RSSP- A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE
SURFACE METHODOLOGY

James T. Treharne

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
June 12, 1991
RSSP- A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

James T. Treharne

<table>
<thead>
<tr>
<th>Accession For</th>
<th>NTIS CRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DTIC TAB</td>
</tr>
<tr>
<td></td>
<td>Unannounced</td>
</tr>
<tr>
<td></td>
<td>Justification</td>
</tr>
</tbody>
</table>

Certificate of Approval:
Bruce E. Herring, Co-Chair Professor Industrial Engineering
Saeed Maghsoudloo, Co-Chair Professor Industrial Engineering
James N. Hool Professor Industrial Engineering
Norman J. Doorenbos Dean Graduate School
Style manual or journal used: IE TRANSACTIONS

Computer software used: Word Perfect 5.1
RSSP - A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE
SURFACE METHODOLOGY

James T. Treharne

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of
Master of Science

Auburn, Alabama
June 12, 1991
RSSP- A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE
SURFACE METHODOLOGY

James T. Treharne

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon the request of individuals or institutions and at their expense. The author reserves all publication rights.

Signature of Author
April 9, 1991
Date

Copy sent to:
Name

Date
THESIS ABSTRACT

RSSP - A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE
SURFACE METHODOLOGY

James T. Treharne

Master of Science, June 12, 1991
(B.S., USMA, 1979)

105 Typed Pages

Directed by Saeed Maghsoodloo
and Bruce E. Herring

The Response Surface Simulation Package (RSSP) consists of three Fortran programs that assist in the teaching of Response Surface Methodology. The programs operate on an IBM (or compatible) personal computer. The package helps bridge the gap between theory and practice which is often difficult to do in a classroom setting. The thesis details the background and objectives of the computer package and a review of Response Surface Methodology theory. The simulation package assumes the user has a sufficient background in experimental design, multiple linear regression, and analysis of variance. The thesis also includes the Fortran source code for the programs as well as detailed instructor and student manuals. Further,
sample outputs from the three programs are provided. A major objective of this work is to make the programs user friendly, for both the instructor and student. This allows the student to gain a great deal of knowledge about practical experimental design and Response Surface Methodology.
TABLE OF CONTENTS

List Of Tables..........................viii

I. Background And Objectives....................1

II. Review Of Response Surface Methodology..........4

III. RSM Solution Methods........................9

IV. RSSP Programming..........................15

V. Instructor Manual..........................21

VI. Student Manual............................40

Bibliography.................................56

Appendices

A. RSMSU.EXE Program Listing.....................58

B. RSM.EXE Program Listing.......................65

C. CRIT.EXE Program Listing......................82
LIST OF TABLES

1. Analysis Of Variance With Two Ind. Variables....13
2. File- INSTR.DAT.................................29
3. Sample Output From RSMSU.EXE....................31
4. RSM Output (First-Order Model)..................34 (Instructor Manual)
5. RSM Output (Second-Order Model)................35 (Instructor Manual)
6. CRIT Output (Optimal Value).....................38 (Instructor Manual)
7. CRIT Output (Contour Data)......................38 (Instructor Manual)
8. RSM Output (First-Order Model)..................49 (Student Manual)
9. RSM Output (Second-Order Model)................50 (Student Manual)
10. CRIT Output (Optimal Value)...................53 (Student Manual)
11. CRIT Output (Contour Data).....................54 (Student Manual)
I. BACKGROUND AND OBJECTIVES

Auburn University's Industrial Engineering department has offered for many years a series of three progressive graduate courses in the design and analysis of experiments. In the third course, IE 632, Response Surface Methodology (RSM) is a primary topic of study. In the early 1970's it was recognized that there was a strong need to give the students the opportunity to apply their knowledge of RSM to a relatively simple, yet realistic problem. Jesse L. Martin, an Auburn graduate student at that time, developed a computer program package called RSAP-Response Surface Analysis Program [3]. RSAP enabled the student to learn a great deal about the practical application of RSM without having to spend an excessive amount of time doing lengthy and repetitive computations. RSAP has proven to be a highly successful tool of reinforcing response surface methodology through a comprehensive practical exercise. The RSAP simulation program continues in use today at Auburn University.

RSAP allows the instructor to load the equations of at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the
optimum region, where the assigned surface is estimated by a second-order equation. The student also uses two supplementary programs to find the optimal point (either a maximum or a minimum) on the surface and to draw a series of response contours. The students analyze a surface with two independent variables although there is a capability to analyze as many as five independent variables. The students spend approximately one-half of the quarter investigating their surface. The students must have a thorough knowledge of statistical techniques taught in previous courses in order to complete their investigations.

With the advent of microcomputers in the 1980's, the RSAP program has become, in some respects, outdated. RSAP was designed for use on an IBM mainframe computer during the "punch card" days. Therefore, although RSAP retains its usefulness for instruction, it has become difficult to use by today's standards. The program continues to be run on a mainframe computer. Therefore, the department must expend resources to keep the program loaded on the computer as well as for processing time when the students conduct their investigations. An instructor is not likely to add or change the surface equations loaded on the computer due to the time and effort required to do so. Additionally, the student must go to a mainframe computer terminal to execute his experiments. Each time he executes an experiment, the student must pick up the results at a print
station. Therefore, the student may spend a considerable amount of time working on things that are not directly related to RSM. Further, RSAP has no interactive capability and the instructor and student manuals were written nearly twenty years ago. Therefore, the system has grown to be more and more user unfriendly compared to what has become the norm with today's personal computers.

The major objective of this thesis is to develop a completely new version of RSAP which incorporates all the previous benefits while eliminating the current weaknesses. The Response Surface Simulation Package (RSSP) is a complete rework of Mr. Martin's original efforts. RSSP is also written in the Fortran programming language and uses RSAP as a framework. The new package is designed to be both interactive and user friendly. The instructor can easily add, change, or delete surfaces to be studied. The instructor can continue to specify the size of the normal random errors that the simulator uses when calculating the response at various design points. The student can study the surface on any IBM compatible computer. The student can also print experimental results with equal ease. Additionally, the user manuals make the package very easy to use. The complete simulation package enables the student to complete the entire response surface methodology process with maximum learning benefit.
II. REVIEW OF RESPONSE SURFACE METHODOLOGY

The primary goal of Response Surface Methodology is to find the set of conditions which optimize a given response surface. The number of independent variables which may affect a response (dependent) variable range from one upward. The optimal response may be either a maximum or a minimum value. In most real world engineering applications, the experimenter has little idea about the exact relationship between the response variable and the independent variables. The experimenter may not even know which independent variables have a statistically significant impact on the response. Because of the infinite amount of possible arrangements between various variables, RSM was developed to find the optimal set of conditions as quickly and as cost efficiently as possible. RSM is an iterative technique that takes the experimenter from an arbitrary starting point to a local optimum. After finding the optimal set of conditions, the experimenter will have a much greater confidence about the expected output as well as the range of conditions which produce a desired level of output.
Formally, the experimenter desires to find the values for X_1, X_2, \ldots, X_p that maximize (or minimize) a response variable, Y.

$$Y = f(X_1, X_2, \ldots, X_p)$$

During experimentation, the response values at given points will vary because of experimental error. These errors are assumed normally distributed with a mean of zero. As mentioned, RSM is an iterative technique and may require many repetitions before the optimal conditions are found. The general steps are:

1. Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of fit. It should also use the proper spacing, which depends heavily on experimental error.

2. Conduct first-order experiments.

3. Determine if a first-order model is adequate. If an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a second-order model. On the other hand, if there is a
good fit but no significant coefficients, the experimenter should increase the spacing. It is time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.

4. Design second-order experiments. There must be a sufficient number of observations as in the first-order design.

5. Conduct the second-order experiments.

6. Determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the $F(LOF)$ is 75% of the critical F value. If there is not a good fit, the experimenter must decrease the spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.

7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimal occurs.

8. Map contours of the response variable.

Several points must be taken into consideration during the optimization process. First, the experimental design must be properly constructed in order to ensure that the formulas used to derive the analysis of variance results are correct. In the case of first-order experimentation,
the designs should be balanced. In the case of second-order models, the designs should be rotatable. The bibliography contains an excellent reference to study Response Surface Methodology and the design of experiments [4]. An additional source highlights an excellent strategy for progressing through the eight steps mentioned above [2].

Second, the correct spacing is critical during experimentation. Experience will help one select an initial spacing. If the spacing is too wide, it will be difficult to get an adequate least-squares fit. On the other hand, if the spacing is too narrow (relative to \(\sigma_e \)), the resulting estimates of the coefficients may not be precise. However, the coefficients may appear to be insignificant because the experimental error is large relative to the size of the spacing. Third, the experimenter may have to conduct many iterations of first-order experiments until the general area of the optimum is reached. The experimenter must be careful about selecting the size of moves that is made along the path of steepest ascent (descent). If the moves are too small, one will expend more money and time to reach the optimum. If the moves are too large, one may inadvertently bypass the optimal point. In summary, second-order experimentation is warranted when the first-order model no longer provides a good fit after appropriate spacing adjustment. At this point, the experimenter should be in the vicinity of the
optimum. The second-order model will require a different design than the first order. This is true because three levels of each variable must be examined in order to check for quadratic effects. At this point, the primary concern is to fit a second-order model over the largest possible area. This allows the experimenter to plot the response contours (if desired) over a large area.
III. RSM SOLUTION METHODS

Response Surface Methodology is a procedure used to find the mathematical relationship between a dependent variable, Y, and a number of independent variables - $X_1, X_2, ..., X_p$. The methodology provides a sequence to quickly establish that relationship. The mathematical techniques used in the methodology are quite common. Standard linear regression techniques are used to determine the relationship between the variables. A standard analysis of variance (ANOVA) table is then constructed to determine the statistical significance of the coefficients as well as the adequacy of the model being used.

CALCULATION OF REGRESSION COEFFICIENTS

The first step is to estimate the various regression coefficients in the first-order model. The model, in general, is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon,$$

where ϵ represents the experimental error. This error is assumed to be normally distributed with a mean of zero. A simple regression problem with two independent variables is presented to illustrate the computation of the
coefficients. If there are "n" total observations, then the following two matrices are written:

\[
Y = \begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{bmatrix}
\quad X = \begin{bmatrix}
1 & X_{11} & X_{21} \\
1 & X_{12} & X_{22} \\
\vdots & \vdots & \vdots \\
1 & X_{1n} & X_{2n}
\end{bmatrix}
\]

The left hand column of X consists of the value of 1 only. These are dummy variables which are associated with \(\beta_0 \). The method of least squares is used to determine the coefficients. Therefore, the goal is to minimize the least squares function:

\[
L = \sum_{j=1}^{n} (e_j)^2 = \sum_{j=1}^{n} (y_j - \beta_0 - \beta_1 x_1 - \beta_2 x_2)^2
\]

In matrix notation the least squares function becomes:

\[
L = \epsilon^t \ast \epsilon = (Y-XB)^t \ast (Y-XB)
\]

where t stands for transpose. The next step is to take the partial derivatives of the least squares function with respect to each of the coefficients \((\beta_0, \beta_1, \beta_2) \). All three of the partial derivatives are then set equal to zero to obtain the normal equations. In matrix notation, these equations can be rearranged in the form of

\[
(X^t \ast X) \ast \beta = X^t \ast Y.
\]

This is equivalent to:
If \(\mathbf{A} = \mathbf{X}^T \mathbf{X} \) and \(\mathbf{G} = \mathbf{X}^T \mathbf{Y} \), then the solution vector becomes:

\[
\mathbf{B} = \mathbf{A}^{-1} \mathbf{G}
\]

ANALYSIS OF VARIANCE

After the coefficients have been found, the next step is to conduct the analysis of variance. The purpose of this is twofold. First, it is necessary to determine if the coefficients are significant. Second, it is necessary to determine if the first (or second)-order model is satisfactory. The sum of the squares terms used in the analysis of variance are calculated in the following manner.

1. Uncorrected SS(Total) = \(\Sigma (y_i)^2 \). This is the value of all "n" observations squared.

2. \(SS(\beta_0) = (\Sigma y_i)^2 / n \). This is commonly referred to as the correction factor.

3. \(SS(\beta_1) = (\beta_1)^2 / (A_{22})^{-1} \). This is the sum of squares due to \(\beta_1 \) after assuming that the other variables are in the model. In other words, it is the net contribution to the regression sum of the squares.

4. \(SS(\beta_2) = (\beta_2)^2 / (A_{33})^{-1} \). Same as in previous step.
5. \(SS(\text{Residual}) = SS(\text{Total}) - SS(\beta_0) - SS(\beta_1) - SS(\beta_2) \). The residual sum of the squares accounts for experimental error and error due to the inadequacy of the model.

6. \(SS(\text{Pure Error}) = \sum_k (\sum_i y_{ik}^2 - (\sum_i y_{ik})^2/h_k) \); where \(i=1,2,\ldots,h \). There are "k" distinct design points and "h_k" observations at the kth design point. This sum of the squares is due to the experimental error when conducting multiple repetitions at a point. In order to conduct F-tests, \(SS(\text{Error}) \) should have at least five degrees of freedom.

7. \(SS(\text{Lack of Fit}) = SS(\text{Residual}) - SS(\text{Pure Error}) \) This error accounts for the inadequacy of the model.

After the above SS's are calculated, the ANOVA table is constructed and the appropriate F-tests made. The procedures for finding the regression coefficients and analysis of variance table for a second-order model closely parallel the method for the first-order model. The second-order model is:

\[
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 + \epsilon
\]

Although the experimental design must provide sufficient df to evaluate the quadratic effects, the solution procedure is the same. The analysis of variance table for a first-order model with two independent variables is shown in Table 1.
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F-RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>n</td>
<td>SS(T)</td>
<td>SS(T)/n</td>
<td>-----</td>
</tr>
<tr>
<td>(B_0)</td>
<td>1</td>
<td>SS((B_0))</td>
<td>SS((B_0))</td>
<td>MS((B_0))/MSE</td>
</tr>
<tr>
<td>(B_1)</td>
<td>1</td>
<td>SS((B_1))</td>
<td>SS((B_1))</td>
<td>MS((B_1))/MSE</td>
</tr>
<tr>
<td>(B_2)</td>
<td>1</td>
<td>SS((B_2))</td>
<td>SS((B_2))</td>
<td>MS((B_2))/MSE</td>
</tr>
<tr>
<td>RESIDUAL</td>
<td>n-3</td>
<td>SS(RES)</td>
<td>SS(RES)/DF(RES)</td>
<td>MS(RES)/MSE</td>
</tr>
<tr>
<td>LACK OF FIT</td>
<td>(n-3)-(\Sigma(h_k-1))</td>
<td>SS(LOF)</td>
<td>SS(LOF)/DF(LOF)</td>
<td>MS(LOF)/MSE</td>
</tr>
<tr>
<td>EXPERIMENTAL ERROR</td>
<td>(\Sigma(h_k-1))</td>
<td>SS(EE)</td>
<td>SS(EE)/DF(EE)</td>
<td>-- ---</td>
</tr>
</tbody>
</table>

Table 1. Analysis of Variance with Two Ind. Variables

DETERMINATION OF CRITICAL VALUES

After a second-order model has been found that best fits the surface, the experimenter must determine the optimal response and the point at which it occurs. The procedure is quite simple. Again, the second-order model is:

\[
Y = B_0 + B_1 X_1 + B_2 X_2 + B_{11} X_1^2 + B_{22} X_2^2 + B_{12} X_1 X_2 + \epsilon
\]
The optimum occurs at the point where the partial derivative with respect to each independent variable is equal to zero. In this case:

\[
\frac{\partial y}{\partial x_1} = \beta_1 + 2\beta_{11}x_1 + \beta_{12}x_2 = 0
\]

\[
\frac{\partial y}{\partial x_2} = \beta_2 + 2\beta_{22}x_2 + \beta_{12}x_1 = 0
\]

In matrix form:

\[
\begin{bmatrix}
2\beta_{11} & \beta_{12} \\
\beta_{12} & 2\beta_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
-\beta_1 \\
-\beta_2
\end{bmatrix}
\]

Clearly, the optimal point is obtained from:

\[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
2\beta_{11} & \beta_{12} \\
\beta_{12} & 2\beta_{22}
\end{bmatrix}^{-1}
\begin{bmatrix}
-\beta_1 \\
-\beta_2
\end{bmatrix}
\]

The values of \(x_1\) and \(x_2\) are substituted back into the model. Then the optimal value of the response variable is estimated. This is normally a maximum or minimum value. However, it can also be a saddle point. Therefore, in order to determine the exact nature of the optima, one must conduct a canonical analysis [4].
IV. RSSP PROGRAMMING

The Response Surface Simulation Package consists of three executable Fortran programs. The first program, RSMSU.EXE, is used by the instructor to set up a data file for student use. Prior to running this program, the instructor must have previously constructed a data file entitled INSTR.DAT. The second program, RSM.EXE, is the primary program in the simulation. This program produces the simulated response values for each experiment as well as the resulting ANOVA table. The final program, CRIT.EXE, is used to calculate the optimal conditions of the second-order equation, to estimate the optimal value of the dependent variable, and to provide data to map response contours. These programs use RSAP as a general framework. In some segments there is a close parallel to RSAP while in other segments there is no resemblance at all.

