Calibrated Radiometer for Background Scanning - CARABAS

author(s):
Ing. R. van der Touw

date:
November 1991

classification:
unclassified

abstract:
unclassified

report text:
unclassified

appendices A - E:
unclassified

no. of copies:
15

no. of pages:
86 (incl. appendices, excl.RDP & distr.list)

appendices:
5

All information which is classified according to Dutch regulations shall be treated by the recipient in the same way as classified information of corresponding value in his own country. No part of this information will be disclosed to any party.
ABSTRACT (UNCLASSIFIED)

Thermal characteristics of targets and backgrounds determine IR detectability of the targets. Therefore not only knowledge of the thermal behaviour of targets is needed, but also of background elements like trees and grass. Long-term measurements are necessary to study time variations of apparent temperatures, covering all weather conditions. For this reason a dual wave-band scanner is developed for autonomous radiation measurements in the spectral regions 3-5 µm and 8-12 µm. This report describes system design and performance.
SAMENVATTING (ONGERUBRICEERD)

Thermische eigenschappen van doelen en achtergronden bepalen de IR detecteerbaarheid van de doelen. Daarom is niet alleen kennis van het thermisch gedrag van doelen noodzakelijk, maar ook van achtergrond elementen zoals bomen en gras. Metingen over lange perioden zijn nodig om veranderingen in de tijd van schijnbare temperaturen te bestuderen, onder alle weersomstandigheden. Om die reden is een dual waveband scanner ontwikkeld voor autonome stralingsmetingen in de spectrale gebieden 3-5 \(\mu\)m en 8-12 \(\mu\)m. Dit rapport beschrijft het systeem ontwerp en de technische mogelijkheden en prestaties.
TABLE OF CONTENTS

ABSTRACT

SAMENVATTING

TABLE OF CONTENTS

1 INTRODUCTION

2 APPARENT TEMPERATURE

3 THE CARABAS SYSTEM
 3.1 Optics and detectors
 3.2 Calibration procedure and scanning mechanism
 3.3 Scanner housing
 3.4 Control system
 3.5 System performance

4 CARABAS CONTROL
 4.1 Define positions
 4.2 System operation
 4.2.1 Data collection
 4.2.2 Error recovery and control
 4.3 Evaluation

5 MEASUREMENT FACILITIES

6 METEOROLOGICAL DATA

7 CONCLUSIONS
8 RECOMMENDATIONS
9 REFERENCES
APPENDIX A DEFPINT SOFTWARE LISTING
APPENDIX B POSITION FILE
APPENDIX C CARABAS SOFTWARE LISTING
APPENDIX D CARABAS DATA
APPENDIX E METEOROLOGICAL DATA
INTRODUCTION

Detection of targets is based on observation of contrasts with the background. In the infrared wave-bands (IR) these are temperature and emissivity contrasts. They are caused by differences in material and physical properties, like heat capacity and absorptivity. Military targets consist of non-natural materials. Very often there are heat producing systems inside, which cause extra warming up. This leads to differences in thermal behaviour and results in increased temperature contrasts. Consequently an increase of the detection probability follows. Reduction of the temperature contrast between object and background in principle can be achieved by adapting the surface temperature or using camouflage (influence on apparent temperature, chapter 2.). The materials must be chosen such that the contrast with the background will be minimized. Adapting of the correct type of camouflage requires knowledge of the behaviour of the background. The temperature behaviour depends strongly on the weather. To study this behaviour, a scanning radiometer was developed, to perform autonomous measurements of apparent temperatures according to a preset time interval. The name of this scanner is CARABAS, an acronym for CAlibrated RAdiometer for BAckground Scanning. Together with the registered meteorological parameters (chapter 6), the apparent temperatures form a valuable database to study time- and weather dependent temperature behaviour of background elements.
2 APPARENT TEMPERATURE

The principle of IR detection is based on observation of radiance differences. In this chapter the theory concerning the apparent temperature will be explained.

The spectral emission \(W(\lambda, T) \) (monochromatic emissive power) of an object with absolute temperature \(T \) is given by Planck's formula, (1).

\[
W(\lambda, T) = \frac{c_1}{\lambda^5 \left(\exp \left(\frac{c_2}{\lambda T} \right) - 1 \right)} \quad \text{(W-m}^{-2}\text{-\mu m}^{-1}) \tag{1}
\]

with \(c_1 = 3.74 \times 10^8 \quad \text{W-m}^{-2}\text{-\mu m}^{-4} \)
and \(c_2 = 1.439 \times 10^{-2} \quad \text{m-K} \quad (\lambda \text{ in \mu m}) \).

The radiation \(Q \) in the spectral waveband \(\lambda_0 \) is

\[
Q = \int_{\lambda_0} W(\lambda, T) \, d\lambda \quad \text{(W-m}^{-2}) \tag{2}
\]

The radiation of an object, \(Q_{\text{obj}} \), and the environmental radiation, \(Q_{\text{env}} \), are determined by equations 1 and 2. The total radiation of an object, \(Q_{\text{tot}} \), consists of an emissive part, \(\varepsilon Q_{\text{obj}} \), and a reflective part radiation, \(\rho Q_{\text{env}} \), i.e.

\[
Q_{\text{tot}} = \varepsilon Q_{\text{obj}} + \rho Q_{\text{env}} \quad \text{(W-m}^{-2}) \tag{3}
\]

\(\varepsilon \) is the emissivity and \(\rho \) the reflectivity. The emissivity indicates a surface capacity to emit radiation and depends on the surface properties (0 \(\leq \varepsilon \leq 1 \)). If \(\alpha \) is the absorptivity and \(\tau \) the transmissivity, then

\[
\alpha + \rho + \tau = 1 \quad \text{(-)} \tag{4}
\]

There is no transmission through solid materials and according to Kirchhoff's law the emissivity is equal to the absorptivity at wavelength \(\lambda \), so eq. 4 becomes:
\[\rho = 1 - \varepsilon \]

(5)

In case of a black body \(\varepsilon = 1 \). The total emittance and its spectral distribution only depends on the temperature of the black body.

From the preceding it follows that detected radiation \(Q_{\text{det}} \) can be expressed in terms of a temperature that may differ from the actual surface temperature due to different emissivities. This temperature is the apparent temperature \(T_{\text{app}} \). In the spectral band \(\lambda_0 \), \(T_{\text{app}} \) is solved from equation 6, using eq. 2 and 3:

\[
\int_{\lambda_0^*}^{\lambda_0} W(\lambda, T_{\text{app}}) \, d\lambda = \int_{\lambda_0^*}^{\lambda_0} \left[\varepsilon W(\lambda, T_{\text{obj}}) + \rho W(\lambda, T_{\text{env}}) \right] \, d\lambda \quad \text{W m}^{-2} \text{m}^{-1} \]

(6)

In this equation \(T_{\text{obj}} \) is the surface temperature of the object and \(\tau_0 \) the transmissivity of the atmosphere. \(W(\lambda, T_{\text{env}}) \) is the contribution of environmental radiation, predominantly sky- and scattered atmospheric radiation. \(T_{\text{env}} \) is an average "environmental" temperature. This is for example cloud base or sky temperature. \(Q_{\text{det}} \) and consequently \(T_{\text{app}} \) is determined by the temperature and emissivity of the surface (eq. 1 and 3). From eq. 6 it follows that it is possible to control \(Q_{\text{det}} \) by changing the emissivity and consequently increasing reflection, mostly of cold sky radiation.

Not all parts of the IR spectrum are useful for IR measurements because of atmospheric attenuation. Due to molecules like \(\text{H}_2\text{O} \) and \(\text{CO}_2 \), IR radiation will be absorbed in the atmosphere, for example in the 5-8 \(\mu \text{m} \) region predominantly by \(\text{H}_2\text{O} \). The regions where the atmosphere is transparent (windows) are 3-5 \(\mu \text{m} \) and 8-12 \(\mu \text{m} \).

Differentiating the Planck equation with respect to \(\lambda \) and setting the result equal to zero, Wien's displacement law is obtained:

\[
\lambda_{\text{max},T} = \frac{2893}{T} \quad \text{\(\mu \text{m} \cdot \text{K} \)} \]

(7)

where \(\lambda_{\text{max}} \) is the wavelength at maximum emission, expressed in micrometers. A plot of this relation is shown in figure 2.1. Within a natural scene most objects, e.g. vegetation, will have temperatures close to that of the ambient air temperature, say 290 K, which will result in \(\lambda_{\text{max}} = \)
10 µm, which occurs in the centre of the 8-12 µm window. Therefore the atmospheric window 8-12 µm is most suitable to measure radiation of natural sources.

The material properties of an object, like density, heat capacity and emissivity, determine the physical temperature of the surface. Evaporation at the surface will influence the temperature as well.
3 THE CARABAS SYSTEM

The CARABAS is a calibrated dual waveband radiometer, suitable for long-term outdoor operation. In this chapter optics, scanning mechanism, internal calibration and system performance will be described.

3.1 Optics and Detectors

To measure radiation of a single object only, instead of an average value over different objects, a small instantaneous field of view (IFOV) is necessary. On the other hand a reasonable area must be covered when measuring over short distances. Therefore the IFOV of the CARABAS is 1°x1° using Cassegrain optics, a combination of an hyperbolic and parabolic mirror. Figure 3.1 shows these Cassegrain optics.

Fig. 3.1 The Cassegrain optics in the CARABAS.
The equations of the hyperbolic and parabolic mirrors are

\[
\frac{x^2}{49} - \frac{y^2}{371.25} = 1
\]
\[(8)\]

respectively

\[
x = \frac{y^2}{228}
\]
\[(9)\]

The effective focal distance of this combination is 28 mm, projecting a parallel beam with a diameter of 30 mm on the detector.

The mirrors are made of polished aluminium.

Two thermopile detectors (Laser-Optronic, type 5M) are used, since thermopiles do not need cooling for optimum performance. The responsivity of the thermopile detectors is wavelength independent. By using interference filters the received radiation is limited to the windows 3-5 μm respectively 8-12 μm.

The filter characteristics are shown in figure 3.2, where transmission is plotted versus wavelength.

![Figure 3.2: Transmission versus wavelength of the interference filters used in the CARABAS.](image-url)
3.2 Calibration procedure and scanning mechanism

One of the most important features of the CARABAS is the internal calibration, before the actual measurement. This reduces the influence of electronic drift on the results. Therefore not only the radiation of the environmental object is measured, but also of three internal calibration sources. These blackbody sources have temperatures of 0, +3 and +9 °C relative to the scanner housing temperature. They are mounted close to the detectors, at the inside of the scanner housing see fig. 3.3. The temperature of the scanner housing will be close to ambient air temperature.

The temperatures of the sources are read by Pt-100 resistors and continuously adjusted. By fitting a least square curve, using the values of the three calibration sources (volts, \(V_c(i) \), versus temperatures, \(T_c(i) \), \(i=1,2,3 \)), the apparent temperature of the unknown element \(T_{app} \) can be obtained, using:

\[
Q_c(i) = \int_{\lambda_0}^{\lambda_1} T_\lambda W(\lambda, T_c(i)) \, d\lambda = a \cdot V_c(i) + b \quad (W.m^{-2})
\]

where \(Q_c(i) \) is the calibrated radiation for each blackbody and \(T_\lambda \) the transmission of the filters. \(T_{app} \) can be solved from

\[
a \cdot V_a + b = \int_{\lambda_0}^{\lambda_1} T_\lambda W(\lambda, T_{app}) \, d\lambda \quad (W.m^{-2})
\]

where \(V_a \) is the measured detector voltage.

CARABAS measurements are carried out over short ranges (up to 100 meters) and therefore the transmissivity \(\tau \) of the atmosphere is assumed to be 1. Per position the sequence of measurements of both detectors, as shown in fig. 3.3, are identical.
By means of a double sided mirror both detectors make simultaneous measurements. This mirror is mounted in a rotating drum, at a 45° angle to the optical axis. Four discrete steps of 90° rotation around the drum axis are performed per complete cycle (see figure 3.3 and 3.4.). The mirror remains in each position for 1 second. To increase accuracy the detector signal is integrated over 0.75 seconds. In this way both detectors measure the environmental object and the three calibration sources within 4 seconds, aligned optically to measure exactly the same areas.

To obtain four exact discrete steps a Maltese cross is used (see fig. 3.3), driven by a DC motor. Photo 3.5 shows the CARABAS interior.
Fig. 3.4 Optical path in the CARABAS.

Photo 3.5 The CARABAS interior.
3.3 Scanner housing

To avoid rain, dirt or small insects from entering the CARABAS, a shutter closes automatically the entrance pupil when not operating. A tube is placed in front of the entrance to avoid rain coming in during measurements. Protection against solar heating is achieved by mounting reflecting shields at all sides of the scanner housing. All outer parts of the scanner are painted white. On top of the sensor housing a CCD camera can be mounted to observe the positions, for example to record or define locations.

3.4 Control system

The CARABAS system is scanning autonomous according to a preset timetable and position sequence. All movements are remotely controlled by a portable IBM Personal Computer. This PC is provided with a 12 bits, 100 kHz LABMASTER data acquisition system (Scientific Solutions Inc.) and a 30 Mb storage capacity. The measured values of radiation are converted to apparent temperatures (degrees Celcius) and stored together with the time of measurement. One day with 30 positions and a scan interval of 15 minutes results in a file of 90 kb.

The LABMASTER is connected to a separate control unit. From this unit the sensor can be directed by joy-stick as well.

The (single) cable between the control unit and the CARABAS is 10 meter long. The control unit and the PC are placed in an air-conditioned cabin.

In case of a power failure a no-break power back-up system (Im-conlec MS 600) is activated. It provides the CARABAS system for about 10 minutes with power in order to stop measurements correctly, return scanner head to first position and close files and to restart automatically after power has returned.

3.5 System performance

The Noise Equivalent Temperature Difference (NETD) of the CARABAS is < 0.04 °C at 20 °C for both channels. The temperature accuracy in 3-5 μm is < 0.2 °C and in 8-12 μm < 0.1 °C.

The CARABAS can be rotated over 340° azimuth and -90° to +90° in elevation. The maximum accuracy of positioning is ± 0.09 ° in both elevation and azimuth. For practical reasons the step size of the sensor head can be set to a multiple of 0.09 ° to reduce operation time. The CARABAS is presently set to ± 0.9 ° (step size 10), scanning 30 positions in about 5 minutes,
covering the whole range of angles with optimized scan sequence (see chapter 4.1; highest optimization priority is azimuth, followed by elevation).

The scanner can operate outdoors for over a year without service. Photo 3.6 shows the CARABAS on a measurement site.
4 CARABAS CONTROL

Three programmes are developed in BASIC language to operate the CARABAS system. The program "DEFPOINT" is used to define measurement positions, "CARABAS" performs the actual measurements and data storage and "EVAL" gives a first analysis of measurements to check the CARABAS operation.

4.1 Define positions

The programming of the measurement positions is done with a program called "DEFPOINT". Using a joy-stick or keyboard, the CARABAS can be positioned. The X and Y coordinates (azimuth and elevation) will be fixed and read by push button control. A CCD camera can be mounted on top of the CARABAS scanner to record the selected positions. When all measurement points are defined, the scanning sequence can be optimized to minimize the measurement cycle time. The sequence of positions is stored in a file. This position file can be adjusted easily by inserting or deleting measurement locations.

A position file name has the format "mmddyyP" (like JAN0191P, meaning the creation date, January 01, 1991, with addition P for Position file) and contains the following information:

- number of positions (p)
- date (mm-dd-yy)
- position information (p blocks)
 - object description (30 characters)
 - status specification (30 characters)
 - x-coordinate
 - y-coordinate
 - elevation angle (degrees)
 - azimuth angle (degrees)
 - height (cm)
 - distance (m)
 - emissivity (-)
 - background description (30 characters)
 - status specification (30 characters)
 - position code (11 characters)

end block (p)
The program generates a position code for each position, giving complete and uniform descriptions of the background elements. These codes are generated from user input. They contain information about object description, elevation, azimuth, physical condition and appearance.

A position code consists of 11 digits. If "abcdefgghi" represents the code, then

- \(a\) = object description
- \(b\) = status specification of the object
- \(c\) = elevation angle
- \(d\) = azimuth angle
- \(e\) = height
- \(f\) = distance
- \(g\) = emissivity
- \(hh\) = background description
- \(i\) = status specification of the background

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>AGRICULTURE</td>
<td>GREEN</td>
</tr>
<tr>
<td>02</td>
<td>GRASS</td>
<td>FALLING</td>
</tr>
<tr>
<td>03</td>
<td>BUSHES-CONIFEROUS</td>
<td>BARE</td>
</tr>
<tr>
<td>04</td>
<td>BUSHES-DECIDUOUS</td>
<td>BUDS</td>
</tr>
<tr>
<td>05</td>
<td>TREES-CONIFEROUS</td>
<td>GROWING-NORMAL</td>
</tr>
<tr>
<td>06</td>
<td>TREES-DECIDUOUS</td>
<td>FRESH-CUT</td>
</tr>
<tr>
<td>07</td>
<td>CONCRETE</td>
<td>CRUSHED</td>
</tr>
<tr>
<td>08</td>
<td>ASPHALT</td>
<td>COVERED WITH MUD</td>
</tr>
<tr>
<td>09</td>
<td>GRAVEL</td>
<td>COVERED WITH SNOW</td>
</tr>
<tr>
<td>10</td>
<td>SAND-BARE</td>
<td>NO SUB-TITLE</td>
</tr>
<tr>
<td>11</td>
<td>SOIL-BARE</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>MUD</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SLOPE-UP-HILL</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SLOPE-DOWN-HILL</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NATURAL-WASTE</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>CAMOUFLAGE-NET</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>CAMOUFLAGE-SCREEN</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>CAMOUFLAGE-ADAPTIVE</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>WATER</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SNOW</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>MUDDY-SNOW</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>SKY</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>HORIZON</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>BLACKBODY + 3 DEG</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>BLACKBODY + 13 DEG</td>
<td></td>
</tr>
</tbody>
</table>

The emissivity is measured with an infrared reflectometer (ref 1). Table 4.1 shows a list of existing descriptions and status specifications for objects and their background. The
corresponding numbers can be found in the position code (digits aa and hh). The status specification gives additional information, most temporary, like covered by snow or mud (digits b and i). The X- and Y coordinates of the scanner are only of importance during the measurements and will therefore not be included in the position code. The orientation of objects is defined by their azimuth and elevation angles, as shown in figure 4.1.

