td>
<td>0.0</td>
<td>0.0040</td>
<td>0.6809</td>
</tr>
<tr>
<td>α_4</td>
<td>-90.0</td>
<td>-89.9909</td>
<td>-89.5235</td>
</tr>
<tr>
<td>$\delta\theta_5$</td>
<td>0.0</td>
<td>2.2364</td>
<td>2.3123</td>
</tr>
<tr>
<td>d_5</td>
<td>0.0</td>
<td>-0.6629</td>
<td>-0.3900</td>
</tr>
<tr>
<td>a_5</td>
<td>0.0</td>
<td>-0.0258</td>
<td>-0.8460</td>
</tr>
<tr>
<td>α_5</td>
<td>90.0</td>
<td>89.9345</td>
<td>89.5360</td>
</tr>
</tbody>
</table>

Most robot manipulator arms will be used in an industrial environment. While it is important that the manipulator be properly calibrated, the amount of time the manipulator is unavailable for operation due to the calibration process being performed is significant. The experiments performed clearly have shown the full pose method takes considerably more time to accomplish than the partial pose method. The full pose method takes approximately
ten minutes to make one pose measurement, while the partial pose measurement takes only one minute to measure one pose. The amount of time required could be cut dramatically if an interface between the PUMA control computer and the data acquisition computer were built. This interface would eliminate the need for manual entry of the six joint angles for each pose. The relative difference in the amount of time required to measure one pose would still be present.

The full pose calibration method provides for a more accurate calibration of the manipulator. This fact arises from two considerations. First, more of the kinematic parameters of the manipulator can be identified using the full pose method, thirty, than the partial pose method, twenty-six. A thirty parameter model is logically a more detailed model of the manipulator than a twenty-six parameter model. Second, the full pose calibration uses a working volume of the manipulator which is significantly larger than the working volume used in the partial pose method. In actuality, the area used in the full pose calibration is indeed a volume. The area used in the partial pose model is comprised of only a line which is slightly longer than 900 mm. This thesis did not examine the validity of the calibration of the PUMA once the PUMA operates outside the calibration volume. It seems logical that if the tool of the PUMA was placed a considerable distance from the region in which it was calibrated, the calibration becomes invalid.

Another difference between the full and partial pose methods is the association between the number of poses required for a calibration. Each pose measured using the full pose calibration provides six units of information: the position, \((x_6, y_6, z_6)\), of the origin of frame 6, and the orientation of frame 6, the direction cosines of each coordinate axis. The full pose calibration determined thirty kinematic parameters. In the complete absence of noise five poses would be required to identify the kinematic parameters, since thirty unknowns require thirty units of information for a unique solution. Each pose measured
using the partial pose calibration provides two units of information, since the frame which the pose is defined with respect to, is not known. Four units of information are required to define the frame, the sum of which is six units of information, as is available in the full pose calibration. In the complete absence of noise fourteen poses would be required to identify the kinematic parameters, since twenty-six unknowns require twenty-six units of information for a unique solution.

The full pose calibration showed that it is very important to exercise all six of the joints as much as possible during the pose measurement phase. This requirement arises due to the presence of measurement noise [Ref. 17]. The simulation's level of measurement noise was not as large as the noise determined to be present in the actual measurement phase. This allowed for a unique solution in the simulation without large joint rotations. The measured pose calibration process showed the increased amount of noise being present, and it was determined that maximizing the joint rotation alleviated the presence of the measurement noise in the coordinate measuring machine and in the encoders within the joints of the PUMA. The PUMA was exercised by taking a series of poses which would transcribe a cube in front of the PUMA, in elbow up and elbow down (joint 3 is the elbow), and in lefty and righty configurations.

The problem of exercising the joints resurfaced in the partial pose calibration. The slide's length and position relative to the PUMA prevented adequate exercising of the joints. If poses which were taken in only one configuration, i.e. lefty or righty, were used in a calibration attempt using ID6_LINSC, the identified kinematic parameters were found to be significantly different from those identified using the full pose method, and were disregarded as inaccurate. The presence of noise arising from the slide's flexure on its' mount dominated in this case. The first slide used in the partial pose calibration process had dramatic flexure, and was discarded in preference of the more stiff coordinate
measurement machine x-axis slide. Even with the reasonably stiff coordinate measuring machine it was shown that regardless of how many poses were measured in one configuration, an accurate calibration was not possible. To conduct an accurate calibration, a series of poses were measured along the length of the slide and then the PUMA was disconnected from the slide. Joint 1 was rotated such that the configuration was reversed from the lefty configuration to the righty configuration, the tool frame was reattached to the slide, and another series of poses was measured along the length of the slide. It was not possible to obtain poses in both the elbow up and elbow down configuration due to the proximity of the PUMA to the slide. All of the poses were taken in the elbow up configuration. Measuring poses in both the lefty and righty configuration countered the presence of the measurement noise, but the resultant accuracy of the calibration still did not match that of the full pose calibration.

The orientation of the slide presented a problem as well. Two calibration attempts were attempted with the slide laying flat on the table on which the PUMA is mounted. It was found that the orientation of the slide prevented the joint rotation necessary to overcome the measurement noise present. The next attempt placed the slide on an incline of about thirty degrees. The slide/incline apparatus was first oriented nominally in line with the x-axis of the PUMA. Again, adequate joint rotation was not possible. The difficult joints to move were the wrist joints, joints 4 through 6. Also, there was a problem with the tool frame entering areas of singularity. The area is said to be singular if the tool frame can be restrained in one position while a joint is moved freely. Simply stated, this means a singular pose can be defined with several different sets of joint angles. To remove the problem of singularity and to achieve the required joint rotation, the slide/incline apparatus was placed at an angle from the x-axis of the PUMA. Using this orientation and the pose
measurement procedure described in the previous paragraph, the calibration was completed.
VI. CONCLUSIONS

The results of the research reported in this thesis provide the following conclusions:

1. It is possible to improve the accuracy of a PUMA 560 robot manipulator to significantly less than the current possible accuracy of 10.0 mm, and equal to the repeatability, 0.3 mm.

2. Full pose calibration of the PUMA 560 is possible and will identify thirty kinematic parameters, producing an accuracy of 0.3 mm.

3. Partial pose calibration of the PUMA 560 is possible and will identify twenty-six kinematic parameters, producing an accuracy of 0.9 mm.

4. Obtaining the maximum possible joint rotation of all six joints is required for robust convergence to the identified kinematic parameters of the manipulator.

5. Measuring poses in lefty, righty, elbow up, and elbow down configuration facilitates maximum joint rotation and corresponding robust convergence.

6. The partial pose measurement phase showed that the orientation of the slide relative to the PUMA is of paramount importance in the identification of the kinematic parameters.

7. More information per pose is determined using the full pose calibration, but the excessive time required, ten minutes per pose, detracts from the efficiency of the method.

8. To use the partial pose method of calibration requires that the manipulator have a "Free" mode, in which each joint can be physically rotated.

9. The "Delta" matrix, showed in equation 35 should not be used as the functions to be minimized in the calibration procedure. Each element of the T_6 matrix should be used as functions to be minimized.
APPENDIX A. PROGRAM BALL

Program BALL

This program takes four sets of Cartesian coordinates assumed to be from a CMM touching the surface of a precision tooling ball, and finds the center of the ball.

integer n,m,nxg,maxfn,iopt,i,infer,ier,ixjac
real*8 parm(4),x(3),f(4),xjac(4,3),work(29),eps,delta,
& xjtj(6),y(4,3)
external resid
common y
m=4
n=3
ixjac=4
nsig=3
eps=0.0
delta=0.0
maxfn=500
iopt=1

get touch data

1000 do i=1,4
 write(6,'(a)') 'Move the CMM and type in data for point #',i
 read (5,*) y(i,1),y(i,2),y(i,3)
endo

set up start point for identification

 x(1)=y(1,1)
 x(2)=y(1,2)
 x(3)=y(1,3)

 call zxssq(resid,m,n,nsig,eps,delta,maxfn,iopt,parm,x,ssq,f,
& xjac,ixjac,xjtj,work,infer,ier)

 write(6,800) 'center (x,y,z) is:',x(1),x(2),x(3)
 write(6,'(a)') 'residual error is:', ssq
800 format(1x,a,3f9.3)

end

subroutine resid(x,m,n,f)

This subroutine calculates the residual functions used by the IMSL routine ZXSSQ, called from subroutine BALL.

integer m,n
real*8 x(n),f(m),y(4,3),res,re,r0
common y

76
x0=7.85
do i=1,4
 res=(x(1)-y(i,1)**2+(x(2)-y(i,2))**2+(x(3)-y(i,3))**2
 re=dabs(res)
 f(i)=dabs(res-x0)
enddo
sum=0.0
do i=1,4
 sum=sum+f(i)
enddo
write(6,*) sum
return
end
APPENDIX B. PROGRAM CMMPOSE

Program CMMPOSE
This program accepts coordinate data from the CMM, together
with the tooling ball i.d. and generates a 4x4 pose matrix
corresponding to the pose. Four measurements on each of three
calls is required.

parameter (lda=4,ldainv=4,n=4,ld3=3)
real*8 x(3,3), z(3), p(5,3), pa(3), pb(3), pc(3), pd(3), p4(4,4),
& pd4(4,4), pinv(4,4), t(4,4), sum, val, x1, y1, z1,
& x2, y2, z2
integer id(3), flag
c character reply
external.