This chapter discusses the programming logic in each of the three executable Fortran programs. First, one must understand the capabilities of the simulation package.

1. The simulation package is designed to accommodate at most five independent variables. It is recommended that most introductory courses in RSM,
at least initially, use only two independent variables.

2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.

3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor must specify the size of the error variance.

4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59. This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary degrees of freedom.

5. Each surface that the instructor inputs is represented by a second-order equation. Some coefficients may be set equal to zero. Its general form is

\[y = \beta_0 + \sum_{i=1}^{5} \beta_{ii} x_i^2 + \sum_{i=1}^{4} \sum_{j=i+1}^{5} \beta_{ij} x_i x_j + \sum_{i=1}^{5} \epsilon_i x_i. \]

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide
invalid results. For example, if the student uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

RSMSU.EXE

This program reads an instructor prepared data file (INSTR.DAT). This file contains all the vital data for at most fifteen response surfaces. The program then uses this data file to create an encoded data file (STU.DAT). The student uses STU.DAT when he executes the main program. This program is used to ensure that the student does not have access to the uncoded surface data in the INSTR.DAT. Prior to executing this setup program, the instructor must use a text editor to create an ASCII file called INSTR.DAT. Each surface contains the following six lines of information.

1. Coefficients of the second-order terms, β_{ii}.
2. Coefficients of the interaction terms, β_{ij}.
3. Coefficients of the first-order terms, β_i.
4. Constant term, β_0.
5. Experimental error variance.
6. Center point for the first set of experiments.

RSMSU.EXE first reads and stores the data from INSTR.DAT. The program then encodes the data by adding a constant to each coefficient and then multiplying by another constant. Different pairs of constants are used
for each line of coefficients. The encoded file is then read back by the computer. The file is decoded, and the decoded data is displayed on the computer screen. This gives the instructor the opportunity to verify the contents of STU.DAT. The instructor may also receive a printed copy of the surface data. Each time the instructor executes this program, STU.DAT is erased and then reconstructed.

RSM.EXE

RSM.EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the user for his surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the user for the number of repetitions at each point as well as the location of each point. The program summarizes this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter all data. Once this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. The error range is restricted to within four standard deviations of the mean (or zero). Next, the program internally rearranges the data in order to make the
regression and ANOVA calculations. These calculations are made using the regression and analysis of variance techniques described in the previous chapter. The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance of coefficients and goodness of fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. The sum of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables the student to obtain a hard copy of the results and to begin another set of experiments.

CRIT.FOR

The final program is executed after an adequate second-order model has been found. The student is prompted to input the coefficients of his second-order model. The student then verifies the equation by reviewing it on the computer screen. The program calculates the first partial derivative with respect to each independent variable and sets them equal to zero. These equations are then solved by matrix algebra techniques. The program displays and
prints the value of the independent variables and the response variable at the optimal point. The student then has the option to let the program generate data to map the response contours. The student inputs the y value of the contour, as well as the maximum, minimum, and incremental values for each independent variable. The increment (delta) will dictate how many y values are generated. For example, assume that the minimum and maximum values for \(X_1 \) are 1.0 and 2.0 respectively. If the delta value is .2 for \(X_1 \), then responses will be generated for \(X_1 \) equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. If the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing delta or extending the range between the minimum and maximum values for each variable of interest. Trial and error may be necessary when specifying the parameters used to calculate the responses in order to get a reasonable amount of data points to plot the contours. The program allows the student to continue to plot as many contours as he desires.
V. INSTRUCTOR MANUAL
RSSP—A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE
SURFACE METHODOLOGY

INSTRUCTOR MANUAL
OVERVIEW

This manual explains how to use the Response Surface Simulation Package (RSSP). This package is used in the instruction of Response Surface Methodology (RSM). It was developed by James T. Treharne, an Industrial Engineering graduate student at Auburn University. The programs operate on an IBM (or compatible) personal computer. The simulation is a complete revision of a similar set of programs called Response Surface Analysis Program (RSAP). Jesse Martin, a former Auburn University graduate student, developed RSAP in the early 1970's. RSSP enables an instructor to test a student's knowledge of Response Surface Methodology by giving him a simple, yet realistic RSM problem to solve. Additionally, an instructor can use RSSP to generate examples to reinforce the theoretical concepts taught in the classroom.

RSSP is designed for use in graduate level engineering courses that teach RSM. RSM techniques are thoroughly discussed by Montgomery [2]. A student should have an understanding of multiple regression, experimental design, and analysis of variance. The package has sufficient capabilities and flexibility to meet most teaching needs. RSSP allows the instructor to load the equations of at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the optimum.
region, where the assigned surface is estimated by a second-order model. The student can also find the estimated optimal point and obtain data to plot estimated response contours. The simulation package has the following capabilities:

1. The simulation package is designed to accommodate at most five independent variables. It is recommended that most introductory courses in RSM, at least initially, use only two independent variables.

2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.

3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor must specify the size of the error variance.

4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59. This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary amount of degrees of
freedom to estimate the coefficients and error variance.

5. Each surface that the instructor inputs is represented by a second-order equation, where some of the coefficients may be set to zero. Its general form is

\[Y = \beta_0 + \sum_{i=1}^{5} \beta_{i1} X_i^2 + \sum_{i=1}^{4} \sum_{j=1}^{5} \beta_{ij} X_i X_j + \sum_{i=1}^{5} \beta_{i1} X_i. \]

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide invalid results. For example, if he uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

REVIEW OF RSM

The primary goal of RSM is to find the set of conditions which optimize a given response surface. RSM is an iterative approach that finds the optimal set of conditions as quickly and as efficiently as possible. The general steps are:

1. Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of
26

fit. The test should also use the proper spacing, which depends heavily on experimental error.

2. Conduct first-order experiments.

3. Determine if a first-order model is adequate. If an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a second-order model. On the other hand, if there is a good fit but no significant coefficients, the experimenter should increase the spacing. It is time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.

4. Design a second-order experiment. There must be a sufficient number of observations as in the first-order design.

5. Conduct the second-order experiments.

6. From the ANOVA table determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the F(LOF) is 75% of the critical F value. If there is not a good fit, the experimenter must
decrease the spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.

7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimum occurs.

8. Map contours of the response variable.

An additional source highlights an excellent strategy for progressing through the above steps [1].

RSSP PROGRAMMING

RSSP consists of three executable Fortran programs: RSMSU.EXE, RSM.EXE, and CRIT.EXE. The instructor uses all three of the programs. Meanwhile, the student uses only RSM.EXE and CRIT.EXE. The package also uses two data files. The first data file, INSTR.DAT, contains the data for the surfaces. The student should not be given a copy of this file. The second file, STU.DAT, is created by the instructor with RSMSU.EXE. This data file contains an encoded copy of the surface data. A detailed explanation of the three programs follows.

RSMSU.EXE

This program reads an instructor prepared data file (INSTR.DAT). This file contains all the vital data for at most fifteen response surfaces. The program then uses this data file to create an encoded data file (STU.DAT). The
student uses STU.DAT when he executes the main program. This program is used to ensure that the student does not have access to the uncoded surface data in INSTR.DAT. Prior to executing this setup program, the instructor must use a text editor to create an ASCII file called INSTR.DAT. Each surface contains the following six lines of information.

1. Coefficients of the second-order terms, B_{ii}.
 \[(B_{11}, B_{22}, B_{33}, B_{44}, B_{55})\]
2. Coefficients of the interaction terms, B_{ij}.
 \[(B_{12}, B_{13}, B_{14}, B_{15}, B_{23}, B_{24}, B_{25}, B_{34}, B_{35}, B_{45})\]
3. Coefficients of the first-order terms, B_i.
 \[(B_1, B_2, B_3, B_4, B_5)\]
4. Constant term, B_0.
5. Experimental error variance, σ^2.
6. Center point for the first set of experiments.
 \[(X_1, X_2, X_3, X_4, X_5)\]

Each line must contain a value for every coefficient associated with the variables, even if it is zero. Values should be separated by a space or a comma. Do not combine lines together. RSMSU.EXE first reads and stores the data from INSTR.DAT. The program then encodes the data by adding a constant to each coefficient and then multiplying by another constant. Different pairs of constants are used for each line of coefficients. The encoded file is then read back by the computer. The file is decoded, and the
decoded data is displayed on the computer screen. This gives the instructor the opportunity to verify the contents of STU.DAT. The instructor may also receive a printed copy of the surface data. Each time the instructor executes this program, STU.DAT is erased and then reconstructed.

Table 2 contains a copy of INSTR.DAT that contains data for three surfaces.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2, -47,0,0,0</td>
<td>10,0,0,0,0,0,0,0,0,0,0</td>
<td>8,14,0,0,0</td>
<td>82</td>
<td>.05</td>
</tr>
<tr>
<td>-4,8,0,0,0</td>
<td>-16,-2,0,0,0</td>
<td>8,0,0,0,0,0,0,0,0,0,0</td>
<td>-14,47,0,0,0</td>
<td>83</td>
</tr>
<tr>
<td>-1,11,0,0,0</td>
<td>11,7,0,0,0</td>
<td>-8,0,0,0,0,0,0,0,0,0,0</td>
<td>-3,-18,0,0,0</td>
<td>-16</td>
</tr>
<tr>
<td>8,-4,0,0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. File- INSTR.DAT

The equation for surface number one from Table 2 is:

\[Y = -2X_1^2 - 47X_2^2 + 10X_1X_2 + 8X_1 + 14X_2 + 81. \]

The experimental error variance is equal to .05. The starting point for the first set of experiments is \(X_1 = -4 \) and \(X_2 = 8 \). The program is executed by typing "RSMSU." The program prompts the instructor for all the necessary
information. The following information pertains to the requested input.

1. **NAME**—Enter up to 25 characters.

2. **DATE**—Enter in any format up to 25 characters.

3. **Number of Surfaces**—An error will occur if one inputs a number greater than the number of surfaces in INSTR.DAT. If a number is input that is less than the number of surfaces in INSTR.DAT, the data on the additional surfaces will not be used.

4. The program will display the data on each surface to allow verification by the instructor. If an error is found, it will be necessary to revise INSTR.DAT and execute the program again.

5. The program will generate, if desired, a listing of the surface data which has been written to STU.DAT. Table 3 shows this output after using RSMSU with the data file from Table 2.
RSM CONTENTS OF FILE STU.DAT

PREPARED BY: John Smith
DATE PREPARED: February 12, 1991

<table>
<thead>
<tr>
<th>XX.XX</th>
<th>XX.XX</th>
<th>XX.XX</th>
<th>XX.XX</th>
<th>XX.XX.XX.XX</th>
<th>XX.XX.XX</th>
<th>XX.XX.XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>822</td>
<td>833</td>
<td>844</td>
<td>855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>813</td>
<td>814</td>
<td>815</td>
<td>823</td>
<td>824</td>
<td>825</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EVAR

x1 x2 x3 x4 x5 (STARTING POINT)

NUMBER OF SURFACES TO BE WRITTEN TO STU.DAT = 3

SURFACE NUMBER 1

-2.000	-47.000	0.000	0.000	0.000	0.000	0.000	0.000
10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8.000	14.000	0.000	0.000	0.000	0.000	0.000	0.000
81.000	0.500	8.000	0.000	0.000	0.000	0.000	0.000

SURFACE NUMBER 2

-16.000	-2.000	0.000	0.000	0.000	0.000	0.000	0.000
8.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-14.000	47.000	0.000	0.000	0.000	0.000	0.000	0.000
83.000	0.25	11.000	0.000	0.000	0.000	0.000	0.000

SURFACE NUMBER 3

11.000	7.000	0.000	0.000	0.000	0.000	0.000	0.000
-8.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-3.000	-18.000	0.000	0.000	0.000	0.000	0.000	0.000
-16.000	0.050	8.000	-4.000	0.000	0.000	0.000	0.000

Table 3. Sample Output from RSMSU.EXE

RSMSU.EXE

RSMSU.EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the
user for the surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the user for the number of repetitions at each point as well as the location of each point. The program summarizes this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter the data. Once this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. The error range is restricted to within four standard deviations of the mean (or zero). The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance and goodness of fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. The sum of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables
the student to obtain a hard copy of the results and to begin another set of experiments. The following points pertain to the execution of this program.

1. NAME- Enter up to 25 characters.

2. Surface Number- Each student is assigned his own surface number.

3. Independent Variables- Maximum of five. Instructor must inform the student of this number.

4. First Design Point- The instructor can include an initial starting point in STU.DAT. This is the center of the initial set of first-order experiments.

5. The program will summarize the data input. If an error was made during input, the data must be reentered. The values are printed with a precision of four decimal places.

An example output is shown in Table 4. This is a first-order experiment. The surface equation used is

\[Y = -2X_1^2 - 47X_2^2 + 10X_1X_2 + 8X_1 + 14X_2 + 81. \]

An example output of a second-order experiment using the same surface is shown in Table 5.
Table 4. RSM Output (First-Order Model)

<table>
<thead>
<tr>
<th>POINT GENERATED</th>
<th>FORECASTED</th>
<th>DIFFERENCE</th>
<th>DIFF SQUARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3287547E+04</td>
<td>-3287366E+04</td>
<td>-3265899E-01</td>
</tr>
<tr>
<td>2</td>
<td>-3287719E+04</td>
<td>-3287667E+04</td>
<td>-1243746E+00</td>
</tr>
<tr>
<td>3</td>
<td>-3266157E+04</td>
<td>-3266519E+04</td>
<td>-1311151E+00</td>
</tr>
<tr>
<td>4</td>
<td>-3111370E+04</td>
<td>-3111057E+04</td>
<td>-9781952E-01</td>
</tr>
<tr>
<td>5</td>
<td>-3111278E+04</td>
<td>-3111057E+04</td>
<td>-4867589E-01</td>
</tr>
<tr>
<td>6</td>
<td>-3131894E+04</td>
<td>-3131905E+04</td>
<td>-1226188E-03</td>
</tr>
<tr>
<td>7</td>
<td>-3198966E+04</td>
<td>-3199212E+04</td>
<td>-3755363E-02</td>
</tr>
<tr>
<td>8</td>
<td>-3198967E+04</td>
<td>-3199212E+04</td>
<td>-5868787E-01</td>
</tr>
</tbody>
</table>

SUM OF SQUARED DIFFERENCES = .1104840E+01
Table 5. RSM Output (Second-Order Model)
<table>
<thead>
<tr>
<th>POINT</th>
<th>GENERATED</th>
<th>FORECASTED</th>
<th>DIFFERENCE</th>
<th>DIFF SQUARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2814934E+02</td>
<td>-2833752E+02</td>
<td>-1881797E+00</td>
<td>.3541162E-01</td>
</tr>
<tr>
<td>2</td>
<td>-2832129E+02</td>
<td>-2833752E+02</td>
<td>-1622984E-01</td>
<td>.2634077E-03</td>
</tr>
<tr>
<td>3</td>
<td>-190822E+02</td>
<td>-196539E+02</td>
<td>-2471688E+00</td>
<td>.6109242E-01</td>
</tr>
<tr>
<td>4</td>
<td>-1086717E+02</td>
<td>-1080025E+02</td>
<td>-6691577E-01</td>
<td>.4477720E-02</td>
</tr>
<tr>
<td>5</td>
<td>-1077503E+02</td>
<td>-1080025E+02</td>
<td>.1622984E-01</td>
<td>.2634077E-03</td>
</tr>
<tr>
<td>6</td>
<td>-1966753E+02</td>
<td>-1960536E+02</td>
<td>.6217143E-01</td>
<td>.3865286E-02</td>
</tr>
<tr>
<td>7</td>
<td>-1959519E+02</td>
<td>-1960536E+02</td>
<td>-1016823E-01</td>
<td>.1033930E-03</td>
</tr>
<tr>
<td>8</td>
<td>-9738239E+02</td>
<td>-9729296E+02</td>
<td>-.8942575E+00</td>
<td>.7996946E-02</td>
</tr>
<tr>
<td>9</td>
<td>-9724149E+02</td>
<td>-9729296E+02</td>
<td>-5147649E-01</td>
<td>.2649829E-02</td>
</tr>
<tr>
<td>10</td>
<td>-8702938E+02</td>
<td>-8712318E+02</td>
<td>-.9579525E-01</td>
<td>.8797548E-02</td>
</tr>
<tr>
<td>11</td>
<td>-8700544E+02</td>
<td>-8712318E+02</td>
<td>-.1177387E+00</td>
<td>.1386239E-01</td>
</tr>
<tr>
<td>12</td>
<td>-.8341693E+02</td>
<td>-.8342840E+02</td>
<td>-.1164506E+01</td>
<td>.1311414E-03</td>
</tr>
<tr>
<td>13</td>
<td>-.8373117E+02</td>
<td>-.8342840E+02</td>
<td>-.3027726E+00</td>
<td>.9167125E-01</td>
</tr>
<tr>
<td>14</td>
<td>-.9152505E+02</td>
<td>-.9149579E+02</td>
<td>-.2926262E+01</td>
<td>.8563008E-03</td>
</tr>
<tr>
<td>15</td>
<td>-.9139270E+02</td>
<td>-.9149579E+02</td>
<td>-.1030865E+00</td>
<td>.1062682E-01</td>
</tr>
<tr>
<td>16</td>
<td>-.9086037E+02</td>
<td>-.9086204E+02</td>
<td>-.1976831E+00</td>
<td>.3907862E-05</td>
</tr>
<tr>
<td>17</td>
<td>-.9082007E+02</td>
<td>-.9086204E+02</td>
<td>-.4197408E+00</td>
<td>.1761824E-02</td>
</tr>
</tbody>
</table>