Appendix A shows the listing of the programme "DEFPOINT" and in Appendix B an example is given of a position file.

The position file is updated once a week if any changes have occurred.
To check the positioning accuracy a testrun can be performed, using the CCD camera, in which the consecutive positions are displayed for approval. If necessary their descriptions can be adjusted.
4.2 System operation

The software controls the positioning and measuring sequence, and also handles error recovery. The program to do this is called "CARABAS".

The program is initialized, defining the following parameters:

1. Start date
2. Stop date
3. Start time
4. Stop time
5. Measurement sequence time interval
6. Name of position file
7. Name of data file

Before starting the measurement cycle, an initialization file is created, containing these parameters, in case an automatic restart after power failure is required. A listing of the program "CARABAS" is given at Appendix C.

4.2.1 Data collection

The program "CARABAS" performs the complete measurement cycle. It starts and stops measurements according to the preset timing parameters. The position information is read from the position file and used to direct the sensor to each location. The coordinates of positions are expressed in units of 0.09°. The program feedback recognizes when the sensor is in correct position. The actual measurements are executed by control of the position of the internal mirror. After scanning all positions, the sensor pupil is closed by a shutter and the sensor returns to the first position. At this time data is available as detector voltages and Pt-100 voltages per channel and per position.

Using equations 10 and 11, the curve fit parameters a and b are determined and the unknown apparent temperature is calculated. This is repeated for each position. The calculated temperatures are stored on disk. The CARABAS file name has the format "mmdyyC" (like JAN0191C, meaning the creation date, January 01, 1991, with addition C for CARABAS file) and every day a new file with a corresponding name is created.
Data is stored per scan interval (15 minutes default) in the following format:

- **Position file name**: (JAN0191P)
- **Number of positions**: (p)
- **Date**: (mm-dd-yy)
- **Carabas position data (p blocks)**
 - **Time**: (hh:mm:ss)
 - **\(T_{app} \) in 3-5 \(\mu \)m band**: (°C)
 - **\(T_{app} \) in 8-12 \(\mu \)m band**: (°C)
- **End block**: (p)

The precise observation time is of significance as CARABAS data will be correlated to weather data. Appendix D shows an example of a set of results.

4.2.2 Error recovery and control

Internal or external errors might occur during running of the program. To minimise the loss of data as a result of this errors, the program checks for power failure, I/O- and hardware (sensor) errors. Also the sensor positioning is checked continuously during a measurement cycle.

Detection and if possible recovery makes normal execution of the program possible after an error has occurred.

Two external blackbodies with a constant temperature difference are used to control operation. This is done by the user. As an option this control can be inserted in the program to check the quality of the measurements automatically.

Temperatures of both spectral bands of up to four positions and up to 20 previous scans can be displayed during running of the program.

4.3 Evaluation

The first analysis of measured apparent temperatures can be performed by a program called "EVAL". The program reads CARABAS data. Average and standard deviation of selected objects are calculated and temperatures versus time or frequency of occurrence are printed or plotted.

This program is meant for quick look. A second program, called "CLEANCAR", is available to edit CARABAS data in case of individual data distortions.
5 MEASUREMENT FACILITIES

At the airbase Gilze-Rijen in the Netherlands a suitable test site for background measurements was found (photo 5.1). The CARABAS is mounted on a platform at 7 meters above ground level, placed beside an air-conditioned cabin with the control units. Besides environmental elements, several camouflage materials are measured as well. The location at the airbase is wide, quiet and closed to public. It is therefore suitable to test new developed materials as well.

![Photo 5.1 Test site at Airbase Gilze-Rijen.](image)

The CARABAS is placed in the field in November 1989. For over a year it has remained there without service. Only once a small bird entered the sensor head and was chopped by the rotating drum.

To check if there are any changes of the measured background elements, the site is visited on a weekly basis, also for checking system performance and general maintenance i.e. cleaning of the optical parts. During these visits the position file is updated to match the actual situation. The current set-up will be maintained until April 1991. By then it is expected that all meteorological conditions are covered.
6 METEOROLOGICAL DATA

A weather station, located close to the CARABAS, collects the 5 minutes average of eight meteorological observations. The quantities measured are: air temperature, relative humidity, air pressure (all 1.5 m above ground level), global irradiance (0.3 - 3 μm), "global" IR irradiance (pyrgeometer, 3 - 50 μm), wind speed and direction (at 10 m above ground level) and precipitation (ref 2). The meteorological data is stored in a separate file, named "mmmdddyM" (like JAN0191M, meaning the creation date, January 01, 1991, with addition M for Meteo file), per period of 5 minutes. This file contains the following information:

date (mm-dd-yy)
time (hh:mm:ss)
number of scans in last period (n)
meteo data block (8 parameters)
 meteo parameter i (...)
 number of valid scans of parameter i (n_i)
end block (8)

An example of meteo results is given in Appendix E.
A description of the weather station can be found in report FEL-91-B202, [ref. 2].
CONCLUSIONS

The CARABAS system can give an impression of the temporal IR behaviour of objects in two spectral bands, 3-5 μm and 8-12 μm. The measurements of apparent temperatures of any object can be carried out autonomously over a period of at least a year with the CARABAS system. The objects can be backgrounds as well as targets. Also camouflage efficiency can be analysed. There is data available now of about 24 different objects, from the period April 1990 to April 1991. The temperature accuracy is better than 0.2 °C and the maximum position accuracy 0.09°, unchanged after two years of performance in the field. With the IFOV of 1° the size of measured object surfaces can be varied by changing the distance.
RECOMMENDATIONS

One of the parameters of importance is the solar absorptivity. No equipment is available yet to measure this parameter easily. A pyrheliometer combined with measurements will give useful supplementary information. Extension with a visual camera on top of the CARABAS scanner offers the possibility to combine IR data with visual data. The data acquisition (of CARABAS as well as meteorological data) should be limited to only one PC and offering the possibility of online processing.

The CARABAS system is also useful in industrial environments to perform remotely controlled temperature measurements in hazardous areas or complex installations that cannot be reached easily.
REFERENCES

[1] Description of an infrared reflectometer,
 Ir. A.N. de Jong

[2] An Automatic Meteorological Station,
 Ing. R. van der Touw, FEL-91-B202,
 October 1991, TNO-FEL, The Hague

A.N. de Jong
(groupleader)

Ing. R. van der Touw
(author)
DEFPPOINT software listing
PROGRAMME NAME : DEFPOINT.BAS

THIS PROGRAMME DEFINES THE COORDINATES OF THE MEASUREMENT POINTS, AS THEY ARE SCANNED BY THE RADIOMETER "CARABAS".

THE TABLE, CONTAINING THESE COORDINATES IS WRITTEN TO AN INTERACTIVELY GIVEN FILE AND STORED ON DISK.

PARAMETERS USED IN THIS PROGRAMME ARE:

'X(J),Y(J) COORDINATES OF MEASUREMENT POINT J
'XO,YO COORDINATES OF THE ORIGIN
'DAC = 0 : AZIMUTH MOTOR I.E. X-COORDINATE
'DAC = 1 : ELEVATION MOTOR I.E. Y-COORDINATE

const MAXDIM = 30
dim X (MAXDIM),Y (MAXDIM),POST$ (MAXDIM),ELPOST$ (MAXDIM)
dim HK (MAXDIM),HY (MAXDIM),HS (MAXDIM),HLS (MAXDIM)
dim TETA (MAXDIM),AZIN (MAXDIM),H (MAXDIM),RAN (MAXDIM),EPS (MAXDIM)
dim TETAC (MAXDIM),AZINC (MAXDIM),NC (MAXDIM),NCNC (MAXDIM),EPSC (MAXDIM)
dim SCRENS (MAXDIM),ELSCR$ (MAXDIM),PCODE$ (MAXDIM)
dim HS$ (MAXDIM),HE$ (MAXDIM),HPS (MAXDIM)
dim INFO$ (MAXDIM)
dim MON (12)
MON$ (1) = "JAN"
MON$ (2) = "FEB"
MON$ (3) = "MAR"
MON$ (4) = "APR"
MON$ (5) = "MAY"
MON$ (6) = "JUN"
MON$ (7) = "JUL"
MON$ (8) = "AUG"
MON$ (9) = "SEP"
MON$ (10) = "OCT"
MON$ (11) = "NOV"
MON$ (12) = "DEC"
def fn DAGS(DAT$) = MID$(DAT$,4,3)+MON$ (VAL(LEFT$(DAT$,2)))+RIGHT$(DAT$,5)
def FNNVMS(X)$
X$ = STRS (X)
LENGTH = LEN (X$)
if LEFT$ (X$,1) = "-" or LEFT$ (X$,1) = " " then
LENGTH = LENGTH - 1
end if
FNNU$ = RIGHTS (X$,LENGTH)
end def
dim CODES(30)
CODE$ (1) = "01" AGRICULTURE
CODE$ (2) = "02" GRASS
CODE$ (3) = "03" BUSHES-CONIFEROUS
CODE$ (4) = "04" BUSHES-DECIDUOUS
CODE$ (5) = "05" TREES-CONIFEROUS
CODE$ (6) = "06" TREES-DECIDUOUS
CODE$ (7) = "07" TYPE:VEGETATION
CODE$ (8) = "11" CONCRETE
CODE$ (9) = "12" ASPHALT
CODE$ (10) = "13" GRAVEL
CODE$ (11) = "14" SAND-BARE
CODE$ (13) = "15" SOIL-BARE
CODE$ (13) = "16" MUD
CODE$ (14) = "17" TYPE:UNSTRUCTURED
CODE$ (15) = "21" SLOPE-UP-HILL
CODE$ (16) = "22" SLOPE-DOWN-HILL
Appendix A

CODES (17) = "23 NATURAL-WASTE" '2* TYPE:STRUCTURED
CODES (18) = "31 CAMOUFLAGE-NET" '3* TYPE:CAMOUFLAGE
CODES (19) = "32 CAMOUFLAGE-SCREEN"
CODES (20) = "33 CAMOUFLAGE-ADAPTIVE"
CODES (21) = "41 WATER"
CODES (22) = "42 SNOW"
CODES (23) = "43 MUDDY-SNOW"
CODES (24) = "44 SKY"
CODES (25) = "45 HORIZON"
CODES (26) = "51 BLACKBODY + 3 DEG"
CODES (27) = "52 BLACKBODY +13 DEG"

CODES (28) = "91 BLACKBODY + 3 DEG"
CODES (29) = "92 BLACKBODY +13 DEG"

dim ELCODES(10)
ELCODES (1) = "1 GREEN"
ELCODES (2) = "2 FALLING"
ELCODES (3) = "3 BARE"
ELCODES (4) = "4 BUDS"
ELCODES (5) = "5 GROWING-NORMAL"
ELCODES (6) = "6 FRESH-CUT"
ELCODES (7) = "7 CRUSHED"
ELCODES (8) = "8 COVERED WITH MUD"
ELCODES (9) = "9 COVERED WITH SNOW"
ELCODES (10) = "0 NO SUB-TITLE"

on key (1) gosub 1
key (1) on

DEFAULT SETTINGS

NUMBER = 0
X0 = 1967
Y0 = -350
key off
INSERT = 0
XSTOP = 0
YSTOP = 0
XYSTOP = 0
MULT = 10
for J = 1 to MAXDIM
POST$ (J) = "NOT DEFINED"
POSCODES(J) = "0000000000"
next

MAIN MENU
1 PORTB = 1
gosub 54

2 close
 color 0,7: print " MAKE A CHOICE FROM THE MAIN MENU "
 color 7,0: print " DEFINE MEASUREMENT POINTS BY USE OF THE REMOTE JOYSTICK"
 color 0,7: print " DEFINE MEASUREMENT POINTS BY USE OF THE KEYBOARD CURSOR"
 color 0,7: print " INSERT A MEASUREMENT POINT" : print
 color 0,7: print " DELETE A MEASUREMENT POINT" : print
 color 0,7: print " OPTIMIZATION OF THE SCAN SEQUENCE" : print
 color 0,7: print " DISPLAY/DESCRIBE THE MEASUREMENT POINTS" : print
color 0,7 : print " 7 ";
color 7,0 : print " CHECK COORDINATES BY USE OF THE JOYSTICK" ; print
color 0,7 : print " 8 ";
color 7,0 : print " SAVE THE TABLE OF COORDINATES" ; print
color 0,7 : print " 9 ";
color 7,0 : print " PERFORM A TESTRUN" ; print
color 0,7 : print " 0 ";
color 7,0 : print " EXIT ; NOTE MENU ";
color 23,0 : print " 6 ";
color 7,0 : print " ! ";

3 AS = INKEY$
if AS = "1" then
gosub 4
goto 1
elseif AS = "2" then
gosub 8
goto 1
elseif AS = "3" then
goto 19
elseif AS = "4" then
goto 25
elseif AS = "5" then
goto 28
elseif AS = "6" then
goto 32
elseif AS = "7" then
goto 26
elseif AS = "8" then
goto 38
elseif AS = "9" then
goto 42
elseif AS = "0" then
gosub 43
goto 1
elseif AS = "e" or AS = "E" then
cls
print " END OF PROGRAMME"
end
else
goto 3
end if

4 if NUMBER = 0 then 5
cls
color 0,7
locate 5,20 : print " A COORDINATE TABLE IS IN MEMORY
locate 6,20 : print " OVERWRITE" : color 7,0 : print " RETURN TO MAIN MENU"
locate 7,20 : print "
locate 8,20 : print "
locate 9,20 : print "
locate 13,20: print " 1 ";: color 7,0 : print "
locate 15,20: print " 2 ";: color 7,0 : print "
VS = "
while VS <> "1" and VS <> "2"
VS = INKEY$
wend
if VS = "2" then 1
NUMBER = 0
5 cls
IND = 0
color 0,7
locate 1,1; print "DEFINMEASUREMENTPOINTCOORDINATES"
locate 2,1; print "THROUGHSYSTEMCURSORCONTROL"
locate 3,1; print "KEYBOARDCURSORCONTROL"

6 locate 5,18; print "USE THE REMOTE CONTROL"
locate 6,18; print "USE FUNCTION KEY F1 TO RETURN TO THE MAIN MENU AFTER Y"
color 7,0
locate 7,18; print "POSITION" tab (40) "X" tab (50) "Y" ;
key (1) on

* CHECK IF POSITION IS ACCEPTED AS A MEASUREMENT POINT
AND DISPLAY MOMENTARILY COORDINATES

7 IRC = inp (1822) and 1
do while IRC = 1
IRC = inp (1822) and 1
XYSTOP = 0
DAC = 0
gosub 47
VMX = VOLT
DAC = 1
gosub 47
VY = VOLT
locate 10+IND,21; print NUMBER tab (38); VMX tab (48); VY ;
loop

* CHECK IF POSITION IS ACCEPTED AS A MEASUREMENT POINT

wait 1822,1
DAYS = DATES

* READ BACK THE SENSOR POSITION

DAC = 0
gosub 48
VX = VOLT
DAC = 1
gosub 47
VY = VOLT

* OUTPUT THIS POSITION TO CHECK CORRECTNESS

DAC = 0
gosub 48
DAC = 1
gosub 48
if INSERT = 1 then return

* STORE THIS POSITION

NUMBER = NUMBER + 1
X(NUMBER) = VX
Y(NUMBER) = VY
IND = IND + 1
locate 9+IND,21; print NUMBER tab (38); VX tab (48); VY
if NUMBER = MAXDIM then return 59
REST = NUMBER MOD 13
if REST = 0 then 5
goto 7{return

* DEFINE MEASUREMENT POINT COORDINATES THROUGH
KEYBOARD CURSOR CONTROL

8 key (1) on
Appendix A

CHECK IF THERE ARE ALREADY MEASUREMENT POINTS DEFINED

```
cls
if NUMBER = 0 then 9
color 0,7
locate 5,20 : print "  
d=0,7
locate 6,20 : print "  
d=0,7
locate 7,20 : print "  
d=0,7
locate 8,20 : print "  
d=0,7
locate 9,20 : print "  
d=0,7
locate 13,20: print " 1 "; color 7,0 : print "  
OVERWRITE" : color 0,7
locate 15,20: print " 2 "; color 7,0 : print "  
RETURN TO MAIN MENU"
V$ = ""
while V$ <> "1" and V$ <> "2"
V$ = INKEY$
wend
if V$ = "2" then
NUMBER = 0
```