Precalibration data for the tool (in column order)
data p/0.0,0.0,50.400,0.0,-50.913,0.0,
& 0.0,0.0,50.703,0.0,-50.988,
& 51.121,0.0,0.0,0.0,0.0/

open data file
open(9,name='posex.dat',status='new')

gather data from three balls

1000 do j=1,3
write(6,*) 'Input ball reference number'
read(5,*) id(j)
call ball(z)
do k=1,3
x(j,k)=z(k)
enddo
dendo

synthesize the fourth ball - measured

do j=1,3
pa(3)=x(1,j)
pb(3)=x(2,j)
pc(3)=x(3,j)
dendo

x1=(pb(1)-pa(1))/70.71
y1=(pb(2)-pa(2))/70.71
z1=(pb(3)-pa(3))/70.71
x2=(pc(1)-pa(1))/70.71
y2=(pc(2)-pa(2))/70.71
z2=(pc(3)-pa(3))/70.71

78
pd(1) = (y1*z2-y2*z1)*70.71+pa(1)
pd(2) = (x2*z1-x1*z2)*70.71+pa(2)
pd(3) = (x1*y2-x2*y1)*70.71+pa(3)

c compose the PD4 matrix

do i=1,3
 pd4(i,1)=pa(i)
pd4(i,2)=pb(i)
pd4(i,3)=pc(i)
pd4(i,4)=pd(i)
endo

do i=1,4
pd4(4,i)=1.0
endo

c synthesize the fourth ball - tool

do j=1,3
 pa(j)=p(id(1),j)
pb(j)=p(id(2),j)
 pc(j)=p(id(3),j)
endo

x1=(pb(1)-pa(1))/70.71
y1=(pb(2)-pa(2))/70.71
z1=(pb(3)-pa(3))/70.71

x2=(pc(1)-pa(1))/70.71
y2=(pc(2)-pa(2))/70.71
z2=(pc(3)-pa(3))/70.71

pd(1) = (y1*z2-y2*z1)*70.71+pa(1)
pd(2) = (x2*z1-x1*z2)*70.71+pa(2)
pd(3) = (x1*y2-x2*y1)*70.71+pa(3)

c compose the P4 matrix

do i=1,3
 p4(i,1)=pa(i)
p4(i,2)=pb(i)
p4(i,3)=pc(i)
p4(i,4)=pd(i)
endo

do i=1,4
 p4(4,i)=1.0
endo

c calculate the T matrix

call dlinrgn(p4,lda,pinv,ldainv)
call matmulc~t,pd4,pinv)
call dwrrn('T',n,n,t,ldainv,0)

c orthogonality and size check

flag=0
sum=0.0

 do j=1,3
sum=sum+t(j,1)*t(j,2)
enddo
val=dabs(sum)
write(6,*),'val=',val
if(val.gt.0.1) flag=1

do j=1,3
sum=sum+t(j,2)*t(j,3)
enddo
val=dabs(sum)
write(6,*),'val=',val
if(val.gt.0.01) flag=1

do j=1,3
sum=sum+t(j,1)*t(j,3)
enddo
val=dabs(sum)
write(6,*),'val=',val
if(val.gt.0.01) flag=1

do i=1,3
sum=0.0

do j=1,3
sum=sum+t(j,i)*t(j,i)
enddo
val=dabs(sum-1.00000)
write(6,*),'val=',val
if(val.gt.0.01) flag=1

endif
if(flag.eq.1) then
write(6,*),'orthogonality test: FAIL'
else
write(6,*),'orthogonality test: PASS'
endif

c save data to file

do i=1,4
write(9,700) t(i,1),t(i,2),t(i,3),t(i,4)
enddo
700 format(4e17.8)
write(9,*)

c reminder to get joint angles

write(6,*),'Type WHERE on the FUMA console'
c need more data ?
1020 write(6,*),'More data...(y=yes, n=no)'
read (5,'(a)') reply
if (reply.eq.'y') goto 1000
if (reply.eq.'n') goto 1010
goto 1020

1010 close (9)
close(10)
end
subroutine BALL(x)

This program takes three or four sets of Cartesian coordinates assumed to be from a CMF touching the surface of a precision tooling ball, and finds the center of the ball.

external resid
integer n,m,nsig,maxfn,iopt,i,infer,ier,ixjac
real*8 parm(4),x(3),f(4),xjac(4,3),work(29),eps,delta,
& xjtj(6),y(4,3)
character reply
common y

open(10,name='test.dat',status='old')

m=4
n=3
ixjac=4
nsig=3
eps=0.0
delta=0.0
maxfn=500
iopt=1

get touch data

do i=1,4
write(6,*),'Move the CMF and type in data for point #',i
read(10,*)y(i,1),y(i,2),y(i,3)
enddo

set up start point for identification

x(1)=y(1,1)
x(2)=y(1,2)
x(3)=y(1,3)

call zxssqcresid,m,n,nsig,eps,delta,maxfn,iopt,parm,x,ssq,f,
& xjac,ixjac,xjtj,work,infer,ier)

write(6,800)'center (x,y,z) is:',x(1),x(2),x(3)
write(6,*)'residual error is:',ssq

800 format(1x,a,3f9.3)

1000 write(6,*)'Keep this data (y=yes, n=no)'
read(5,*('a')) reply
if (reply.eq.'y') goto 1010
if (reply.eq.'n') goto 1020
goto 1000

1010 return
end

subroutine resid(x,m,n,f)
This subroutine calculates the residual functions used by the IMSL routine ZXSSQ, called from subroutine BALL.

integer m,n
real*8 x(n),f(x,4),y(4,3),res,re,r0
common y

r0=7.85
do i=1,4
 res=(x(i)-y(i,1))**2+(x(2)-y(i,2))**2+(x(3)-y(i,3))**2
 re=dsqrt(res)
 f(i)=abs(re-r0)
enddo

sum=0.0
do i=1,4
 sum=sum+f(i)
enddo

return
end
APPENDIX C PROGRAM JOINT

PROGRAM JOINT

This program generates the six joint angles for the PUMA manipulator arm for the simulation of the PUMA's calibration using the coordinate measurement machine. The six joint angles are generated using a random number generator.

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL Q(MAXNOBS,6), QMIN(6), QMAX(6)

COMMON /C1/ Q, QMAX, QMIN

In this section the working volume of the PUMA can be selected. The working volume can be full, half, or one quarter, based on extent of the allowed joint movement.

DATA QMIN/ -180.0, -180.0, -180.0, -180.0, -180.0, -180.0 /
DATA QMAX/ 180.0, 180.0, 180.0, 180.0, 180.0, 180.0 /
WRITE (6,*) 'Volume is FULL'

DATA QMIN/ -90.0, -90.0, -90.0, -90.0, -90.0, -90.0 /
DATA QMAX/ 90.0, 90.0, 90.0, 90.0, 90.0, 90.0 /
WRITE (6,*) 'Volume is HALF'

DATA QMIN/ -45.0, -45.0, -45.0, -45.0, -45.0, -45.0 /
DATA QMAX/ 45.0, 45.0, 45.0, 45.0, 45.0, 45.0 /
WRITE (6,*) 'Volume is QUARTER'

Open the output data file, PUMA-VAR.DAT.
OPEN (8, NAME='PUMA-VAR.DAT', STATUS='NEW')

Input the number of observations from the nominal kinematic data file, INPUT.DAT.
OPEN (9, NAME='INPUT.DAT', STATUS='OLD')
DO I=1,10
READ (9,*)
ENDDO
READ (9,*) NOBS
CLOSE (9)

Call the random number generation routine to obtain a set of six random joint angles.
CALL MSPREAD (NOBS)

Save the joint variable data in the output file, PUMA-VAR.DAT.
DO II = 1, NOBS
 WRITE (8,*) Q(II,1),Q(II,2),Q(II,3),Q(II,4),Q(II,5),Q(II,6)
ENDDO
CLOSE (8)
STOP
END

SUBROUTINES

SUBROUTINE 1

SUBROUTINE MSPREAD (NOBS)

This subroutine generates the six required joint angles by the Monte Carlo method. The six joint angles are generated by using six independently random numbers.

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL Q(MAXNOBS,6), QMIN(6), QMAX(6), MAGQ(6), NUM
INTEGER*4 ISEED
COMMON /Cl/ Q, QMAX, QMIN

Obtaining the random number seed.

WRITE (6,*) 'Type in a 6-digit random number seed'
READ (5,*) ISEED

Calculating the scaling factor for each joint angle.

DO I = 1, 6
 MAGQ(I) = QMAX(I)-QMIN(I)
ENDDO

Generating the six joint angles.

DO J = 1, NOBS
 DO I = 1, 6
 CALL RANDOM (ISEED, NUM)
 Q(J,I) = QMIN(I) + MAGQ(I) * NUM
 ENDDO
ENDDO

RETURN
END

SUBROUTINE 2

SUBROUTINE RANDOM (X,Z)

REAL FM, FX, Z
INTEGER A, X, I, M
DATA I/1/
IF (I .EQ. 0) GO TO 1000
I=0
M= 2 ** 20
FM= M
A= 2**10 + 3
1000 X= MOD(A*X ,M)
FX= X
Z= FX/ FM
RETURN
END
APPENDIX D PROGRAM POSE

PROGRAM POSE

This program generates a T6 matrix for each set of joint angles which were generated using the program JOINT. The T6 matrix is calculated by performing a forward kinematic solution using the six joint angles which are read from PUMA-VAR.DAT and the nominal kinematic data which are read from INPUT.DAT.

INTEGER*4 ISEED
INTEGER I, J, K, NOBS, MAXNOBS, N
REAL*8 RNX, RNY, RNZ, MAGNX, MAGN1, DANGLE, DLNGTH
REAL*8 RN1, RN2, RN3, RN4, RN5, RN6, PI
PARAMETER (PI=3.141592653589793)
PARAMETER (MAXNOBS=360)
REAL*8 EI0, SI0, TH0, PX0, PY0, PZ0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 IF1, IF2, IF3, IF4, IF5, IF6
REAL*8 THETA1, THETA2, THETA3, THETA4, THETA5, THETA6
REAL*8 TH1, TH2, TH3, TH4, TH5
REAL*8 TO4(4,4), T1(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRFY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4)

DATA TIMAT/1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1/

Obtain a random number seed. This random number will be used later in the program to generate random noise which will model an actual measurement using the coordinate measurement machine.