SUM OF SQUARED DIFFERENCES = .5221681E+00

Table 5 (Continued). RSM Output (Second-order Model)

CRIT.EXE

The final program is executed after an adequate second-order model has been found. The student is prompted to input the coefficients of his second-order model. The student then verifies the equation by reviewing it on the computer screen. The program calculates the first partial derivative with respect to each independent variable and sets them equal to zero. These equations are then solved simultaneously by matrix algebra techniques. The program displays and prints the value of the independent variables and the response variable at the optimal point. The student then has the option to let the program compute data to map response contours. The student inputs the y value
of the contour, as well as the maximum and minimum values for each independent variable. The student must also input an increment for each independent variable called delta. The delta values will dictate how many response values are generated. For example, assume that the minimum and maximum values for X_1 are 1.0 and 2.0 respectively. If the delta value is .2 for X_1, then responses will be generated for X_1 equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. If the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing the delta or extending the range between the minimum and maximum values for each variable of interest. Trial and error may be necessary when specifying the parameters used to generate the responses in order to get a reasonable amount of data points to plot the contours. The program allows the student to continue to plot as many contours as he desires. Table 6 shows the output from CRIT.EXE. This is the optimal point for the same surface as before. Table 7 shows the contour data output from CRIT.EXE.
CRITICAL ANALYSIS OF SURFACE

NAME: John Smith

SURFACE NUMBER = 1

SURFACE EQUATION IS:
\[y = -2.000x_1^2 + 47.000x_2^2 + 10.000x_1x_2 + 8.000x_1 + 14.000x_2 + 81.000 \]

-- VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT --

\[x_1 = 3.231884 \]
\[x_2 = -0.492754 \]

-- VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT --

\[y = 97.376812 \]

Table 6. CRIT Output (Optimal Value)

VALUES [+/- .01] TO PLOT CONTOUR = 87.52

<table>
<thead>
<tr>
<th>Y</th>
<th>87.51</th>
<th>87.53</th>
<th>87.52</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.700</td>
<td>.700</td>
<td>.900</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>.600</td>
<td>.600</td>
</tr>
<tr>
<td></td>
<td>.800</td>
<td>.600</td>
<td>.600</td>
</tr>
<tr>
<td></td>
<td>.200</td>
<td>.600</td>
<td>.600</td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td>.500</td>
<td>.500</td>
</tr>
<tr>
<td></td>
<td>.600</td>
<td>.900</td>
<td>.900</td>
</tr>
<tr>
<td></td>
<td>.700</td>
<td>.700</td>
<td>.700</td>
</tr>
<tr>
<td></td>
<td>.800</td>
<td>.800</td>
<td>.800</td>
</tr>
</tbody>
</table>

Table 7. CRIT Output (Contour Data)
BIBLIOGRAPHY

VI. STUDENT MANUAL
RSSP- A FORTRAN SIMULATION PACKAGE
FOR USE IN TEACHING RESPONSE SURFACE METHODOLOGY

STUDENT MANUAL
OVERVIEW

This manual explains to the student how to use the Response Surface Simulation Package (RSSP). This package is used in the instruction of Response Surface Methodology (RSM). It was developed by James T. Treharne, an Industrial Engineering graduate student at Auburn University. The programs operate on an IBM (or compatible) personal computer. The simulation is a complete revision of a similar set of programs called Response Surface Analysis Program (RSAP). Jesse Martin, a former Auburn University graduate student, developed RSAP in the early 1970's. RSSP enables a student to reinforce his knowledge of Response Surface Methodology by giving him a simple, yet realistic RSM problem to solve.

RSSP is designed for use in graduate level engineering courses that teach RSM. RSM techniques are thoroughly discussed by Montgomery [2]. A student should have an understanding of multiple regression, experimental design, and analysis of variance. RSSP allows the instructor to load the equations for at most 15 unique surfaces into the computer. The student is then required, without knowledge of the true surface equation, to use proper RSM techniques to arrive near the optimum region, where the assigned surface is estimated by a second-order model. The student can also find the estimated optimal point and obtain data
to plot estimated response contours. The simulation package has the following capabilities:

1. The simulation package is designed to accommodate at most five independent variables. The instructor will inform the student of the number of variables.

2. The instructor may provide data for at most fifteen different response surfaces. This normally enables each student to experiment with a unique surface.

3. The experimental error is assumed normally distributed with a mean equal to zero. The instructor specifies the size of the error variance. The student can estimate the size of the error variance during experimentation.

4. The maximum number of observations is restricted to sixty. That is to say, the degrees of freedom for the corrected total SS's cannot exceed 59. This number is sufficient for almost any practical situation because an experimenter should always design an experiment that minimizes cost while providing the necessary amount of degrees of freedom to estimate the coefficients and error variance.

5. Each surface that the instructor inputs is represented by a second-order equation, where
coefficients may be set to zero. Its general form is

\[Y = \beta_0 + \sum_{i=1}^{5} \beta_{i1}X_i^2 + \sum_{i=1}^{4} \sum_{j=i+1}^{5} \beta_{ij}X_iX_j + \sum_{i=1}^{5} \varepsilon_iX_i. \]

6. The student is responsible for preparing a proper experimental design. Failure to do so may provide invalid results. For example, if the student uses an unbalanced design, the equations used to calculate the various sum of the squares terms are invalid.

REVIEW OF RSM

The primary goal of RSM is to find the set of conditions which optimize a given response surface. RSM is an iterative approach that finds the optimal set of conditions as quickly and as efficiently as possible. The general steps are:

1. Design a 1st-order experiment. The design must include a sufficient number of observation points to estimate the regression coefficients, the experimental error, and to test for goodness of fit. The test should also use the proper spacing, which depends heavily on experimental error.

2. Conduct first-order experiments.
3. Determine if a first-order model is adequate. If an adequate fit exists and at least one independent variable is significant, move along the path of steepest ascent (descent) to the next center point. If there is not a good fit, adjust the spacing until a satisfactory fit is obtained. If a good fit is impossible and the coefficients remain insignificant, it is time to try a second-order model. On the other hand, if there is a good fit but no significant coefficients, the experimenter should increase the spacing. It is time to move to a second-order model when the experimenter can achieve a good fit but cannot achieve significant coefficients.

4. Design second-order experiments. There must be a sufficient number of observations as in the first-order design.

5. Conduct the second-order experiments.

6. From the ANOVA table determine if there is an adequate fit. If there is a good fit and the coefficients are significant, expand the spacing until the $F(LOF)$ is 75% of the critical F value. If there is not a good fit, the experimenter must decrease spacing. If the fit is adequate and there are no significant coefficients, the spacing must be increased.
7. Estimate the optimal value for the dependent variable and the values of the independent variables where the optimum occurs.

8. Map contours of the response variable.

An additional source highlights an excellent strategy for progressing through the above steps [1].

RSSP PROGRAMMING

When using RSSP, the student must possess two executable Fortran programs: RSM.EXE and CRIT.EXE. The student must also have a data file, STU.DAT, which contains encoded data for the surfaces. The student should not attempt to make any changes to this data file. Additionally, there is no value to the student to read this data file since it contains encoded data for use by the main program, RSM.EXE. A detailed explanation of the two programs follows.

RSM.EXE

RSM.EXE is the primary program in the simulation package. This program begins by reading the encoded data from STU.DAT. It then decodes the data and prompts the student for his surface number, the number of independent variables, the number of distinct design points, and the order of the model being used. The program then prompts the student for the number of repetitions at each point as well as the location of each point. The program summarizes
this data on the computer screen so that the student may verify the input. If there is an input error, the student must reenter the data. Once this is complete, the program generates a response value for each observation in the experiment. A random number generator is used to calculate the experimental error at each design point. This error is based on the given error variance in the surface data. The error range is restricted to within four standard deviations of the mean (or zero). The program produces three blocks of information. First, it prints the rearranged input data. This includes the value of the response variable, design point number, and the values of the independent variables. Second, the program prints a standard ANOVA table which includes the regression coefficients and the necessary F statistics to conduct the significance and goodness-of-fit tests. Third, the program prints a table with generated responses, the forecasted responses (from the regression equation), their difference, and their differences squared. The sum of the squared differences is also equal to the residual sum of the squares in the ANOVA table. Finally, the program enables the student to obtain a hard copy of the results and to begin another set of experiments. The following points pertain to the execution of this program.

1. NAME- Enter up to 25 characters.
2. **Surface Number**—Each student is assigned his own surface number.

3. **Independent Variables**—Maximum of five. Instructor must inform the student of this number.

4. **First Design Point**—The instructor may have included an initial starting point in STU.DAT. This is the center of the initial set of first-order experiments.

5. The program will summarize the data input. If an error was made during input, the data must be reentered. The values are printed with a precision of four decimal places.

An example output is shown in Table 8. This is a first-order experiment. The exact surface equation used is

\[Y = -4X_1^2 - 40X_2^2 + 11X_1X_2 + 6X_1 + 17X_2 + 60. \]

The estimated surface equation (for a first-order experiment) is

\[\hat{Y} = -8.868235X_1 + 165.7400X_2 + 200.5518. \]

The F-Ratios show that the three coefficients are all highly significant. Additionally, the lack of fit is insignificant. Therefore, the student should proceed along the path of steepest ascent to the next center point.
NAME: John Smith
SURFACE NUMBER: 9

-----REARRANGED INPUT DATA-----

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>-1.0800</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>-1.9200</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-1.0800</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>-1.9200</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.0800</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>-2.0800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.0800</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>-2.0800</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE TABLE

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F-RATIO</th>
<th>COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>0.165296E+06</td>
<td>0.150269E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUE TO S0</td>
<td>1</td>
<td>0.163885E+06</td>
<td>0.163885E+06</td>
<td>0.270338E+07</td>
<td>0.200518E+03</td>
</tr>
<tr>
<td>DUE TO S1</td>
<td>1</td>
<td>0.402665E+01</td>
<td>0.402665E+01</td>
<td>0.664221E+02</td>
<td>0.866823E+01</td>
</tr>
<tr>
<td>DUE TO S2</td>
<td>1</td>
<td>0.140645E+04</td>
<td>0.140645E+04</td>
<td>0.232002E+05</td>
<td>0.165740E+03</td>
</tr>
<tr>
<td>RESIDUAL</td>
<td>8</td>
<td>0.667324E+00</td>
<td>0.834155E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACK OF FIT</td>
<td>2</td>
<td>0.303590E+01</td>
<td>0.151795E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR</td>
<td>6</td>
<td>0.363733E+00</td>
<td>0.606222E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POINT GENERATED FORECASTED DIFFERENCE DIFF SQUARED

<table>
<thead>
<tr>
<th>POINT</th>
<th>GENERATED</th>
<th>FORECASTED</th>
<th>DIFFERENCE</th>
<th>DIFF</th>
<th>DIFF SQUARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.081886E+03</td>
<td>-1.080914E+03</td>
<td>-972494E-01</td>
<td>945745E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.083605E+03</td>
<td>-1.080914E+03</td>
<td>-269199E+00</td>
<td>724683E+01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.342175E+03</td>
<td>-1.346098E+03</td>
<td>392303E+00</td>
<td>2503955E+01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.095512E+03</td>
<td>-1.095103E+03</td>
<td>495080E-01</td>
<td>672762E+02</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1.094591E+03</td>
<td>-1.095103E+03</td>
<td>511762E+01</td>
<td>672762E+02</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.361757E+03</td>
<td>-1.360287E+03</td>
<td>-147054E+00</td>
<td>2162511E+01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1.362481E+03</td>
<td>-1.360287E+03</td>
<td>-219394E+00</td>
<td>417393E+01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-1.121268E+03</td>
<td>-1.220600E+03</td>
<td>381375E+00</td>
<td>1454181E+00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.218196E+03</td>
<td>-1.220600E+03</td>
<td>240435E+00</td>
<td>5782903E+01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-1.219693E+03</td>
<td>-1.220600E+03</td>
<td>906910E-01</td>
<td>822486E+02</td>
<td></td>
</tr>
</tbody>
</table>

SUM OF Squared Differences = 0.667324E+00

Table 8. RSM Output (First-Order Model)

An example output of a second-order experiment using the same surface is shown in Table 9. In this case, the estimated surface equation is
\[\hat{Y} = -3.93X_1^2 - 40.04X_2^2 + 10.95X_1X_2 + 5.84X_1 + 17.15X_2 + 60.12. \]

All of the coefficients are significant. The lack of fit test indicates a very good fit. The next step is for the student to keep the same center point and expand the spacing until either there is no longer a good fit or one of the coefficients is no longer significant.

<table>
<thead>
<tr>
<th>NAME: John Smith</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE NUMBER: 9</td>
</tr>
<tr>
<td>-----REARRANGED INPUT DATA-----</td>
</tr>
<tr>
<td>58.83020170</td>
</tr>
<tr>
<td>58.65825179</td>
</tr>
<tr>
<td>11.13377373</td>
</tr>
<tr>
<td>10.35934935</td>
</tr>
<tr>
<td>-14.5738238</td>
</tr>
<tr>
<td>-14.48124737</td>
</tr>
<tr>
<td>33.39626167</td>
</tr>
<tr>
<td>33.32922201</td>
</tr>
<tr>
<td>60.03932817</td>
</tr>
<tr>
<td>59.89842593</td>
</tr>
<tr>
<td>13.83066404</td>
</tr>
<tr>
<td>13.80672062</td>
</tr>
<tr>
<td>11.98016266</td>
</tr>
<tr>
<td>11.29439886</td>
</tr>
<tr>
<td>35.08321069</td>
</tr>
<tr>
<td>34.95086159</td>
</tr>
<tr>
<td>67.19024752</td>
</tr>
<tr>
<td>67.23024477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYSIS OF VARIANCE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>DUE TO 8o</td>
</tr>
<tr>
<td>DUE TO 81</td>
</tr>
<tr>
<td>DUE TO 82</td>
</tr>
<tr>
<td>DUE TO 811</td>
</tr>
<tr>
<td>DUE TO 822</td>
</tr>
<tr>
<td>DUE TO 812</td>
</tr>
<tr>
<td>RESIDUAL</td>
</tr>
<tr>
<td>LACK OF FIT</td>
</tr>
<tr>
<td>ERROR</td>
</tr>
</tbody>
</table>

Table 9. RSM Output (Second-Order Model)
The second program is executed after an adequate second-order model has been found. The student is prompted to input the coefficients of his second-order model. The student then verifies the equation by reviewing it on the computer screen. The program calculates the first partial derivative with respect to each independent variable and sets them equal to zero. These equations are then solved simultaneously by matrix algebra techniques. The program displays and prints the value of the independent variables and the response variable at the optimal point. The student then has the option to let the program generate data to map response contours. The student inputs the y value of the contour, as well as the maximum and minimum
values for each independent variable. The student must also input an increment for each variable called delta. The delta values will dictate how many response values are generated. For example, assume that the minimum and maximum values for X_1 are 1.0 and 2.0 respectively. If the delta value is .2 for X_1, then responses will be generated for X_1 equal to 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The program calculates the response variable at all points (incremented by delta) between the stated ranges of the independent variables. If the response value is within .01 units of the interested contour, the values for the response variable and the independent variables are displayed. The student can increase the size of the output by decreasing delta or extending the range between the minimum and maximum values for each independent variable of interest. Trial and error may be necessary when specifying the parameters used to calculate the responses in order to get a reasonable amount of data points to plot the contours. The program allows the student to continue to plot as many contours as he desires. Table 10 shows the output from CRIT.EXE. This is the optimal point for the same surface as before. The CRIT results at this point are very close to the exact values of the optimal conditions. The exact optimal point is $X_1 = 1.285164$ and $X_2 = .389210$. The value of the response variable at the exact optimal point is 67.163776.
CRITICAL ANALYSIS OF SURFACE

NAME: John Smith
SURFACE NUMBER = 9

SURFACE EQUATION IS:
\[Y = -3.931X1^2 + 40.037X2^2 + 10.953X1X2 + 5.841X1 + 17.148X2 + 60.123 \]

--VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--
\[X_1 = 1.286437 \]
\[X_2 = 0.390118 \]

--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--
\[Y = 67.224915 \]

Table 10. CRIT Output (Optimal Value)
Table 11 shows the contour data output from CRIT.EXE.