CHECK IF THE REMOTE CONTROL IS DISCONNECTED.

```
gosub 55
10 PORTB = 3
```

`UNLOCK SERVO SYSTEM`

```
cls
color 0,7
locate 1,1 : print "  
DEFINE MEASUREMENT COORDINATES THROUGH THE KEYS"
color 7,0
locate 7,1 : print CHR$(24) ; CHR$(25) ; CHR$(26) ; CHR$(27)
color 0,7
locate 7,5 : print " : CURSOR CONTROLS FOR POSITIONING THE SENSOR HEAD"
color 0,7
locate 9,1 : print "  
USE THE FOLLOWING KEYS"
color 0,7
locate 9,5 : print " : TO ACCEPT AND STORE A MEASUREMENT POINT"
color 0,7
locate 11,1 : print "  
TO POSITION THE SENSOR AT THE FIRST POSITION AND RET"
color 0,7
locate 13,1 : print "  
TO POSITION THE SENSOR AT THE ORIGIN AND RETURN TO M"
color 0,7
locate 15,25: print "  
LAST POSITION STORED"
color 0,7
locate 19,1 : print "  
MOMENTARILY POSITION NEW COORDINATES"
color 0,7
locate 21,5: print "X" tab(15) "Y" tab(33) "X" tab(41) "Y" tab(51) "POS" tab(61) "X"
tab
locate 25,1 : print "  
STEPSIZE "; color 0,7 : print "Ctrl-PgUp ";
color 7,0 : print "=500"
locate 25,22
```

RETURN TO MAIN MENU"
color 0.7 : print " Ctrl-PgDn ";
color 7.0 : print "=1";
PORTB = 3
gosub 54

READ THE MOMENTARILY POSITION OF THE SENSOR

DAC = 0
gosub 47
VX = VOLT
DAC = 1
gosub 47
VY = VOLT

11 if INSERT = 1 then
 locate 22,53 : print INS ;
 locate 22,58 : print USING "#####" ; X(INS) ;
 locate 22,66 : print USING "#####" ; Y(INS) ;
end if

12 DAC = 0
gosub 47
RX = VOLT
DAC = 1
gosub 47
RY = VOLT
locate 22,2 : print USING "#####" ; RX ;
locate 22,12 : print USING "#####" ; RX ;
locate 22,30 : print USING "#####" ; YV ;
gosub 53
if XYSTOP - I then
 PORTB = 1
 gosub 54
end if

14 V$ = "#
if V$ = "" then 11
if LEN(V$) = 2 then
 V$ = RIGHT$(V$,1)
else
goto 16
end if

USE THE KEY TO INCREMENT POSITION WITH STEPSIZE

 100
 10
 500
 1

if V$ = CHR$(73) then
 MUL = 10
elseif V$ = CHR$(81) then
 MUL = 1
elseif V$ = CHR$(132) then
 MUL = 50
elseif V$ = CHR$(118) then
 MUL = .1
end if
PORTB = 3
gosub 54
if V$ = CHR$(72) then
 DAC = 1
 VY = = - 10*MUL
gosub 48
elseif V$ = CHR$(80) then

...
DAC = 1
VY = VY + 10*MULT
gosub 48
elseif VS = CHR$(75) then
DAC = 0
VX = VX + 10*MULT
gosub 48
elseif VS = CHR$(77) then
DAC = 0
VX = VX - 10*MULT
gosub 48
end if
goto 12
16 if VS <> "a" then 18
17 if NUMBER = MAXDIM then
return 59
else
NUMBER = NUMBER + 1
end if
if INSERT <> 1 then 15
for J = INS+2 to NUMBER
HX(J) = X(J-1)
HY(J) = Y(J-1)
HS(J) = POST$(J-1)
TETAC(J) = TETA(J-1)
AZIMC(J) = AZIM(J-1)
HC(J) = H(J-1)
RANC(J) = RAN(J-1)
EPSC(J) = EPS(J-1)
HP$(J) = POSCODE$(J-1)
HS$(J) = SCREENS$(J-1)
HL$(J) = ELPOST$(J-1)
IES$(J) = ELSCR$(J-1)
next
for J = INS+2 to NUMBER
X(J) = HX(J)
Y(J) = HY(J)
POST$(J) = HS(J)
TETA(J) = TETAC(J)
AZIM(J) = AZIMC(J)
H(J) = HC(J)
RAN(J) = RANC(J)
EPS(J) = EPSC(J)
POSCODE$(J) = HP$(J)
SCREENS$(J) = HS$(J)
ELPOST$(J) = HL$(J)
ELSCR$(J) = IES$(J)
next
X(INS+1) = VX
Y(INS+1) = VY
POST$(INS+1) = ***
TETA(INS+1) = 0
AZIM(INS+1) = 0
H(INS+1) = 0
RAN(INS+1) = 0
EPS(INS+1) = 0
POSCODE$(INS+1) = ***
SCREENS$(INS+1) = ***
ELPOST$(INS+1) = ***
ELSCR$(INS+1) = ***
INSERT = 0
if NUMBER = MAXDIM then
return 1
else
 return
end if
15 locate 22,53: print NUMBER;
locate 22,58: print USING "#####"; VX;
locate 22,65: print USING "#####"; VY;
X(NUMBER) = VX
Y(NUMBER) = VY
DAYS = DATE$
goto 14

BRING THE SENSOR TO THE ORIGIN OR THE FIRST POSITION

18 PORTS = 3
gosub 54
if VS = "b" then
 DAC = 0
 VX = X(1)
gosub 48
 DAC = 1
 VY = Y(1)
gosub 48
gosub 50
goto 10
elseif VS = "o" then
 DAC = 0
 VX = XO
gosub 46
 DAC = 1
 VY = YO
gosub 48
gosub 50
goto 1 end if
goto 13

INSERT A NEW MEASUREMENT POINT IN THE TABLE

19 if NUMBER = MAXDIM then 59
if NUMBER = 0 then
gosub 46
goto 1 end if
cls
color 0,7
locate 1,1: print "INSERT A MEASUREMENT POINT IN THE EXISTI"
locate 2,1: print "
locate 3,1: print "
locate 5,1:
color 7,0: print "
give the position ";
color 23,0: print "AFTER"
;
color 7,0: print " WHICH THE NEW COORDINATES WILL BE INSERTED"
locate 9,1
color 0,7: print " DEFAULT "
;
color 7,0: print " RETURN TO THE MAIN MENU"
locate 11,1
color 0,7: print " INPUT "
;
color 7,0: input = "INS"
while INS <= 0 or INS > NUMBER
color 0,7
locate 17,18: print " the given measurement point does not exist"
locate 18,18: print "
locate 19,18: print "
locate 20,18: print "

TRY AGAIN

locate 21,18 : print " TRY AGAIN "
locate 22,18 : print
color 7,0
locate 11,1 : print
color 0,7
locate 11,1 : print " INPUT ";
color 7,0
input " *,INS
wend

21 cls
 color 0,7
 locate 1,1 : print " INSERT A MEASUREMENT POINT IN THE EXISTI
 locate 2,1 : print
 locate 3,1 : print
 INSERT = 1
 DAY$ = DATE$
 locate 7,1 : print " 1
 locate 7,5
 color 7,0 : print "DIRECT THE SENSOR TO THE POSITION TO BE INSERTED BY THE
 locate 9,1
 color 0,7 : print " 2
 locate 9,5
 color 7,0 : print "DIRECT THE SENSOR TO THE POSITION TO BE INSERTED BY THE
 locate 11,1
 color 0,7 : print " 3
 locate 11,5
 color 7,0 : print "INSERT ";
 color 0,7 : print " KNOWN ";
 color 7,0 : print " COORDINATES THROUGH THE KEYBOARD"
 VS = "
 while VS <> "1" and VS <> "2" and VS <> "3"
 VS = INKEY$
 wend
 if VS = "2" then
 goto 23
 elseif VS = "3" then
 goto 24
 end if

 GIVE CONTROL TO THE REMOTE CONTROL

22 locast 11,21 : print INS+1
 locate 11,38 : print X(INS+1)
 locate 11,48 : print Y(INS+1)
 goto 22

 GIVE CONTROL TO THE CURSORS, BUT CHECK FIRST IF THE
 REMOTE CONTROL IS DISCONNECTED.

23 cls
 color 0,7
 locate 1,1 : print " INSERT A MEASUREMENT POINT IN THE EXISTI
 locate 2,1 : print
 locate 3,1 : print
 color 7,0
 gosub 55

 DIRECT SENSOR TO X(INS),Y(INS) AND GIVE CONTROL
 TO THE CURSORS
PORTB = 3
qosub 54
DAC = 0
VX = X(INS)
gosub 48
DAC = 1
VY = Y(INS)
gosub 48
gosub 53
while XYSTOP <> 1
locate 25,1
 color 0,7 : print " MOVING TO POSITION ";
 color 7,0 : print " ; INS ";
gosub 53
wend
locate 25,1 : print "REACHED POSITION ";
gosub 10
gosub 17
wend
GIVE KNOWN COORDINATES

24 cls
 color 0,7
 print "
 color 7,0
 locate 7,1 : input "X-COORDINATE ":" , VX
 locate 9,1 : input "Y-COORDINATE ":" , VY
 gosub 17
 INSERT = 0
 goto 1
GIVE THE COORDINATES TO BE INSERTED

25 cls
 if NUMBER = 0 then
 gosub 46
 goto 1
 end if
 color 0,7
 locate 1,1 : print "
 locate 2,1 : print " REMOVAL OF A MEASUREMENT POINT FROM THE EXIST
 locate 3,1 : print " DEFAULT ";
 color 7,0
 print " RETURN TO THE MAIN MENU"
 input ",,NB
while NB <= 0 and NB > NUMBER
 color 0,7
 locate 17,18 : print " THE GIVEN MEASUREMENT POINT DOES NOT EXIST"
 locate 18,18 : print " TRY AGAIN"
 locate 19,18 : print ""
 locate 20,18 : print ""
 locate 21,18 : print ""
 locate 22,18 : print ""
 color 7,0
 locate 9,1 : print "")
 color 0,7
 locate 9,1 : print " INPUT ";
 color 7,0
 input ",,NB
wend
DELETE A GIVEN MEASUREMENT POINT FROM THE TABLE

27 cls
Appendix A

Page A.12

color 0,7
locate 1,1 : print "REMOVE A MEASUREMENT POINT FROM THE EXIS"
locate 2,1 : print " "
locate 3,1 : print " "
color 7,0
locate 4,1 : print "POS X Y"
locate 5,1 : print "DESCRIPTION"
locate 6,1 : print NB
locate 7,1 : print using "###" ; X(NB)
locate 8,1 : print using "###" ; Y(NB)
locate 9,1 : print "POST$ (NB)"
locate 10,1 : print "IS THIS THE CORRECT ONE (Y/N)? :

A$ = ""
while A$ <> "y" and A$ <> "Y" and A$ <> "n" and A$ <> "N"
A$ = INKEY$wend
if A$ = "n" or A$ = "N" then 1

_DAYS = DATES
_NUMBER = NUMBER - 1
if NB = NUMBER + 1 then 1
for J = NB to NUMBER
 X(J) = X(J+1)
 Y(J) = Y(J+1)
 POST$ (J) = POST$ (J+1)
 TETA(J) = TETA(J+1)
 AZIM(J) = AZIM(J+1)
 N(J) = N(J+1)
 RAN(J) = RAN(J+1)
 EPS(J) = EPS(J+1)
 POSCODES(J) = POSCODES(J+1)
 SCREENS(J) = SCREENS(J+1)
 ELPOST$ (J) = ELPOST$ (J+1)
 ELSCR$ (J) = ELSCR$ (J+1)
next
goto 1

OPTIMIZATION OF THE SCAN SEQUENCE

28 if NUMBER <> 0 then 29
gosub 46
29 clr

color 0,7
locate 12,26 : print " OPTIMIZING NOW"
locate 13,26 : print "
locate 14,26 : print "
color 7,0

FIRST THE AZIMUTH DIRECTION

M1 = NUMBER- 1
for J = 1 to M1
 MAX = X(J)
 for M = J to NUMBER
 if MAX >= X(M) then
 MAX = X(M)
 K = M
 end if
 next M
 swap X(J),X(K)
 swap Y(J),Y(K)
 swap POST$ (J), POST$ (K)
 swap TETA(J), TETA(K)
 swap AZIM(J), AZIM(K)
 swap N(J),N(K)
 swap RAN(J), RAN(K)
 swap EPS(J),EPS(K)
swap POSCODE$(J), POSCODE$(K)
swap SCREEN$(J), SCREEN$(K)
swap ELPOST$(J), ELPOST$(K)
swap ELSCRS$(J), ELSCRS$(K)
next J

IF THERE ARE MORE POINTS, HAVING THE SAME X-COORDINATE,
THEN OPTIMIZATION IN ELEVATION IS PERFORMED,
I.E. LOWEST ELEVATION FIRST.

M = 0
for J = 1 to M1
if X(J) <= X(J+1) -.05 or X(J) >= X(J+1) + .05 then
 goto 30
end if
if M = 1 then K = J
if M = 0 then J <> M1 then
 goto 31
end if
next J

for LL = K to (K+M-1)
 MAX = Y(LL)
 for I = LL to (K+M)
 if MAX >= Y(I) then
 MAX = Y(I)
 end if
 next I
 swap Y(L), Y(LL)
 swap POST$(L), POST$(LL)
 swap TETA$(L), TETA$(LL)
 swap AZIM$(L), AZIM$(LL)
 swap H$(L), H$(LL)
 swap RAN$(L), RAN$(LL)
 swap EPS$(L), EPS$(LL)
 swap POSCODE$(L), POSCODE$(LL)
 swap SCREEN$(L), SCREEN$(LL)
 swap ELPOST$(L), ELPOST$(LL)
 swap ELSCRS$(L), ELSCRS$(LL)
next LL

M = 0
31 next J
goto 1

DISPLAY THE COORDINATES OF THE DEFINED MEASUREMENT POINTS

32 key (1) on
if NUMBER = 0 then
gosub 46
goto 1
end if
clea
color 0,7
locate 1,1 : print " DISPLAY "
locate 2,1 : print " DISPLAY
locate 3,1 : print " DISPLAY
locate 5,1 : print " DISPLAY "
locate 7,1 : print " 1 "
locate 9,1 : print " 2 "
locate 11,1 : print " 3 "
locate 14,1 : print " INPUT DESCRIPTION FOR "
locate 16,1 : print " 4 "
locate 18,1 : print " 5 "
locate 20,1 : print " 6 "

Appendix A

color 7,0
locate 7,6 : print "ONE POSITION"
locate 9,6 : print "ALL POSITIONS, ONE BY ONE"
locate 11,6 : print "SELECTED INFORMATION OF ALL POSITIONS"
locate 16,6 : print "ONE POSITION"
locate 18,6 : print "ALL POSITIONS"
locate 20,6 : print "EACH POSITION AND ";
color 0,7 : print "M O V E ";
color 7,0 : print "SENSOR HEAD"
locate 24,1 : print "CHOOSE OPTION" TAB(45) "F1 = RETURN TO MAIN MENU";

33 Z$ = INKEYS
if Z$ = "1" then
goto 41
elseif Z$ = "2" then
goto 40
elseif Z$ = "3" then
goto 61
elseif Z$ = "4" then
goto 37
elseif Z$ = "5" then
goto 32
elseif Z$ = "6" then
goto 34
end if
goto 33

INPUT INFORMATION FOR EACH POSITION
WITH MOVING TO POSITION

34 cls
gosub 55 'CHECK IF REMOTE CONTROL IS DISCONNECTED

INPUT INFORMATION FOR EACH POSITION
WITHOUT MOVING TO POSITION

35 for NB = 1 to NUMBER
if Z$ = "5" then 36
PORTB = 3
gosub 54
VX = X(NB)
DAC = 0
gosub 48
VY = Y(NB)
DAC = 1
gosub 48
gosub 53
while XYSTOP <> 1
locate 25,1 : print "MOVING TO POSITION ";
color 7,0 : print "" ; NB ;
gosub 53
wend
PORTB = 1
gosub 54
locate 25,1 : print "REACHED POSITION " ; NB ;
color 0,7
locate 25,35 : print "GIVE INFORMATION NOW ";
color 7,0
36 cls
gosub 56
gosub 58
next NB
goto 1

INPUT INFORMATION FOR ONE POSITION

37 cls
INPUT INFORMATION FOR ONE POSITION

locate 7,1 : print " DEFAULT ";
color 7,0 : print " RETURN TO THE MAIN MENU"
color 0,7 : locate 9,1 : print " INPUT ";
color 7,0 : input " ", NB
while NB <= 0 or NB > NUMBER
 color 0,7
color 7,0
locate 17,18 : print " THE GIVEN MEASUREMENT POINT DOES NOT EXIST ";
locate 18,18 : print " TRY AGAIN ";
locate 19,18 : print
locate 20,18 : print
locate 21,18 : print
locate 22,18 : print
color 7,0
locate 9,1 : print
color 0,7
locate 9,1 : print " INPUT ";
color 7,0
input " ", NB
wend

39 clsl
gosub 56 'DISPLAY
gosub 58 'DESCRIBE
goto 32

DISPLAY ALL MEASUREMENT POINTS
 - ALL INFORMATION
 - SELECTED INFORMATION
40 for NB = 1 to NUMBER
gosub 56
 locate 24,1 : print "HIT A KEY TO CONTINUE"
 locate 24,45 : print "F1 = RETURN TO MAIN MENU"
do
 loop while INKEY$ = ""
next NB
goto 32