WRITE (6,*) 'Type in a 6-digit random number seed.'
READ (5,*) ISEED

Open the two input files, PUMA-VAR.DAT and INPUT.DAT, and the output data file, PUMA-POS.DAT, which will contain the six previously determined joint angles and the corresponding T6 matrix calculated in this program.

OPEN (8, NAME='PUMA-VAR.DAT', STATUS='OLD')
OPEN (9, NAME='PUMA-POS.DAT', STATUS='NEW')
OPEN (10,NAME='INPUT.DAT', STATUS='OLD')

Reading nominal kinematic parameters from INPUT.DAT.

read (10,*)
read (10,*) fi0, th0, si0, px0, py0, pz0
read (10,*) dt1, dd1, aa1, al1, bl1
read (10,*) dt2, dd2, aa2, al2, bl2
read (10,*) dt3, dd3, aa3, al3, bl3
read (10,*) dt4, dd4, aa4, al4, bl4
read (10,*) dt5, dd5, aa5, al5, bl5
read (10,*)
read (10,*) df6, th6, si6, px6, py6, pz6
read (10,*)
read (10,*) nobs, n, dangle, dlenth, magnx, magnl

* Adding encoder offsets and setting link parameters, creating a PUMA manipulator different from the manipulator represented by the nominal kinematic parameters.

 dt1 = dt1
 dt2 = dt2 + dangle
 dt3 = dt3 + dangle
 dt4 = dt4 + dangle
 dt5 = dt5 + dangle
 fi0 = fi0 + dangle
 th0 = th0 + dangle
 si0 = si0 + dangle
 px0 = px0 + dlenth
 py0 = py0 + dlenth
 pz0 = pz0 + dlenth
 al1 = al1 + dangle
 al2 = al2 + dangle
 al3 = al3 + dangle
 al4 = al4 + dangle
 al5 = al5 + dangle
 aa1 = aa1 + dlenth
 aa2 = aa2 + dlenth
 aa3 = aa3 + dlenth
 aa4 = aa4 + dlenth
 aa5 = aa5 + dlenth
 dd1 = dd1
 dd2 = 0.0
 ! defined
 dd3 = dd3 + dlenth
 dd4 = dd4 + dlenth
 dd5 = dd5 + dlenth
 bl1 = bl1
 ! defined
 bl2 = bl2 + dangle
 ! defined
 bl3 = bl3
 ! defined
 bl4 = bl4
 ! defined
 bl5 = bl5
 ! defined
 df6 = df6 + dangle
 th6 = th6 + dangle
 si6 = si6 + dangle
 px6 = px6 + dlenth
 py6 = py6 + dlenth
 pz6 = pz6 + dlenth

* Loop through the program, generating a T6 matrix for each set of 6 joint angles. The number of loops will be reflected
by the entry "nobs" in the nominal kinematic parameter file, INPUT.DAT.

DO I = 1, NOBS

Initializing the T matrix to an identity matrix.

DO J=1,4
DO K=1,4
T(J,K) = TIMAT(J,K)
ENDDO
ENDDO

Read the sets of six joint angles from the data file PUMA-VAR.DAT.

READ (8,*) THETA1, THETA2, THETA3, THETA4, THETA5, THETA6

TH1 = DT1 + THETA1
TH2 = DT2 + THETA2
TH3 = DT3 + THETA3
TH4 = DT4 + THETA4
TH5 = DT5 + THETA5
TH6 = DT6 + THETA6

Computing the six individual T matrices, T1 thru T6.

CALL T3RPY (FI0, TH0, SI0, TRFY)
CALL T3XYZ (PX0, PY0, PZ0, TXYZ)
CALL MATMULC (T0, TRFY, TXYZ)

CALL TRANSFORM (AL1, AA1, DD1, TH1, BL1, T1)
CALL TRANSFORM (AL2, AA2, DD2, TH2, BL2, T2)
CALL TRANSFORM (AL3, AA3, DD3, TH3, BL3, T3)
CALL TRANSFORM (AL4, AA4, DD4, TH4, BL4, T4)
CALL TRANSFORM (AL5, AA5, DD5, TH5, BL5, T5)

CALL T3RPY (FI6, TH6, SI6, TRFY)
CALL T3XYZ (PX6, PY6, PZ6, TXYZ)
CALL MATMULC (T6, TRFY, TXYZ)

Computing the overall transformation, T.

CALL MATMULC (T, T0)
CALL MATMULC (T, T1)
CALL MATMULC (T, T2)
CALL MATMULC (T, T3)
CALL MATMULC (T, T4)
CALL MATMULC (T, T5)
CALL MATMULC (T, T6)

Generating the random noise. This noise will be added to the theoretical measurement data and the encoder readings to accurately simulate the actual measurements which will be made in the lab.

CALL RANDOM(I_SEED,RN)
CALL RANDI(ISEED,RN3)
CALL RANDOM(ISEED,RN4)
CALL RANDOM(ISEED,RN5)
CALL RANDOM(ISEED,RN6)

\[
\begin{align*}
RNX &= \text{MAGNX} \times (2.0 \times RNY - 1.0) \\
RNY &= \text{MAGNX} \times (2.0 \times RNY - 1.0) \\
RNZ &= \text{MAGNX} \times (2.0 \times RNZ - 1.0)
\end{align*}
\]

\[
\begin{align*}
RN1 &= \text{MAGN} \times (2.0 \times RN1 - 1.0) \\
RN2 &= \text{MAGN} \times (2.0 \times RN2 - 1.0) \\
RN3 &= \text{MAGN} \times (2.0 \times RN3 - 1.0) \\
RN4 &= \text{MAGN} \times (2.0 \times RN4 - 1.0) \\
RN5 &= \text{MAGN} \times (2.0 \times RN5 - 1.0) \\
RN6 &= \text{MAGN} \times (2.0 \times RN6 - 1.0)
\end{align*}
\]

* Adding the noise to measurement and encoder readings.

\[
\begin{align*}
T(1,4) &= T(1,4) + RNX \\
T(2,4) &= T(2,4) + RNY \\
T(3,4) &= T(3,4) + RNZ
\end{align*}
\]

\[
\begin{align*}
\text{THETA1} &= \text{THETA1} + RN1 \\
\text{THETA2} &= \text{THETA2} + RN2 \\
\text{THETA3} &= \text{THETA3} + RN3 \\
\text{THETA4} &= \text{THETA4} + RN4 \\
\text{THETA5} &= \text{THETA5} + RN5 \\
\text{THETA6} &= \text{THETA6} + RN6
\end{align*}
\]

* Storing the manipulator joint angles, calculated in the
 program JOINT and the theoretical measured tool pose,
 calculated in this program, in the data file
 PUMA-POS.DAT.

\[
\begin{align*}
\text{WRITE (9,991) THETA1, \text{THETA2, THETA3, THETA4, THETA5, THETA6}} \\
\text{WRITE (9,992) T(1,1), T(1,2), T(1,3), T(1,4)} \\
\text{WRITE (9,992) T(2,1), T(2,2), T(2,3), T(2,4)} \\
\text{WRITE (9,992) T(3,1), T(3,2), T(3,3), T(3,4)} \\
\text{WRITE (9,*)}
\end{align*}
\]

* Format below decides the digits of accuracy of the
 simulation data.

\[
\begin{align*}
991 &\quad \text{FORMAT (6F12.6)} & \quad \text{Joint vector data} \\
992 &\quad \text{FORMAT (3F16.10, F12.5)} & \quad \text{Measurement data}
\end{align*}
\]

ENDDO

\[
\text{WRITE (6,*) 'Data stored in F12.5, F12.4 format'}
\]

CLOSE (8)
CLOSE (9)

STOP

END

* **SUBROUTINES**

* **SUBROUTINE 1**
SUBROUTINE RANDOM (X,Z)

REAL FM, FX, Z
INTEGER A, X, I, M
DATA I/1/

IF (I .EQ. 0) GO TO 1000
 I=0
 M= 2 ** 20
 FM= M
 A= 2**10 + 3
1000 X= MOD(A*X , M)
 FX= X
 Z= FX/ FM

RETURN

END
APPENDIX E PROGRAM ID6

PROGRAM ID6

This is the program which identifies the kinematic parameters of the simulated PUMA 560 manipulator using the Non-linear Least Squares method in IMSL routine ZXSSQ using function "PUMAARM. The simulated poses are read from the data file "PUMA-POS.DAT"

INTEGER LDJJAC, M, M, NN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER
INTEGER I, J, K, NOBS, MAXNOBS

REAL*8 FJAC(LDFJAC,NN), XJTJ((NN+1)*NN/2)
REAL*8 PARM(4), F(LDFJAC), WORK((5*NN)+(2*MM)+(NN+1)*NN/2))
REAL*8 DANGLE, DLENGTH, TQ, DQ, EPS, DELTA, SSQ, SQERR1, SQERR2
REAL*8 F00, T00, S00, PX0, PY0, PZ0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 DF6, TH6, SI6, PX6, PY6, PZ6, F16
REAL*8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4(MAXNOBS), TET5(MAXNOBS), TET6(MAXNOBS)
REAL*8 TM(3,4,MAXOBS), SCALE, X(NN)

PARAMETER (LDFJAC=6*360, MM=LDFJAC, NN=30)
PARAMETER (MAXNOBS=360)

EXTERNAL PUMA_ARM

COMMON /PDATA/ NOBS, TM, SCALE,
& TET1, TET2, TET3, TET4, TET5, TET6

OPEN data file for storage of output. This will be the identified kinematic parameters.
OPEN (8, NAME='RESULT.DAT', STATUS='NEW')

OPEN data file for the simulated poses. These were generated in program POSE.
OPEN (9, NAME='PUMA-POS.DAT', STATUS='OLD')

OPEN data file of nominal kinematic parameters.
OPEN (10,NAME='INPUT.DAT', STATUS='OLD')

Read nominal kinematic parameters from INPUT.DAT.
read (10,*)
read (10,*) f00,th0,s00,px0,py0,pz0
read (10,*) dt1,dd1,aa1,al1,bl1
read (10,*) dt2,dd2,aa2,al2,bl2

91
read (10,*) dt3,dd3,aa3,al3,b13
read (10,*) dt4,dd4,aa4,al4,b14
read (10,*) dt5,dd5,aa5,al5,b15
read (10,*)
read (10,*) df6,th6,si6,px6,py6,pz6
read (10,*)
read (10,*) nobs,n,dangle,dlen,n,magnx,magn1
CLOSE (10)

C Initialize the kinematic parameter data variables in the X array.