<table>
<thead>
<tr>
<th>VALUES (+/- .01) TO PLOT CONTOUR = 60.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN VALUE - .500 - .500</td>
</tr>
<tr>
<td>MAX VALUE - 3.200 1.500</td>
</tr>
<tr>
<td>DELTA VALUE - .100 .002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>-- INDEPENDENT VARIABLES --</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td>.100 .078</td>
</tr>
<tr>
<td>.50</td>
<td>.100 .324</td>
</tr>
<tr>
<td>.50</td>
<td>.200 .514</td>
</tr>
<tr>
<td>.50</td>
<td>.300 -.046</td>
</tr>
<tr>
<td>.51</td>
<td>.300 .556</td>
</tr>
<tr>
<td>.50</td>
<td>.400 -.056</td>
</tr>
<tr>
<td>.49</td>
<td>.400 .594</td>
</tr>
<tr>
<td>.50</td>
<td>.500 -.062</td>
</tr>
<tr>
<td>.49</td>
<td>.800 .710</td>
</tr>
<tr>
<td>.49</td>
<td>.900 -.058</td>
</tr>
<tr>
<td>.49</td>
<td>1.100 -.042</td>
</tr>
<tr>
<td>.49</td>
<td>1.300 -.018</td>
</tr>
<tr>
<td>.49</td>
<td>1.300 .802</td>
</tr>
<tr>
<td>.51</td>
<td>1.400 .814</td>
</tr>
<tr>
<td>.50</td>
<td>1.500 .014</td>
</tr>
<tr>
<td>.51</td>
<td>1.700 .054</td>
</tr>
<tr>
<td>.49</td>
<td>1.800 .844</td>
</tr>
<tr>
<td>.51</td>
<td>2.100 .162</td>
</tr>
<tr>
<td>.49</td>
<td>2.200 .196</td>
</tr>
<tr>
<td>.50</td>
<td>2.200 .834</td>
</tr>
<tr>
<td>.50</td>
<td>2.400 .806</td>
</tr>
<tr>
<td>.49</td>
<td>2.500 .330</td>
</tr>
<tr>
<td>.50</td>
<td>2.500 .782</td>
</tr>
<tr>
<td>.50</td>
<td>2.600 .394</td>
</tr>
<tr>
<td>.49</td>
<td>2.600 .746</td>
</tr>
<tr>
<td>.50</td>
<td>2.700 .488</td>
</tr>
<tr>
<td>.51</td>
<td>2.700 .678</td>
</tr>
<tr>
<td>.49</td>
<td>2.700 .680</td>
</tr>
</tbody>
</table>

Table 11. CRIT Output (Contour Data)
BIBLIOGRAPHY

BIBLIOGRAPHY

APPENDICES
APPENDIX A - RSMSU.EXE PROGRAM LISTING
--- SETUP PROGRAM -- RESPONSE SURFACE METHODOLOGY ---

PROGRAM NAME -- RSMSU.FOR

WRITTEN BY JAMES T. Treharne
MARCH 11, 1991

THIS PROGRAM IS USED BY THE INSTRUCTOR AS PART OF THE RESPONSE METHODOLOGY SIMULATION. THIS PROGRAM READS THE INSTRUCTOR'S DATA FILE (INSTR.DAT) WHICH CONTAINS ALL THE REQUIRED DATA ON THE SURFACES. THE PROGRAM USES THIS DATA FILE TO CREATE AN ENCODED DATA FILE (STU.DAT) WHICH IS GIVEN TO THE STUDENT AND USED BY THE MAIN SIMULATION PROGRAM (RSM.FOR)

PROGRAM RSMSU

DOUBLE PRECISION COEF(15,5), CIACT(15,10), CFORD(15,5)
DOUBLE PRECISION SCOEF(15,5), SCIACT(15,10), SCFORD(15,5)
DOUBLE PRECISION CONST(15), EVAR(15)
DOUBLE PRECISION SCONST(15)
DOUBLE PRECISION START(15,5)
INTEGER NSUR, ILIST
CHARACTER*25 NAME, DATE

OPEN FILE CREATED BY INSTRUCTOR

OPEN (10, FILE='INSTR.DAT', STATUS='OLD')

OPEN A NEW FILE FOR STUDENT USE

OPEN (11, FILE='STU.DAT', STATUS='NEW')

DEFINE PRINTER AS FILE #6

OPEN (6, FILE='PRN', STATUS='NEW')

DEFINITION OF VARIABLES

NSUR- NUMBER OF SURFACES- MAX IS 15
ILIST- "0"= DO NOT PRINT OPTIONAL REPORT
 "1"= PRINT OPTIONAL REPORT
COEF(15,5)- COEFFICIENTS OF HIGHER ORDER TERMS, E.G. B11, B22
SCOEF(15,5)- ENCODED COEFFICIENTS OF HIGHER ORDER TERMS
CIACT(15,10)- COEFFICIENTS OF INTERACTION TERMS, E.G. B12
SCIACT(15,10)- ENCODED COEFFICIENTS OF INTERACTION TERMS
CFORD(15,5)- COEFFICIENTS OF FIRST ORDER TERMS, E.G. B1, B2
SCFORD(15,5)- ENCODED COEFFICIENTS OF FIRST ORDER TERMS
CONST(15)- CONSTANT TERM IN SURFACE EQUATION, B0
SCCONST(15)- ENCODED CONSTANT TERM IN SURFACE EQUATION
EVAR(15)- ERROR VARIANCE USED IN SIMULATION
START(15,5)- STARTING POINT OF 5 VARIABLES
* INITIALIZE VARIABLES
*
NSUR=0
ILIST=0
* INITIALIZE ALL ARRAYS TO "0"

DO 15 I=1,15
 CONST(I)=0
 SCONST(I)=0
 EVAR(15)=0
 DO 5 K=1,10
 CIACT(I,K)=0
 SCIACT(I,K)=0
 5 CONTINUE
 DO 10 K=1,5
 COEF(I,K)=0
 SCOEF(I,K)=0
 CFORD(I,K)=0
 SCFORD(I,K)=0
 START(I,K)=0
 10 CONTINUE
 15 CONTINUE
 *
SCREEN START UP INFORMATION
 *
WRITE(*,*)
WRITE(*,20)

20 FORMAT(1X,'WELCOME TO THE RESPONSE SURFACE METHODOLOGY',
 +' SIMULATION SETUP PROGRAM')
WRITE(*,*)
WRITE(*,25)

25 FORMAT(9X,'This program will create a data file for the',
 +' student',/
 +,9X, 'to use in the simulation. The data file is called'
 +,9X,'STU.DAT. The data is encoded so it will not aid the'
 +,9X,'student if he/she reads it. You must already have a'
 +,9X,'data file named INSTR.DAT which must include a value'
 +,9X,'for every term, even if it is zero or not used in the'
 +,9X,'model. The student should be given only the file'
 +,9X,'STU.DAT and not INSTR.DAT. The data should be'
 +,9X,'arrayed in the following manner:')
WRITE(*,*)
WRITE(*,30)

30 FORMAT(1X,'XXXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,XXX.XX,'
 +,XXX.XX,XXX.XX,XXX.XX')
WRITE(*,*)' B11 B22 B33 B44 B55'
WRITE(*,*)' B12 B13 B14 B15 B23 B24',
 +' B25 B34 B35 B45'
WRITE(*,*)' B1 B2 B3 B4 B5'
WRITE(*,*)' Bo'
WRITE(*,*)' EVAR ''
WRITE(*,*)' X1 X2 X3 X4 X5 (STARTING POINT)'
WRITE(*,*)'
WRITE(*,*),''
CALL CONT
CALL SKIP(12)
WRITE(*,*),' PLEASE ENTER YOUR NAME'
CALL SKIP(12)
READ(*,32) NAME
CALL SKIP(12)
32 FORMAT(A25)
WRITE(*,*),''
WRITE(*,*),')
CALL SKIP(12)
READ(*,33) DATE
CALL SKIP(12)
33 FORMAT(A25)
WRITE(*,*),''
35 WRITE(*,*),' ENTER THE NUMBER OF SURFACES(\' 5) IN YOUR DATA', +' SET'
CALL SKIP(12)
REWWIND(10)
REWWIND(11)
READ(*,40,ERR=35) NSUR
CALL SKIP(12)
WRITE(11,*) NSUR
40 FORMAT(I2)
45 FORMAT(1X,10F12.3)
* *
READ INSTR.DAT(EACH SURFACE HAS 6 LINES OF DATA)
* *
DO 60 I=1,NSUR
* *
READ(10,*,ERR=140) (COEF(I,J),J=1,5)
READ(10,*,ERR=140) (CIACT(I,J),J=1,10)
READ(10,*,ERR=140) (CFORD(I,J),J=1,5)
READ(10,*,ERR=140) CONST(I)
READ(10,*,ERR=140) EVAR(I)
READ(10,*,ERR=140) (START(I,J),J=1,5)
* *
ENCODE DATA ON COEFFICIENTS
* *
DO 50 J=1,5
SCOEF(I,J)= (COEF(I,J)+14)*2
SCFORD(I,J)= (CFORD(I,J)+21)*3
50 CONTINUE
DO 55 J=1,10
SCIACT(I,J)= (CIACT(I,J)+11)*4
55 CONTINUE
SCONST(I)= (CONST(I)+5)*7
* *
WRITE TO ENCODED FILE(STU.DAT)
* *
WRITE(11,*) (SCOEF(I,J),J=1,5)
WRITE(11,*) (SCIACT(I,J),J=1,10)
WRITE(11,*) (SCFORD(I,J),J=1,5)
WRITE(11,*) SCONST(I)
WRITE(11,*) EVAR(I)
WRITE(11,*) (START(I,J),J=1,5)

CONTINUE
REWIND (11)
READ(11,*) NSUR
CALL SKIP(25)
WRITE(*,65) NSUR

FORMAT(10X, 'NUMBER OF SURFACES TO BE WRITTEN TO STU.DAT ='
+ ,I2)
CALL SKIP(12)
CALL CONT
CALL SKIP(25)

DO 85 I=1,NSUR
 READ BACK ENCODED DATA FILE (STU.DAT)
 READ(11,*) (SCOEF(I,J),J=1,5)
 READ(11,*) (SCIACT(I,J),J=1,10)
 READ(11,*) (SCFORD(I,J),J=1,5)
 READ(11,*) SCONST(I)
 READ(11,*) EVAR(I)
 READ(11,*) (START(I,J),J=1,5)
 WRITE(*,*)
 CALL SKIP(20)

 DECODE DATA FROM STU.DAT
 DO 70 J=1,5
 COEF(I,J)= (SCOEF(I,J)/2)-14
 CFORD(I,J)= (SCFORD(I,J)/3)-21
 CONTINUE
 DO 75 J=1,10
 CIACT(I,J)= (SCIACT(I,J)/4)-11
 CONTINUE
 CONST(I)= (SCONST(I)/7)-5

 WRITE(*,*)
 WRITE DATA TO SCREEN
 WRITE(*,80) I
 FORMAT(25X,'SURFACE NUMBER = ',I2)
 WRITE(*,*)
 WRITE(*,45) (COEF(I,J),J=1,5)
 WRITE(*,45) (CIAC(T(I,J),J=1,10)
 WRITE(*,45) (CFORD(I,J),J=1,5)
 WRITE(*,45) CONST(I)
 WRITE(*,45) EVAR(I)
 WRITE(*,45) (START(I,J),J=1,5)
 CALL SKIP(5)
 CALL CONT
83 CALL SKIP(25)
85 CONTINUE
 CALL SKIP(20)
90 WRITE(*,*)' DO YOU WANT A PRINTOUT OF THE SURFACE DATA?'
 WRITE(*,*)
 WRITE(*,*)' "1" = PRINTOUT'
 WRITE(*,*)' "0" = NO PRINTOUT-EXIT PROGRAM'
 CALL SKIP(9)
 READ(*,*,err=130) ILIST
 IF (ILIST.EQ.0) THEN
 GO TO 115
 END IF
 IF (ILIST.EQ.1) THEN
 GO TO 95
 END IF
 GO TO 90
95 WRITE(6,*)
 WRITE(6,*)' RSM- CONTENTS OF FILE STU.DAT'
 WRITE(6,*)
 WRITE(6,*)
 WRITE(6,*)' PREPARED BY: ',NAME
 WRITE(6,*)
 WRITE(6,*)' DATE PREPARED: ',DATE
 WRITE(6,*)
 WRITE(6,*)
 WRITE(6,100)
100 FORMAT(1X,'XXXX.XX XXX.XX XXX.XX XXX.XX XXX.XX XXX.XX',
 + ' XXX.XX XXX.XX XXX.XX XXX.XX XXX.XX')
 WRITE(*,*)
 WRITE(6,*)' B11 B22 B33 B44 B55'
 WRITE(6,*)' B12 B13 B14 B15 B23 B24'
 + ' B25 B34 B35 B45'
 WRITE(6,*)' B1 B2 B3 B4 B5'
 WRITE(6,*)' Bo'
 WRITE(6,*)' EVAR '
 WRITE(6,*)' X1 X2 X3 X4 X5 (STARTING POINT)'
 WRITE(6,*)
 REWIND (11)
 WRITE(6,65) NSUR
 WRITE(6,*)
 DO 110 I=1,NSUR
* WRITE(6,105) I
105 FORMAT(25X,'SURFACE NUMBER ',I2)
 WRITE(6,*)
* WRITE(6,45) (COEF(I,J),J=1,5)
 WRITE(6,45) (CIACT(I,J),J=1,10)
 WRITE(6,45) (CFORD(I,J),J=1,5)
 WRITE(6,45) CONST(I)
 WRITE(6,45) EVAR(I)
 WRITE(6,45) (START(I,J),J=1,5)
WRITE(6,*)
110 CONTINUE
115 WRITE(*,*)' STU.DAT IS PROPERLY SETUP FOR USE'
 CALL SKIP(12)
120 STOP
130 WRITE(*,*)' YOU MUST ENTER A "1(ONE)" OR "0"(ZERO)'
 WRITE(*,*)
 WRITE(*,*)
 GO TO 90
140 WRITE(*,*)' ERROR READING INSTR.DAT! MAKE SURE IT IS FORMATTED'
 WRITE(*,*)' PROPERLY AND HAS DATA FOR ALL SURFACES STATED.'
 GO TO 120
END
*
* SUBROUTINE SKIP--PRINTS 'N' BLANK LINES
*
* SUBROUTINE SKIP(N)
 DO 150 I=1,N
 WRITE(*,*)' '
 150 CONTINUE
 RETURN
END
*
* SUBROUTINE CONT--HALTS EXECUTION UNTIL USER READY
*
* SUBROUTINE CONT
 CHARACTER*1 ANS,BLK
 DATA BLK/' '
 ANS=BLK
 WRITE(*,1)
 1 FORMAT(/,'To continue, press RETURN key')
 READ(*,2) ANS
 2 FORMAT(A1)
 RETURN
END
* **--- MAIN PROGRAM ---**

PROGRAM NAME: RSM.FOR

WRITTEN BY JAMES T. TREHARNE

APRIL 3, 1991

PROGRAM RSM

```
DIMENSION COEF(15,5), CIACT(15,10), CFORD(15,5),
+ CONST(15), EVAR(15)
INTEGER NSUR, IORDER, ILIST, NVAR, NSTUD
DIMENSION SCOEF(15,5), SCIACT(15,10), SCFORD(15,5)
DIMENSION SCONST(15), START(15,5), Z(60,6)
DIMENSION NPT(60), IDEF(25)
DOUBLE PRECISION Y(60), XT(25,60), X(60,25), AA(25,25),
+B(25), SS(25), G(60), AINV(25,25),
+ CON, VAL, TEST(25,25), TMS(25), FRATIO(25), SAM, SUM, SSR, TT, ESS, EESS,
+ TESS, YD(60), YF(60), COUNT, YDTOTAL, YDSQ(60)
```