DISPLAY INFORMATION FOR ONE POSITION

41 clsl
color 0,7
color 7,0
locate 7,1 : print " DEFAULT ";
color 7,0 : print " RETURN TO THE MAIN MENU"
color 0,7 : locate 9,1 : print " INPUT ";
color 7,0 : input " ", NB
while NB <= 0 or NB > NUMBER
 color 0,7
 color 7,0
locate 17,18 : print " THE GIVEN MEASUREMENT POINT DOES NOT EXIST ";
locate 18,18 : print " TRY AGAIN ";
locate 19,18 : print
locate 20,18 : print
locate 21,18 : print
locate 22,18 : print
color 7,0
locate 9,1 : print
color 0,7
locate 9,1 : print " INPUT ";
color 7,0
Appendix A

A.16

input " " , NB
wend
gosub 56
locate 25,1 : print "HIT A KEY TO CONTINUE";
locate 25,45: print "F1 = RETURN TO MAIN MENU";
locate 23,1
do
loop while INKEY$ = ""
goto 32

if NUMBER = 0 then
gosub 46
goto 1
end if
cls
color 0,7
locate 1,1 : print =
locate 2,1 : print =
locate 3,1 : print =
locate 5,18: print =
locate 6,18: print =
locate 7,18: print =
DMYS = TN DAYS(DATES)
FILS = MIDS(DMYS,4,3) + LEFTS(DMYS,2) + RIGHTS(DMYS,2) + "p"
locate 10,1: print = FORMAT =
locate 12,1 : print = DEFAULT =
locate 15,1 : print = INPUT =
color 7,0
locate 10,13 : print = MMMDDYYP =
locate 12,13 : print = "FILS"
locate 15,13 : line input " " , DESC$
if DESC$ = " " then DESC$ = FILS
cls
color 0,7
locate 6,20: print =
locate 9,20: print =
locate 10,20 : print =
locate 11,20 : print =
locate 12,20 : print =
color 7,0
open "o",1,"B:" + DESC$ + "; NUMBER"
print #1, USING "###"; NUMBER
print #1, USING "#"; DMYS
for J = 1 to NUMBER
 print #1, USING "\" ; POSTS(J)
 print #1, USING "\" ; ELP0STS(J)
 print #1, USING "#####"; X(J)
 print #1, USING "#####"; TETA(J)
 print #1, USING "#####"; AZIM(J)
 print #1, USING "#####"; X(J)
 print #1, USING "#####"; RAN(J)
 print #1, USING "#####"; EPS(J)
 print #1, USING "\" ; SCRENSS(J)
 print #1, USING "\" ; ELS$bS(J)
 print #1, USING "\" ; POSCODES(J)
next J
close #1
goto 1

LOAD THE COORDINATE TABLE FROM DISK

CHECK IF THERE ARE ALREADY MEASUREMENT POINTS DEFINED
42 cl
if number = 0 then 20

cl

locate 5,20: print =
locate 6,20: print =
locate 7,20: print =
locate 8,20: print =
locate 9,20: print =
locate 12,20: print =
locate 15,20: print =

if VS = "1" and VS <> "2"

while VS <> "1" and VS <> "2"

if VS = "2" then

if number = 0 then

20 cl

locate 8,20: print =
locate 9,20: print =
locate 10,20: print =
locate 11,20: print =
locate 12,20: print =

open "I",#1,"B:"+DESC$

input #1, NUMBER
input #1, DAYS
for J = 1 to NUMBER
input #1, POSTS(J)
input #1, ELPOSTS(J)
input #1, X(J)
input #1, Y(J)
input #1, TETA(J)
input #1, AZIM(J)
input #1, H(J)
input #1, RAW(J)
input #1, EPS(J)
input #1, SCREENS(J)
input #1, ELSCRS(J)
input #1, POSCODES(J)
next J

check positions by use of the joystick

goto 1

26 if number = 0 then
Appendix A

A.18

gosub 46
goto 1
end if
cls
color 0,7
locate 1,1 : print "CHECK MEASUREMENT POINT COORDINATES WITH"
locate 2,1 : print
locate 3,1 : print
color 7,0
locate 6,1 : print "PRESS THE ACCEPT BUTTON ON THE REMOTE CONTROL TO GO TO"
color 0,7
locate 8,1 : print "HOLD THE BUTTON DOWN ";
color 7,0
print "TILL THE SENSOR HAS REACHED ITS POSITION ."
locate 12,1 : print "TO GO TO THE NEXT POSITION ";
color 0,7
print "PRESS AND HOLD DOWN ";
color 7,0
print "THE BUTTON AGAIN"
for J = 1 to NUMBER
 CHECK IF FUNCTION KEY F1 WAS USED
 key(1) on
 color 0,7
 locate 25,1
 print "USE FUNCTION KEY F1 TO RETURN TO THE MAIN MENU AFTER YOU ARE F"
color 7,0
 wait 1822,1,0
 CHECK IF ACCEPT BUTTON WAS PRESSED
 OUTPUT THIS POSITION TO CHECK CORRECTNESS
 PORTB = 3
gosub 54
 DAC = 0
 VX = X(J)
gosub 48
 DAC = 1
 VY = Y(J)
gosub 48
gosub 53
 while XYSTOP <> 1
gosub 53
wend
 PORTB = 1
gosub 54
 next J
goto 1
PERFORM A TESTRUN TO TEST POSITION ACCURACY ONLY
43 cls
if NUMBER = 0 then
gosub 46
goto 1
end if
 gosub 55
 CHECK IF THE REMOTE CONTROL IS DISCONNECTED.
POSITION THE SENSOR AT THE FIRST POSITION
 PORTB = 3
gosub 54
 DAC = 0
 'UNLOCK SERVO SYSTEM

VX = X(1)
gosub 48
DAC = 1
VY = Y(1)
gosub 48
gosub 50

cis
 color 0,7
 print "PERFORM A TESTRUN, TO TEST POSITION AC"
 locate 2,1 : print ""
 locate 3,1 : print ""
 locate 5,1 : print "USE THE FOLLOWING KEY"
 locate 7,1 : print "n"
 locate 9,1 : print "b"
 locate 11,1 : print "o"
 locate 13,27 : print "YOU HAVE CONTROL NOW"
 locate 14,27 : print "MOMENTARY POSITION"
 locate 17,1 : print "NEXT POSITION"
 locate 17,52 : print "LAST POSITION"

color 7,0
 locate 7,5 : print ": TO GO TO THE NEXT POSITION"
 locate 9,5 : print ": TO POSITION THE SENSOR AT THE FIRST POSITION"
 locate 11,5 : print ": TO POSITION THE SENSOR AT THE ORIGIN"
 locate 19,5 : print "X" tab(15) "Y" tab(27) "POS" tab(35) "X" tab(43) "Y"
 locate 19,53 : print "POS" tab(61) "X" tab(69) "Y"
 locate 20,53 : print NUMBER
 locate 20,58 : print USING "#####" ; X(NUMBER)
 locate 20,66 : print USING "#####" ; Y(NUMBER)
 for J = 1 to NUMBER
 N = J + 1
 if J = NUMBER then N = NUMBER
 gosub 53
 locate 20,12 : print USING "#####" ; VX
 locate 20,28 : print USING "#####" ; VMX
 locate 20,32 : print USING "#####" ; X(J)
 locate 20,40 : print USING "#####" ; Y(J)
 if XYSTOP <> 1 then 44
 locate 20,28 : print USING "#####" ; X(N)
 locate 20,40 : print USING "#####" ; Y(N)
 PORTS = 1
 gosub 54

44 gosub 53
 locate 25,1 : print "DESCRIPTION"
 color 7,0
 print ": REACHED POSITION ";
 color 7,0
 print "; J"
 locate 25,35 : print POSTS(J);
 VS = "1"
 while VS <> "n" and VS <> "b" and VS <> "o"
 VS = INKEY$
 wend
 PORTS = 3
 gosub 54
 if VS <> "n" then
 DAC = 0
 if VS = "b" then
 VX = X(1)
Appendix A

SUBROUTINES
DISPLAY THAT NO POINTS ARE DEFINED

READ A SPECIFIED CHANNEL FROM THE A/D CONVERTER

PARAMETERS USED:
-- DAC A/D CHANNEL TO BE READ
-- VOLT VOLTAGE ON THE CHANNEL

```
gosub 48
DAC = 1
VY = Y(1)
gosub 48
gosub 50
VS = ""
goto 1
elseif VS = "o" then
VX = XO
gosub 48
DAC = 1
VY = Y0
gosub 48
gosub 50
VS = ""
goto 1
end if
end if
DAC = 1
VY = Y(N)
gosub 48
DAC = 0
VX = X(N)
gosub 48
color 0,7
locate 25,1 : print " MOVING TO THE NEXT POSITION ";
color 7,0
print ";
VS = ""
next J
return

SUBROUTINES
DISPLAY THAT NO POINTS ARE DEFINED

READ A SPECIFIED CHANNEL FROM THE A/D CONVERTER

PARAMETERS USED:
-- DAC A/D CHANNEL TO BE READ
-- VOLT VOLTAGE ON THE CHANNEL