X(1)=FI0
X(2)=TH0
X(3)=SI0
X(4)=PX0
X(5)=PY0
X(6)=PZ0
X(7)=AA1
X(8)=AL1
X(9)=DT2
X(10)=AA2
X(11)=AL2
X(12)=BL2
X(13)=DT3
X(14)=DD3
X(15)=AA3
X(16)=AL3
X(17)=DT4
X(18)=DD4
X(19)=AA4
X(20)=AL4
X(21)=DT5
X(22)=DD5
X(23)=AA5
X(24)=AL5
X(25)=DF6
X(26)=TH6
X(27)=SI6
X(28)=PX6
X(29)=PY6
X(30)=PZ6

C Read simulated joint angles and tool pose from PUMA-POS.DAT.

DO J = 1, NOBS
 READ (9,*) TET1(J), TET2(J), TET3(J), TET4(J), TET5(J), TET6(J)
 READ (9,*) TM(1,1,J), TM(1,2,J), TM(1,3,J), TM(1,4,J)
 READ (9,*) TM(2,1,J), TM(2,2,J), TM(2,3,J), TM(2,4,J)
 READ (9,*) TM(3,1,J), TM(3,2,J), TM(3,3,J), TM(3,4,J)
ENDO
CLOSE (9)

C Set the scale factor for the direction cosines within the T6 matrix.
SCALE=100.0

The following lines set the parameters necessary for the operation of the IMSL routine, ZXSSQ, for identification of the kinematic parameters.

The subroutine which ZXSSQ is calling is PUMA_ARM.

NSIG=4
EPS=0.0
DELTA=0.0
MAXFN=1500
IOPT=1
IXJAC=LDFJAC
M=6*NOBS

CALL ZXSSQ(PUMA_AR%M,N,NSIG,EPS,DELTA,MAXFN,IOPT,
& PARM,X,SSQ,F,FJAC,IXJAC,XJTJ,WORK,INFER,IER)

Save identified kinematic parameters to data file RESULT.DAT.

WRITE (8,*)
WRITE (8,*) 'F10, T0, S10, PX0, PY0, PZ0'
WRITE (8,888) X(1), X(2), X(3), X(4), X(5), X(6)
WRITE (8,*)
WRITE (8,*) 'DT1, DD1, AA1, AL1, BL1'
WRITE (8,888) 0.0, 0.0, X(7), X(8), 0.0
WRITE (8,*)
WRITE (8,*) 'DT2, DD2, AA2, AL2, BL2'
WRITE (8,888) X(9), 0.0, X(10), X(11), X(12)
WRITE (8,*)
WRITE (8,*) 'DT3, DD3, AA3, AL3, BL3'
WRITE (8,888) X(13), X(14), X(15), X(16), 0.0
WRITE (8,*)
WRITE (8,*) 'DT4, DD4, AA4, AL4, BL4'
WRITE (8,888) X(17), X(18), X(19), X(20), 0.0
WRITE (8,*)
WRITE (8,*) 'DT5, DD5, AA5, AL5, BL5'
WRITE (8,888) X(21), X(22), X(23), X(24), 0.0
WRITE (8,*)
WRITE (8,*) 'DF6, TH6, SI6, PX6, PY6, PZ6'
WRITE (8,888) X(25), X(26), X(27), X(28), X(29), X(30)

888 FORMAT (5F12.5)
889 FORMAT (6F12.5)

c Calculate the root mean square error in identification of the direction cosine and position parameters.

TQ = DANGLE
DQ = DLENTH

c This calculates the error in identification of the direction cosine parameters.

SQERR1 =
& (F10+TQ-X(1))**2+(T0+TQ-X(2))**2+(S10+TQ-X(3))**2
& +(AL1+TQ-X(8))**2+(DT2+TQ-X(9))**2+(AL2+TQ-X(11))**2
& +(BL2+TQ-X(12))**2+(DT3+TQ-X(13))**2+(AL3+TQ-X(16))**2
& +(DT4+TQ-X(17))**2+(AL4+TQ-X(20))**2

93
& + (DT5 + TQ - X(21))**2 + (AL5 + TQ - X(24))**2 \\
& + (DF6 + TQ - X(25))**2 + (TH6 + TQ - X(26))**2 + (SI6 + TQ - X(27))**2 \\
SQERR1 = DSQRT(SQERR1/16)

This calculates the error in identification of the position
parameters.

SQERR2 = \\
& + (PX0 + DQ - X(4))**2 + (PY0 + DQ - X(5))**2 + (PZ0 + DQ - X(6))**2 \\
& + (AA2 + DQ - X(7))**2 + (AA4 + DQ - X(8))**2 + (DD3 + DQ - X(9))**2 \\
& + (AA3 + DQ - X(15))**2 + (DD4 + DQ - X(18))**2 + (AA4 + DQ - X(19))**2 \\
& + (DD5 + DQ - X(22))**2 + (AA5 + DQ - X(23))**2 \\
& + (PX6 + DQ - X(28))**2 + (PY6 + DQ - X(29))**2 + (PZ6 + DQ - X(30))**2 \\
SQERR2 = DSQRT(SQERR2/14)

Write the position and orientation error to the data file
RESULT.DAT.

WRITE (8,*) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)' \\
WRITE (8,*) SQERR2, SQERR1

Write the position and orientation error to the screen.

WRITE (6,*) 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)' \\
WRITE (6,*) SQERR2, SQERR1

Write the ZXSSQ convergence criteria to the data file
RESULT.DAT.

WRITE (8,*) 'INFER, IER, NOBS, NSIG' \\
WRITE (8,*) INFER, IER, NOBS, NSIG \\
WRITE (8,*)

Write the ZXSSQ convergence criteria to the screen.

WRITE (6,*) 'INFER, IER, NOBS, NSIG' \\
WRITE (6,*) INFER, IER, NOBS, NSIG

CLOSE (8)

END

SUBROUTINES

SUBROUTINE PUMA_ARM (X, M, N, F)

This subroutine calculates the non-linear function for the use of
the IMSL routine ZXSSQ. It is the forward kinematic solution for
the PUMA manipulator.

INTEGER M, N, II, JJ \\
INTEGER I, J, K, NOBS, MAXNOBS \\
REAL*8 X(M), F(M) \\
REAL*8 F0, TH0, SI0, PX0, PY0, PZ0 \\
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 FI6, TH6, SI6, PX6, PY6, PZ6, DF6
REAL*8 TH1, TH2, TH3, TH4, TH5
REAL*8 TO(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), TRFY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4)
REAL*8 TINV(4,4), TMA(4,4), TDELTA(4,4)
REAL*8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4(MAXNOBS), TET5(MAXNOBS), TET6(MAXNOBS)
REAL*8 TM(3,4,MAXNOBS), SCALE

PARAMETER (MAXNOBS=360)

COMMON /PDATA/ NOBS, TM, SCALE,
 & TET1, TET2, TET3, TET4, TET5, TET6

c Initializing the TIMAT matrix to an identity matrix.

DATA TIMAT/1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1/

c Assign kinematic parameters to the variable X array.

FI0 = X(1)
TH0 = X(2)
SI0 = X(3)
PX0 = X(4)
PY0 = X(5)
PZ0 = X(6)

DT1 = 0.0
DD1 = 0.0
AA1 = X(7)
AL1 = X(8)
BL1 = 0.0

DT2 = X(9)
DD2 = 0.0
AA2 = X(10)
AL2 = X(11)
BL2 = X(12)

DT3 = X(13)
DD3 = X(14)
AA3 = X(15)
AL3 = X(16)
BL3 = 0.0

DT4 = X(17)
DD4 = X(18)
AA4 = X(19)
AL4 = X(20)
BL4 = 0.0

DT5 = X(21)
DD5 = X(22)
AA5 = X(23)
AL5 = X(24)
BL5 = 0.0

95
DF6 = X(25)
TH6 = X(26)
SI6 = X(27)
PX6 = X(28)
FY6 = X(29)
PZ6 = X(30)

C Loop through NOBS times.

K = 0
DO J = 1, NOBS

C Initializing the T matrix to an identity matrix.

DO II = 1,4
DO JJ = 1,4
T(II, JJ) = TIMAT(II, JJ)
ENDDO
ENDDO

C Calculate the actual manipulator joint angles.

TH1 = DT1 + TET1(J)
TH2 = DT2 + TET2(J)
TH3 = DT3 + TET3(J)
TH4 = DT4 + TET4(J)
TH5 = DT5 + TET5(J)
FI6 = DF6 + TET6(J)

C Compute the T matrices, T1 thru T6.

