DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORY
MELBOURNE, VICTORIA

Aircraft Structures Technical Memorandum 579

REPORT ON VISIT TO CALTECH AND CERRA/ICASP6 RELIABILITY CONFERENCE, JUNE 1991

by

D.G. FORD

© COMMONWEALTH OF AUSTRALIA 1991

OCTOBER 1991
DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORY

REPORT ON VISIT TO CALTECH AND CERRA/ICASP6 RELIABILITY
CONFERENCE, JUNE 1991

by

D.G. FORD

SUMMARY

This memo describes discussions with three materials researchers at the California
Institute of Technology, Pasadena, and the Sixth International Conference on Applications of
Statistics and Probability in Civil Engineering, Mexico City, June 17-21 1991 at which the
author presented a paper about predicting fatigue life distributions with FRAN.
1. INTRODUCTION ... 1
2. CALIFORNIA INSTITUTE OF TECHNOLOGY 1
 Prof Wolfgang Knauss
 Dr Ravi-Chandar
 Dr Ares Rosakis
3. CERRA-ICASP 6 CONFERENCE, Mexico City 3
4. DISCUSSION ... 3
REFERENCES ... 4
APPENDIX
DISTRIBUTION LIST
DOCUMENT CONTROL DATA
In June 1991 the author presented a paper [Ford] at the Sixth International Conference on Applications of Statistics and Probability in Civil Engineering, (CERRA-ICASP 6) Mexico City. Before his Recall to Duty he also took the opportunity for discussions as described below with researchers at the California Institute of Technology, Pasadena. Two other technical visits were planned but one became irrelevant and another unnecessary when Dr B.N. Cox of Rockwell Science Center came to ARL. All of the author's presentations concerned sampling or fatigue integrations implemented in the program FRAN (Fatigue and Reliability Analysis).

2. CALIFORNIA INSTITUTE OF TECHNOLOGY

The three researchers below work on materials science in the Guggenheim Aeronautical Laboratory (GALCIT).

Professor Wolfgang Knauss 4th June 1991

Dr Knauss spoke of his interest in the fatigue of polymers and his work on delamination of composites. The first subject led to my talking of range-pairs (rainflow) whilst his current interest in delamination was in its extension through creep buckling (presumably local) particularly under a minimum sustained stress. I mentioned the allied case of bolt or rivet holes joining to metal structure and he said that these may be exacerbated by local matrix effects dominating near a surface and by the chance of environmental effects.

With the range-pair tutorial I began with the relation between circles and sinusoids and generalised this to the "circular scribble"

\[Y(t) = M(t) + R(t) \sin(2\pi t) \]

or more correctly without loss of generality

\[Y(t) = M(t) + R(t) \sin(2\pi t) \]

After this I described our ARL-RAE results on reconstitution tests and said that the continuation into crack growth of the descriptive power of range-pair or rainflow analysis lay in the large numbers of turning points occurring while a crack tip traverses a particular plastic zone; 100 < (\frac{da}{dn})/\sigma_y < 10^4 for constant amplitude growth.
I went on to the box test, the Rychlik definition and the automation of the box test to three-point one-pass counting. I also mentioned the roughly 3:1 speed up by first using structures with drop and drip pointers as well as level, corresponding to the original work by Matsuishi and Endo and promised some references from ARL.

Dr Ravi-Chandar 4th June 1991

Dr Ravi-Chandar seemed to work more on fatigue than Knauss but his main interest was in ceramics, including those zirconium stabilised, for which the Australian Company set up by CSIRO had started to operate in the USA. These are extremely weak in tension and fully flaw dependent.

This led to my ICASP 6 paper and I spoke of the sampling and data structures described in the first half. He found this interesting and favoured the abstract approach above some Swedish work which involved nonlinear structural modelling of fatigue striations. He agreed that FRAN could in fact model ceramics as well as metal structures.

Ravi mentioned some of the recent work on crack growth of which I said my program coding had left little time to peruse. Some of this had been summarised by Subra Suresh (also see Knauss and Rosakis), including non-metals, and he mentioned Jean Lemaitre (also in Knauss and Rosakis) to whom Chaboche seems to be a junior partner.