```
```
Appendix A

PARAMETERS USED:

-- DAC = 0 OUTPUT CHANNEL FOR AZIMUTH
-- DAC = 1 OUTPUT CHANNEL FOR ELEVATION
-- VX VOLTAGE ON ELEVATION CHANNEL
-- VY VOLTAGE ON AZIMUTH CHANNEL

PARAMETERS USED:

-- VX AND VY
-- VMX MOMENTARY X - COORDINATE
-- VMY MOMENTARY Y - COORDINATE

DISPLAY THE MOMENTARILY POSITION OF THE SENSOR HEAD

COLOR 7,0
COLOR 7,9
COLOR 0,7
COLOR 0,7: PRINT " MOTHERY POSITION"
COLOR 7,0: PRINT " NEXT POSITION"
COLOR 7,9: PRINT " STOP THE SENSOR HEAD AND RETURN TO THE MAIN MENU"

TNO report
Appendix A

V$ = INKEY$
if V$ <> "e" then 52
DAC = 0
VX = VMX
gosub 48
DAC = 1
VV = VMY
gosub 48
goto 1

52 locate 10,10 : print USING "#####" ; VMX
locate 10,23 : print USING "#####" ; VMY
locate 10,30 : print USING "#####" ; VX
locate 10,63 : print USING "#####" ; VY
goto 51
return

; TEST IF THE SENSOR HEAD HAS REACHED THE GIVEN POSITION
; PARAMETERS USED:
; -- VX AND VY
; -- VMX AND VMY

53 XSTOP = 0
DAC = 0
gosub 47
VMX = VOLT
gosub 47
VMY = VOLT
if VMX > VX-5 and VMX < VX+5 then XSTOP = 1
if VMY > VY-5 and VMY < VY+5 then YSTOP = 1
if XSTOP = 1 and YSTOP = 1 then
XSTOP = 0
YSTOP = 0
XSTOP = 1
end if
return

; LOCK- AND UNLOCK THE SERVO SYSTEM

; PORTA = 0 START MIRROR, OPEN THE HATCH AND LOCK
; PORTB = 1 START MIRROR, OPEN THE HATCH AND LOCK
; PORTC = 2 START MIRROR, OPEN THE HATCH AND UNLOCK
; PORTD = 3 STOP MIRROR, CLOSE THE HATCH AND UNLOCK

54 out 1823,145
out 1821,PORTB
return

; CHECK IF THE REMOTE CONTROL IS DISCONNECTED,
; BY READING THE MIRROR POSITION TWICE. IF POSITION
; IS NOT CHANGED THEN REMOTE CONTROL IS DISCONNECTED.

55 ROTO = IMP(1820)
for TELL = 1 to 2
PP$ = TIMES$
while TIMES$ <= PP$
wend
next TELL
if (IMP(1820)-ROTO) = 0 then return

color 0,7
locate 17,16 : print "DISCONNECT THE REMOTE CONTROL"
locate 18,16 : print "HIT ANY KEY WHEN READY"
locate 23,1
do
loop while INKEY$ = ""
return

DISPLAY POSITION INFORMATION
      56 cis
    color 0,7
    locate 1,1 : print "DISPLAY POSITION INFORMATION"
    locate 2,1 : print "      1
    locate 3,1 : print "      2
    locate 5,60 : print "      3
    color 0,7
    print "      4
    locate 8,1 : print "      5
    locate 9,1 : print "      6
    locate 10,1 : print "      7
    locate 11,1 : print "      8
    locate 12,1 : print "      9
    locate 13,1 : print "      10
    locate 14,1 : print "      11
    locate 15,1 : print "      12
    locate 16,1 : print "      13
    locate 17,1 : print "      14
    locate 18,1 : print "      15
    locate 19,1 : print "      16
    if Z$ = "1" or Z$ > "6" then
      if Z$ = "1" or Z$ > "6" then
        locate 21,1 : print "READY TO CONTINUE (Y)?"
        P$ = ""
        while P$ <> "y" and P$ <> "y"
          P$ = INKEY$
        end
        else
          locate 21,1 : print "IS THIS THE CORRECT POSITION? (Y/N)?"
          P$ = ""
          while P$ <> "y" and P$ <> "y"
            P$ = INKEY$
          end
          if P$ = "n" or P$ = "N" then
            return 37
          end
        end if
      end if
    end if
    return

INPUT POSITION INFORMATION
      58 cis
    color 0,7
    print "SELECT POSITION DESCRIPTION"
    print "  1
    color 7,0
    locate 5,1 : print "CODE DESCRIPTION"
    locate 5,2 : print "CODE DESCRIPTION"
    for B = 1 to 42 step 41
      for C = 7 to 21
        locate C,B
        if B = 42 then
          print CODE$ (C+9)
        else
          print CODE$ (C-6)
        end
        next B
      next C
    print
print "CURRENT POSITION IS " ; NB ; " : " ; POST$ (NB)
input;"TYPE CODE TO SELECT A NEW DESCRIPTION : " , CP
for C = 1 to 30
  if CP = VAL(LEFT$(CODE$(C),2)) then
    POST$ (NB) = RIGHT$(CODE$(C),19)
  end if
next C
cls
color 0,7
print "SELECT ELEMENT DESCRIPTION"
print
select case CP
  case 1,2,21,22
    for T = 5 to 9
      print ELCODE$ (T)
    next T
  case 3 to 6
    for T = 1 to 4
      print ELCODE$ (T)
    next T
  case 9
    for T = 1 to 10
      print ELCODE$ (T)
    next T
  case 11 to 16,19,23,29,31 to 33,39,41 to 45,49,91,92
    for T = 8 to 10
      print ELCODE$ (T)
    next T
  case else
    print "YOU CHOSE A NON-EXISTING POSITION DESCRIPTION"
    print "HIT ANY KEY TO RETURN TO PREVIOUS MENU"
do
  loop while INKEY$ = ""
goto 58
end select
65 locate 23,1
print "CURRENT POSITION IS " ; NB ; " : " ; POST$ (NB)
input;"TYPE CODE TO SELECT ELEMENT DESCRIPTION : " , CE
select case CP
  case 1,2,21,22
    if CE<5 or CE>9 then 65
  case 3 to 6
    if CE<1 and CE<2 and CE<3 and CE<4 and CE<9 then 65
  case 9
    if CE<0 or CE>9 then 65
  case 11 to 16,19,23,29,31 to 33,39,41 to 45,49,91,92
    if CE<0 and CE<8 and CE<9 then 65
end select
for C = 1 to 10
  if CE = VAL(LEFT$(ELCODE$(C),1)) then
    ELPOST$ (NB) = RIGHT$(ELCODE$(C),19)
  end if
next C
62 cls
color 0,7
print "SELECT " ;
color 16,7 : print "BACKGROUND" ;
color 0,7 : print " DESCRIPTION"
print " 
color 7,0
locate 5,1 : print "CODE DESCRIPTION"
locate 5,42 : print "CODE DESCRIPTION"
for B = 1 to 42 step 41
for C = 7 to 21
locate C,B
if B = 42 then
print CODES (C+9)
else
print CODES (C-6)
end if
next C
next B
print "CURRENT POSITION IS " ; NB ; ": " ; POSTS (NB)
print "TYPE CODE TO SELECT ";
color 23,0 : print "BACKGROUND" ;
color 0,7 : input;" DESCRIPTION "; CS
for C = 1 to 30
if CS = VAL(LEFTS(CODE$(C),2)) then
SCREENS (NB) = RIGHTS(CODE$(C),19)
end if
next C
cls
color 0,7
print " 
color 16,7 : print "BACKGROUND" ";
color 0,7 : print " ELEMENT DESCRIPTION"
print " 
color 7,0
locate 5,1 : print "CODE DESCRIPTION"
print
select case CS
  case 1,2,21,22
    for T = 5 to 9
      print ELCODE$ (T)
    next T
  case 3 to 6
    for T = 1 to 4
      print ELCODE$ (T)
    next T
    print ELCODE$ (9)
  case 9
    for T = 1 to 10
      print ELCODE$ (T)
    next T
  case 11 to 16,19,23,29,31 to 33,39,41 to 45,49,91,92
    for T = 8 to 10
      print ELCODE$ (T)
    next T
  case else
    print "YOU CHOSE A NON-EXISTING BACKGROUND DESCRIPTION"
    print "HIT ANY KEY TO RETURN TO PREVIOUS MENU"
do
  loop while INKEY$ = " "
goto 63
end select
64 locate 23,1
print "CURRENT BACKGROUND IS " ; NB ; ": " ; SCREENS$ (NB)
print "TYPE CODE TO SELECT ";
color 23,0 : print "BACKGROUND" ;
color 7,0 : input;" ELEMENT DESCRIPTION : ", CB
select case CB
  case 1,2,21,22
    if CB<5 or CB>9 then 64
  case 3 to 6
    if CB<1 and CB>2 and CB<4 and CB<>9 then 64
  case 9
    if CB<0 or CB>9 then 64
  case 11 to 16,19,23,29,31,32,33,39,41,45,49,91,92
    if CB<>0 and CB<>8 and CB>9 then 64
end select
for C = 1 to 10
  if CB - VAL(LEFT$(ELCODE$(C),1)) then
    ELSCR$ (NB) = RIGHT$(ELCODE$(C),19)
  end if
next C
CIS

locate 1,1 : print "LOCATE 2,1 : print "DATE " : color 7,0 : print "; DAYS"
locate 5,0 : print "X COORDINATE" TAB(25) : print "; X (NB)
locate 7,1 : print "Y COORDINATE" TAB(25) : print "; Y (NB)
locate 10,1 : print "GENERAL DESCRIPTION" TAB(25) : print "; POSTS (NB)
locate 11,1 : print "ELEMENT SPECIFICATION" TAB(25) : print "; ELPOST$ (NB)
locate 12,1 : print "ELEVATION ANGLE (DEG)" TAB(25) : print "; TAB(60) "NOW: = T
locate 13,1 : print "AZIMUTH ANGLE (DEG)" TAB(25) : print "; TAB(60) "NOW: = A
locate 14,1 : print "HEIGHT (CH)" TAB(25) : print "; TAB(60) "NOW: = H
locate 15,1 : print "RANGE (M)" TAB(25) : print "; TAB(60) "NOW: = R
locate 16,1 : print "EMISSIVITY" TAB(25) : print "; TAB(60) "NOW: = E
locate 17,1 : print "BACKGROUND DESCRIPTION" TAB(25) : print "; SCREENS (NB)
locate 18,1 : print "ELEMENT SPECIFICATION" TAB(25) : print "; ELSCR$ (NB)
locate 19,1 : print "POSITION CODE" TAB(25) : print "; POSTCODES (NB)
locate 12,25 : input "", TETA (NB)
locate 13,25 : input "", AZIM (NB)
locate 14,25 : input "", H (NB)
do
  locate 15,25 : input "", RAN (NB)
loop while RAN (NB) < 0
do
  locate 16,25 : input "", EPS (NB)
loop while EPS (NB) < 0 or EPS (NB) > 1

PUT DESCRIPTION OF ELEMENTS INTO AN ELEMENT CODE

while TETA (NB) >= 180
  TETA (NB) = TETA (NB) - 180
wend
while TETA (NB) < 0
  TETA (NB) = TETA (NB) + 180
wend
select case TETA (NB)
  case 0
    CTETA = 1
  case 1 to 45
    CTETA = 2
  case 46 to 89
    CTETA = 3
  case 90
CTETA = 4
    case else
CTETA = 9
end select

while AZIM (NB) >= 360
    AZIM (NB) = AZIM (NB) - 360
wend
while AZIM (NB) < 0
    AZIM (NB) = AZIM (NB) + 360
wend
select case AZIM (NB)
    case is < 45
        CAZIM = 1
    case 45 to 89
        CAZIM = 2
    case 90 to 134
        CAZIM = 3
    case 135 to 179
        CAZIM = 4
    case 180 to 224
        CAZIM = 5
    case 225 to 269
        CAZIM = 6
    case 270 to 314
        CAZIM = 7
    case 315 to 359
        CAZIM = 8
    case else
        CAZIM = 9
end select

select case H (NB)
    case is < 1
        CH = 1
    case 1 to 4
        CH = 2
    case 5 to 9
        CH = 3
    case 10 to 24
        CH = 4
    case 25 to 49
        CH = 5
    case 50 to 99
        CH = 6
    case 100 to 199
        CH = 7
    case 200 to 499
        CH = 8
    case else
        CH = 9
end select

select case RAN (NB)
    case is < 20
        FOV: (a)
    case 20 to 49
        FOV: (.35
    case 50 to 99
        FOV: (.75
    case 100 to 199
        FOV: (1.75
    case 200 to 499
        FOV: (3.50

case 200 to 299
  CRAN = 5
  -5.25
case 300 to 499
  CRAN = 6
  -8.75
case 500 to 999
  CRAN = 7
  -17.50
case is > 999
  CRAN = 8
  17.50 ...
case else
  CRAN = 9
end select

if EPS (NB) < 0.2 then
  CEPS = 1
elseif EPS (NB) = 1 then
  CEPS = 9
else
  CEPS = INT (10 * (EPS (NB) + 0.0001))
end if

'THE ELEMENTS OF THE POSITION CODE ARE KNOWN BY NOW AND AVAILABLE
'AS: CP-CE-CTETA-CAZIM-CH-CRAN-CEPS-CS-CB
'WITH: 2+1+1+1+1+1+2+1 CHARACTERS
'THIS CODE OF 11 NUMBERS WILL BE READ INTO A STRING: POSCODE$

CP$ = FNNUM$ (CP)
if LEN (CP$) <> 2 then
  CP$ = "0" + CP$
end if
CPS = FNNUM$ (CE)
CTETA$ = FNNUM$ (CTETA)
CAZIM$ = FNNUM$ (CAZIM)
CH$ = FNNUM$ (CH)
CRAN$ = FNNUM$ (CRAN)
CEPS$ = FNNUM$ (CEPS)
CS$ = FNNUM$ (CB)
if LEN (CS$) <> 2 then
  CS$ = "0" + CS$
end if
CBS = FNNUM$ (CS)
POSCODE$ (NB) = CP$ + CE$ + CTETA$ + CAZIM$ + CH$ + CRAN$ + CEPS$ + CS$ + CBS + EPS$
cis

color 0.7
locate 1,1 : print "DISPLAY POSITION INFORMATION"
locate 2,1 : print ""
locate 3,1 : print ""
locate 5,60 : print "DATE "; color 7,0 : print " "; DAY$
locate 5,1 : print "POSITION "; TAB(25) ": "; NB
locate 7,1 : print "X COORDINATE"; TAB(25) ": "; X (NB)
locate 8,1 : print "Y COORDINATE"; TAB(25) ": "; Y (NB)
locate 10,1 : print "GENERAL DESCRIPTION"; TAB(25) ": "; POST$ (NB)
locate 11,1 : print "ELEMENT SPECIFICATION"; TAB(25) ": "; ELPOST$ (NB)
locate 13,1 : print "ELEVATION ANGLE (DEG)"; TAB(25) ": "; TETA (NB)
locate 13,1 : print "AZIMUTH ANGLE (DEG)"; TAB(25) ": "; AZIM (NB)
locate 14,1 : print "HEIGHT (CM)"; TAB(25) ": "; H (NB)
locate 15,1 : print "RANGE (M)"; TAB(25) ": "; RAN (NB)
locate 16,1 : print "EMISSIVITY"; TAB(25) ": "; EPS (NB)
locate 17,1 : print "BACKGROUND DESCRIPTION"; TAB(25) ": "; SCREEN$ (NB)
locate 18,1 : print "ELEMENT SPECIFICATION"; TAB(25) ": "; ECES$ (NB)
locate 19,1 : print "POSITION CODE"; TAB(25) ": "; POSCODE$ (NB)
locate 23,1 : print "HIT ANY KEY TO CONTINUE"
do
loop while INKEY$ = ""
if Z$ = "5" or Z$ = "6" then
    return
else
    goto 32
end if

DISPLAY THAT MAXIMUM OF 'MAXDIM' POSITIONS IS REACHED

99 cls
color 0,7
locate 5,20 : print "MAXIMUM OF ";MAXDIM;" POSITIONS IS REACHED"
locate 8,20 : print "HIT ANY KEY TO CONTINUE"
lcost 23,1
do
loop while INKEY$ = ""
goto 1

DISPLAY SELECTED INFORMATION FOR ALL POSITIONS

61 cls
color 0,7
print "GENERAL DESCRIPTION"
print "ELEMENT SPECIFICATION"
print "ELEVATION ANGLE (DEG)"
print "AZIMUTH ANGLE (DEG)"
print "HEIGHT (CM)"
print "RANGE (M)"
print "EMISSIVITY"
print "BACKGROUND DESCRIPTION - ELEMENT SPECIFICATION"
print "POSITION CODE"
lcost 25,1 : print "CHOOSE FROM LIST, TYPE NUMBER";

62 Y$ = INKEY$
TITLES = "FOUT"
for NB = 1 to NUMBER
    if Y$ = "1" then
        INFOS (NB) = POSTS (NB)
        TITLES = "DESCRIPTION"
    elseif Y$ = "2" then
        INFOS (NB) = ELPOSTS (NB)
        TITLES = "SPECIFICATION"
    elseif Y$ = "3" then
        INFOS (NB) = STRS (TETA (NB))
        TITLES = "ELEVATION"
    elseif Y$ = "4" then
        INFOS (NB) = STRS (AZIM (NB))
        TITLES = "AZIMUTH"
    elseif Y$ = "5" then
        INFOS (NB) = STRS (TETA (NB))
        TITLES = "DESCRIPTION"
INFO$ (NB) = STR$ (H (NB))
TITLES$ = "HEIGH" "
elseif Y$ = "6" then
INFO$ (NB) = STR$ (RAN (NB))
TITLES$ = "RANGE"
elseif Y$ = "7" then
INFO$ (NB) = STR$ (EPS (NB))
TITLES$ = "EMISSIVITY"
elseif Y$ = "8" then
INFO$ (NB) = SCRENS (NB)
TITLES$ = "BACKGROUND"
elseif Y$ = "9" then
INFO$ (NB) = ELSCR$ (NB)
TITLES$ = "SPECIFICATION"
elseif Y$ = "0" then
INFO$ (NB) = POSCODE$ (NB)
TITLES$ = "CODE"
end if
if TITLES$ = "FOUT" then
NB = 0
goto 62
end if
next NB

cls
color 0,7
print "DISPLAY SELECTED INFORMATION FOR ALL POSITIONS"
print "HIT ANY KEY TO CONTINUE"
print "FI - RETURN TO MAIN MENU"
do
loop while INKEY$ = ""
### Position file

<table>
<thead>
<tr>
<th>Date</th>
<th>Field Type</th>