CALL T3RPY(F10, TH0, SI0, TRPY)
CALL T3XYZ(PX0, PY0, PZ0, TXYZ)
CALL MATMULC(TO, TRPY, TXYZ)
CALL TRANSFORM(AL1, AA1, DD1, TH1, BL1, T1)
CALL TRANSFORM(AL2, AA2, DD2, TH2, BL2, T2)
CALL TRANSFORM(AL3, AA3, DD3, TH3, BL3, T3)
CALL TRANSFORM(AL4, AA4, DD4, TH4, BL4, T4)
CALL TRANSFORM(AL5, AA5, DD5, TH5, BL5, T5)
CALL T3RPY(FI6, TH6, SI6, TRPY)
CALL T3XYZ(PX6, PY6, PZ6, TXYZ)
CALL MATMULC(T6, TRPY, TXYZ)

C Compute the complete transformation from the base frame to the tool frame.

CALL MATMULA(T, TO)
CALL MATMULA(T, TL)
CALL MATMULA(T, T2)
CALL MATMULA(T, T3)
CALL MATMULA(T, T4)
CALL MATMULA(T, T5)
CALL MATMULA(T, T6)

C Read the simulated measured T matrix for this observation:

DO II = 1,3
DO JJ = 1,4

96
TMJ(I,J) = TM(I,J,J)
ENDDO
ENDDO

Remember that row 4 is 0, 0, 0, 1.

TMJ(4,1) = 0.0
TMJ(4,2) = 0.0
TMJ(4,3) = 0.0
TMJ(4,4) = 1.0

Compute the difference between the measured T matrix and the T matrix generated using the latest table of kinematic data.

CALL MATSUB (TDELTA, TMJ, T)

Calculate the function F (six rows at a time).

First, position.

K = K + 1
F(K) = TDELTA(1,4)
K = K + 1
F(K) = TDELTA(2,4)
K = K + 1
F(K) = TDELTA(3,4)

Now orientation.

K = K + 1
F(K) = ((TDELTA(3,2)-TDELTA(2,3))/2.0) * SCALE
K = K + 1
F(K) = ((TDELTA(1,3)-TDELTA(3,1))/2.0) * SCALE
K = K + 1
F(K) = ((TDELTA(2,1)-TDELTA(1,2))/2.0) * SCALE

Ending the DO loop for J counter.

ENDDO

Write RMS error in function F.

XSSQ=0.0
DO II=1,6*NOBS
 XSSQ=XSSQ+F(II)*F(II)
ENDDO
XER=SQRT(XSSQ)

Write RMS error to the screen. This allows the operator to track how the identification process is proceeding.

WRITE(6,*) XER
RETURN
END
APPENDIX F PROGRAM VERIFY

PROGRAM VERIFY

C This program generates the six-dof pose error for the PUMA manipulator.
C It contains the identified calibration parameters and the exact parameter.
C It uses a data file of verification joint angle sets POSEVER.DAT, and the
C file RESULT.DAT from the program ID6.

INTEGER I, J, K, NPOSL:, N, nob
REAL*8 DANGLE, DLNTH

REAL*8 DT(5),dd(5),aa(5),al(5),bl(5)
REAL*8 edT(5),edd(5),eaa(5),eal(5),eb1(5)
REAL*8 ed6, Efi6, ETH6, ES16, EPX6, EPY6, EPZ6
REAL*8 EDFO, EFI0, ETH0, ES0, EPX0, EPY0, EPZ0
REAL*8 TIMAT(1000,6), TDELTA(4,4)
REAL*8 T0(4,4), T1(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRFY(4,4), TXY2(4,4)
REAL*8 TIMAT(4,4), T(4,4), eT(4,4)

REAL*8 DF0, DT0, DS0, PX0, PY0, PZ0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 QA1, QA2, QA3, QA4, QA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 DF6, DT6, DS6, PX6, PY6, PZ6

COMMON TIMAT,THETA

EXTERNAL FKS

C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/I,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1/

C Open data file

OPEN (9, NAME='posever.DAT', STATUS='OLD')
OPEN (10, NAME='input.DAT', STATUS='OLD')
OPEN (11, NAME='result.DAT', STATUS='OLD')
OPEN (12, NAME='error.dat', ACCESS='APPEND', STATUS='unknown')

C Read input parameters

read (10,*)
read (10,*) df0,dt0,ds0,pk0,pk0,pz0
read (10,*) dt1,dd1,aa1,al1,b11
read (10,*) dt2,dd2,aa2,al2,b12
read (10,*) dt3,dd3,aa3,al3,b13
read (10,*) dt4,dd4,aa4,al4,b14
read (10,*) dt5,dd5,aa5,al5,b15
read (10,*)
read (10,*) df6,dt6,ds6,pk6,pk6,pz6
read (10,*)
read (10,*) nobs,n,dangle,dlenth,magnx,magnl

CLOSE (10)

c Read in joint angle sets for verification poses

do i=1,nobs
 read(9,*)theta(i,1),theta(i,2),theta(i,3),theta(i,4), &
 theta(i,5),theta(i,6)
endo
close (9)

C Set exact link parameters for the manipulator:

DT(1)=0.0
do i=2,5
 dt(i)=dangle
endo

DF0 = DF0 + Dangle
DT0 = DT0 + DANGLE
DS0 = DS0 + DANGLE
PX0 = PX0 + DLENTH
PY0 = PY0 + DLENTH
PZ0 = PZ0 + DLENTH
al(1) = a11 + DANGLE
al(2) = a12 + DANGLE
al(3) = a13 + DANGLE
al(4) = a14 + DANGLE
al(5) = a15 + DANGLE
AA(1) = aa1 + DLENTH
AA(2) = aa2 + DLENTH
AA(3) = aa3 + DLENTH
AA(4) = aa4 + DLENTH
AA(5) = aa5 + DLENTH
DD(1) = dd1 ! defined
DD(2) = dd2 ! defined
DD(3) = dd3 + DLENTH
DD(4) = dd4 + DLENTH
DD(5) = dd5 + DLENTH

BL(1) = bl1 ! defined
BL(2) = bl2 + DANGLE
BL(3) = bl3 ! defined
BL(4) = bl4 ! defined
BL(5) = bl5 ! defined

DF6 = DF6 + Dangle
DT6 = DT6 + DANGLE
DS6 = DS6 + DANGLE
PX6 = PX6 + DLENTH
PY6 = PY6 + DLENTH
PZ6 = PZ6 + DLENTH

C Read in and set up estimated parameter table
READ (11,*)
READ (11,*)
READ (11,*) EDF0,ETH0,ESI0,EPX0,EPY0,EPZ0
do i=1,5
read (11,*)
read (11,*)
read (11,*) edt(i),edd(i),eaa(i),eal(i),ebl(i)
endo
dread(11,*)
read(11,*)
read(11,*) edf6,eth6,esi6,epx6,epy6,epz6

c Main loop through nob joint angle sets
do k=1,nobe
 call fks (k,DF0,DT0,DS0,FX0,FY0,FZ0,dt,al,aa,dd,bl,df6, &
 DT6,DS6,FX6,FY6,FZ6,t)
call fks (k,EDF0,ETH0,ESI0,EPX0,EPY0,EPZ0,edt,eal,eaa,edd, &
 ebl,edf6,eth6,esi6,epx6,epy6,epz6,et)

c Compute the differential tool matrix
call matsub(tdelta,t,et)
c Compute the pose errors
 poserr=sqrt(tdelta(1,4)**2+tdelta(2,4)**2+tdelta(3,4)**2)
corerr1=(tdelta(3,2)-tdelta(2,3))/2
corerr2=(tdelta(1,3)-tdelta(3,1))/2
corerr3=(tdelta(2,1)-tdelta(1,2))/2
 corerr=sqrt(corerr1**2+corerr2**2+corerr3**2)
c Update total error counts
 posterr=(poserr+(k-1)*posterr)/k
 orterr=(orerr+(k-1)*orterr)/k
c End of main loop
endo
write (6,*) 'Position error, orientation error'
write (6,*) posterr,orterr

c write (6,*) 'how many nobes in this run?'
c read (6,*) nob
 nob = 12
write (12,*) 'for nobes of:',nob
write (12,*) 'position error, orientation error'
write (12,*) posterr,orterr
write (12,*)
end

c **

subroutine fks (n,DF0,DT0,DS0,FX0,FY0,FZ0,dt,al,aa,dd,bl,
& df6, th6, si6, px6, py6, pz6, t)

REAL*8 T0(4,4), T1(4,4), T2(4,4), T3(4,4)
REAL*8 T4(4,4), T5(4,4), T6(4,4), TRPY(4,4), TXYZ(4,4)
REAL*8 TIMAT(4,4), T(4,4), dt(5), al(5), aa(5), dd(5), bl(5)
REAL*8 DF0, DT0, DS0, PA0, PI0, FT0, TI0, TI1, SI1, PA1, PI1, FT1, TI2,
REAL*8 theta(1000,6), ang(6)

common timat, theta

C Initialize the T matrix to an I matrix:

DO J=1,4
 DO K=1,4
 T(J,K) = TIMAT(J,K)
 ENDDO
ENDDO

C Set up joint angles

DO I=1,5
 ang(i) = theta(n,i) + dt(i)
ENDDO

fi6 = df6 + theta(n,6)

C Compute the T matrices, T1 thru T6:

CALL T3RPY (DF0, DT0, DS0, TRPY)
CALL T3XYZ (px0, py0, pz0, TXYZ)
CALL MATMULC (T0, TRPY, TXYZ)
CALL TRANSFORM (al(1), aa(1), dd(1), ang(1), bl(1), T1)
CALL TRANSFORM (al(2), aa(2), dd(2), ang(2), bl(2), T2)
CALL TRANSFORM (al(3), aa(3), dd(3), ang(3), bl(3), T3)
CALL TRANSFORM (al(4), aa(4), dd(4), ang(4), bl(4), T4)
CALL TRANSFORM (al(5), aa(5), dd(5), ang(5), bl(5), T5)
CALL T3RPY (fi6, th6, si6, TRPY)
CALL T3XYZ (px6, py6, pz6, TXYZ)
CALL MATMULC (T6, TRPY, TXYZ)

C Compute the overall transformation, T:

CALL MATMULC (T, T0)
CALL MATMULC (T, T1)
CALL MATMULC (T, T2)
CALL MATMULC (T, T3)
CALL MATMULC (T, T4)
CALL MATMULC (T, T5)
CALL MATMULC (T, T6)

return
end
APPENDIX G PROGRAM LINSC

PROGRAM linsc

C This program generates joint angles for the Puma manipulator
C arm. It presumes that the tool frame of the manipulator is
C constrained to move in the positive x direction only. The
C tool is constrained by a sliding linear scale. The values along
C the x direction are determined by a random number generator. The
C orientation of the tool is constrained as well. The x direction of
C tool is in the x direction of the WCF, the y direction of the tool
C is in the z direction of the WCF and the z direction of the tool is
C in the negative y direction of the WCF.