REAL*8 SEED

CHARACTER NAME*25

DEFINITION OF VARIABLES

- **COEF(15,5)** - COEFFICIENTS OF HIGHER ORDER TERMS, E.G. B11, B22
- **SCOEF(15,5)** - CODED COEF. OF HIGHER ORDER TERMS, E.G. B11, B22
- **CIACT(15,10)** - COEFFICIENTS OF INTERACTION TERMS, E.G. B12
- **SCIACT(15,10)** - CODED COEFFICIENTS OF INTERACTION TERMS, E.G. B12
- **CFORD(15,5)** - COEFFICIENTS OF FIRST ORDER TERMS, E.G. B1
- **SCFORD(15,5)** - CODED COEFFICIENTS OF FIRST ORDER TERMS, E.G. B1
- **CONST(15)** - CONSTANT TERM IN SURFACE EQUATION
- **SCONST(15)** - CODED CONSTANT TERM IN SURFACE EQUATION
- **EVAR(15)** - ERROR VARIANCE
- **START(15,5)** - STARTING POINT OF 5 VARIABLES
- **NSUR** - NUMBER OF SURFACES - MAX IS 15
- **NSTUD** - STUDENT/SURFACE NUMBER
- **NVAR** - # INDEPENDENT VARIABLES
- **NDOBS** - # OF DISTINCT POINTS FOR EXPERIMENTATION
- **NOBS** - # OF OBSERVATIONS (TOTAL)
- **IORDER** - USED TO DETERMINE 1ST/2ND ORDER EQUATION
- **NREPS** - # OF OBSERVATIONS AT A GIVEN DISTINCT POINT
- **ILIST** - USED TO PRINT HARDCOPY RESULTS
- **NPT(60)** - VALUE OF DISTINCT POINT NUMBER FOR UP TO 50 OBS.
- **Z(60,6)** - USED TO INPUT VALUES OF DISTINCT OBSERVATIONS
- **Y(60)** - RESPONSE VARIABLE AT EACH POINT
- **XT(25,60)** - TRANSPOSE OF MATRIX X
- **X(60,25)** - INDEPENDENT TERMS, DUMMY, X1, X2, X3, X4, X5, X1**2, ...
- **A(25,25)** - MATRIX XT * X
- **AA(25,25)** - COPY OF MATRIX A USED TO GET INVERSE
- **AINV(25,25)** - IDENTITY MATRIX USED TO GET INVERSE OF A
- **B(25)** - COEFFICIENTS OF FITTED EQUATION
- **YF(60)** - FORECASTED RESPONSE
- **YD(60)** - DIFFERENCE BETWEEN FORECASTED AND GENERATED RESPONSE
- **SS(25)** - SUM OF SQUARES TERMS
- **IDF(25)** - DEGREE OF FREEDOM TERMS
- **TMS(25)** - MEAN SQUARE VALUES
- **FRATIO(25)** - VALUE FROM F-TEST
- **YDTOTAL** - SUM OF SQUARED DIFFERENCES

OPEN STUDENT DATA FILE (ENCODED)
OPEN (11, **FILE**='STU.DAT', **STATUS**='OLD')

OPEN (6, **FILE**='PRN', **STATUS**='NEW')

ELIMINATE TRACE (IDBUG) IN FINAL VERSION

IDBUG=0
CALL SKIP(30)
WRITE(*,*)' WELCOME TO THE MAIN SIMULATION',
+ ' PROGRAM',
WRITE(*,*)' FOR'
WRITE(*,*)' RESPONSE SURFACE METHODOLOGY'
CALL SKIP(10)
1 **WRITE**(*,*)' PLEASE ENTER YOUR NAME '
CALL SKIP(2)
READ(*,4, **ERR**=1) **NAME**
3 **FORMAT**(11)
4 **FORMAT**(A25)
CALL SKIP(24)
SEED=12345 .**DO**

READ ENCODED VALUES FROM STUDENT DATA FILE

REWIND(11)
READ(11,*) **NSUR**
DO 15, **I**=1,**NSUR**
READ(11,*) (**SCOEF**(I,**J**), **J**=1,5)
READ(11,*) (**SCIACT**(I,**J**), **J**=1,10)
READ(11,*) (**SCFORD**(I,**J**), **J**=1,5)
READ(11,*) **SCONST**(I)
READ(11,*) **EVAR**(I)
READ(11,*) (**START**(I,**J**), **J**=1,5)
END

DECODE DATA FROM STU.DAT

DO 7 **J**=1,5
COEF(I,**J**)=(**SCOEF**(I,**J**)/2)-14
CFORD(I,**J**)=(**SCFORD**(I,**J**)/3)-21
7 **CONTINUE**
DO 10 **J**=1,10
CIACT(I,**J**)=(**SCIACT**(I,**J**)/4)-11
10 **CONTINUE**
CONST(I)=(**SCONST**(I)/7)-5
15 **CONTINUE**
REWIND(11)

BEGIN STUDENT INPUT

20 **WRITE**(*,21)
21 **FORMAT**(10X,'WHAT SURFACE NUMBER HAVE YOU BEEN ASSIGNED [1-15]?')
CALL SKIP(12)
READ(*, *, **ERR**=20) **NSTUD**
CALL SKIP(24)
WRITE(*,*)
IF (IDBUG.EQ.1) **THEN**
WRITE(6,*) (**COEF**(**NSTUD**, **J**), **J**=1,5)
WRITE(6,*) (**CIACT**(**NSTUD**, **J**), **J**=1,10)
WRITE(6,*) (**CFORD**(**NSTUD**, **J**), **J**=1,5)
WRITE(6,*), CONST(NSTUD)
WRITE(6,*), EVAR(NSTUD)
WRITE(6,*), (START(NSTUD,J), J=1,5)
WRITE(*,*)
CALL CONT
22 ENDIF
IF (NSTUD.LE.NSUR) GOTO 25
WRITE(*,*)
WRITE(*,*)' THERE IS NO DATA FOR YOUR SURFACE NUMBER'
GOTO 20
WRITE(*,*)
25 WRITE(*,*)' HOW MANY INDEPENDENT VARIABLES (1-5)?'
WRITE(*,*)
CALL SKIP(12)
READ(*,*,ERR=25) NVAR
WRITE(*,*)' YOUR FIRST DESIGN POINT IS (X1,X2,...):'
CALL SKIP(3)
WRITE(*,28) (START(NSTUD,I), I=1,NVAR)
28 FORMAT(10X,5F12.4)
CALL SKIP(7)
CALL CONT
CALL SKIP(24)
30 WRITE(*,32)
32 FORMAT(8X,'HOW MANY "DISTINCT" DESIGN POINTS IN THIS',
+ ' EXPERIMENT?')
CALL SKIP(12)
READ(*,*,ERR=30) NDOBS
WRITE(*,*)
CALL SKIP(23)
35 WRITE(*,*)' WHAT ORDER EQUATION ARE YOU USING?'
WRITE(*,*)
WRITE(*,*)' "1"= FIRST ORDER'
WRITE(*,*)' "2"= SECOND ORDER'
CALL SKIP(9)
READ(*,*,ERR=35) IORDER
IF(IORDER.NE.1.and.IORDER.NE.2) GOTO 35
WRITE(*,*)
CALL SKIP(23)

* TOTAL VARIABLES = 1+INDEP VAR
* INPUT DATA
*
40 WRITE(*,*)'
BEGIN STUDENT DATA INPUT'
WRITE(*,*)
NOBS=0
45 DO 80 I=1,NDOBS
WRITE(*,*)
50 WRITE(*,55) I
55 FORMAT(9X,'HOW MANY TOTAL REPLICATIONS AT POINT #',I2)
CALL SKIP(2)
READ(*,*,ERR=50) NREP
NREP=NOBS+NREP
DO 65 J=2,NV
WRITE(*,60) I,J-1
60 FORMAT(1X,POINT # ',I2,'-X',I1,' = ')
READ(*,*,ERR=50) Z(I,J)
CALL SKIP(2)
65 CONTINUE
DO 75 N=(NOBS+1),NREP
DO 70 J=2,NV
X(N,J) = (Z(I,J))

CONTINUE
X(N,1) = 1.0
NPT(N) = I

CONTINUE
NOBS = NREP

CALL SKIP(S)

CONTINUE

WRITE(*,-)
WRITE(-,*).
WRITE(*,85)

FORMAT(17X, 'TOTAL OBSERVATIONS= ', I2)
WRITE(*,*)
WRITE(*,*)
WRITE(*,90) 'OB# PT# DUMMY X1 X2 X3',
+ ' X4 X5'

DO 95 I = 1, NOBS
WRITE(*,90) I, NPT(I), (X(I,J), J=1,NV)

FORMAT(1X, I2, 2XI2, 2X, 6(2X, F8.3))

IF (I.EQ.19 .OR. I.EQ.38 .OR. I.EQ.57)
 THEN
 WRITE(*,*)
 CALL CONT
ENDIF
95 CONTINUE

WRITE(*,*)

IS THIS DATA CORRECT?

READ(*, *, ER=100) IANS

IF (IANS.EQ.1) GOTO 105
IF ((IANS.NE.1) .AND. (IANS.NE.0)) GOTO 100

CALL SKIP(15)

GO TO 20
105 CONTINUE

DETERMINE DEVIATION
CALL RANNUM(SEED, RA)
CALL RANNUM(SEED, RB)
V = (-2.0 * ALOG(RA)) ** 0.5 * COS(6.283 * RB)
RNORM = V ** (SQRT(EVAR(NSTUD)))
DEV = RNORM

IF (RNORM.LT. (-4.0 * SQRT(EVAR(NSTUD)))) THEN
 DEV = -4.0 * SQRT(EVAR(NSTUD))
ENDIF
IF (RNORM.GT. (4.0 * SQRT(EVAR(NSTUD)))) THEN
 DEV = 4.0 * SQRT(EVAR(NSTUD))
ENDIF

WRITE(5,*) 'RA/RB=', RA, RB
WRITE(5,*) 'V = ', V
WRITE(5,*) 'EVAR(NSTUD) = ', EVAR(NSTUD)
WRITE(5,*) 'RNORM = ', RNORM
WRITE(5,*) 'DEV = ', DEV
113 ENDF
Y(I) = 0
DO 115 K = 1, NVAR
 Y(I) = Y(I) + COEF(NSTUD, K) * X(I, K+1)**2
 + CFORD(NSTUD, K) * X(I, K+1)
115 CONTINUE
 Y(I) = Y(I) + CIACT(NSTUD, 1) * X(I, 2) * X(I, 3) +
 + CIACT(NSTUD, 2) * X(I, 2) * X(I, 4) + CIACT(NSTUD, 3) * X(I, 2) * X(I, 5) +
 + CIACT(NSTUD, 4) * X(I, 2) * X(I, 6) + CIACT(NSTUD, 5) * X(I, 3) * X(I, 4) +
 + CIACT(NSTUD, 6) * X(I, 3) * X(I, 5) + CIACT(NSTUD, 7) * X(I, 3) * X(I, 6) +
 + CIACT(NSTUD, 8) * X(I, 4) * X(I, 5) + CIACT(NSTUD, 9) * X(I, 4) * X(I, 6) +
 + CIACT(NSTUD, 10) * X(I, 5) * X(I, 6) + CONST(NSTUD) + DEV
IF (IDBUG.EQ.1) WRITE(6,*) 'Y(I)
120 CONTINUE
CALL SKIP(25)
WRITE(*,130) (I,Y(I),I=1,NOBS)
130 IF (IORDER.EQ.2) NVS=2*NVAR+1+ICOM(NVAR)
IF (IORDER.EQ.1) GOTO 200
NVS=NV
IF (IORDER.EQ.2) NVS=2*NVAR+1+ICOM(NVAR)
ARRANGEMENT UNNECESSARY FOR FIRST ORDER EQUATION
IF (IORDER.EQ.1) GOTO 200
NVS=NVAR+1
DO 170 J = 1, NOBS
 DO 160 K = 2, NVAR+1
 JJ = K+NVAR
 X(J,JJ) = X(J,K)**2
160 CONTINUE
170 CONTINUE
DO 180 J = 1, NOBS
 KK = 2*NVAR+2
 X(J, KK) = X(J, 2) * X(J, 3)
IF (NVAR.LT.3) GOTO 180
 KK = KK+1
 X(J, KK) = X(J, 2) * X(J, 4)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 4)
IF (NVAR.LT.4) GOTO 180
 KK = KK+1
 X(J, KK) = X(J, 2) * X(J, 5)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 4)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 5)
IF (NVAR.LT.5) GOTO 180
 KK = KK+2
 X(J, KK) = X(J, 2) * X(J, 6)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 4)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 5)
 KK = KK+1
 X(J, KK) = X(J, 3) * X(J, 6)
 KK = KK+1
 X(J, KK) = X(J, 4) * X(J, 5)
 KK = KK+1
 X(J, KK) = X(J, 4) * X(J, 6)
 KK = KK+1
 X(J, KK) = X(J, 5) * X(J, 6)
 KK = KK+1
}
KK=KK+1
X(J, KK) = X(J, 5) * X(J, 6)
180 CONTINUE
200 CONTINUE
WRITE(*,*)' -----REARRANGED INPUT DATA-----'
WRITE(*,*)
DO 210 I=1, NOBS
WRITE(*, 220) Y(I), NPT(I), (X(I, LL), LL=1, NVS)
IF(I.EQ.19 .OR. I.EQ.38 .OR. I.EQ.57) CALL CONT
210 CONTINUE
220 FORMAT(1X,F15.8, I2, F7.4, 2, F11.4)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
CALL CONT

* * *
BEGIN ANOVA COMPUTATIONS
* * *
TAKE TRANSPOSE OF MATRIX X, CALL IT MATRIX XT
* * *
225 NCOL=NOBS
NROW=NVS
DO 250 J=1, NCOL
 DO 240 I=1, NROW
 XT(I, J) = X(J, I)
 240 CONTINUE
250 CONTINUE
IF (IDBUG.EQ.1)
 THEN
 WRITE(6,*)'---------MATRIX XT---'
 DO 254 I=1, NVS
 WRITE(6, 258) (XT(I, LL), LL=1, NOBS)
 254 CONTINUE
258 FORMAT(1X, 50F11.3)
 ENDIF
* * *
MULTIPLY MATRIX XT * MATRIX X = MATRIX A
* * *
259 IXTCOL=NOBS
IAROW=NVS
IACOL=NVS
* DO 280 I=1, IAROW
 DO 270 J=1, IACOL
 A(I, J) = 0.0
 270 CONTINUE
280 CONTINUE
IF (IDBUG.EQ.1) THEN
 WRITE(6,*)' -----MATRIX XT*X = MATRIX A-----'
 DO 290 I=1, NVS
 WRITE(6, 300) (A(I, J), J=1, NVS)
 290 CONTINUE
300 FORMAT(1X, 50F13.5)
ENDIF
* * *
MULTIPLY MATRIX XT * MATRIX Y = MATRIX G
* * *
305 IXTCOL=NOBS
IGROW=NVS

* DO 320 I=1, IGROW
 G(I)=0.0
 DO 310 K=1, IXC
 G(I)=G(I) + XT(I,K)*Y(K)
 310 CONTINUE
 320 CONTINUE
* IF(DBG.EQ.1) THEN
 WRITE(6,*): '-----MATRIX XT*Y = MATRIX G------'
 DO 330 I=1, NVS
 WRITE(6,340) G(I)
 330 CONTINUE
 340 FORMAT(1X,F13.5)
 ENDIF
* TAKE INVERSE OF MATRIX A = XT*X

* DO 360 I=1, NVS
 DO 350 J=1, NVS
 AA(I,J)=A(I,J)
 350 CONTINUE
 360 CONTINUE
* SET SIZE OF AINV(I,J) TO THAT OF AA(I,J)

* DO 380 I=1, NVS
 DO 370 J=1, NVS
 IF (I.EQ.J) THEN
 AINV(I,J)=1.0
 ELSE
 AINV(I,J)=0.0
 ENDIF
 370 CONTINUE
 380 CONTINUE
* INVERT MATRIX USING ROW OPERATIONS

* DO 420 I=1, NVS
 CON= AA(I,I)
 IF (CON.EQ.0) THEN
 WRITE(*,*): 'ZERO ON DIAGONAL'
 WRITE(*,*): 'RECHECK EXPERIMENTAL DESIGN'
 STOP
 ENDIF
 DO 390 J=1, NVS
 AA(I,J)= AA(I,J)/CON
 AINV(I,J)=AINV(I,J)/CON
 390 CONTINUE
 DO 410 K=1, NVS
 VAL= AA(K,I)
 IF (K.NE.I) THEN
 DO 400 J=1, NVS
 AA(K,J)= (AA(K,J) - AA(I,J)*VAL)
 AINV(K,J)=(AINV(K,J)-AINV(I,J)*VAL)
 400 CONTINUE
 ENDIF
 410 CONTINUE
*
PRINT INVERSE OF MATRIX A = AINV