Firstly I suggested that a convenient multi-crack fatigue tool would change the nature of stress analysis. The sketch shows single-case type of analysis where most of the information in K^{-1}, the inverted stiffness matrix, is wasted, though some FE packages retain it. Any serious stressing is done because it is required by safety or law as exemplified in a standard code but this fact is too obvious to include in FEA or the conscious knowledge of analysts.
However, in the case of fatigue the same principle means that stress analysis coding is called as a subroutine in a wider process of simulation. Naturally this is a tremendous load on even the best computing resources and creates a need for condensed presentations of K^{-1}. For pure elasticity the obvious answer is a constant stress concentration factor K_T and, in general, historical dependence complicates this but the need remains. It is qualitatively analogous to vibration modelling with reduced degrees of freedom.

Dr Ares Rosakis 5th June 1991

Professor Rosakis was interested in my paper also so I left a copy and repeated some of the presentation to Ravi but expanded more on damage theory reliability, initial cracks and looping through times in FRAN. There was not time to hear of his work but ARL receives the related GALCIT reports.

3. **CERRA-ICASP 6 CONFERENCE**

Maria Isabel Sheraton Hotel, Mexico City 17-21 June, 1991

This conference is held every four years under the auspices of the International Association for Civil Engineering and Risk Analysis Reliability (CERRA), alternating with the ICOSSAR series.

Eight of the sixteen conference topics had some relation to general structures and I was especially interested in Material Behaviour, Determination and Updating of Structural Reliability and Continuous-Time Processes. The general topics and individual papers are listed in the Appendix.

Each session was arranged in an unusual way, starting

"with the participation of an invited General Reporter, who will present an integrated, critical summary of the papers scheduled for that session. This will be followed by brief contributions (up to five minutes for each paper) from the authors, who should limit their participation to clarifying ideas and adding relevant concepts not treated by the General Reporter. A free discussion will finally take place with the participation of the audience".

This system worked well for some sessions but some individual authors lapsed into full presentations leaving others without enough time. I was one of these but arranged afterwards to correspond with my Reporter, Professor Casciati from the University of Pavia, who found the range-pair integration interesting.

4. **DISCUSSION**

The CERRA-ICASP series is one of the two leading forums for developments in reliability and safety, the other being ICOSSAR. The visit was therefore stimulating and the interest in the presentation [Ford] was pleasing and can lead to further developments.
Discussions at the CALTECH Guggenheim Laboratory also produced different viewpoints about fatigue analysis.

There is a continuing emphasis on Monte Carlo procedures for reliability of structural systems and indeed one of my own conclusions was that FRAN could not treat more than 15 cracks without this type of sampling. However as one of the leading speakers, Rudiger Rackwitz, said new sampling developments are becoming fewer and the number of basic variables allowed is nowhere near the needs claimed by some workers. It would therefore appear that the order of the problems should first be reduced by non-statistical considerations, starting from the general stress analysis. Similar problems can develop for aircraft and such order reductions are also needed for practical applications of FRAN.

REFERENCES

APPENDIX
CERRA/ICASP 6 CONFERENCE
Table of Contents
Volume 1

I Uncertainty analysis and mathematical models

<table>
<thead>
<tr>
<th>Page No</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bayesian hazard assessment using imprecise data</td>
<td>J.J. Egozcue, P. Diez Mejia and P. Muñoz</td>
</tr>
<tr>
<td>9</td>
<td>A statistical procedure to match subjective and objective information in geotechnical inverse analysis</td>
<td>Y. Honjo</td>
</tr>
<tr>
<td>17</td>
<td>Expert opinions combined</td>
<td>Emilio Rosenblueth, Mario Ordaz and Raul Rueda</td>
</tr>
<tr>
<td>25</td>
<td>Relative entropy estimation and approximation of random variables</td>
<td>N.C. Lind, H.P. Hong and V. Solana</td>
</tr>
<tr>
<td>33</td>
<td>Probabilistic analysis of random frame structures by maximum-entropy technique</td>
<td>C. Carino and F. Carli</td>
</tr>
<tr>
<td>41</td>
<td>System reliability calculations using extreme value theory</td>
<td>A.M. Hasofer and Z. Wang</td>
</tr>
<tr>
<td>48</td>
<td>The choice of type of extreme value distributions</td>
<td>A.R. Rao and Ch.H. Hsieh</td>
</tr>
<tr>
<td>56</td>
<td>Sensitive analysis for risk assessment of construction operations</td>
<td>Z.A. Eldukair and B.M. Ayyub</td>
</tr>
</tbody>
</table>

II Material behaviour and its models

<table>
<thead>
<tr>
<th>Page No</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Probability of crack growth in a Poisson field of penny cracks of random size and orientation</td>
<td>S. Mesarovic, D. Gasparini, S. Muju and M. McNeils</td>
</tr>
</tbody>
</table>
III Probabilistic models of structural components