INTEGER LDFJAC, M, N, obs, nobs
PARAMETER (LDFJAC=12, M=LDFJAC, N=6)

REAL*8 fi0, th0, si0, px0, py0, pz0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, PZ6
REAL*8 RN1, RN2, RN3, RN4, RN5, RN6
REAL*8 RN7, RN8, RN9, RN10, RN11, RN12
REAL*8 RN13, RN14, RN15, RN16, RN17, RN18

INTEGER infer, ier, iopt, nsig, maxfn

REAL*8 FJAC(LDFJAC,N), xjgt((n+1)*n/2), xjac(ldfjac,n)
REAL*8 parm(4), f(ldfjac), work((5*n)+(2*m)+(n+1)*n/2))
REAL*8 X(N)
REAL*8 magnx, magn1

EXTERNAL PUMA_ARM

INTEGER I, J, K, nou
REAL*8 TDES(4,4), T(4,4), SCALE, DANGLE, DLENTH, NUM

COMMON /PDATA/ TDES, DANGLE, DLENTH, T
COMMON /KIN/ fi0, th0, si0, px0, py0, pz0,
& DT1, DT2, DT3, DT4, DT5,
& AL1, AL2, AL3, AL4, AL5,
& AA1, AA2, AA3, AA4, AA5,
& DD1, DD2, DD3, DD4, DD5,
& BL1, BL2, BL3, BL4, BL5,
& DF6, TH6, SI6, PX6, PY6, PZ6

C Initialize data variables

102
obs=0

C Open data files for input

OPEN (10, NAME='puma-pos.dat', STATUS='NEW')
OPEN (9, NAME='input.dat', STATUS='OLD')

C Read input kinematic data

read (9,*)
read (9,*) fi0,th0,si0,px0,py0,pz0
read (9,*) dt1,dd1,aa1,al1,bl1
read (9,*) dt2,dd2,aa2,al2,b12
read (9,*) dt3,dd3,aa3,al3,b13
read (9,*) dt4,dd4,aa4,al4,b14
read (9,*) dt5,dd5,aa5,al5,b15
read (9,*)
read (9,*) df6,th6,si6,px6,py6,pz6
read (9,*)
read (9,*) nobs,nou,dangle,dlength,magnx,magnl

close (9)

C Adjust nominal values

fi0=fi0+dangle
th0=th0+0angle
si0=si0+dangle
px0=px0+dlength
py0=py0+dlength
pz0=pz0+dlength

dt1=0.0
dt2=dt2+dangle
dt3=dt3+dangle
dt4=dt4+dangle
dt5=dt5+dangle

al1=al1+dangle
al2=al2+dangle
al3=al3+dangle
al4=al4+dangle
al5=al5+dangle

aa1=aa1+dlength
aa2=aa2+dlength
aa3=aa3+dlength
aa4=aa4+dlength
aa5=aa5+dlength

dd1=0.0
dd2=0.0

dd3=dd3+dlength
dd4=dd4+dlength
dd5=dd5+dlength

bl1=bl1
bl2=bl2+dangle
bl3=bl3
bl4=bl4
b15=b15
df6=df6+dangle
th6=th6+dangle
c si6=si6+dangle
c px6=px6+dlenth
c py6=py6+dlenth
c pz6=pz6+dlenth

C Get random number seed
 write (6,*) 'Type in a 6-digit random number seed'
 read (5,*) iseed

C Start of main loop
 1010 obs=obs+1

C Set joint angles to zero
 do i=1,n
 x(i)=0.0
 enddo

C Get random bar angles
 1000 call random (iseed,num)
 num=num*900.0

C Establish desired tool pose
 do ii=1,4
 do jj=1,4
 TDES(ii,jj)=0.0
 enddo
 enddo

 TDES(1,4)= num
 TDES(4,4)= 1.0
 TDES(1,1)= 1.0
 TDES(3,2)= 1.0
 TDES(2,3)= -1.0

C Call IMSL ZXSSQ for inverse kinematic solution
 nsig=4
 eps=0.0
 delta=0.0
 maxfn=500
 iopt=1
 ixjac=ldfjac
 CALL ZXSSQ(puma_armn,m,n,nsig,eps,delta,maxfn,iopt,parm,x,
 & ssq,f,xjac,ixjac,xjtj,work,infer,ier)

C Check for singularities
 if (ssq .gt. 0.00001) goto 1000

C Print results to 2 decimal places
write(6,*) obs,ssq

C Generate the random noise

CALL RANDOM (ISEED,RN1)
CALL RANDOM (ISEED,RN2)
CALL RANDOM (ISEED,RN3)
CALL RANDOM (ISEED,RN4)
CALL RANDOM (ISEED,RN5)
CALL RANDOM (ISEED,RN6)
CALL RANDOM (ISEED,RN7)
CALL RANDOM (ISEED,RN8)
CALL RANDOM (ISEED,RN9)
CALL RANDOM (ISEED,RN10)
CALL RANDOM (ISEED,RN11)
CALL RANDOM (ISEED,RN12)
CALL RANDOM (ISEED,RN13)
CALL RANDOM (ISEED,RN14)
CALL RANDOM (ISEED,RN15)
CALL RANDOM (ISEED,RN16)
CALL RANDOM (ISEED,RN17)
CALL RANDOM (ISEED,RN18)

RN1 = MAGN1 * (2.0 * RN1 - 1.0)
RN2 = MAGN1 * (2.0 * RN2 - 1.0)
RN3 = MAGN1 * (2.0 * RN3 - 1.0)
RN4 = MAGN1 * (2.0 * RN4 - 1.0)
RN5 = MAGN1 * (2.0 * RN5 - 1.0)
RN6 = MAGN1 * (2.0 * RN6 - 1.0)
RN7 = MAGN1 * (2.0 * RN7 - 1.0)
RN8 = MAGN1 * (2.0 * RN8 - 1.0)
RN9 = MAGN1 * (2.0 * RN9 - 1.0)
RN10 = MAGN1 * (2.0 * RN10 - 1.0)
RN11 = MAGN1 * (2.0 * RN11 - 1.0)
RN12 = MAGN1 * (2.0 * RN12 - 1.0)
RN13 = MAGN1 * (2.0 * RN13 - 1.0)
RN14 = MAGN1 * (2.0 * RN14 - 1.0)
RN15 = MAGN1 * (2.0 * RN15 - 1.0)
RN16 = MAGN1 * (2.0 * RN16 - 1.0)
RN17 = MAGN1 * (2.0 * RN17 - 1.0)
RN18 = MAGN1 * (2.0 * RN18 - 1.0)

T(1,4) = T(1,4) + RN1
T(2,4) = T(2,4) + RN2
T(3,4) = T(3,4) + RN3
T(1,1) = T(1,1) + RN4
T(1,2) = T(1,2) + RN5
T(1,3) = T(1,3) + RN6
T(2,1) = T(2,1) + RN7
T(2,2) = T(2,2) + RN8
T(2,3) = T(2,3) + RN9
T(3,1) = T(3,1) + RN10
T(3,2) = T(3,2) + RN11
T(3,3) = T(3,3) + RN12

X(1) = X(1) + RN13
X(2) = X(2) + RN14
SUBROUTINE PUMA_ARMS (X, M, N, F)

C This subroutine calculates the non-linear function for the use of
C the IMSL routine ZXSSQ. It is the forward kinematic solution for
C the PUMA manipulator.