* IF(IDBUG.EQ.1) THEN
 WRITE(6,*)' ------- MATRIX AINV = INVERSE OF MATRIX A -------'
 DO 430 I=1,NVS
 WRITE(6,440) (AINV(I,J),J=1,NVS)
 430 CONTINUE
 440 FORMAT(1X,25F20.5)
ENDIF

* SEE THAT MATRIX AINV*A = DIAGONAL MATRIX
* 445 DO 47C I=1,NVS
 DO 460 J=1,NVS
 TEST(I,J)=0.0
 460 CONTINUE
 470 CONTINUE
 IF(IDBUG.EQ.1) THEN
 WRITE(6,*)' ------- MATRIX A*AINV = MATRIX TEST -------'
 DO 480 I=1,NVS
 WRITE(6,490) (TEST(I,J),J=1,NVS)
 480 CONTINUE
 490 FORMAT(1X,50F22.5)
 END IF

* MULTIPLY MATRIX AINV*G = MATRIX B(COEFFICIENT MATRIX)
* 495 DO 520 I=1,NVS
 B(I)=0.0
 DO 500 K=1,NVS
 B(I)= B(I) + AINV(I,K)*G(K)
 500 CONTINUE
 520 CONTINUE
 IF(IDBUG.EQ.1) THEN
 WRITE(6,*)' ------- MATRIX AINV*G = MATRIX B(COEFFICIENT) -------'
 DO 530 I=0,NVS-1
 WRITE(6,540) I,B(I+1)
 530 CONTINUE
 540 FORMAT(11X,'B,12,=',F16.5)
 END IF

SS(1)=TOT SS IDEF(1)= DF TOT
SS(2)=$0 SS
SET #VARIABLES BACK TO NV

545 NV=NVS
 TE=SS=0.0D0
 IDEF(NV+4)=0
 COUNT=0.0
 SS(1)=0.0D0
 DO 600 I=1,NOBS
 SS(I)=Y(I)**2 + SS(1)
 600 CONTINUE
 IDEF(1)=NOBS
 IDEF(2)=1
SS(2) = (G(1)**2)/NOBS
DO 610 I=2,NV
 IF (IDBUG.EQ.1) WRITE(6,*) 'A(',I,',',I,')=',A(I,I)
 SS(I+1) = (B(I)**2)/AINV(I,I)
 IDEF(I+1) = 1
610 CONTINUE
IF (IDBUG.EQ.1) THEN
 WRITE(6,*) 'SS(1)= ',SS(1)
 WRITE(6,*) 'DF(1)= ',IDEF(1)
 WRITE(6,*) 'SS(2)= ',SS(2)
 WRITE(6,*) 'DF(2)= ',IDEF(2)
 DO 615 I=2,NV
 WRITE(6,*) 'SS(',I+1,')=',SS(I+1)
 WRITE(6,*) 'DF(',I+1,')=',IDEF(I+1)
615 CONTINUE
END IF
TT = 0.0D0
KX = NV+1
K = NV+2
IF (IORDER.EQ.2) GOTO 640
*
* SUM SS FOR ALL VARIABLES
*
DO 630 I=2,NV+1
 TT = TT + SS(I)
630 CONTINUE
*
* CALC SS RESIDUAL
*
 SS(K) = SS(1) - TT
 GO TO 680
640 SSR = 0.0D0
 DO 670 I=2,NV
 SUM = 0.0D0
 DO 650 J=1,NOBS
 SUM = SUM + X(J,I)
 650 CONTINUE
 SUM = SUM/NOBS
 SAM = 0.0D0
 DO 660 J=1,NOBS
 SAM = SAM + (X(J,I)-SUM)*Y(J)
 660 CONTINUE
 SSR = SSR + SAM*B(I)
670 CONTINUE
 SSR = SS(1)-SS(2)-SSR
 SS(NV+2) = SSR
 EESS = 0.0D0
 ESS = 0.0D0
680 CONTINUE
 DO 700 I=1,NDOBS
 DO 690 J=1,NOBS
 IF (NPT(J).EQ.I) THEN
 EESS = Y(J)**2 + EESS
 ESS = Y(J) + ESS
 COUNT = COUNT+1
 ENDIF
 690 CONTINUE
 TESS = (EESS-ESS**2/COUNT) + TESS
 IDEF(NV+4) = IDEF(NV+4) + (COUNT-1)
 COUNT = 0
 EESS = 0.0D0
 ESS = 0.0D0
SS(NV+4) = TESS

SS(NV+3) = SS LOF

SS(NV+3) = SS(NV+2) - SS(NV+4)
IDEF(NV+2) = IDEF(l) - NV
IDEF(NV+3) = IDEF(NV+2) - IDEF(NV+4)
KN = NV+4
IJLM = 0
IF(IDEF(NV+2) .LT. 1. OR. IDEF(NV+3) .LT. 1. OR. IDEF(NV+4) .LT. 1) IJLM = 1
DO 710 I = 1, KN
 TMS(I) = SS(I) / IDEF(I)
710 CONTINUE

ISKIP = 0
IF(TMS(K) .NE. 0) GOTO 720
ISKIP = 1
TMS(NV+2) = SSR
720 CONTINUE
DO 730 I = 1, KN
 FRATIO(I) = TMS(I) / TMS(KN)
730 CONTINUE
CALL SKIP(25)
WRITE(*,740)
740 FORMAT(3X, 'ANALYSIS OF VARIANCE TABLE',/)
WRITE(*, 750)

IF (IORDER .EQ. 2) GOTO 820
WRITE(*, 760) IDEF(1), SS(1), TMS(1)
760 FORMAT(3X, 'TOTAL', 5X, I3, 1X, E14.7, 1X, E14.7)
DO 770 I = 2, NV+1
 J = I - 1
 IF (I.EQ.2) WRITE(*,772) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
 IF (I.EQ.3) WRITE(*,773) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
 IF (I.EQ.4) WRITE(*,774) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
 IF (I.EQ.5) WRITE(*,775) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
 IF (I.EQ.6) WRITE(*,776) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
 IF (I.EQ.7) WRITE(*,777) IDEF(I), SS(I), TMS(I), FRATIO(I), B(J)
777 CONTINUE
772 FORMAT(3X, 'DUE TO B0', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)
773 FORMAT(3X, 'DUE TO B1', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)
775 FORMAT(3X, 'DUE TO B3', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)
776 FORMAT(3X, 'DUE TO B4', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)
777 FORMAT(3X, 'DUE TO B5', 3X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)

K = NV+2
WRITE(*, 790) IDEF(K), SS(K), TMS(K)
790 FORMAT(3X, 'RESIDUAL', 3X, I3, 1X, E14.7, 1X, E14.7)
IF (ISKIP .EQ. 1) GOTO 935
K = NV+3
WRITE(*, 800) IDEF(K), SS(K), TMS(K), FRATIO(K)
800 FORMAT(4X, 'LACK OF FIT', 1X, I3, 1X, E14.7, 1X, E14.7, 1X, E14.7)
K = NV+4
WRITE(*, 810) IDEF(K), SS(K), TMS(K)
810 FORMAT(4X, 'ERROR', 1X, I3, 1X, E14.7, 1X, E14.7)
GO TO 945
820 K=1
WRITE(*,900) IDEF(K),SS(K),TMS(K)
K=K+1
WRITE(*,901) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(*,902) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 840
K=K+1
WRITE(*,903) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 840
K=K+1
WRITE(*,904) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 840
K=K+1
WRITE(*,905) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 840
K=K+1
WRITE(*,906) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1

840 K=K+1
WRITE(*,907) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 880
K=K+1
WRITE(*,908) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 850
K=K+1
WRITE(*,909) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 850
K=K+1
WRITE(*,910) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 850
K=K+1
WRITE(*,911) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1

850 K=K+1
WRITE(*,912) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 880
K=K+1
WRITE(*,913) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 860
K=K+1
WRITE(*,914) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 860
K=K+1
WRITE(*,915) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1

860 K=K+1
WRITE(*,916) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 880
K=K+1
WRITE(*,917) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 870
K=K+1
WRITE(*,918) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1

870 K=K+1
WRITE(*,919) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 880
K=K+1
WRITE(*,920) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(*,921) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1

880 K=K+1
WRITE(*,922) IDEF(K),SS(K),TMS(K)
K=K+1
IF(ISKIP.EQ.1) GOTO 935
WRITE(*,923) IDEF(K),SS(K),THS(K),FRATIO(K)
K=K+1
WRITE(*,924) IDEF(K),SS(K),TMS(K)

* 900 FORMAT(3X,'TOTAL ',5X,I3,1X,E14.7,1X,E14.7)
 901 FORMAT(3X,'DUE TO Bo',3X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 904 FORMAT(3X,'DUE TO B3',3X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 908 FORMAT(3X,'DUE TO B22',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 909 FORMAT(3X,'DUE TO B33',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 910 FORMAT(3X,'DUE TO B44',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 911 FORMAT(3X,'DUE TO B55',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 912 FORMAT(3X,'DUE TO B12',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 913 FORMAT(3X,'DUE TO B13',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 914 FORMAT(3X,'DUE TO B14',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 915 FORMAT(3X,'DUE TO B15',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 916 FORMAT(3X,'DUE TO B23',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 917 FORMAT(3X,'DUE TO B24',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 918 FORMAT(3X,'DUE TO B25',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 919 FORMAT(3X,'DUE TO B34',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 920 FORMAT(3X,'DUE TO B35',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 921 FORMAT(3X,'DUE TO B45',2X,I3,1X,E14.7,1X,E14.7,1X,E14.7,1X,E14.7)
 922 FORMAT(3X,'RESIDUAL ',3X,I3,1X,E14.7,1X,E14.7)
 923 FORMAT(4X,'LACK OF FIT',3X,I3,1X,E14.7,1X,E14.7,1X,E14.7)
 924 FORMAT(4X,'ERROR ',1X,I3,1X,E14.7,1X,E14.7)
 IF(IJLM.EQ.1) WRITE(*,930)
 930 FORMAT(//,10X,'NOT ENOUGH POINTS TO ESTIMATE ALL PARAMETERS')
 GOTO 945
 935 WRITE(*,940)
 940 FORMAT(//,10X,'**EXPERIMENT INSUFFICIENT TO ESTIMATE LACK OF FIT
+AND EXPERIMENTAL ERROR')
 945 CONTINUE
 WRITE(*,947) K,NOBS
 947 DO 960 I=1,NOBS
 948 CALL CONT
 949 YDF=0.000
 950 DO 950 K=1,NOBS
 951 YF(K)=0.000
 952 YF(K)=YF(K)+B(I)*X(K,I)
 953 CONTINUE
 954 YDF=Y(K)-YF(K)
 955 YDSQ(K)=YDF**2
 956 YDTOTAL=YDTOTAL+YDSQ(K)
CONTINUE
CALL SKIP(5)
WRITE(*,970)
970 FORMAT(5X,'POINT',3X,'GENERATED',7X,'FORECASTED',6X,
+'DIFFERENCE',6X,'DIFF SQUARED')
DO 975 K=1,NOBS
 WRITE(*,980) NPT(K),Y(K),YF(K),YD(K),YDSQ(K)
IF(K.EQ.19.OR.K.EQ.38.OR.K.EQ.57) CALL CONT
975 CONTINUE
WRITE(*,981) YDOTAL
981 FORMAT(30X,'SUM OF SQUARED DIFFERENCES= ',E14.7)
CALL SKIP(2)
985 WRITE(*,*)' DO YOU WANT PRINTED COPY OF RESULTS?'
WRITE(*,*)' YOU MUST PUT PRINTER ON LINE FOR PRINTED RESULTS'
CALL SKIP(3)
WRITE(*,*)' HARD COPY=1 SCREEN ONLY=0'
READ(*,3,ERR=985) ILIST
CALL SKIP(24)
*
IF(ILIST.EQ.1) THEN
WRITE(6,*)' NAME: ',NAME
WRITE(6,990) NSTUD
990 FORMAT(3X,'SURFACE NUMBER: ',I2)
WRITE(6,*)' -----REARRANGED INPUT DATA-----'
WRITE(6,*)
DO 995 I=1,NOBS
 WRITE(6,1000) Y(I),NPT(I),(X(I,LL),LL=1,NV)
995 CONTINUE
1000 FORMAT(1X,F15.8,I2,F7.4,2lF11.4)
ENDIF
*
PRINT COPY OF MATRIX B(COEFFICIENTS)
*
IF(ILIST.EQ.1) THEN
WRITE(6,*)
WRITE(6,*)
WRITE(6,9740)
WRITE(6,9750)
IF (IORDER.EQ.2) GOTO 1820
WRITE(6,9760) IDEF(1),SS(1),TMS(1)
DO 1770 I=2,NV+1
 J=I-1
 IF(I.EQ.2) WRITE(6,9772) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
 IF(I.EQ.3) WRITE(6,9773) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
 IF(I.EQ.4) WRITE(6,9774) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
 IF(I.EQ.5) WRITE(6,9775) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
 IF(I.EQ.6) WRITE(6,9776) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
 IF(I.EQ.7) WRITE(6,9777) IDEF(I),SS(I),TMS(I),FRATIO(I),B(J)
1770 CONTINUE
*
K=NV+2
WRITE(6,9790) IDEF(K),SS(K),TMS(K)
IF(ISKIP.EQ.1) GOTO 1935
K=NV+3
WRITE(6,9800) IDEF(K),SS(K),TMS(K),FRATIO(K)
K=NV+4
WRITE(6,810) IDEF(K),SS(K),TMS(K)
GO TO 1945

1820
WRITE(6,900) IDEF(K),SS(K),TMS(K)
K=K+1
WRITE(6,901) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,902) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 1840
K=K+1
WRITE(6,903) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 1840
K=K+1
WRITE(6,904) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 1840
K=K+1
WRITE(6,905) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 1840
K=K+1
WRITE(6,906) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,907) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.1) GOTO 1880
K=K+1
WRITE(6,908) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 1850
K=K+1
WRITE(6,909) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 1850
K=K+1
WRITE(6,910) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 1850
K=K+1
WRITE(6,911) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,912) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.2) GOTO 1880
K=K+1
WRITE(6,913) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 1860
K=K+1
WRITE(6,914) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 1860
K=K+1
WRITE(6,915) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,916) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.3) GOTO 1880
K=K+1
WRITE(6,917) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 1870
K=K+1
WRITE(6,918) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,919) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
IF(NVAR.EQ.4) GOTO 1880
K=K+1
WRITE(6,920) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,921) IDEF(K),SS(K),TMS(K),FRATIO(K),B(K-1)
K=K+1
WRITE(6,922) IDEF(K),SS(K),TMS(K)
K=K+1
IF(ISKIP.EQ.1) GOTO 1935
WRITE(6,923) IDEF(K),SS(K),TMS(K),FRATIO(K)
K=K+1
WRITE(6,924) IDEF(K),SS(K),TMS(K)

* IF(IJLM.EQ.1) WRITE(*,930) GOTO 1945

1935 WRITE(6,940)
1945 CONTINUE
WRITE(6,*)
WRITE(6,*)
WRITE(6,*)
WRITE(6,1970)
1970 FORMAT(5X,'POINT',3X,'GENERATED',7X,'FORECASTED',6X,'DIFFERENCE'
+5X,'DIFF SQUARED')
WRITE(6,*)
DO 1975 K=1,NOBS
WRITE(6,1980) NPT(K),Y(K),YF(K),YD(K),YDSQ(K)
1975 CONTINUE
WRITE(6,*)
WRITE(6,*)
WRITE(6,1985) YDTOTAL
1985 FORMAT(30X,'SUM OF SQUARED DIFFERENCES=',14.7)
WRITE(6,*)
ENDIF

* WRITE(*,*)
WRITE(*,*)
1990 WRITE(*,')' 'DO YOU WANT TO PERFORM ANOTHER ITERATION?'
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
CALL SKIP(9)
READ(*,*,ERR=1990) IANS
IF (IANS.EQ.1) GOTO 30
IF (IANS.NE.0) GOTO 1990
STOP
END

* SUBROUTINE RANNUM(SEED,RRAN)
REAL*8 PROD,SEMI,SEEV
PROD=(16807.DO*SEED)
SEMI=DMOD(PROD,2147483647.DO)
RRAN=SEMI *.4656613E-9
SEED=SEMI
RETURN
END

* SUBROUTINE SKIP-- PRINTS 'N' BLANK LINES

* SUBROUTINE SKIP(N)
DO 10 I=1,N
 WRITE(*,*)
10 CONTINUE
RETURN
END
SUBROUTINE CONT- HALT EXECUTION UNTIL USER READY

SUBROUTINE CONT
CHARACTER*1 ANS, BLK
DATA BLK/' '/
ANS=BLK
WRITE(*,1)
1 FORMAT(/,' To continue, press RETURN key')
READ(*,2) ANS
2 FORMAT(A1)
RETURN
END