126 Probabilistic models and safety evaluation
Breysse D., Rossi P. and Wu W.

134 Some probability applications in structural design methodology
F. Bljuger

142 Testing component strength for reliability-based design
H. Dagher, M. Elgaaly, W. Davis, S. Krishnasamy and L. Kempner

150 Treatment of uncertain eccentricities via convex optimization
Isaac Elishakoff, Yossi Gana-Shvili and Dan Givoli

158 Stochastic finite element analysis with curved boundaries
R.G. Ghanem and P.D. Spanos

166 Reliability of parallel wire cable under fatigue
R. Rackwitz and M.H. Faber

176 Bayesian models and their application to the testing of bolts
Q.Y. Zhu and B. Jacob

184 Probabilistic analysis of uncertain eccentricities in a model structure
Isaac Elishakoff and Tomas Nordstrand
A3

193 Probabilistic versus deterministic description of damage localization in concrete beams
Breysse D. and Pijaudier-Cabot G.

201 Model of negative strain-hardening to evaluate the reliability of beam-columns
M. Lemaire, J.F. Chung Fook Mun, A. Mohamed Mohamed and J.P. Muzeau

IV Determination and updating of structural reliability

209 A review of some probabilistic methods for the analysis of structural reliability
A. Mebarki and M. Lorrain

216 Concepts of structural system safety: deterministic and probabilistic approaches
Gongkang Fu and Dan M. Frangopol

224 Value of field measurement in observational procedure
Katsuhiko Kuroda and Yoshihito Kato

232 Some developments on structural durability analysis
H. Sandi and I. Floricel

240 A computationally effective, self-adjusting technique for determining failure probabilities
D.J. Dupuis and M.A. Maes

250 Contrasting some exact and approximate solutions for reliability of structures
Isaac Elishakoff and Gabriel Cederbaum

257 An improved reliability method applied to coal mine spoil pile stability
S-W Yan and D.J. Williams

265 Improved methods for reliability evaluations of series systems
Jeong Soo Ryu, Chung Rang Yun and Hyo Nam Cho

273 Updating in structural system reliability: an application to offshore structures under fatigue loads
J.J. Dalane, P. Bjørgaard, A. Karamchandani and I. Langen

281 Adaptive estimation of structural reliability by importance sampling
M. Hoshiya, Y. Kutsuna, M. Fujita and H. Kuroda

289 Multi-dimensional kernel method in importance sampling
G.L. Ang, A. H-S Ang and H. Tang

297 Importance sampling distributions for Gaussian vector-processes
Bernt J. Leira
Reliability analysis of uncertain dynamic systems using importance sampling
Yaacob Ibrahim and Sharif Rahman

The development of a design point and sensitivity factors from simulation results
Han Ping Hong and Maher Nessim

Analysis of seismic reliability about multi-storey masonry buildings
Li Songbuo, Gao Xiaowang, Zhou Bingzhang

Calibrating simplified models for computation of seismic reliability of multistory frames
Diaz-Lopez and L. Esteva

Treatment of seismically induced common cause failures in nuclear power plant PSA
M.K. Ravindra, J.J. Johnson, N.G. Horstman, L.W. Tiong and A.M. Nafday

A methodology for conducting forensic investigations of seismic building damage
Duane Castafieda and Colin Brown

SFEM based reliability analysis of nonlinear structures with flexible connections
Achintya Haldar and Yiguang Zhou

Reliability analysis of space frame by prolog predicate
A. Miyamura and Y. Kohama

Fatigue and fracture reliability and maintainability for parallel member systems
T.Y. Tomg, H.I. Lin and P.H. Wirsching

Reliability of trusses subject to non-proportional loads
A. Karamchandani and C.A. Cornell

Statistical applications on wind reliability
D. De Leon

Identification of system failure modes of frame structures
Shigeru Nagata

V Response and reliability for dynamic excitations

Stochastic finite element-based reliability analysis of earthquake-loaded structures
Sankaran Mahadevan and Qiang Xiao

Finite-element reliability analysis of inelastic structures under dynamic loading
A. Der Kiureghian and Y. Zhang
Probabilistic evaluation of elastic and inelastic earthquake response spectra using an efficient simulation technique
W. Shiraki

Dynamic parameters identification of existing structures
Osamu Maruyama and Massaru Hoshiya

Reliability analysis of based-isolated structure with uncertain system parameters
Chin-Hsiung Loh and Chin-Ching Kuo