<th>Name</th>
<th>Sub-Title</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-06-1990</td>
<td>Grass</td>
<td>Growing-Normal</td>
<td>No Sub-Title</td>
<td></td>
</tr>
<tr>
<td>-2001.00</td>
<td></td>
<td></td>
<td></td>
<td>1236.00</td>
</tr>
<tr>
<td>-1323.00</td>
<td></td>
<td></td>
<td></td>
<td>-1428.00</td>
</tr>
<tr>
<td>+0.00</td>
<td></td>
<td></td>
<td></td>
<td>+0.00</td>
</tr>
<tr>
<td>+340.00</td>
<td></td>
<td></td>
<td></td>
<td>+90.00</td>
</tr>
<tr>
<td>+6.00</td>
<td></td>
<td></td>
<td></td>
<td>+1.00</td>
</tr>
<tr>
<td>+10.00</td>
<td></td>
<td></td>
<td></td>
<td>+8.00</td>
</tr>
<tr>
<td>+0.95</td>
<td></td>
<td></td>
<td></td>
<td>+0.67</td>
</tr>
<tr>
<td>Grass</td>
<td>Growing-Normal</td>
<td>No Sub-Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1996.00</td>
<td></td>
<td></td>
<td></td>
<td>-566.00</td>
</tr>
<tr>
<td>-896.00</td>
<td></td>
<td></td>
<td></td>
<td>-1051.00</td>
</tr>
<tr>
<td>+90.00</td>
<td></td>
<td></td>
<td></td>
<td>+0.00</td>
</tr>
<tr>
<td>+340.00</td>
<td></td>
<td></td>
<td></td>
<td>+200.00</td>
</tr>
<tr>
<td>+300.00</td>
<td></td>
<td></td>
<td></td>
<td>+2.00</td>
</tr>
<tr>
<td>+30.00</td>
<td></td>
<td></td>
<td></td>
<td>+25.00</td>
</tr>
<tr>
<td>+0.95</td>
<td></td>
<td></td>
<td></td>
<td>+0.95</td>
</tr>
<tr>
<td>Trees-Deciduous</td>
<td>Growing-Normal</td>
<td>No Sub-Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1538.00</td>
<td></td>
<td></td>
<td></td>
<td>-1067.00</td>
</tr>
<tr>
<td>-930.00</td>
<td></td>
<td></td>
<td></td>
<td>-1051.00</td>
</tr>
<tr>
<td>+90.00</td>
<td></td>
<td></td>
<td></td>
<td>+0.00</td>
</tr>
<tr>
<td>+280.00</td>
<td></td>
<td></td>
<td></td>
<td>+200.00</td>
</tr>
<tr>
<td>+200.00</td>
<td></td>
<td></td>
<td></td>
<td>+2.00</td>
</tr>
<tr>
<td>+40.00</td>
<td></td>
<td></td>
<td></td>
<td>+25.00</td>
</tr>
<tr>
<td>+0.95</td>
<td></td>
<td></td>
<td></td>
<td>+0.91</td>
</tr>
<tr>
<td>Grass</td>
<td>Growing-Normal</td>
<td>Crushed</td>
<td>No Sub-Title</td>
<td></td>
</tr>
<tr>
<td>-747.00</td>
<td></td>
<td></td>
<td></td>
<td>-795.00</td>
</tr>
<tr>
<td>-1356.00</td>
<td></td>
<td></td>
<td></td>
<td>-786.00</td>
</tr>
<tr>
<td>+0.00</td>
<td></td>
<td></td>
<td></td>
<td>+90.00</td>
</tr>
<tr>
<td>+90.00</td>
<td></td>
<td></td>
<td></td>
<td>+235.00</td>
</tr>
<tr>
<td>+1.00</td>
<td></td>
<td></td>
<td></td>
<td>+10.00</td>
</tr>
<tr>
<td>+8.00</td>
<td></td>
<td></td>
<td></td>
<td>+0.50</td>
</tr>
<tr>
<td>+0.90</td>
<td></td>
<td></td>
<td></td>
<td>+1.00</td>
</tr>
<tr>
<td>Concrete</td>
<td>Growing-Normal</td>
<td>Crushed</td>
<td>No Sub-Title</td>
<td></td>
</tr>
<tr>
<td>-110132191110</td>
<td></td>
<td></td>
<td></td>
<td>91026419440</td>
</tr>
</tbody>
</table>
CARABAS software listing
defdbl S
key off
color 0,7
locate 1,5 : print "PHYSICS AND ELECTRONICS LABORATORY"
locate 2,5 : print "OUDE WAALSDORPERWEG 63"
locate 3,5 : print "P.O. BOX 96864"
locate 5,5 : print "THE NETHERLANDS"
locate 9,5 : print "T.
(31) 70264221"
locate 12,5 : print "DEVELOPED BY Dr. ir. P.A.M. JACOBS AND Ing. R. van"
locate 14,10 : print "LAST REVISED: 5 APRIL 1988"
for I=1 to 4000

PROGRAMME NAME: CARABAS

PARAMETERS USED IN THIS PROGRAMME

PARAMETERS RELATED TO THE DETECTOR WORKING IN: 3 - 5 \textmu m \quad 8 - 14 \textmu m
HAVE THE ARRAY INDEX EQUAL TO 

T(N,J,1) : MEASURED RADIATION TEMPERATURE OF CALIBRATION SOURCE I
(I=1,3) AT LOCATION X(N),Y(N)

TS(J,..3) : MEASURED TEMPERATURE OF CALIBRATION SOURCE I

E(N,J,4) : CALCULATED PUPIL IRRADIANCE FOR THE UNKNOWN SURFACE AT
LOCATION X(N),Y(N)

V(N,J,1) : MEASURED DETECTOR VOLTAGE FOR CALIBRATION SOURCE I AT
LOCATION X(N),Y(N)

V(N,J,2) : MEASURED DETECTOR VOLTAGE FOR THE UNKNOWN SURFACE AT
LOCATION X(N),Y(N)

VPT(N,1) : MEASURED VOLTAGES OVER THE Pt-RESISTORS IN THE CALIBRATION
SOURCES I (I=1,3) AT LOCATION X(N),Y(N)

A(J) : CALIBRATION CONSTANT

B(J) : CALIBRATION CONSTANT

E(N,J,1) = A(N,J) \times V(N,J,1) + B(N,J)

ET(J,..3) : INTEGRATED PLANCK'S EQUATION FOUND FROM THE LOOK-UP TABLE
(SEE PROGRAMME "MAKETA")

TT(N) : ARRAY OF TEMPERATURE DATA FOUND FROM THE LOOK-UP TABLE

THIS TABLE HAS A TEMPERATURE RESOLUTION OF 0.5 K
A LINEAR REGRESSION IS USED TO INCREASE RESOLUTION TO 0.1 K
X(N),Y(N) : COORDINATES OF A MEASUREMENT LOCATION N

DEFINE KEYFUNCTIONS

DISPLAY CURRENT DATA, DURING RUNNING OF PROGRAMME
on key (1) gosub 43
key (1) off

DISPLAY THE TIMING PARAMETERS,
DURING RUNNING OF THE PROGRAMME
on key (2) gosub 77
key (2) off

INTERRUPT THE PROGRAMME, CLOSE THE FILES AND
EXIT FROM THE PROGRAMME TO RETURN TO DOS

on key (3) gosub 36
key (3) off

KEY 4 AND 5 TO PRINT RESULTS DURING RUNTIME

on key (4) gosub 49
key (4) on
on key (5) gosub 48
key (5) on

KEY 6 TO CHANGE DATA DISKETTE

on key (6) gosub 79
key (6) off

KEY 7 FOR EMERGENCY EXIT AT ALL TIME

on key (7) gosub 36
key (7) on

on ERROR goto 40

MAXIMUM NUMBER OF CHANNELS = 30

const MAXDIM - 30
dim ET(2,200),TT(200)
dim CAL(3,9),RES(3),TS(3),CH(5),A(2),B(2)
dim VPT (MAXDIM,4),ZIP$(MAXDIM),POST$(MAXDIM)
dim X (MAXDIM),Y (MAXDIM),TETA (MAXDIM),AZIN (MAXDIM)
dim H (MAXDIM),RAW (MAXDIM),EPS (MAXDIM)
dim EPOST$ (MAXDIM),SCREEN$ (MAXDIM),ELSCR$ (MAXDIM)
dim POSCODE$ (MAXDIM)
dim MON$(12)
MON$(1) = "JAN"
MON$(2) = "FEB"
MON$(3) = "MAR"
MON$(4) = "APR"
MON$(5) = "MAY"
MON$(6) = "JUN"
MON$(7) = "JUL"
MON$(8) = "AUG"
MON$(9) = "SEP"
MON$(10) = "OCT"
MON$(11) = "NOV"
MON$(12) = "DEC"
DEF FNMON$(DAT$) = MID$(DAT$,4,3)+MON$(VAL$(LEFT$(DAT$,2)))+RIGHT$(DAT$,5)

OPEN A SEQUENTIAL FILE
FOR READING THE TABLES

GET CALIBRATION TABLES FROM DISK UNDER THE NAME
"CALIBRAT"

OPEN 1",#1,"CALIBRAT"
for N=1 to 200
input #1,ET(N),TT(1,N),ET(2,N)
Appendix C

CALIBRATION TABLE FOR THE PLATINUM TEMPERATURE SENSOR
(Pt100), USABLE FOR MEASURED TEMPERATURES BETWEEN
-30 to +50 degC.

for I=1 to 9
  for J=1 to 3
    input #1,CAL(J,I)
  next J
next I

close #1

DEFAULT SETTINGS

DRIVES = "D:" TEXT = "" DNEXTS = "" TNEXTS = "" PARSET = 0
DIZ = 0 ERDZ = 0 INDEX = 0 FAC = 0 FOPEN = 0 TEL = 0 FR = 0
KEY4 = 0

for J=1 to MAXDIM
  POSTS(J) = ""
  TETA(J) = 0
  AZIM(J) = 0
  N(J) = 0
  RAN(J) = 1
  EPS(J) = 1
next J

out 1812,128 'AUTO INCREMENTING OFF

DEFINE MAIN-MENU

1 'open "I",#1,"A:POWER.FAL"
input #1,POWER
close #1

47 cls
if POWER = 0 then 26
  TEST = 0
  color 0,7
  locate 1,5 : print "MAKE A CHOICE FROM THE MAIN MENU"
  make 2
  locate 5,5 : print ": color 7,0 : print " DEFINE PARAMETER SETTING
  locate 7,5 : color 0,7 : print ": color 7,0 : print " DISPLAY CURVE
  locate 9,5 : color 0,7 : print ": color 7,0 : print " PERFORM A TEST
  locate 11,5 : color 0,7 : print ": color 7,0 : print " START AUTOMAT
  locate 13,5 : color 0,7 : print ": color 7,0 : print " EXIT"

2 AS = INKEY$
if AS = "1" then
  goto 1
elseif AS = "2" then
  goto 29
elseif AS = "3" then
  cls
  TEST = 1
  if PARSET = 1 then
    goto 34
else
DEFINE TIMING PARAMETERS

3 cls
open "0",#1,"A;RESTUP.CAR"
4 color 0,7
locate 1,5: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 2,5: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 3,5: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 5,5: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 7,5: color 0,7: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 10,5: color 0,7: print "GIVE THE DATE TO START THE MEASUREMENT"
locate 4,2: print "GIVE THE CORRECT DATE"
goto 4

6 cls
color 0,7
locate 1,5: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 2,5: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 3,5: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 5,5: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 7,5: color 0,7: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 10,5: color 0,7: print "GIVE THE DATE TO STOP THE MEASUREMENT"
locate 4,2: print "GIVE THE CORRECT DATE"
goto 4

21 write #1,DSTOP$
locate 1,5 : print "GIVE THE TIME TO START THE MEASUREMENT"
locate 2,5 : print "line input TSTART$"
line input TSTOP$ if TSTART$ = "" then
    TSTART$ = "ACTUAL TIME"
goto 23
elseif TSTART$ >= TIME$ then
goto 23
end if
cle
locate 2,2 : print "THE GIVEN TIME ";
color 0,7 : print " TSTART$ = ";
color 0,7 : print " IS SMALLER THAN THE ACTUAL TIME ";
color 0,7 : print " TIME$ = 

color 7,0 : locate 4,2 : print "GIVE THE CORRECT ";
goto 22

23 cle
color 0,7
locate 1,5 : print "GIVE THE TIME TO STOP THE MEASUREMENT"
locate 2,5 : print "line input TSTOP$ if TSTOP$ = " " then
    TSTOP$ = "23:59:00"
goto 31
elseif TSTOP$ > TSTART$ then
goto 31
elseif TSTOP$ > TIME$ then
goto 31
end if
cle
locate 2,2 : print "THE GIVEN TIME ";
color 0,7 : print " TSTOP$ = ";
color 0,7 : print " IS SMALLER THAN THE ACTUAL TIME ";
color 0,7 : print " TIME$ = 

color 7,0 : locate 4,2 : print "GIVE THE CORRECT ";
goto 22

31 write #1,TSTOP$

cle
color 0,7
locate 1,5 : print "line input IM
if IM = 1 then INTV = 15
while 60 MOD INTV <= 0
locate 10,5 : print "line input TSTOPS
if INTV < 1 then INTV = 15
wend
WRITE
Appendix C

write #1,INTV

PARSET = 1

24 cls
color 0,7
locate 1,5 : print "GIVE THE NAME OF THE FILE CONTAINING THE COORDINATE T"
locate 3,5 : print "DMYS = FN DAGS(DATE$)"
PFL$ = MID$(DMYS,4,3) + LEFT$(DMYS,2) + RIGHT$(DMYS,2) + "P"
locate 5,5 : print "FORMAT ": color 7,0 : print "NMODDPYF"
locate 7,5 : color 0,7 : print "DEFAULT "; color 7,0 : print " "; PFL$
locate 10,5 : color 0,7 : print "INPUT "; color 7,0 : print " ";
line input DESCS
if DESCS = "" then DESCS = PFL$
write #1,DECS$
write #1,DRIVE$
close #1

cls
color 0,7
locate 1,5 : print "GIVE THE NAME OF THE DATA STORAGE FILE"
locate 3,5 : print "DMYS = FN DAGS(DATE$)"
FILE = MID$(DMYS,4,3) + LEFT$(DMYS,2) + RIGHT$(DMYS,2) + "C"
locate 5,5 : print " FORMAT ": color 7,0 : print "NMODDYPC"
locate 7,5 : color 0,7 : print "DEFAULT "; color 7,0 : print " "; FIL$
locate 10,5 : color 0,7 : print "INPUT "; color 7,0 : print " ";
line input FILENAME$
if FILENAME$ = "" then FILENAME$ = FIL$
cln
color 0,7
locate 1,1 : print ";
locate 2,1 : print ";
locate 2,76 : color 0,7 : print ";
locate 3,1 : print ";
locate 3,76 : color 0,7 : print ";
locate 4,1 : print ";
locate 4,76 : color 0,7 : print ";
locate 5,1 : print ";
locate 5,76 : color 0,7 : print ";
locate 6,1 : print ";
locate 6,76 : color 0,7 : print ";
locate 7,1 : print ";
locate 7,76 : color 0,7 : print ";
locate 12,1 : print "HIT ANY KEY WHEN YOU ARE READY"
while VS = ""
VS = INKEY$
wend
if POWER = 1 then 28
28 open #1,91,"A:RESTUP.CAR"
input #1,DSTOP$
input #1,TSTOP$
input #1,INTV
input #1,DESC$
input #1,DRIVE$
close #1
DNYS = FN DAYS(DATES$
FILNAMES = FILE$
gosub 27
28 cls
locate 10,20 : print = PREPARING DISK FOR WRITING=
color 0,7
 locate 11,20 : print =
color 7,0
OPEN DUMMY FILE WHICH WILL BE KILLED LATER=
TO BE ABLE TO CLOSE FILES IF DISK IS FULL ERROR OCCURS=
close #3
open "O",#3,DRIVES$="DUMMY.CAR"
OPEN DUMMY FILE WHICH WILL BE KILLED LATER=
WRITE 2401 BYTES TO THIS FILE=
for JJ = 1 to 100
write #3,"BBBBBBBBBBBBBBBBBBBBB"
next JJ
WRITE 2401 BYTES TO THIS FILE=
close #3
open DRIVES$="ERROR.CAR" for append as #3=
open DRIVES$="ERROR.CAR" for append as #3=
open DRIVES$="ERROR.CAR" for append as #3=
ofopen = 1
open "I",#1,DRIVES$+DESC$
open "I",#1,DRIVES$+DESC$
open "I",#1,DRIVES$+DESC$
OPEN A SEQUENTIAL FILE, NAMED "DESC$" ON CHANNEL 1=
TO READ POSITIONS=
open "I",#1,DRIVES$+DESC$
locate 9,20 : print "TIMING PARAMETERS NOT DEFINED YET"
locate 10,20 : print ""
locate 11,20 : print ""
locate 12,20 : print ""
locate 13,20 : print ""
locate 20,20 : color 7,0 : print "HIT ANY KEY WHEN YOU ARE READY"
while V$ = ""
  V$ = INKEY$
wend
goto 47
LEN$ = LEN(TSTART$)
if LEN$ >= 8 then 32
for I = 1 to &LEN$ - 8
  TSTART$ = TSTART$ + "0"
next I
MIDS(TSTART$,3,1) = ":"
MIDS(TSTART$,6,1) = ":"
COLOR 0,7
locate 1,5 : print "CURRENT TIMING PARAMETERS SETTINGS"
locate 2,5 : print ""
locate 3,5 : print "START DATE" TAB(30) ":" ; DSTART$ : print
locate 4,5 : print "STOP DATE" TAB(30) ":" ; DSTOP$ : print
locate 5,5 : print "STOP TIME" TAB(30) ":" ; TSTOP$ : print
locate 6,5 : print "SCAN INTERVAL" TAB(30) ":" ; INTV " (min)"
locate 7,5 : print "COORDINATE FILENAME" TAB(30) ":" ; DESC$
locate 8,5 : print "DATA STORAGE FILENAME" TAB(30) ":" ; FILENAME$
locate 24,5 : print "HIT ANY KEY TO CONTINUE";
while V$ = ""
  V$ = INKEY$
wend
goto 47

START OF MEASUREMENTS
CHECK IF THE REMOTE CONTROL IS DISCONNECTED,
BY READING THE MIRROR POSITION TWICE.
IF NOT CHANGED AFTER 1 SECOND, MIRROR IS STATIC.

34 ROTO = INF(1820)
for TELL = 1 to 3
  PP$ = TIMES
  while TIMES <= PP$
    wend
next TELL
if (INF(1820) - ROTO) = 0 then 37
else
  COLOR 0,7
  locate 10,20 : print "DISCONNECT THE REMOTE CONTROL"
  locate 11,20 : print ""
  locate 13,20 : print ""
  COLOR 7,0
  locate 16,20 : print "HIT ANY KEY WHEN READY"
  while V$ = ""
    V$ = INKEY$
  wend

37 if TEST = 1 then
CHECK IF A TESTRUN SHOULD BE PERFORMED
TSTART$ = TIMES

goto 46

end if

if PARSET = 1 then 41

39 cle

  color 0,7