FUNCTION ICOM(NVAR)
GO TO (1,2,3,4,5),NVAR
1 ICOM=0
RETURN
2 ICOM=1
RETURN
3 ICOM=3
RETURN
4 ICOM=6
RETURN
5 ICOM=10
RETURN
END
--- PROGRAM CRIT.FOR ---

WRITTEN BY JIM Treharne
MARCH 11, 1991

THIS PROGRAM IS USED FOR THREE PURPOSES:

1- CALCULATE CRITICAL VALUES OF THE SECOND ORDER EQUATION
2- ESTIMATE THE MAX/MIN VALUE OF THE DEPENDENT VARIABLE
3- PROVIDE DATA TO MAP RESPONSE CONTOURS

PROGRAM CRIT
DOUBLE PRECISION A(5,5),R(5),COEF(5),CIACT(10),CFORD(5),CONST,

X(5),AINV(5,5),TEST(5,5),Y,CONTOUR,RITE(5),

CHECK,Z(5),T(5),P,PO,D,VMIN(5),VMAX(5),DELTA(5)
INTEGER NSTUD,NVAR,ILIST
CHARACTER NAME*25

DEFINITION OF VARIABLES

A(5,5)- MATRIX USED TO SOLVE FOR INDEPENDENT VARIABLES
R(5) - USED IN MATRIX INVERSION
COEF(5) - COEFFICIENTS OF HIGHER ORDER TERMS
CIACT(10) - COEFFICIENTS OF THE INTERACTION TERMS
CFORD(5) - COEFFICIENTS OF FIRST ORDER TERMS
CONST(5) - CONSTANT TERM
X(5) - OPTIMAL VALUES OF THE INDEPENDENT VARIABLES
AINV(5) - INVERSE MATRIX TO SOLVE FOR OPTIMAL VALUES
TEST(5,5) - USED TO VERIFY INVERSE MATRIX IN DEBUGGING
Y - RESPONSE VARIABLE
CONTOUR - VALUE AT WHICH DATA FOR CONTOUR IS DESIRED
RITE(5) - RIGHT SIDE COEFFICIENTS
VMIN(5) - MINIMUM VALUE OF VARIABLE USED TO MAP CONTOUR
VMAX(5) - MAXIMUM VALUE OF VARIABLE USED TO MAP CONTOUR
DELTA(5) - USED IN GETTING DATA TO MAP CONTOUR
CHECK - USED TO PLOT CONTOUR DATA
Z(5) - USED TO PLOT CONTOUR DATA
T(5) - USED TO INVERT MATRIX
P - PIVOT VALUE USED IN MATRIX INVERSION
PO - 1/P
D - VALUE OF DETERMINANT USED IN DEBUGGING
NSTUD- STUDENT/SURFACE NUMBER
NVAR- NUMBER OF INDEPENDENT VARIABLES
ILIST- USED TO DETERMINE IF PRINTOUT DESIRED

OPEN PRINTER AS FILE #6

OPEN(6,FILE='PRN',STATUS='NEW')

SCREEN START UP INFORMATION

CALL SKIP(10)
WRITE(*,10)
10 FORMAT(17X,'WELCOME TO THE CRIT PROGRAM')
This program is used in conjunction with the main program entitled RSM.FOR. This program will perform three functions:

1- Calculate Critical Values of the Second Order Equation

2- Estimate the Max/Min Value of the Dependent Variable

3- Provide Data to Map Response Contours

BEGIN PROGRAM

CALL SKIP(2)
WRITE(*,*), 'PLEASE ENTER YOUR NAME'
CALL SKIP(12)
READ(*,40,ERR=30) NAME
CALL SKIP(13)

* INITIALIZE VARIABLES
* IDBUG=0.0 FOR FINAL PROGRAM

50 IDBUG=0.0
NSTUD=0
Y=0.000
NVAR=0
ILIST=0
CONST=0
DO 70 I=1,5
 DO 60 J=1,5
 A(I,J)=0
60 CONTINUE
R(I)=0
COEF(I)=0
CFORD(I)=0
70 CONTINUE
DO 80 I=1,10
 CIACT(I)=0
80 CONTINUE
90 WRITE(*,*), 'WHAT SURFACE NUMBER ARE YOU WORKING WITH [1-15] ?'
CALL SKIP(12)
READ(*,100,ERR=90) NSTUD
100 FORMAT(I2)
110 WRITE(*,*), 'HOW MANY INDEPENDENT VARIABLES [1-5] ?'
CALL SKIP(12)
READ(*,120,ERR=110) NVAR
120 FORMAT(I2)
CALL SKIP(24)
DO 150 I=1,NVAR
130 WRITE(*,140) I, I
140 FORMAT(19X,'WHAT IS THE VALUE OF B',I1, I1, '?')
CALL SKIP(3)
READ(*,*,ERR=130) COEF(I)
150 CONTINUE
CALL SKIP(24)
*
IF(NVAR.EQ.2) THEN
160 WRITE(*,*)' WHAT IS THE VALUE OF B12'
CALL SKIP(3)
READ(*,*,ERR=160) CIACT(1)
ENDIF
CALL SKIP(24)
*
IF(NVAR.EQ.3) THEN
170 WRITE(*,*)' WHAT IS THE VALUE OF B12'
CALL SKIP(3)
READ(*,*,ERR=170) CIACT(1)
CALL SKIP(3)
180 WRITE(*,*)' WHAT IS THE VALUE OF B13'
CALL SKIP(3)
READ(*,*,ERR=180) CIACT(2)
190 WRITE(*,*)' WHAT IS THE VALUE OF B23'
CALL SKIP(3)
READ(*,*,ERR=190) CIACT(5)
CALL SKIP(24)
ENDIF
*
IF(NVAR.EQ.4) THEN
200 WRITE(*,*)' WHAT IS THE VALUE OF B12'
CALL SKIP(3)
READ(*,*,ERR=200) CIACT(1)
CALL SKIP(3)
210 WRITE(*,*)' WHAT IS THE VALUE OF B13'
CALL SKIP(3)
READ(*,*,ERR=210) CIACT(2)
220 WRITE(*,*)' WHAT IS THE VALUE OF B14'
CALL SKIP(3)
READ(*,*,ERR=220) CIACT(3)
230 WRITE(*,*)' WHAT IS THE VALUE OF B23'
CALL SKIP(3)
READ(*,*,ERR=230) CIACT(5)
240 WRITE(*,*)' WHAT IS THE VALUE OF B24'
CALL SKIP(3)
READ(*,*,ERR=240) CIACT(6)
250 WRITE(*,*)' WHAT IS THE VALUE OF B34'
CALL SKIP(3)
READ(*,*,ERR=250) CIACT(8)
CALL SKIP(24)
ENDIF

* IF(NVAR.EQ.5) THEN
 WRITE(*,*)' WHAT IS THE VALUE OF B12'
 CALL SKIP(3)
 READ(*,*,ERR=260) CIACT(1)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B13'
 CALL SKIP(3)
 READ(*,*,ERR=270) CIACT(2)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B14'
 CALL SKIP(3)
 READ(*,*,ERR=280) CIACT(3)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B15'
 CALL SKIP(3)
 READ(*,*,ERR=290) CIACT(4)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B23'
 CALL SKIP(3)
 READ(*,*,ERR=300) CIACT(5)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B24'
 CALL SKIP(3)
 READ(*,*,ERR=310) CIACT(6)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B25'
 CALL SKIP(3)
 READ(*,*,ERR=320) CIACT(7)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B34'
 CALL SKIP(3)
 READ(*,*,ERR=330) CIACT(8)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B35'
 CALL SKIP(3)
 READ(*,*,ERR=340) CIACT(9)
 CALL SKIP(3)
 WRITE(*,*)' WHAT IS THE VALUE OF B45'
 CALL SKIP(3)
 READ(*,*,ERR=350) CIACT(10)
ENDIF

* DO 380 I=1,NVAR
 WRITE(*,370) I
 FORMAT(19X,'WHAT IS THE VALUE OF B',I1).'?
 CALL SKIP(3)
 READ(*,*,ERR=360) CFORD(I)
380 CONTINUE
 CALL SKIP(24)
*
 WRITE(*,400)
 FORMAT(19X,'WHAT IS THE VALUE OF THE CONSTANT, B0 ?')
 CALL SKIP(3)
 READ(*,*,ERR=390) CONST
 CALL SKIP(24)
READ(*,*,ERR=250) CIACT(8)
CALL SKIP(24)
ENDIF

* IF(NVAR.EQ.5) THEN
260 WRITE(*,*)' WHAT IS THE VALUE OF B12'
CALL SKIP(3)
READ(*,*,ERR=260) CIACT(1)
CALL SKIP(3)
270 WRITE(*,*)' WHAT IS THE VALUE OF B13'
CALL SKIP(3)
READ(*,*,ERR=270) CIACT(2)
280 WRITE(*,*)' WHAT IS THE VALUE OF B14'
CALL SKIP(3)
READ(*,*,ERR=280) CIACT(3)
290 WRITE(*,*)' WHAT IS THE VALUE OF B15'
CALL SKIP(3)
READ(*,*,ERR=290) CIACT(4)
300 WRITE(*,*)' WHAT IS THE VALUE OF B23'
CALL SKIP(3)
READ(*,*,ERR=300) CIACT(5)
310 WRITE(*,*)' WHAT IS THE VALUE OF B24'
CALL SKIP(3)
READ(*,*,ERR=310) CIACT(6)
320 WRITE(*,*)' WHAT IS THE VALUE OF B25'
CALL SKIP(3)
READ(*,*,ERR=320) CIACT(7)
330 WRITE(*,*)' WHAT IS THE VALUE OF B34'
CALL SKIP(3)
READ(*,*,ERR=330) CIACT(8)
340 WRITE(*,*)' WHAT IS THE VALUE OF B35'
CALL SKIP(3)
READ(*,*,ERR=340) CIACT(9)
350 WRITE(*,*)' WHAT IS THE VALUE OF B45'
CALL SKIP(3)
READ(*,*,ERR=350) CIACT(10)
ENDIF

* DO 380 I=1,NVAR
360 WRITE(*,370) I
370 FORMAT(19X,'WHAT IS THE VALUE OF B',I1,'?')
CALL SKIP(3)
READ(*,*,ERR=360) CFORD(I)
380 CONTINUE
CALL SKIP(24)

* 390 WRITE(*,400)
400 FORMAT(19X,'WHAT IS THE VALUE OF THE CONSTANT, Bo ?')
CALL SKIP(3)
READ(*,*,ERR=390) CONSt
CALL SKIP(24)
WRITE EQUATION TO SCREEN FOR VERIFICATION

WRITE(*,410)
410 FORMAT(//,'SURFACE EQUATION IS: ')

IF(NVAR.EQ.1) THEN
 WRITE(*,420) COEF(1),CFORD(1),CONST
420 FORMAT(3X,'Y= ',F9.3,'X1**2 + ',F9.3,'X1 + ',F9.3)
ENDIF

IF(NVAR.EQ.2) THEN
 WRITE(*,430) COEF(1),COEF(2),CIACT(1),CFORD(1),CFORD(2),CONST
430 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X1*X2 + ',F10.3,'X1 ',//,4X,'+ ',F10.3,'X2 + ',F10.3)
ENDIF

IF(NVAR.EQ.3) THEN
 WRITE(*,440) COEF(1),COEF(2),COEF(3),CIACT(1),CIACT(2),
+ CIACT(5),CFORD(1),CFORD(2),CFORD(3),CONST
440 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X3**2 + ',F10.3,'X1*X2 ',//,4X,'+ ',F10.3,'X1*X3 + ',F10.3,
+ 'X2*X3 + ',F10.3,'X1 + ',F10.3,'X2 ',//,4X,'+ ',F10.3,
+ 'X3 + ',F10.3)
ENDIF

IF(NVAR.EQ.4) THEN
 WRITE(*,450) COEF(1),COEF(2),COEF(3),COEF(4),CIACT(1),
+ CIACT(2),CIACT(3),CIACT(5),CIACT(6),CIACT(8),CFORD(1),
+ CFORD(2),CFORD(3),CFORD(4),CONST
450 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X3**2 + ',F10.3,'X4**2 ',//,4X,'+ ',F10.3,'X1*X2 + ',F10.3,
+ 'X1*X3 + ',F10.3,'X1*X4 + ',F10.3,'X2*X3 ',//,4X,'+ ',F10.3,
+ 'X2*X4 + ',F10.3,'X3*X4 + ',F10.3,'X1 + ',F10.3,'X2 ',//,4X,
+ '+ ',F10.3,'X3 + ',F10.3,'X4 + ',F10.3)
ENDIF

IF(NVAR.EQ.5) THEN
 WRITE(*,460) COEF(1),COEF(2),COEF(3),COEF(4),COEF(5),CIACT(1),
+ CIACT(2),CIACT(3),CIACT(4),CIACT(5),CIACT(6),
+ CIACT(7),CIACT(8),CIACT(9),CIACT(10),CFORD(1),CFORD(2),
+ CFORD(3),CFORD(4),CFORD(5),CONST
460 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X3**2 + ',F10.3,'X4**2 ',//,4X,'+ ',F10.3,'X5**2 + ',F10.3,
+ 'X1*X2 + ',F10.3,'X1*X3 + ',F10.3,'X1*X4 ',//,4X,'+ ',F10.3,
+ 'X1*X5 + ',F10.3,'X2*X3 + ',F10.3,'X2*X4 + ',F10.3,'X2*X5 ',//,4X,
+ '+ ',F10.3,'X3*X4 + ',F10.3,'X3*X5 + ',F10.3,'X4*X5 + ',F10.3,
+ 'X1 ',//,4X,'+ ',F10.3,'X2 + ',F10.3,'X3 + ',F10.3,
+ 'X4 + ',F10.3,'X5 ',//,4X,'+ ',F10.3)
ENDIF

CALL SKIP(3)
470 WRITE(*,*)' IS THE EQUATION CORRECT?'
CALL SKIP(2)
WRITE(*,'(A3)') '1' = CORRECT'
WRITE(*,'(A3)') '0' = WRONG'
READ(*,*,ERR=470) IANS
IF (IANS.EQ.0) GO TO 90
IF (IANS.NE.1) GO TO 470

BEGIN SETTING UP MATRICES

CALL SKIP(24)
DO 480 K=1,NVAR
 RITE(K)=-CFORD(K)
480 CONTINUE
DO 490 K=1,NVAR
 A(K,K)= COEF(K)*2
490 CONTINUE
IF(NVAR.LT.2) GO TO 500
A(1,2)= CIACT(1)
A(2,1)= CIACT(1)
IF(NVAR.LT.3) GO TO 500
A(1,3)= CIACT(2)
A(3,1)= CIACT(2)
A(2,3)= CIACT(5)
A(3,2)= CIACT(5)
IF(NVAR.LT.4) GO TO 500
A(1,4)= CIACT(3)
A(4,1)= CIACT(3)
A(2,4)= CIACT(6)
A(4,2)= CIACT(6)
A(3,4)= CIACT(8)
A(4,3)= CIACT(6)
IF(NVAR.LT.5) GO TO 500
A(1,5)= CIACT(4)
A(5,1)= CIACT(4)
A(2,5)= CIACT(7)
A(5,2)= CIACT(7)
A(3,5)= CIACT(9)
A(5,3)= CIACT(9)
A(4,5)= CIACT(10)
A(5,4)= CIACT(10)
500 CONTINUE

TAKE INVERSE OF MATRIX A = AINV

THE CODE TO TAKE THE INVERSE USES THE GAUSS-JORDAN TECHNIQUE
WITH PARTIAL PIVOTING. IT IS ADAPTED FROM:
MICROCOMPUTERS IN NUMERICAL ANALYSIS
BY LINDFIELD AND PENNY, 1987
DO 520 I=1,NVAR
 DO 510 J=1,NVAR
 AINV(I,J)=A(I,J)
 510 CONTINUE
 520 CONTINUE
 D=1
 DO 590 K=1,NVAR
* *
 * CHOOSE PIVOTS
 *
 P=0
 DO 550 I=1,NVAR
 IF (K.EQ.1) GOTO 540
 DO 530 L=1,(K-1)
 IF (I.EQ.(R(L))) GOTO 550
 530 CONTINUE
 540 IF (DABS(AINV(I,K)).LE.DABS(P)) GOTO 550
 P=AINV(I,K)
 R(K)=I
 550 CONTINUE
 IF (P.EQ.0) THEN
 WRITE(*,*) 'ZERO PIVOT'
 STOP
 ENDIF
 D=D*P
 PO=1/P
 *
 * ELIMINATION PROCEDURE
 *
 DO 560 J=1,NVAR
 M=R(K)
 AINV(M,J)=AINV(M,J)*PO
 560 CONTINUE
 AINV(M,K)=PO
 DO 580 I=1,NVAR
 IF (I.EQ.(R(K))) GOTO 580
 DO 570 J=1,NVAR
 IF (J.EQ.K) GOTO 570
 M=R(K)
 AINV(I,J)=AINV(I,J)-AINV(I,K)*AINV(M,J)
 570 CONTINUE
 AINV(I,K)= -AINV(I,K)*PO
 580 CONTINUE
 590 CONTINUE
 DO 620 J=1,NVAR
 DO 600 I=1,NVAR
 M=R(I)
 T(I)=AINV(M,J)
 600 CONTINUE
 DO 610 I=1,NVAR
 AINV(I,J)=T(I)
 610 CONTINUE
90