Seismic hazard analysis of MDOF structures
Takashi Inoue and C. Allin Cornell

Non-linear seismic response of asymmetric buildings with uncertain parameters
J. Alberto Escobar and Gustavo Ayala

Analysis of uncertain systems subject to random loads by stochastic Green function method
Mahmoud Khater and Mircea Girgoriu

Composite sub-systems under random base excitations
M. Di Paola, G. Falsone, G. Muscolino and G. Ricciardi

A comparative study between two approximation techniques for analysis of non-linear systems
Hamid Davoodi, Mohammad M. Noori and Ismail Orabi

Low-cycle fatigue reliability of structures subjected to nonstationary ground motions
Richard J. Nielsen, Darel Tracy and Xiquin Long

Probabilistic evaluation of the seismic response of a fluid-structure system
F. Bettinall and M. Ciccotelli

Stochastic analysis of seismic plastic strains
P.B. Labbe

Non-gaussian simulation application to an airplane flying in turbulence
F. Poiron

VI Seismicity and seismic hazard

Analysis of some of the uncertainties in the statistical elaboration of historical data for local seismic hazard evaluation
G. Grandori, E. Garavaglia and V. Petrini
521 Use of the minimum cross-entropy principle to generate distributions of earthquake magnitude
Juan J. Goni and Tarik Hadj-Hamou

529 Probabilistic interpretation of short-term earthquake precursors in non stationary conditions
E. Guagenti, G. Grandori and A. Tagliani

539 On the probabilistic simulation of events in seismic hazard evaluations
A. Baratta and G. Zuccaro

548 Probabilities of occurrences of large earthquake on the northern San Andreas fault
A. Kiremidjian, H. Thrainsson, K. Lutz, J. Schneider, C. Stepp and D. Schwartz

VII Continuous time - processes and random fields

556 Wave pattern recognition by evolutionary spectral analysis utilizing Mexican earthquake data
R.J. Scherer and G.I. Schueller

564 Local amplification in ground acceleration synthesis
L. Faravelli, A. Marcellini and L. Franceschina

572 A duration independent amplitude-modulating function for the generation of artificial strong ground motions
Albert T.Y. Tung, Jaw-Nan Wang and Anne S. Kiremidjian

580 Stochastic modeling of earthquake ground motion based on Chiba array records
Fumio Yamazaki and Turgay Turker

588 Synthesis of two-dimensional random fields by MA and ARMA algorithms
M.P. Mignolet and P.D. Spanos

596 Continuous simulation of multi-variate random processes
Ahsan Kareem and Yousun Li
Volume 2

VIII Combination of simultaneous load processes

604 Stochastic and non-stochastic load combination analysis
Claudio Floris, Aldo Colombo and Marco Merello

614 Combination of stochastic processes of actions
J.W. Murzewski

622 Exceedance probabilities of stochastic load combinations
Mamoru Kohno and Jun Sakamoto

630 On stochastic load combination modelling and algorithms for calculating
probabilities of failure
Claudio Floris and Corrado Giommi

IX Exploration and Sampling

636 Statistical methods for soil layer boundary location using the cone penetration test
Damika S. Wickremesinghe and R.G. Campanella

644 Optimization of instantaneous drilling parameter logging (detection of sand and
clay cavities)
F. Cremoux and J. Malzac

652 Optimal approach to the planning of a network of in situ soil test
R. Azzouz and C. Bacconnet

660 Engineering soils mapping by statistically analysis and landsat CCTS
A.K. Rajurkar and U.D. Kulkarni

668 Potentiometric surface mapping of the Wolfcamp aquifer in the Palo Duro Basin,
Texas by probabilistic methods
Pinnaduwa H.S.W. Kulatilake

676 Measurement errors in evaluating relative density of post-flotation sediments
using the CPT method
I. Sulikowska, Zb Mlynarek and W. Tschuschke

X Geotechnical properties

683 Assessment of uncertainties in geotechnical design parameters
J. Neil Kay, Fred H. Kulhawy and Mircea D. Girgoriu
Parameter estimation and statistical uncertainty in random field representations of soil strength
Ovë Ditlevsen and Henrik Gluver

Some statistical evaluations of geotechnical properties
Fred H. Kulhawy, Mary Joel S. Roth and Mircea D. Grigoriu

Spatial variability analysis applied to coal mine tailings
D.J. Williams and J-Z Zou

Probabilistic and bayesian analysis of the soil resistance to driving of piles of offshore platforms.
Berranger, D. Berdin, P. Besse, P. Boisard and F. Brucy