INTEGER M, N
REAL*8 X(M, N, F(M))

INTEGER II, JJ
REAL*8 fi0, th0, si0, px0, py0, pz0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 DF6, FI6, TH6, SI6, PX6, PY6, PZ6
REAL*8 TH1, TH2, TH3, TH4, TH5
REAL*8 T0(4, 4), T1(4, 4), T2(4, 4), T3(4, 4), T4(4, 4)
REAL*8 T5(4, 4), T6(4, 4), trpy(4, 4), txyz(4, 4)
REAL*8 TIMAT(4, 4), T(4, 4), td(4, 4)

INTEGER I, J, K
REAL*8 TDES(4, 4), DANGLE, DLEFT, scale

COMMON / PDATA/ TDES, DANGLE, DLEFT, T
COMMON / KIN/ fi0, th0, si0, px0, py0, pz0,
& DT1, DT2, DT3, DT4, DT5,
& AL1, AL2, AL3, AL4, AL5,
& AA1, AA2, AA3, AA4, AA5,
& DD1, DD2, DD3, DD4, DD5,
& BL1, BL2, BL3, BL4, BL5,
& DF6, TH6, SI6, PX6, PY6, PZ6

C Initialize the TIMAT matrix to an I matrix:
DATA TIMAT/1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1/

scale=100.0

C Initialize the T matrix to an I matrix

DO II = 1,4
 DO JJ = 1,4
 T(II, JJ) = TIMAT(II, JJ)
 ENDDO
ENDDO

C Manipulator joint angles

TH1 = DT1 + X(1)
TH2 = DT2 + X(2)
TH3 = DT3 + X(3)
TH4 = DT4 + X(4)
TH5 = DT5 + X(5)
FI6 = DF6 + X(6)

C Compute the T matrices, T1 thru T6:

call t3rpy (fi0,th0,si0, trpy)
call t3xyz (px0,py0,pz0, txyz)
call matmulc (t0,trpy,txyz)

CALL TRANSFORM (AL1, AA1, DD1, TH1, BL1, T1)
CALL TRANSFORM (AL2, AA2, DD2, TH2, BL2, T2)
CALL TRANSFORM (AL3, AA3, DD3, TH3, BL3, T3)
CALL TRANSFORM (AL4, AA4, DD4, TH4, BL4, T4)
CALL TRANSFORM (AL5, AA5, DD5, TH5, BL5, T5)

CALL t3rpy (fi6, th6, si6, trpy)
CALL T3XYZ (PX6, PY6, PZ6, txyz)
call matmulc (t6, trpy, txyz)

C Compute the overall transformation, T:

CALL MATMULA (T, T0)
CALL MATMULA (T, T1)
CALL MATMULA (T, T2)
CALL MATMULA (T, T3)
CALL MATMULA (T, T4)
CALL MATMULA (T, T5)
CALL MATMULA (T, T6)
call matsub(td,tdes,t)

C Calculate the function F

f(1)=td(1,4)
f(2)=td(2,4)
f(3)=td(3,4)
f(4)=td(1,1)*scale
f(5)=td(1,2)*scale
f(6)=td(1,3)*scale
f(7)=td(2,1)*scale
f(8)=td(2,2)*scale
f(9)=td(2,3)*scale
\[f(10) = td(3,1) \times \text{scale} \]
\[f(11) = td(3,2) \times \text{scale} \]
\[f(12) = td(3,3) \times \text{scale} \]
\[\text{sum} = 0.0 \]
\[\text{do } i = 1,12 \]
\[\text{xssq} = \text{sum} + f(i) \]
\[\text{enddo} \]
\[C \]
\[\text{write } (6,*), \text{xssq} \]
\[\text{RETURN} \]
\[\text{END} \]

SUBROUTINE RANDOM (x,z)

C This subroutine generates random numbers in the range 0-1
C using a supplied seed x, the returned random number being z.

\[\text{REAL FM, FX, Z} \]
\[\text{INTEGER A, X, I, M} \]
\[\text{DATA I/l/} \]
\[\text{IF (I .EQ. 0) GO TO 1000} \]
\[I=0 \]
\[M= 2 ** 20 \]
\[FM= M \]
\[A= 2**10 + 3 \]
\[1000 X= \text{MOD}(A*X ,M) \]
\[FX= X \]
\[Z= FX/ FM \]
\[\text{RETURN} \]
\[\text{END} \]
program acdat

C This program is the data acquisition program for the linear
C slide version of the puma manipulator calibration experiments.
C It requires that the value for the distance down the linear
C slide and the six joint angles of the puma when it is in that
C configuration. The pose data is saved in the file "slide-pos.dat."
C That file is set up in the append mode.

 real*8 x, thl, th2, th3, th4, th5, th6
 real*8 tm(4,4)

 open (10, name='slide-pos.dat', access='append', status='unknown')

C Inputting the distance down the linear slide.
100 write (6,*) 'input the value for x'
 read (6,*) x

C Inputting the six joint angles.
 write (6,*) 'input the 6 joint angles'
 read (6,*) th1, th2, th3, th4, th5, th6

C This will set the T6 matrix for the value of x measured.
 do ii=1,4
 do jj=1,4
 tm(ii,jj)=0.0
 enddo
 enddo

 tm(1,4)= x
 tm(4,4)= 1.0
 tm(1,1)= 1.0
 tm(3,2)= 1.0
 tm(2,3)= -1.0

C Writing the pose data to "slide-pos.dat"
 write (10,991) th1, th2, th3, th4, th5, th6
 write (10,*)
 write (10,992) tm(1,1),tm(1,2),tm(1,3),tm(1,4)
 write (10,992) tm(2,1),tm(2,2),tm(2,3),tm(2,4)
 write (10,992) tm(3,1),tm(3,2),tm(3,3),tm(3,4)
 write (10,992) tm(4,1),tm(4,2),tm(4,3),tm(4,4)
 write (10,*)

 write (6,*)
 write (6,*) 'data saved'
 write (6,*)

991 format(6f8.8)
992 format(4f8.8)
write (6,*) 'do you wish to make another observation'
write (6,*) 'enter a 1 for yes or a 0 for no'
write (6,*)
read (6,*) ans

if (ans .eq. 1) go to 100

991 FORMAT (6F12.6)
992 FORMAT (3F16.10, F12.5)
close(10)
stop

end
APPENDIX I PROGRAM ID6_LINSC

PROGRAM ID6_LINSC

C Robot Identification using the Non-linear Least Squares method.
C Simulation data is read for the PUMA manipulator from
C the data file PUMA-POS.DAT

C Change parameter LDFJAC to change the number of observations,
C set LDFJAC = 6 * Number of observations

INTEGER LDFJAC, MM, M, NN, N, NSIG, MAXFN, IOPT, IXJAC, INFER, IER
PARAMETER (LDFJAC=12*42, MM=LDFJAC, NN=26)
REAL*8 FJAC(LDFJAC,NN), XJTJ((NN+1)*NN/2)
REAL*8 PARM(4), F(LDFJAC), WORK((5*NN)+(2*MM)+((NN+1)*NN/2))
REAL*8 X(3)
EXTERNAL PUMA_ARM

REAL*8 DANGLE, DLENGTH, TQ, DQ, EPS, DELTA, SSQ
REAL*8 SQERR1, SQERR2
REAL*8 fi0, th0, si0, px0, py0, pz0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 DF6, TH6, SI6, PX6, PY6, PZ6, FI6

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL*8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4(MAXNOBS), TET5(MAXNOBS), TET6(MAXNOBS)
REAL*8 TM(3,4,MAXNOBS), SCALE
COMMON /PDATA/ NOBS, TM, SCALE,
& TET1, TET2, TET3, TET4, TET5, TET6

C Open data files for inputs and results

OPEN (8, NAME='RESULT.DAT', STATUS='NEW')
OPEN (9, NAME='PUMA-POS.DAT', STATUS='OLD')
OPEN (10, NAME='INPUT.DAT', STATUS='OLD')

C Read input parameters

read (10,*)
read (10,*) fi0, th0, si0, px0, py0, pz0
read (10,*) dt0, dd0, aa0, al0, bl0
read (10,*) dt1, dd1, aa1, al1, bl1
read (10,*) dt2, dd2, aa2, al2, bl2
read (10,*) dt3, dd3, aa3, al3, bl3
read (10,*) dt4, dd4, aa4, al4, bl4
read (10,*) dt5, dd5, aa5, al5, bl5
read (10,*) df6, th6, si6, px6, py6, pz6
read (10, *)
read (10, *) nobs, n, dangle, dlenth, magnx, magn1

CLOSE (10)

write (6, *) 'enter nobs'
read (6, *) nobs

C Initialize data variables

X(1) = Fi0
X(2) = th0
X(3) = si0
X(4) = px0
X(5) = py0
X(6) = pz0
X(7) = AA1
X(8) = AL1
X(9) = DT2
X(10) = AA2
X(11) = AL2
X(12) = BL2
X(13) = DT3
X(14) = DD3
X(15) = AA3
X(16) = AL3
X(17) = DT4
X(18) = DD4
X(19) = AA4
X(20) = AL4
X(21) = DT5
X(22) = DD5
X(23) = AA5
X(24) = AL5
X(25) = df6
X(26) = th6
c
X(27) = si6
c
X(28) = px6
c
X(29) = py6
c
X(30) = pz6

C Read simulated joint data and tool pose

DO J = 1, NOBS
 READ (9, *) TET1(J), TET2(J), TET3(J), TET4(J), TET5(J), TET6(J)
 read (9, *)
 READ (9, *) TH(1,1,J), TH(1,2,J), TH(1,3,J), TH(1,4,J)
 READ (9, *) TH(2,1,J), TH(2,2,J), TH(2,3,J), TH(2,4,J)
 READ (9, *) TH(3,1,J), TH(3,2,J), TH(3,3,J), TH(3,4,J)
 READ (9, *)
 C
 READ (9, *)
ENDDO
CLOSE (9)

C Initialize scale for the angular rows of the Jacobian
Call IMSL routine for non-linear identification

NSIG=3
EPS=0.0
DELTA=0.0
MAXFN=1500
IOPT=1
IXJAC=LDFJAC
M=12*NOBS

CALL ZXSSQ(PARM, X, SSQ, F, FJAC, IXJAC, XJAC, WORK, INFER, IER)