  locate 8,20 : print "DEFINE TIMING PARAMETERS FIRST"
  locate 10,20 : print "CHECK IF TIMING PARAMETERS ARE SET"
  color 7,0
  locate 15,20 : print "HIT ANY KEY TO CONTINUE"
  while VS = ""
    VS = INKEY$
  wend
  goto 47

  CHECK FOR IMMEDIATE START OF THE MEASUREMENT CYCLE

41 if DSTART$ = DATES then
  if TSTART$ = "ACTUAL TIME" then
    TSTART$ = TIMES
    goto 45
  end if

  WAIT FOR START MOMENT

42 LENG = LEN(TSTART$)

  if LENG < 8 then
    for I = 1 to 8-LENG
      TSTART$ = TSTART$ + "0"
    next I
    MIDS(TSTART$,3,1) = ":"
    MIDS(TSTART$,6,1) = ":"
  end if

  cle
  color 0,7
  locate 1,1 : print "WAITING FOR THE BEGIN OF THE MEASUR"
  locate 2,1 : print "REAL DATA"
  locate 3,1 : print "ACTUAL DATA"
  locate 6,17 : print "START DAT"
  locate 7,17 : print "": locate 6,47 : print ""
  locate 8,17 : print "": locate 7,47 : print ""
  locate 9,17 : print "": locate 8,47 : print ""
  locate 10,17 : print "": locate 9,47 : print ""
  locate 11,17 : print "": locate 10,47 : print ""
  locate 12,17 : print "": locate 11,47 : print ""
  locate 13,17 : print "": locate 12,47 : print ""
  locate 14,17 : print "": locate 13,47 : print ""
  locate 15,17 : print "": locate 14,47 : print ""
  color 7,0

  if DATES = DSTART$ then
    if TIMES = TSTART$ then
      goto 45
    elif TIMES > TSTART$ then
      gosub 27
      locate 12,51: print TSTART$
    end if
  elseif DATES > DSTART$ then
    gosub 27
    locate 10,50: print DSTART$
  endif
if RIGHT$(TIMES,2) = "25" then
go to 25
end if
goto 44

45 DNEXT$ = DSTART$
TNEXT$ = TSTART$

46 if PR = 0 then
clo
print "BEGIN OF CYCLE "; TIMES$
TIMUL$ = TIMES$
end if
for N = 1 to NUMBER
locate 25,1 ; print "
locate 25,1 ; print "READY ............... GOING FOR POSITION ";
* START OF MEASUREMENT CYCLE
locate 25,41 ; print N;
PORTB = 2
go to 76
if N <= 1 then
TELL = 0
PPS = TIMES$
while TELL < 4
TELL = TELL + 1
while TIMES$ <= PPS
wend
PPS = TIMES$
wend
end if
* BRING THE SENSOR HEAD TO POSITION N
DAC = 0
VX = X(N)
go to 85
DAC = 1
VY = Y(N)
go to 84
go to 86

* SENSOR HEAD REACHED POSITION N
locate 25,1 ; print "REACHED POSITION ";
locate 25,18 ; print N ".......... SCANNING NOW .........."
* LOCK THIS POSITION
PORTB = 0
go to 76
* CONTROL REGISTER 1820 IS USED AS:
'BITS 0 7 6 5 4 3 2 1 0
* FREE POWER FAILURE RAIN POWER FAILURE MIRROR MIRROR
* MAINS GAUGE CARABAS POSITION TRIGGER
TIJDS$(N) = TIMES$
for COUNT = 1 to 4
* WHEN ENTERING THIS LOOP, WAIT FOR MIRROR POSITION 4
* THAT IS WHEN THE 8-12 UM DETECTOR LOOKS TO THE OUTSIDE
* WORLD FOR CLAMPING THE 3-5 UM DETECTOR ON THE REARSIDE
TNO report

Appendix C

SOURCE.

DETECT POSITIVE EDGE OF 'MIRROR IN POSITION' PULS

wait 1820,1,1
wait 1820,1,0

MIRROR = INT ((INP(1820) and 7) / 2 + 1) + 2
if MIRROR > 4 then
  MIRROR = MIRROR - 4
end if
if COUNT >= 2 then
goto 52
elseif MIRROR < 4 then
goto 50
end if

READ VOLTAGE OVER Pt RESISTORS

out 1813,4
out 1814,0
wait 1812,128,0  ' WAIT FOR CONVERSION READY
VPT(N,MIRROR) = INP(1813) + 256*INP(1814)

wait 1820,1,0
wait 1820,1,1

READ INPUT VALUE FOR BOTH DETECTORS:

  DAC = 2 DETECTOR SIGNAL 3 - 5 MICRON
  DAC = 3 DETECTOR SIGNAL 8 - 14 MICRON

out 1813,2
out 1814,0
wait 1812,128,0  ' WAIT FOR CONVERSION READY
V(N,1,MIRROR) = INP(1813) + 256*INP(1814)
out 1813,3
out 1814,0
wait 1812,128,0  ' WAIT FOR CONVERSION READY
V(N,2,MIRROR) = INP(1813) + 256*INP(1814)
next COUNT
for K = 1 to 4
  if VPT(N,K) > 32767 then VPT(N,K) = VPT(N,K) - 65536
  if V(N,1,K) > 32767 then V(N,1,K) = V(N,1,K) - 65536
  if V(N,2,K) > 32767 then V(N,2,K) = V(N,2,K) - 65536
next K
next N

RETURN TO THE FIRST POSITION,
STOP THE MIRROR AND CLOSE THE HATCH

locate 25,1
print "STOP MIRROR, CLOSE HATCH AND RETURN TO FIRST POSITION..." ; TIME
PORTB = 3
gosub 76
DAC = 0
VX = X(1)
gosub 85
DAC = 1
VY = Y(1)
gosub 84

WAIT HERE UNTIL SENSOR HAS REACHED THE STARTING POSITION AND LOCK IT.

gosub 86

END OF MEASUREMENT CYCLE
START CONVERSION OF DATA

DETERMINE CALIBRATION CONSTANTS A(J) AND B(J).
MEASURED VOLTAGES OVER THE Pt100 SENSORS VPT(N,I)
MUST BE KNOWN AT THIS POINT, AS WELL AS THE DETECTOR
VOLTAGES V(N,J,1) FOR THE CALIBRATION SOURCES.

locate 25,1
print "CALCULATING TEMPERATURES NOW ......................... ";times
for N = 1 to NUMBER
  for J = 1 to 2
    if J = 2 then 54
    ' ONLY 10µ DETECTOR IN USE
    PUT THE DATA IN THE CORRECT ORDER FOR DETECTOR J=1
    HELP1 = V(N,J,3)
    HELP2 = V(N,J,4)
    HELP3 = V(N,J,1)
    HELP4 = V(N,J,2)
    V(N,J,1) = HELP1
    V(N,J,2) = HELP2
    V(N,J,3) = HELP3
    V(N,J,4) = HELP4
    DETERMINE THE CALIBRATION CONSTANTS A(J) AND B(J)
    gosub 15
    E(N,J,4) = B(J)*V(N,J,4) + A(J)
    ' USE LOOK-UP TABLE TO FIND THE CORRESPONDING
    ' TEMPERATURES.
    for M = 1 to 199
      if E(N,J,4) >= ET(J,M) and E(N,J,4) <= ET(J,M+1) then
        TR(N,J,4) = TT(M)
        goto 56
      elseif M < 199 then
        goto 55
      end if
      ' E(N,J,4) IS OUTSIDE THE TABLE-RANGE:
      ' WRITE TR(N,J,4) = 0 TO OUTPUT
      TR(N,J,4) = 0
      goto 20
    next M
    THE TEMPERATURE FOUND TR(N,J,4) LIES BETWEEN
    ' TWO NODES TT(M) SEPARATED BY 0.5 K.
    ' ASSUMING A LINEAR DEPENDENCE OF THE IRRADIANCE
    ' WITH RESPECT TO TEMPERATURE, IN BETWEEN THE 2 NODES,
    ' A MORE ACCURATE VALUE CAN BE OBTAINED BY LINEAR
    ' INTERPOLATION.
    56 TR(N,J,4) = TT(M)+(TT(M+1)-TT(M))*((E(N,J,4)-ET(J,M))/(ET(J,M+1)-ET(J,M))
    TR(N,J,4) = TR(N,J,4) - 273
  end if
  "NEXT J"
end if
if DIS = 0 then 60
' PRINT RESULTS DURING RUNTIME
lprint "RECORDING TIME" TAB(25) ";" ; TIJD$(H)
lprint "MEASUREMENT POINT" TAB(25) ";" ; N
lprint ; lprint "SOURCE" TAB(30) "1" TAB(45) "2" TAB(60) "3"
Appendix C

C.14

------------------------------------------------------------
---

iprint TAB(3) "Pt - RESISTANCE" TAB(28) RES(l) TAB(43) RES(2) TAB(58) RES
iprint TAB(3) "Pt - VOLTAGE" TAB(28) VPT(N,1) TAB(43) VPT(N,2) TAB(58) VP
iprint TAB(3) "Pt-TEMPERATURE" TAB(28) TS(1)-273 TAB(43) TS(2)-273 TAB(58)
iprint : lprint TAB(3) "ENERGY IN 3-5" TAB(28) E(N,1,1) TAB(43) E(N,1,2) TAB(58)
iprint : lprint TAB(3) "ENERGY IN 8-14" TAB(28) E(N,2,1) TAB(43) E(N,2,2) TAB(58)

iprint TAB(3) "DETECTOR VOLTAGE 3-5" TAB(28) V(N,1,1) TAB(43) V(N,1,2)
iprint TAB(3) "ENERGY IN 3-5" TAB(28) E(N,1,I) TAB(43) E(N,1,2) TAB(58)
iprint Iprint TAB(3) "DETECTOR VOLTAGE 8-14" TAB(28) V(N,2,1) TAB(43) V(N,2,2)
iprint TAB(3) "ENERGY IN 8-14" TAB(28) E(N,2,1) TAB(43) E(N,2,2) TAB(58)

iprint Iprint TAB(3) "CALIBRATION PARAMETERS" TAB(32) "3-5 UK"
iprint TAB(3) "8-14 U"
iprint

------------------------------------------------------------
---

iprint TAB(3) "CONSTANT B" TAB(30) B(1) TAB(60) B(2)
iprint TAB(3) "CONSTANT A" TAB(30) A(1) TAB(60) A(2)
iprint TAB(3) "CORRELATION COEFFICIENT" TAB(30) R(1) TAB(60) R(2)

------------------------------------------------------------
---

CONVERSION COMPLETED

WRITE DATA TO DISK

IF A TESTRUN WAS PERFORMED, THE PROGRAMME
RETURNS TO THE MAIN MENU.
DURING AUTOMATED OPERATION THE TIMING PARAMETERS
DETERMINE THE TIME BEHAVIOUR.

WRITE DATA TO THE FILE "FILENAME$" THROUGH CHANNEL #2

60 next N

CONVERSION COMPLETED

WRITE DATA TO DISK

IF A TESTRUN WAS PERFORMED, THE PROGRAMME
RETURNS TO THE MAIN MENU.
DURING AUTOMATED OPERATION THE TIMING PARAMETERS
DETERMINE THE TIME BEHAVIOUR.

WRITE DATA TO THE FILE "FILENAME$" THROUGH CHANNEL #2

61 print #2,DESC$
print #2,USING ";";NUMBER
print #2,USING "\";DNEXT$
for N = 1 to NUMBER
print #2,USING "\";TIJDS(N)
'When 5p detector is in use :print #2,USING "####.##";TR(N,1,4)
print #2,USING "####.##";TR(N,2,4)
next N

if TEST = 0 then 63
DAC = 0
VX = X(1)
gosub 85
DAC = 1
VY = Y(1)
gosub 84
gosub 86
locate 3,1 : print "END OF CYCLE" ; TIMES
TST$ = TIMES
AA = 0
if VAL(MIDS(TST$,7,2)) >= VAL(MIDS(TNUL$,7,2)) then
AA=1 end if
DIF = (VAL(MIDS(TST$,1,2)) - VAL(MIDS(TNUL$,1,2))) * 60 + (VAL(MIDS(TST$,4,2)) -
locate 5,1 : print "MINIMUM SCAN INTERVAL ";
color 0,7 : print " = ";DIF;
color 7,0 : print " MINUTES"
locate 25,1 : print "HIT ANY KEY TO RETURN TO THE MAIN MENU"
while VS = ""
VS=INKEY$
wend
goto 47
CHECK FOR STOP TIME AND DATE

63 if DATES >= DSTOP$ and TIMES => TSTOP$ then 36

CALCULATION OF NEXT START TIME : TNEXT$

TOUD$ = TNEXT$
M = VAL(MIDS(TNEXT$,4,2))
H = VAL(MIDS(TNEXT$,1,2))
M = M + INTV
while M >= 60
  H = H + 1
  M = M - 60
wend
if H >= 24 then
  FAC = 1
  H = H - 24
end if
if H >= 10 then
  HS = "0" + MIDS(STR$(H),2,2)
goto 66
else
  HS = MIDS(STR$(H),2,2)
end if
if M >= 10 then
  MS = "0" + MIDS(STR$(M),2,2)
goto 67
else
  MS = MIDS(STR$(M),2,2)
end if
67 TNEXT$ = HS + ":" + MS + ":00"

DETERMINE NEXT START DAY IF OLD ONE IS EXPIRED
(I.E. "FAC=1")

if FAC=0 then 75
  FAC = 0
  DAY = VAL(MIDS(DNEXT$,4,2))
  MONTH = VAL(MIDS(DNEXT$,1,2))
  YEAR = VAL(MIDS(DNEXT$,7,4))
  NDAY = DAY + 1
  on MONTH goto 68,69,68,70,70,68,70,68,70,68,70,68
  68 DAY = 31
  goto 71
  69 DAY = 28
  X = YEAR MOD 4
  IF X = 0 then DAY = 29
  goto 71
  70 DAY = 30
  71 if NDAY <= DAY then
    goto 72
  else
    NDAY = NDAY - DAY
    MONTH = MONTH + 1
  end if
  if MONTH <= 12 then
    goto 72
  else
    MONTH = 1
    YEAR = YEAR + 1
  end if
  72 if NDAY < 10 then
    DAYST$ = "0" + MIDS(STR$(NDAY),2,2)
    goto 73
  else
DAYsts = MIDS(STRS(NDAY),2,2)
end if
73 if MONTH < 10 then
   MONTHS = "0" + MIDS(STRS(MONTH),2,2)
goto 74
else
   MONTHS = MIDS(STRS(MONTH),2,2)
end if
74 YEARS = MIDS(STRS(YEAR),2,4)
DNEXT$ = MONTHS + "-" + DAYsts + "-" + YEARS
87 DMY$ = FN DADS(DNEXT$)
close #2
FIL$ = MIDS(DMY$,4,3) + LEFTS(DMY$,2) + RIGHTS(DMY$,2) + "C"
FILENAME$ = FIL$ + DRIVES + FILENAME$ for append as #2
if TNEXT$ = "00:00:00" and DATES < DNEXT$ then
   goto 88
end if
75 if TIMES > TNEXT$ or DATES > DNEXT$ then
   go sub 27
   TNEXT$ = TSTART$ + DRIVES + FILENAME$ for append as #2
   if TNEXT$ = "00:00:00" then
goto 87
end if
end if
88 if PR = 1 then 19
DISPLAY TIMING PARAMETERS
PRINT RESULT WITHOUT REFRESHING THE SCREEN
77 PR = 0
clear
color 7,0
locate 25,1: print "F1=DISPLAY DATA CHANNELS F6=CHANGE DATA DISKETTE"
color 0,7
locate 1,1: print ""
locate 2,1: print ""
locate 3,1: print ""
locate 4,1: print ""
locate 5,1: print ""
locate 6,1: print ""
locate 7,1: print ""
locate 8,1: print ""
locate 9,1: print ""
locate 10,1: print ""
locate 11,1: print ""
locate 12,1: print ""
locate 13,1: print ""
locate 14,1: print ""
locate 15,1: print ""
locate 16,1: print "" select data channels
locate 17,1: print "" actual data
locate 18,1: print ""
locate 19,1: print ""
locate 20,1: print ""
78 color 7,0
locate 10,6: print DATES
locate 10,36: print DNEXT$
locate 10,64: print DSTOP$
locate 12,7: print TIMES
locate 12,37: print TNEXT$
locate 12,65: print TSTOPS

THE PARAMETER "FAC" CONTROLS THE CHANGE OF DATE,
SO THAT THE CHECK FOR THE NEXT START TIME CAN BE DONE
CORRECTLY. CHECK FOR MAIN POWER FAILURE WHILE
WAITING FOR THE NEXT MEASUREMENT CYCLE

key (1) on
key (2) on
key (3) on
key (6) on
if TIMES >= TNEXT$ and DATES >= DNEXT$ then
  key (1) off
  key (2) off
  key (3) off
  key (6) off
  goto 46
else
  gosub 25
  goto 78
end if

CHANGE DATA DISKETTE

79 close
kill DRIVES+$"DUMMY.CAR"
if ERDE = 0 then kill DRIVES+$"ERROR.CAR"
c1s
  color 0,7
  locate 9,20: print "*
  locate 10,20: print "*
  locate 11,20: print "PUT AN EMPTY DATA DISKETTE IN ";
  color 7,0: print " DRIVE D ";
  color 0,7: print "*
  locate 12,20: print "*
  locate 13,20: print "*
  color 7,0
  locate 20,20: print "HIT ANY KEY WHEN YOU ARE READY"
  while VS = ""
    V$ = INKEY$
    end
  VS = INKEY$
  if VS = "n" OR VS = "N" then
    goto 82
elseif VS <> "y" and VS <> "Y" then
  goto 81
  end if
c1s
  color 0,7
  locate 1,5: print "*
  locate 1,5: print " DO YOU WANT TO CHANGE THE DATA FILENAME (Y/N) "
  color 7,0
  VS = INKEY$
  if VS = "n" OR VS = "N" then
    goto 82
elseif VS <> "y" and VS <> "Y" then
  goto 81
  end if
c1s
  color 0,7
  locate 1,5: print "*
  locate 1,5: print "*
  HILFES = FILENAME
  locate 5,5: print " FORMAT " ; color 7,0 : print " %MGDDYYVC 
  locate 7,5: color 0,7 : print " DEFAULT " ; color 7,0 : print " LAST GIVE
  locate 10,5: color 0,7 : print " INPUT " ; color 7,0 : print " ;
  line input FILENAME$
  if FILENAME$ = "" then FILENAME$ = HILFES$
locate 10,20: color 0,7 : print " PREPARING DISK FOR WRITING "
locate 11,20: print " 
color 7,0
open "D:"+FILENAME for append as #2

COPY THE POSITION FILE TO THE NEW DATA DISKETTE

open "O",#1,"D:DESC$"
print #1 , USING "###" ; NUMBER
print #1 , USING "\" ; DAY$
for N = 1 to NUMBER
  print #1 , USING "\" ; POSTS(N)
  print #1 , USING "\" ; ELPOSTS(N)
  print #1 , USING "#####." ; X(N)
  print #1 , USING "#####." ; Y(N)
  print #1 , USING "#####." ; TETA(N)
  print #1 , USING "#####." ; AZIM(N)
  print #1 , USING "#####." ; H(N)
  print #1 , USING "#####." ; RAN(N)
  print #1 , USING "#####." ; EPS(N)
  print #1 , USING "\" ; SCREENS(N)
  print #1 , USING "\" ; POSCODES(N)
next N

OPEN DUMMY FILE WHICH WILL BE KILLED LATER,