Return periods of extreme moisture conditions for expansive soil deposits
M. Picornell and Mohd Asri B. Abd Rahim

An application of FOSM method to evaluate seismic liquefaction probability of ground
Lan-Yu Zhou

Modelisol: a database for reliability analyses in geotechnics
J.L. Favre, P.Y. Hicher and J.M. Kerilis

XI Foundations

Stochastic finite element analysis of piles and pile groups
K.K. Phoon, S.T. Quek and Y.K Chow

Prediction of spread footing settlements of sand
C. Cherubini and V.R. Greco

Reliability of foundations on soft soils
G. Auvinet and O. Rossa

XII Dams, embankments and natural slopes

Reliability of undrained clay slope considering geological anomaly
S. Halim and W.H. Tang

Fallacies of current probabilistic approaches to progressive slope failure
K.S. Li
A9

792 Methods for predicting slope failure during rainfall using estimation model of field suction
H. Suzuki and M. Matsuo

800 Monitored decision making applied to the control of preloading on soft clays
M. Matsuo, A. Asaoka and M. Nakano

808 A probabilistic spatial-temporal modelling of embankment on soft Bangkok clay: a case of Bangna-Bangpakong highway, Thailand
D.T. Bergado and K.T. How

816 Reliability of homogeneous earth fills
G. Auvinet, J.J. Fry and O. Rossa

825 Uncertainty analysis in earth dam erosion problems
J.L. Favre, J.P. Magnan and A. Bekkouche

833 A probabilistic approach to the study of an anchored bulkhead stability
G. Cherubini and A. Garrasi

840 Reliability analysis of waterfront retaining structures
Mary Joel S. Roth, Habib Dagher and Thomas Sandford

XIII Bridges

849 Redundancy and reliability analysis of existing bridges
R. Nakib and D.M. Frangopol

857 Spatial vibration and reliability of a suspension bridge under random traffic flow
D. Bryja and P. Sniady

865 Probabilistic extrapolations and maximum load effect prediction for bridge code calibration
B. Jacob and J.B. Maillard

872 A reliability-based bridge rating system
H.N. Cho, D.I. Chang and J.W. Seo

880 Bridge load models
Andrzej S. Nowak, Young-Kyun Hong and Eui-Seung Hwang

888 Simulated shear strength of concrete bridge girders
Ahmed Yamani and Andrzej S. Nowak

896 Seismic reliability analysis of bridge piers using fuzzy probabilities
Hitoshi Furuta, Masata Sugito, Shin-ya Yamamoto and Naruhiro Shiraishi
Risk analysis of fatigue failure of steel bridges on urban expressway network
A. Nanjo, W. Shiraki, H. Furuta, H. Okada and Y. Murotsu

Measurement of axle weights by multiple-sensor weighing
R. Eymard, F. Guerrier and B. Jacob

XIV Hydrology, hydraulic and marine systems

Risk analysis for hydro-power reservoir operation
E.C. Kalkani

Analysis of discharge capacity of small irrigation channels
José Luis Sanchez and Rafael B. Carmona

Integration of the overtopping probability for a coastal dike
Knut O. Ronold

Probabilistic analysis of wave run-up and overtopping in vertical breakwaters
J. Olivares Prud’Homme and R. Blazquez Martinez.

Reliability-based approach to design of semi-submerged catamaran
Y. Murotsu, H. Okada and T. Tanaka

XV Offshore structures

System reliability and sensitivity analysis of an offshore jacket structure using conditional expectation approach
Rabi S. De, Ashish Karamchandani and C. Allin Cornell

Nonlinear dynamic response of a jack-up rig under random wave loading
Lancelot Manuel, C. Allin Cornell, Steven R. Winterstein

Probabilistic evaluation of frequency of collision between ships and offshore platforms
Stein Haugen and Torgeir Moan

Probabilistic design of breakwater armor units
Jose L. Sanchez Bribiesca and Oscar A. Fuentes Mariles

Chaotic motions of coupled galloping oscillators and their modeling as diffusion processes.
Emil Simiu, Graham R. Cook and Bunu Alibe
XVI Decisions and optimization

1001 Trade-offs between safety and economy of wave dissipating revetments
Hisayoshi Ujiie, Kiyoshi Ishii and Makoto Suzuki

1009 Failure cost assessment for dam failure risk analysis
Ross B. Corotis, Bruce Ellingwood, John J. Boland and Nicholas Jones