Save results to data file

WRITE (8,*)
WRITE (8,*) 'fi0, th0, si0, px0, py0, pz0'
WRITE (8,888) X(1), X(2), X(3), X(4), X(5), X(6)
WRITE (8,*)
WRITE (8,*) 'DT1, DL1, AL11, BL1'
WRITE (8,888) 0.0, 0.0, X(7), X(8), 0.0
WRITE (8,*)
WRITE (8,*) 'DT2, DL2, AL2, BL2'
WRITE (8,888) X(9), 0.0, X(10), X(11), X(12)
WRITE (8,*)
WRITE (8,*) 'DT3, DL3, AL3, BL3'
WRITE (8,888) X(13), X(14), X(15), X(16), 0.0
WRITE (8,*)
WRITE (8,*) 'DT4, DL4, AL4, BL4'
WRITE (8,888) X(17), X(18), X(19), X(20), 0.0
WRITE (8,*)
WRITE (8,*) 'DT5, DL5, AL5, BL5'
WRITE (8,888) X(21), X(22), X(23), X(24), 0.0
WRITE (8,*)
WRITE (8,*) 'DF6, TH6, SI6, PX6, PY6, PZ6'
WRITE (8,889) X(25), X(26), SI6, PX6, PY6, PZ6

888 FORMAT (5F12.5)
889 FORMAT (6F12.5)

Calculate root mean square error in identification

TQ = DANGLE
DQ = DLLENGTH

Error in identification (angular parameters)

SQERR1 =
5 (FI0+TQ-X(1))**2 + (TH0+TQ-X(2))**2 + (SI0+TQ-X(3))**2
+ (DT3+TQ-X(13))**2 + (DT4+TQ-X(17))**2 + (DT5+TQ-X(21))**2
+ (AL1+TQ-X(8))**2 + (AL2+TQ-X(11))**2
+ (AL3+TQ-X(16))**2 + (AL4+TQ-X(20))**2 + (AL5+TQ-X(24))**2
+ (BL2+TQ-X(12))**2 + (DT2+TQ-X(9))**2
+ (DF6+TQ-X(25))**2 + (TH6+TQ-X(26))**2
SQERR1 = DSQRT(SQERR1/15)

Error in identification (length parameters)
SQERR2 =
& (PX+DQ-X(4)**2 + (AA1+0.0+DQ-X(7)**2 + (AA2+DQ-X(10)**2 + (AA3+DQ-X(15)**2 + (AA4+DQ-X(19)**2 + (AA5+DQ-X(23)**2 + (AA6+DQ-X(5)**2 + (PX+DQ-X(6)**2 + (PY+DQ-X(7)**2 + (PZ+DQ-X(8)**2 + (PY+DQ-X(9)**2 + (PZ+DQ-X(10)**2 + (PY+DQ-X(11)**2 + (PZ+DQ-X(12)**2
SQERR2 = DSQRT(SQMR2/11)
WRITE (8,*)
WRITE (8,*), 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)'
WRITE (8,*), SQERR2, SQERR1
WRITE (6,*), 'RMS PARMS (LENGTH), RMS PARMS (ANGLE)'
WRITE (6,*), SQERR2, SQERR1
WRITE (8,*), 'INFER, IER, NOBS, NSIG'
WRITE (8,*), INFER, IER, NOBS, NSIG
WRITE (6,*), 'INFER, IER, NOBS, NSIG'
WRITE (6,*), INFER, IER, NOBS, NSIG
WRITE (8,*)
CLOSE (8)
END

C ***

SUBROUTINE PUMA-ARM (X, M, N, F)
C This subroutine calculates the non-linear function for the use of
C the IMSL routine DRNLNF. It is the forward kinematic solution for
C the PUMA manipulator.

INTEGER M, N
REAL*8 X(N), F(M)

INTEGER II, JJ
REAL*8 FI0, TH0, SI0, PX0, PY0, PZ0
REAL*8 DT1, DT2, DT3, DT4, DT5
REAL*8 DD1, DD2, DD3, DD4, DD5
REAL*8 AA1, AA2, AA3, AA4, AA5
REAL*8 AL1, AL2, AL3, AL4, AL5
REAL*8 BL1, BL2, BL3, BL4, BL5
REAL*8 F16, TH6, SI6, PX6, PY6, PZ6, DF6
REAL*8 T0(4,4), T1(4,4), T2(4,4), T3(4,4), T4(4,4)
REAL*8 T5(4,4), T6(4,4), T7(4,4), T8(4,4)
REAL*8 TIMAT(4,4), T(4,4)
REAL*8 TINV(4,4), TN(4,4), TDELTA(4,4)

INTEGER I, J, K, NOBS, MAXNOBS
PARAMETER (MAXNOBS=360)
REAL*8 TET1(MAXNOBS), TET2(MAXNOBS), TET3(MAXNOBS)
REAL*8 TET4(MAXNOBS), TET5(MAXNOBS), TET6(MAXNOBS)
REAL*8 TH3(4,4,MAXNOBS), SCALE
COMMON /PDATA/ NOBS, TH, SCALE,
& TET1, TET2, TET3, TET4, TET5, TET6

114
C Initialize the TIMAT matrix to an I matrix:

DATA TIMAT/1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1/

C Set parameters for the manipulator:

f10 = X(1)
th0 = X(2)
si0 = X(3)
px0 = X(4)
pf0 = X(5)
pz0 = X(6)

DT1 = 0.0
DD1 = 0.0
AA1 = X(7)
AL1 = X(8)
BL1 = 0.0

DT2 = X(9)
DD2 = 0.0
AA2 = X(10)
AL2 = X(11)
BL2 = X(12)

DT3 = X(13)
DD3 = X(14)
AA3 = X(15)
AL3 = X(16)
BL3 = 0.0

DT4 = X(17)
DD4 = X(18)
AA4 = X(19)
AL4 = X(20)
BL4 = 0.0

DT5 = X(21)
DD5 = X(22)
AA5 = X(23)
AL5 = X(24)
BL5 = 0.0

DF6 = x(25)
TH6 = x(26)
SI6 = 0.0 \(\times \) x(27)
px6 = 0.0 \(\times \) x(28)
py6 = 0.0 \(\times \) x(29)
pz6 = 55.9 \(\times \) x(30)

C Loop NOBS times

K = 0
DO J = 1, NOBS

C Initialize the T matrix to an I matrix

DO II = 1,3
DO JJ = 1,4
T(II, JJ) = TIMAT(II, JJ)
ENDDO
C Manipulator joint angles

\[
\begin{align*}
\theta_1 &= D\theta_1 + T\eta_1(J) \\
\theta_2 &= D\theta_2 + T\eta_2(J) \\
\theta_3 &= D\theta_3 + T\eta_3(J) \\
\theta_4 &= D\theta_4 + T\eta_4(J) \\
\theta_5 &= D\theta_5 + T\eta_5(J) \\
\theta_6 &= D\theta_6 + T\eta_6(J)
\end{align*}
\]

C Compute the T matrices, T1 thru T6:

\[
\begin{align*}
call & \text{t}3\text{rp}y(fi0,th0,si0, trpy) \\
call & \text{t}3\text{xyz}(px0,py0,pz0, txyz) \\
call & \text{matmul}(t0,\text{trpy}, \text{txyz}) \\
call & \text{TRANSFORM} (AL1, AA1, DD1, TH1, BL1, T1) \\
call & \text{TRANSFORM} (AL2, AA2, DD2, TH2, BL2, T2) \\
call & \text{TRANSFORM} (AL3, AA3, DD3, TH3, BL3, T3) \\
call & \text{TRANSFORM} (AL4, AA4, DD4, TH4, BL4, T4) \\
call & \text{TRANSFORM} (AL5, AA5, DD5, TH5, BL5, T5) \\
call & \text{T}3\text{RPY} (FI6, TH6, SI6, TRPY) \\
call & \text{T}3\text{XYZ} (PX6, PY6, PZ6, TXYZ) \\
call & \text{MATMULC} (T6, TRPY, TXYZ)
\end{align*}
\]

C Compute the overall transformation, T:

\[
\begin{align*}
call & \text{MATMULA} (T, T0) \\
call & \text{MATMULA} (T, T1) \\
call & \text{MATMULA} (T, T2) \\
call & \text{MATMULA} (T, T3) \\
call & \text{MATMULA} (T, T4) \\
call & \text{MATMULA} (T, T5) \\
call & \text{MATMULA} (T, T6)
\end{align*}
\]

C Get the "T-measured" matrix for this observation:

\[
\begin{align*}
& \text{DO II} = 1,4 \\
& \text{DO JJ} = 1,4 \\
& \quad TMJ(II,JJ) = tm(ii,jj,j) \\
& \quad \text{ENDDO} \\
& \quad \text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
tmj(3,2) &= -1.0 \\
tmj(2,3) &= 1.0
\end{align*}
\]

C Compute the elements of the "delta-Tn":

\[
\begin{align*}
& \text{CALL MATSUB} (TDELTA, TMJ, T)
\end{align*}
\]

C Calculate the function F (six rows at a time)

\[
\begin{align*}
f(k+1) &= \text{tdelta}(1,4) \\
f(k+2) &= \text{tdelta}(2,4)
\end{align*}
\]
f(k+3)=t\delta(3,4)
f(k+4)=t\delta(1,1)\times scale
f(k+5)=t\delta(1,2)\times scale
f(k+6)=t\delta(1,3)\times scale
f(k+7)=t\delta(2,1)\times scale
f(k+8)=t\delta(2,2)\times scale
f(k+9)=t\delta(2,3)\times scale
f(k+10)=t\delta(3,1)\times scale
f(k+11)=t\delta(3,2)\times scale
f(k+12)=t\delta(3,3)\times scale

k=k+12

C End the do-loop for counter J

ENDDO

C Write RMS error in F

XSSQ=0.0
DO II=1,12*NOBS
 XSSQ=XSSQ+F(II)*F(II)
ENDDO

XER=SQRT(XSSQ)
WRITE(6,* XER

RETURN
END
LIST OF REFERENCES

118