TO BE ABLE TO CLOSE FILES IF DISK FULL ERROR OCCURS

close #3
open "O",#3,"D:DUMMY.CAR"

WRITE 2401 BYTES TO THIS FILE

for JJ = 1 to 100
  write #3,"DDDDDDDDDDDDDDDDDDDDDDDD"
next JJ
close #3

OPEN ERROR COMMUNICATION FILE ON #3
open "D:ERROR.CAR" for append as #3
fopen = 1
return 77

S U B R O U T I N E S

DISPLAY DATA DURING RUNNING OF THE PROGRAMME
AFTER A SCAN IS COMPLETED AND THE CONVERSION IS TERMINATED, A MAXIMUM NUMBER OF 4 POSITIONS CAN BE DISPLAYED ON SCREEN.

83 cls
TEL = 0
PR = 1
key (1) off
51 line input "GIVE POSITIONS SEPARATED BY A COMMA (4 MAXIMUM) :"; POSI$
ASTART = 1
HALT = 0
CHAN = 1
55 COMMA = INSTR( ASTART , POSI , "," )
if COMMA = 0 then
  COMMA = INSTR( ASTART , POSI , "" )
  HALT = 1
  LENPOST = COMMA + 1
  goto 58
end if
LENPOST = COMMA - 1
58 CH(CHAN) = VAL(MID$( POS$I$ , ASTART , LENGTE ))
if CH(CHAN) < 1 or CH(CHAN) > NUMBER then
cls
print "POSITION ";CH(CHAN) "HAS NOT BEEN DEFINED, TRY AGAIN"
print
print
goto 51
end if
if HALT = 1 then
goto 18
else
ASTART = LENGTE + 2
CHAN = CHAN + 1
if CHAN > 4 then
CHAN = 4
goto 18
else
goto 53
end if
end if
19 if TEL > 0 and TEL < 15 then
goto 17
end if
18 cls
locate 2,1
TEL = 0
print "------------------------------------------------------------------"
locate 3,25 : print "DATE "; : print DATES
print
locate 5,11 : print "|"
for J = 1 to CHAN
locate 5,J*17-5 : print "| POSITION "; : print CH(J);
if CH(J) < 30 then
print SPC(1)
end if
print "|"
next J
locate 6,1 : print "|---|"
for J = 1 to CHAN
locate 6,J*17-5 : print "|---|"
next J
locate 7,1 : print "TIME"
locate 7,11: print "|"
for J = 1 to CHAN
locate 7,J*17-5 : print "| 3-5" SPC(5) "8-14 |"
next J
locate 8,1 : print "|-------|"
for J = 1 to CHAN
locate 8,J*17-5 : print "|-------|"
next J
locate 9,3
for J = 1 to CHAN
locate 9+TEL,J*17-5 : print MID$(TOUDS$,1,5)
locate 9+TEL,11: print "|"
next J
locate 9+TEL,1 : print MID$(TOUDS$,1,5) " JUST PRINT HOUR AND MINUTES"
locate 9+TEL,11: print "|"
for J = 1 to CHAN
locate 9+TEL,J*17-5 : print USING ";###.##";TR(CH(J),1,4);print SPC(3);
print USING ";###.##";TR(CH(J),2,4)
locate 9+TEL,J+17+11: print "|"
next J
TEL = TEL + 1
locate 25.1 : print "
16 locate 25.1 : color 0.7 : print " ACTUAL TIME ";
color 7.0 : print ";TMD$;" ";
Appendix C

COLOR 0,7 : PRINT " NEXT SCAN ";
COLOR 7,0 : PRINT "; TNEXTS;
LOCATE 25,59: PRINT "F2=TIMING PARAMETERS";
KEY (1) ON
KEY (2) ON
IF RIGHT$ (TIMES, 2) = "25" THEN
GOSUB 25
END IF
IF TIMES >= TNEXTS AND DATES = DNEXTS THEN
KEY (1) OFF
KEY (2) OFF
GOTO 46
ELSE
KEY (1) STOP
KEY (2) STOP
GOTO 16
END IF
RETURN

CALIBRATION

FIRST THE MEASURED VOLTAGE VPT(N,I) OVER THE PT100 SENSORS IS CONVERTED TO RESISTANCE VALUES 'RES(I)' DEPENDING ON THE IMPEDANCES USED IN THE ELECTRONIC CIRCUITS. THIS IS A LINEAR OPERATION THROUGH A REGRESSION CONSTANT: 'ALPHA'

15 ALPHA = .013441
OFFSET = 100.087
FOR I = 1 TO 3
RES(I) = ALPHA * VPT(N,I) + OFFSET
NEXT

NEXT DETERMINE IN WHICH INTERVAL THE RESISTANCE 'RES(I)' OF CALIBRATION SOURCE I IS FOUND. KI GIVES THE LOWER BOUNDARY.

FOR I = 1 TO 3
KI = 1
FOR K = 1 TO 8
IF RES(I) >= CAL(1,K) THEN
KI = K
END IF
NEXT K

NEXT DETERMINE THE TEMPERATURE OF CALIBRATION SOURCE I, KNOWING ITS RESISTIVE VALUE RES(I), FROM:
TS(I) = 273! + CAL(3, K1) + (RES(I) - CAL(1, K1)) / CAL(2, K1)
NEXT I

NEXT USE THE LOOK-UP TABLE TO DETERMINE THE 'APPARENT' PUPIL IRRADIANCE FOR CALIBRATION SOURCE I.

FOR L = 1 TO 3
FOR N = 1 TO 199
IF TS(L) >= TT(N) AND TS(L) <= TT(N+1) THEN
X(N,J,L) = ET(J,N)
GOTO 12
ELSEIF N < 199 THEN
GOTO 13
ELSE
GOTO 14
END IF
NEXT N
NEXT L

CALIBRATION NOT POSSIBLE BECAUSE TS(L) IS OUT OF THE TABLE-RANGE

14 A(J) = 0
THE IRRADIANCE FOUND $E(N,J,I)$ LIES BETWEEN TWO NODES $ET(J,M)$ SEPARATED BY 0.5 K. ASSUMING A LINEAR DEPENDENCE OF THE IRRADIANCE WITH RESPECT TO TEMPERATURE, IN BETWEEN THE 2 NODES, A MORE ACCURATE VALUE CAN BE OBTAINED BY LINEAR INTERPOLATION.

E($N,J,L$) $= ET(J,M) + (ET(J,M+1)-ET(J,M)) \times (TS(L)-TT(M)) / (TT(M+1)-TT(M))$


$A(J) = (SOME - B(J) \times SOMEV) / 3$

$B(J) = (SOME + B(J) \times SOMEV - (SOME - 2) / 3) / (SOME2 - (SOME - 2) / 3)$

NEXT THE MEASURED VOLTAGES OF THE UNKNOWN SOURCE, CAN BE CONVERTED TO IRRADIANCE- OR APPARENT TEMPERATURE VALUES.

$E(N,J,4) = B(J) \times V(N,J,4)$

READ A SPECIFIED CHANNEL FROM THE A/D CONVERTER

PARAMETERS USED:

-- DAC A/D CHANNEL TO BE READ
-- VOLT VOLTAGE ON THE CHANNEL

out 1813, DAC
out 1814, 0
wait 1815, 128, 0
VOLT = INF(1813) + 256*INF(1814)
if VOLT > 32767 then
  VOLT = VOLT - 65536!
end if
on DAC+ goto 9, 8

CHANNEL 0 X POSITION
CHANNEL 1 Y POSITION

OUTPUT A VOLTAGE TO A SPECIFIED CHANNEL

PARAMETERS USED:

-- DAC = 0 OUTPUT CHANNEL FOR AZIMUTH
-- DAC = 1 OUTPUT CHANNEL FOR ELEVATION
-- VX VOLTAGE ON AZIMUTH CHANNEL
Appendix C

84 if DAC = 0 then 85
   VY = INT(VY)
   HIGHY = INT(VY/256)
   LOWY = VY - 256*HIGHY
   if HIGHY < 0 then
      HIGHY = HIGHY + 16
   end if
   out 1809,HIGHY
   out 1808,LOWY
   return

85 VX = INT(VX)
   HIGHX = INT(VX/256)
   LOWX = VX - 256*HIGHX
   if HIGHX < 0 then
      HIGHX = HIGHX + 16
   end if
   out 1811,HIGHX
   out 1810,LOWX
   return

* TEST IF THE SENSOR HEAD HAS REACHED THE GIVEN POSITION IF NOT WAIT FOR IT
* CHECK FOR POWER FAILURE WHILE MOVING THE SENSOR HEAD
* PARAMETERS USED:
   -- VX AND VY
   -- VMX AND VMY

86 XSTOP = 0
while XSTOP <> 1 or YSTOP <> 1
   gosub 25
   DAC = 0
   if XSTOP <> 1 then
      gosub 11
      VMX = VOLT
      if VMX > VX-5 and VMX < VX+5 then
         XSTOP = 1
      end if
   end if
   if DAC = 1 then
      if YSTOP <> 1 then
         gosub 11
         VMY = VOLT
         if VMY > VY-5 and VMY < VY+5 then
            YSTOP = 1
         end if
      end if
   end if
wend
XSTOP = 0
YSTOP = 0
XYSTOP = 1
return

76 out 1823,145
out 1821,PORTB
return
547 KEYS 4 AND 5 HANDLE THE PRINTING DURING RUNTIME

49 DIS = 1
return
48 DIS = 0
return

ERROR HANDLING
CHECK FOR IRRECOVERABLE ERRORS

40 ERDE = 1
if ERR = 13 then
  TEXTS = " TYPE MISMATCH "
goto 38
elseif ERR = 52 then
  TEXTS = " BAD FILE NUMBER "
goto 38
elseif ERR = 53 then
  TEXTS = " FILE NOT FOUND "
goto 38
elseif ERR = 57 then
  TEXTS = " DEVICE I/O ERROR "
goto 38
elseif ERR = 61 then
  TEXTS = " DISK A+D FULL "
if DRIVES="A:" then
  goto 38
elseif DRIVES="D:" then
  goto 10
else
  goto 38
end if
elseif ERR = 64 then
  TEXTS = " BAD FILE NAME "
goto 38
elseif ERR = 70 then
  TEXTS = " DISK WRITE PROTECT "
goto 38
elseif ERR = 71 then
  TEXTS = " DISK NOT READY "
goto 38
elseif ERR = 72 then
  TEXTS = " DISK MEDIA ERROR "
goto 38
end if

WRITE RECOVERABLE ERROR MESSAGE TO ERROR FILE
AND RESUME EXECUTION AT THE NEXT STATEMENT

if fopen = 0 then
  open DRIVE$="ERROR.CAR" for append as #3
  fopen = 1
end if
write #3,DATES,TIMES,TEXTS,ERR,ERL
resume next

IRRECOVERABLE ERROR DETECTED
CLOSE THE HATCH AND UNLOCK

38 PORTB = 3
gosub 76

DIRECT SENSOR HEAD TO THE FIRST POSITION

DAC = 0
VX = X(1)
gosub 85
DAC = 1
VX = Y(1)
gosub 84
START TO ESTABLISH A COMMUNICATION LINK TO A REMOTE PC TO PASS ERROR MESSAGES (NOT IMPLEMENTED YET)

5 if fopen = 0 then
open DRIVE$"ERROR.CAR" for append as #3
fopen = 1
end if
write #3,DATE$,TIME$,TEXT$,ERR,ERL

END OF PROGRAMME

36 close
PORTB = 3
gosub 76
kill DRIVE$"DUM14Y.CAR"
if ERDE = 0 then
kill DRIVE$"ERROR.CAR"
end if
35 cls
close
color 7,0
30 if POWER = 0 then
locate 10,15 : print "WAITING FOR MAINS POWER TO RETURN."
AST = 1
gosub 25
if POWER = 1 then
POWER = 0
goto 26
end if
goto 30
end if
locate 1,2 : print TEXT$
EIND$ = DRIVE$ + FILES
locate 3,22 : print "END OF PROGRAMME"
color 0,7
locate 10,22: print 
locate 11,22: print "Last data has been stored on"
locate 13,22: print 
locate 14,22: print ";EIND$;"
color 7,0
locate 20,22: print "HAVE A NICE DAY"
END

CHECK FOR MAINS POWER FAILURE
TO USE THIS OPTION, THE PC (AND PREFERABLY ALL EQUIPMENT) MUST BE BACKED UP WITH A BATTERY SUPPLY, TO CONTINUE OPERATION FOR A SHORT WHILE.

25 MAIN = INF(1820) and 32
if MAIN = 0 then
POWER = 1
if ASS = 0 then
open "O",#1,"A:POWER.FAL"
write #1,POWER
close #1
ASS = 1
end if
AST = 0
return
else
POWER = 0
ASS = 0
if PR = 1 and POWER = 0 then
PR = 0
end if
end if
MAIN = 32 : MAINS POWER FAILURE DETECTED

ERDE = 1
TEXTS = " MAINS POWER FAILURE "
if AST = 1 then
  AST = 0
  return 30
and if
  open "O",#/1, "A:POWER.FAL"
  write #1, POWER
  close #1
  return 38

CHANGE FROM DISK DRIVE D TO A FOR WRITING DATA

10 kill "D:DUMMY.CAR"
close
if ERDE = 0 then
  kill "D:ERROR.CAR"
and if
  ERDE = 0
  DRIVE$ = "A:"
open "O",#/1, "A:RESTUP.CAR"
  write #1, DSTOP$
  write #1, ISTOP$
  write #1, INTV
  write #1, DRIVE$
close #1

THE FILE ON DRIVE A IS GIVEN THE SAME NAME AS THE ORGINAL DATAFILE WITH THE EXTENSION OF "C", AN ABBREVIATION OF CARABAS
open "A:"+FILENAMES for append as #2

COPY THE POSITION FILE TO THE NEW DATA DISKETTE
System disk contain position file!
open "O",#/1, "A:"+DESC$ for append as #2
print #1, USING "###":NUMBER
print #1, USING "\":DAY$
for N = 1 to NUMBER
  print #1, USING "\n  print #1, USING "; POSTS(N)
  print #1, USING "
  print #1, USING "; X(N)
  print #1, USING "; Y(N)
  print #1, USING "; TETA(N)
  print #1, USING "; AZIM(N)
  print #1, USING "; H(N)
  print #1, USING "; EPS(N)
  print #1, USING "; SCREEN$(N)
  print #1, USING "; ELSCR$(N)
  print #1, USING "; POSCODE$(N)
next N

OPEN DUMMY FILE WHICH WILL BE KILLED LATER, TO BE ABLE
TO CLOSE FILES IF DISK IS FULL ERROR OCCURS

CLOSE #3
open "O",#/3, "A:DUMMY.CAR"

WRITE 2401 BYTES TO THIS FILE
for JJ = 1 to 100
  write #3, "AAAAAAAAAAAAAAAAAAAA"
next

OPEN ERROR COMMUNICATION FILE ON #3
open "A:ERROR.CAR" for append as #3
fopen = 1
TEL = 0
resume 61
end

MAKE A NEW START TIME AS HN:00:00+N*INTV

27 ZH = VAL(LEFT$(TIME$,2))
ZH = VAL(MIDS(TIME$,4,2))
ZH = INT(ZH/INTV)
SECT = 60/INTV
if (ZH = 23 and ZN >= ((SECT-1)*INTV)-1) or ZH = 24 then
goto 7
end if
for L = 0 to SECT-1
if L = Z then

ZN = (L+1)*INTV
end if
if ZM = 60 then

ZM$ = "00"
elseif ZN < 10 then

ZM$ = "0" + MIDS(STR$(ZM),2,2)
else

ZM$ = MIDS(STR$(ZM),2,2)
end if
next L
if ZM$ = "00" then

ZH = ZH + 1
end if
if ZN < 10 then

ZN$ = "0" + MIDS(STR$(ZH),2,2)
else

ZN$ = MIDS(STR$(ZH),2,2)
end if
TSTART$ = ZM$ + ":" + ZN$ + ":00"
DSTART$ = DATES
return

MAKE A NEW START DATE

7 TSTART$ = "00:00:00"
DAY = VAL(MIDS(DATES,4,2))
MONTH = VAL(MIDS(DATES,1,2))
YEAR = VAL(MIDS(DATES,7,4))
NDAY = DAY + 1
on MONTH goto 65,33,65,80,65,80,65,80,65,80,65,80,65,80,65,80
33 DAY = 28
X = YEAR MOD 4
if X = 0 then

DAY = 29
end if
goto 64
80 DAY = 30
goto 64
65 DAY = 31
64 if NDAY <= DAY then
goto 62
else

NDAY = NDAY - DAY
MONTH = MONTH + 1
end if
if MONTH > 12 then

MONTH = 1
YEAR = YEAR + 1
end if
62 if NDAY < 10 then
  DAYST$ = "0" + MID$(STR$(NDAY),2,2)
  goto 59
end if

59 if MONTH < 10 then
  MONTH$ = "0" + MID$(STR$(MONTH),2,2)
  goto 57
end if

57 YEAR$ = MID$(STR$(YEAR),2,4)

DSTART$ = MONTH$ + "-" + DAYST$ + "-" + YEAR$
return
CARABAS data

MAR3090P
26
04-01-1990
00:00:04 00:02:29
+5.59 +9.15
+5.75 +9.29
00:00:17 00:02:39
+9.64 +9.01
+10.04 +9.33
00:00:26 00:02:49
+8.38 +11.69
+9.19 +9.83
00:00:34 00:02:56
+10.11 +7.02
+9.41 +2.82
00:00:42 00:03:06
+14.15 +7.03
+14.43 +3.26
00:00:47 00:03:18
+22.48 +8.33
+22.47 +8.96
00:00:59 00:03:25
+5.40 +10.63
+4.15 +10.70
00:01:06 00:03:32
+5.38 +11.85
+4.34 +11.12
00:01:14 00:03:40
+5.36 +4.23
+4.23
00:01:21 +5.22
+4.41
00:01:26 +5.50
+4.32
00:01:33 +7.21
+4.70
00:01:42 +7.18
+4.52
00:01:49 +8.68
+6.97
00:01:57 +5.99
+6.02
00:02:05 +6.08
+5.45
00:02:12 +5.50
+5.52
00:02:22 +7.40
+6.93
Appendix E

Meteorological data

04-01-1990, 00:05:00, 49
-24.5, 5
+0.0, 2
+1029.4, 49
+88.0, 98
+283.7, 49
+0.0, 49
+2.9, 48
+0.0, 4

04-01-1990, 00:10:00, 52
-24.5, 1
+0.0, 1
+1029.4, 52
+88.7, 104
+283.6, 52
+0.0, 52
+3.3, 52
+0.0, 4

04-01-1990, 00:15:00, 52
-24.5, 3
+0.0, 4
+1029.4, 52
+84.6, 104
+283.9, 52
+0.0, 52
+2.9, 52
+0.0, 4

04-01-1990, 00:20:00, 52
-24.5, 4
+0.0, 1
+1029.4, 52
+87.4, 104
+283.5, 52
+0.0, 52
+2.7, 52
+0.0, 4

04-01-1990, 00:25:00, 52
-24.5, 1
+0.0, 1
+1029.4, 52
+89.6, 104
+283.0, 52
+0.0, 52
+2.9, 52
+0.0, 4

04-01-1990, 00:30:00, 52
-24.5, 6
+0.0, 1
+1029.5, 52
+89.1, 104
+282.6, 52
+0.0, 52
+3.1, 52
+0.0, 4
**Title:** Calibrated Radiometer for Background Scanning - Carabas

**Abstract:**
Thermal characteristics of targets and backgrounds determine IR detectability of the targets. Therefore not only knowledge of the thermal behaviour of targets is needed, but also of background elements like trees and grass. Long-term measurements are necessary to study time variations of apparent temperatures, covering all weather conditions. For this reason a dual wave-band scanner is developed for autonomous radiation measurements in the spectral regions 3-5 \( \mu \text{m} \) and 8-12 \( \mu \text{m} \). This report describes system design and performance.

**Descriptors:**
- Thermal Radiation
- Infrared Radiation Measurements
- Measuring Instruments

**Distribution/Availability Statement:**
UNLIMITED