1017 Optimal sizing and design of dams considering the global economic of failure
(GERoF)
A. Delgado

1029 Risk-based decision making of diversion flood for dam construction
Mou-Hsing Wang, Song-Ching Lin and Che-Yuang Huang

1037 A knowledge based methodology for a-priori estimates of earthquake induced
economical losses in old urban nuclei.
A. Bernardini, R. Gori and C. Modena

1045 Some studies on limit state design of structural system using reliability-base
optimization and efficient Monte-Carlo simulation technique
W. Shiraki, K. Yamaguchi, S. Matsuho and P.N. Takaoka

1053 Reliability-based minimum weight design of space truss
Y. Kohama and A. Miyamura

1060 On the optimal allocation of resources in the design or retrofitting of building
structures
Guiliano Augusti, Antonio Borri and Emanuel Speranzini

1068 Pareto optimum solutions for non-deterministic systems
D.M. Frangopol and M. Izuka

1076 Building substructural design as fuzzy decision model
J. Al-Hajjar, B. Boissier and C. Boulema

XVII Reliability based design

1084 Practical inclusion of system reliability at the design level
H.J. Dagher, S. Kulendran, A.H. Peyrot and M. Maamouri

1093 Rationality and risk uncertainties in building code provisions
M.E. Paté-Cornel and P.S. Fischbeck
A12

1101 Reliability evaluation of current design procedures for steel buildings under seismic loads
Y.K. Wen, D.A. Foutch, D. Eliopoulos and C-Y Yu

1109 The human dimension in steel beam design
M.G. Stewart

XVIII Probabilistic analysis in the operation of industrial and public systems

1117 Elementary statistics for the optimization of non-quantifiable variables in transportation
Sandor Popovics

1125 Geometric road design as limit state
F.P.D. Navin and Ronda Zheng

1132 Transportation planning and the chance of success
Francis Navin, Eanson Ho and Sany Zein

1138 Risk evaluation of midblock pedestrian crossing at an urban arterial: a case study of two-way mixed traffic in India.
B.K. Katti and D.A. Shastri

1147 Risk analysis of occupational accidents in construction work
Shigeo Hanayasu

1155 Probability in earthmoving operations-modelling, planning and management
G. Nawar and D.G. Carmichael

1163 A computing system for power supply performance of a substation during accident
Nobuhiro Oshima, Osamu Iso, Yoshikazu Imanishi, Kazuo Hamamoto and Masaru Hoshiya

1171 Framework for the risk analysis of hazardous waste facilities
Daniel K. Asante-Duah, David S. Bowles and Loren R. Anderson

1181 Seismic reliability of power transmission networks
M. Ciampoli, R. Giannini and T. Pagnoni

1188 Evaluation of drinking water using statistical sampling inspection techniques
M. Brett Borup

1196 Reliability model for water infrastructure rehabilitation
Rafael G. Quimpo
DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central

Chief Defence Scientist
AS, Science Corporate Management
FAS Science Policy
Director, Departmental Publications
Counsellor, Defence Science, London (Doc Data sheet only)
Counsellor, Defence Science, Washington (Doc Data sheet only)
Scientific Adviser, Defence Central
OIC TRS, Defence Central Library
Document Exchange Centre, DSTIC (8 copies)
Defence Intelligence Organisation
Librarian H Block, Victoria Barracks, Melb (Doc Data sheet only)

Aeronautical Research Laboratory

Director
Library
Chief Structures Division
Divisional File - Aircraft Structures
Author: D.G. Ford

Navy Office

Navy Scientific Adviser (3 copies Doc Data sheet only)

Army Office

Scientific Adviser - Army (Doc Data sheet only)

Air Force Office

Air Force Scientific Adviser
Director General Engineering-Air Force
HQ Logistics Command [DGELS]

HQ ADF

Director General, Force Development (Air) - OFFOPS

SPARES (10 COPIES)

TOTAL (32 COPIES)
This memo describes discussions with three materials researchers at the California Institute of Technology, Pasadena, and the Sixth International Conference on Applications of Statistics and Probability in Civil Engineering, Mexico City, June 17-21 1991 at which the author presented a paper about predicting fatigue life distributions with FRAN.
AERONAUTICAL RESEARCH LABORATORY, MELBOURNE

18. DOCUMENT SERIES AND NUMBER
Aircraft Structures Technical Memorandum 579

19. COST CODE
24 208F

20. TYPE OF REPORT AND PERIOD COVERED

21. COMPUTER PROGRAMS USED

22. ESTABLISHMENT FILE REF IN

23. ADDITIONAL INFORMATION AS REQUIRED