620 CONTINUE
DO 650 I=1,NVAR
 DO 630 J=1,NVAR
 M=R(J)
 T(M)=AINV(I,J)
 CONTINUE
630 CONTINUE
DO 640 J=1,NVAR
 AINV(I,J)=T(J)
640 CONTINUE
650 CONTINUE
DO 660 K=1,NVAR
 M=R(K)
 T(M)=K
660 CONTINUE
DO 680 I=1,NVAR
 DO 670 J=1,(NVAR-1)
 IF (T(J).LE.(T(J+1))) GOTO 670
 P=T(J)
 T(J)=T(J+1)
 T(J+1)=P
 CONTINUE
 D=-D
670 CONTINUE
680 CONTINUE
IF (IDBUG.EQ.1) THEN
 * WRITE MATRIX
 DO 690 I=1,NVAR
 WRITE(*,*) (AINV(I,J),J=1,NVAR)
 CONTINUE
690 CONTINUE
 * WRITE(*,*) 'DETERMINANT= ',D
 * PRINT INVERSE OF MATRIX A= AINV
 * WRITE(6,*) ' -----MATRIX AINV = INVERSE OF MATRIX A-----'
 DO 700 I=1,NVAR
 WRITE(6,710) (AINV(I,J),J=1,NVAR)
700 CONTINUE
710 FORMAT(1X,5F20.5)
 ENDIF
 * SEE THAT MATRIX AINV*A = DIAGONAL MATRIX
 *
720 DO 750 I=1,NVAR
 DO 740 J=1,NVAR
 TEST(I,J)=0.0
 CONTINUE
730 CONTINUE
 TEST(I,J)= TEST(I,J) + A(I,K)*AINV(K,J)
 * IF (TEST(I,J).LT.1.0E-06.AND.TEST(I,J).GT.-1.0E-06)
 * TEST(I,J)=0.0
730 CONTINUE
740 CONTINUE
750 CONTINUE
IF (IDBUG.EQ.1) THEN
 WRITE(6,'(A)') '----------MATRIX A*AINV = MATRIX TEST------'
 DO 760 I=1,NVAR
 WRITE(6,770) (TEST(I,J),J=1,NVAR)
 CONTINUE
 FORMAT(1X,5F22.5)
ENDIF

MULTIPLY MATRIX AINV*RITE(K) = MATRIX X(VALUE MATRIX)

DO 780 I=1,NVAR
 X(I)=0.0
 DO 790 K=1,NVAR
 X(I)= X(I) + AINV(I,K)*RITE(K)
 CONTINUE
790 CONTINUE
780 CONTINUE

IF (IDBUG.EQ.1) THEN
 WRITE(6,'(A)') '---------MATRIX AINV*R(K) = MATRIX X(VALUE)------'
 DO 810 I=1,NVAR
 WRITE(6,820) I,X(I)
 CONTINUE
810 CONTINUE
820 FORMAT(11X,'X',I2,'-',F16.5)
ENDIF

DISPLAY RESULTS TO SCREEN

WRITE(*,*)' CRITICAL ANALYSIS OF SURFACE'
CALL SKIP(1)
WRITE(*,*)'--VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--'
CALL SKIP(1)
DO 830 I=1,NVAR
 WRITE(*,840) I,X(I)
830 CONTINUE
840 FORMAT(11X,'X',I2,'-',16.6,/) CALL SKIP(1)

DETERMINE VALUE OF Y AT OPTIMAL POINT

DO 850 K=1,NVAR
 Y=COEF(K)*X(K)**2 + CFORD(K)*X(K) + Y
850 CONTINUE

Y= Y+X(1)*X(2)*CIACT(1) + X(1)*X(3)*CIACT(2) +
 + X(1)*X(4)*CIACT(3) +
 + X(1)*X(5)*CIACT(4) + X(2)*X(3)*CIACT(5) +
 + X(2)*X(4)*CIACT(6) +
 + X(2)*X(5)*CIACT(7) + X(3)*X(4)*CIACT(8) +
 + X(3)*X(5)*CIACT(9) +
 + X(4)*X(5)*CIACT(10) + CONST
WRITE(*,860) Y
860 FORMAT(2X,'--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--',/
+/12X,'Y =',F16.6,/) *

WRITE(*,880)
880 FORMAT(2X,'--DO YOU WANT PRINTOUT OF THE RESULTS?',/) WRITE(*,*)' 1'= PRINT '
WRITE(*,*)' 0'= NO' WRITE(*,*)
READ(*,*,ERR=870) IANS
IF (IANS.NE.0.AND.IANS.NE.1) GO TO 870
IF (IANS.EQ.0) GO TO 990 *

CALL SKIP(12)
WRITE(*,*)' PRINTING RESULTS'
CALL SKIP(12)
WRITE(6,*)' CRITICAL ANALYSIS OF SURFACE'
WRITE(6,*)' NAME: ',NAME
WRITE(6,*)
WRITE(6,890) NSTUD
890 FORMAT(3X,'SURFACE NUMBER= ',I2)
WRITE(6,900)
900 FORMAT(/,15X,'SURFACE EQUATION IS:',/) IF(NVAR.EQ.1) THEN
WRITE(6,910) COEF(1),CFORD(1),CONST
910 FORMAT(3X,'Y= ',F9.3,'X1**2 + ',F9.3,'X1 + ',F9.3,) ENDIF *

IF(NVAR.EQ.2) THEN
WRITE(6,920) COEF(1),COEF(2),CIACT(1),CFORD(1),CFORD(2),CONST
920 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X1*X2 + ',F10.3,'X1 ',//,4X,+ ',F10.3,'X2 + ',F10.3,) ENDIF *

IF(NVAR.EQ.3) THEN
WRITE(6,930) COEF(1),COEF(2),COEF(3),CIACT(1),CIACT(2),
+ CIACT(5),CFORD(1),CFORD(2),CFORD(3),CONST
930 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X3**2 + ',F10.3,'X1*X2',//,4X,+ ',F10.3,'X1*X3 + ',F10.3,
+ 'X2*X3 + ',F10.3,'X1 + ',F10.3,'X2',//,4X,+ ',F10.3,
+ 'X3 + ',F10.3) ENDIF *

IF(NVAR.EQ.4) THEN
WRITE(6,940) COEF(1),COEF(2),COEF(3),COEF(4),CIACT(1),CIACT(2),
+ CIACT(3),CIACT(5),CIACT(6),CIACT(8),CFORD(1),CFORD(2),
+ CFORD(3),CFORD(4),CONST
940 FORMAT(3X,'Y= ',F10.3,'X1**2 + ',F10.3,'X2**2 + ',F10.3,
+ 'X3**2 + ',F10.3,'X4**2',//,4X,+ ',F10.3,'X1*X2 + ',F10.3,
+ 'X1*X3 + ',F10.3,'X1*X4 + ',F10.3,'X2*X3',//,4X,+ ',F10.3,
+ 'X2*X4 + ',F10.3,'X3*X4 + ',F10.3,'X1 + ',F10.3,'X2 ',//,4X,
+ ' + ',F10.3,'X3 + ',F10.3,'X4 + ',F10.3)
ENDIF
*
IF(NVAR.EQ.5) THEN
WRITE(6,950)COEF(1),COEF(2),COEF(3),COEF(4),COEF(5),CIACT(1),
+ CIACT(2),CIACT(3),CIACT(4),CIACT(5),CIACT(6),CIACT(7),
+ CIACT(8),CIACT(9),CIACT(10),CFORD(1),CFORD(2),CFORD(3),
+ CFORD(4),CFORD(5),CONST
950 FORMAT(3X,'Y= ',F10.3,'X1*2 + ',F10.3,'X2*2 + ',F10.3,
+ 'X3*2 + ',F10.3,'X4*2',//,4X,'+ ',F10.3,'X5*2 + ',F10.3,
+ 'X1*X2 + ',F10.3,'X1*X3 + ',F10.3,'X1*X4',//,4X,'+ ',F10.3,
+ 'X1*X5 + ',F10.3,'X2*X3 + ',F10.3,'X2*X4 + ',F10.3,
+ ',F10.3,'X2*X5',//,4X,
+ '+ ',F10.3,'X3*X4 + ',F10.3,'X3*X5 + ',F10.3,'X4*X5 + ',F10.3,
+ 'X1',//,4X,'+ ',F10.3,'X2 + ',F10.3,'X3 + ',F10.3,
+ 'X4 + ',F10.3,'X5',//,4X,'+ ',F10.3)
ENDIF
*
WRITE(6,*)
WRITE(6,*)' --VALUE OF INDEPENDENT VARIABLES AT OPTIMAL POINT--'
WRITE(6,*)
DO 960 I=1,NVAR
WRITE(6,970) I,X(I)
960 CONTINUE
970 FORMAT(11X,'X',I2,'=',F16.6,/) *
WRITE(6,980) Y
980 FORMAT(3X,'--VALUE OF RESPONSE VARIABLE AT OPTIMAL POINT--',//,
+13X,'Y=',F16.6,///)
WRITE(6,*)
WRITE(6,*)
990 CONTINUE
CALL SKIP(24)
1000 WRITE(*,*) ' DO YOU WANT DATA TO PLOT CONTOURS?'
CALL SKIP(2)
WRITE(*,*) ' "1" = YES'
WRITE(*,*) ' "0" = NO'
CALL SKIP(5)
READ(*,*,ERR=1000) IANS
IF (IANS.NE.0.AND.IANS.NE.1) GO TO 1000
IF (IANS.EQ.0) GO TO 1290
*
*
PLOT CONTOURS
*
1010 CALL SKIP(24)
WRITE(*,*),' CONTOUR ANALYSIS'
CALL SKIP(5)
DO 1020 I=1,5
Z(I)=0.0
VMAX(I)=0.0
VMIN(I)=0.0
CONTOUR=0.0

DELTA(I)=0.0
1020 CONTINUE
WRITE(*,*),' WHAT VALUE CONTOUR DO YOU WANT TO PLOT?'
CALL SKIP(7)
READ(*,*) CONTOUR
CALL SKIP(24)
DO 1090 I=1,NVAR
1030 WRITE(*,1040) I
1040 FORMAT(10X,'WHAT IS THE MINIMUM VALUE OF X',I1)
CALL SKIP(2)
READ(*,*,ERR=1030) VMIN(I)
1050 WRITE(*,1060) I
1060 FORMAT(10X,'WHAT IS THE MAXIMUM VALUE OF X',I1)
CALL SKIP(2)
READ(*,*,ERR=1050) VMAX(I)
1070 WRITE(*,1080) I
1080 FORMAT(10X,'WHAT IS THE DELTA VALUE OF X',I1)
CALL SKIP(2)
READ(*,*,ERR=1070) DELTA(I)
1090 CONTINUE
1095 WRITE(*,*),' DO YOU WANT TO PRINT RESULTS?'
CALL SKIP(2)
WRITE(*,*), ' "1"= SEND RESULTS TO PRINTER AND SCREEN'
WRITE(*,*), ' "0"= SCREEN ONLY'
CALL SKIP(5)
READ(*,*,ERR=1095) IPRINT
IF(IPRINT.NE.0.AND.IPRINT.NE.1) GOTO 1095
CALL SKIP(24)
IF(IPRINT.EQ.1) THEN
 WRITE(*,*),' TURN ON PRINTER'
 CALL SKIP(2)
 CALL SKIP(8)
 CALL CONT
 CALL SKIP(13)
 WRITE(*,*),' SENDING PLOTTING DATA TO PRINTER'
 CALL SKIP(12)
ENDIF
Z(1)=VMIN(1)
Z(2)=VMIN(2)
Z(3)=VMIN(3)
Z(4)=VMIN(4)
Z(5)=VMIN(5)
* SEND RESULTS TO SCREEN
WRITE(*,1100) CONTOUR
WRITE(*,*)
WRITE(*,*)
WRITE(*,1110) (VMIN(I),I=1,NVAR)
WRITE(*,1120) (VMAX(I),I=1,NVAR)
WRITE(*,1130) (DELTA(I),I=1,NVAR)
WRITE(*,*)
WRITE(*,1140)
* SEND RESULTS TO PRINTER

IF(IPRINT.EQ.1) THEN
 WRITE(6,1100) CONTOUR
 WRITE(6,*)
 WRITE(6,*)
 WRITE(6,1110) (VMIN(I),I=1,NVAR)
 WRITE(6,1120) (VMAX(I),I=1,NVAR)
 WRITE(6,1130) (DELTA(I),I=1,NVAR)
 WRITE(6,*)
 WRITE(6,1140)
ENDIF

1100 FORMAT(10X,'VALUES [+/- .01] TO PLOT CONTOUR = ',F9.2)
1110 FORMAT(2X,'MIN VALUE = ','5(F13.3))
1120 FORMAT(2X,'MAX VALUE = ','5(F13.3))
1130 FORMAT(2X,'DELTAVALE=','5(F13.3))
1140 FORMAT(11X,'Y',6X,'--INDEPENDENT VARIABLES--')
1150 Y=0.0D0

DO 1160 K=1,NVAR
 Y=COEF(K)*Z(K)**2 + CFORD(K)*Z(K) + Y
1160 CONTINUE
 Y=Y+Z(1)*Z(2)*CIAC(1) + Z(1)*Z(3)*CIAC(2) + Z(1)*Z(4)*CIAC(3)
 + + Z(1)*Z(5)*CIAC(4) + Z(2)*Z(3)*CIAC(5) + Z(2)*Z(4)*CIAC(6)
 + + Z(2)*Z(5)*CIAC(7) + Z(3)*Z(4)*CIAC(8) + Z(3)*Z(5)*CIAC(9)
 + + Z(4)*Z(5)*CIAC(10) + CONST

CHECK= Y-CONTOUR
IF (CHECK.LE.0.01.AND.CHECK.GE.-0.01) THEN
 WRITE(*,1170) Y,(Z(I),I=1,NVAR)
 IF(IPRINT.EQ.1) WRITE(6,1170) Y,(Z(I),I=1,NVAR)
1170 FORMAT(1X,Y,F13.2,5F13.3)
ENDIF

IF (NVAR.LT.5) GO TO 1180
IF(Z(5).GE.VMAX(5)) GO TO 1190
Z(5)=Z(5)+DELTA(5)
GO TO 1150
1180 IF (NVAR.LT.4) GO TO 1200
1190 Z(5)=VMIN(5)
IF(Z(4).GE.VMAX(4)) GO TO 1210
Z(4)=Z(4) + DELTA(4)
GO TO 1150
1200 IF (NVAR.LT.3) GO TO 1220
1210 Z(4)=VMIN(4)
IF (Z(3).GE.VMAX(3)) GO TO 1230
Z(3)=Z(3) + DELTA(3)
GO TO 1150
1220 IF (NVAR.LT.2) GO TO 1240
1230 Z(3)=VMIN(3)
IF(Z(2).GE.VMAX(2)) GO TO 1250
Z(2)=Z(2) + DELTA(2)
GO TO 1150
1240 IF (NVAR.LT.1) GOTO 1260
1250 Z(2) = VMIN(2)
 IF (Z(1).GE.VMAX(1)) GO TO 1270
 Z(1) = Z(1) + DELTA(1)
 GO TO 1150
1260 WRITE(*,*) ' # VARIABLES LESS THAN 1--ERROR'
 STOP
1270 CALL CONT
1280 CALL SKIP(24)
 IF (IPRINT.EQ.1) WRITE(6,*)
 IF (IPRINT.EQ.1) WRITE(6,*)
 WRITE(*,*)
 CALL SKIP(2)
 WRITE(*,*)
 WRITE(*,*)
 CALL SKIP(5)
 READ(*,*,ERR=1280) IANS
 IF (IANS.NE.0.AND.IANS.NE.1) GO TO 1280
 IF (IANS.EQ.1) GO TO 1010
 CALL SKIP(24)

1290 CALL SKIP(24)
1300 WRITE(*,*)
 DO YOU WANT TO PLOT ANOTHER CONTOUR?'
 CALL SKIP(2)
 WRITE(*,*)
 WRITE(*,*)
 CALL SKIP(5)
 READ(*,*,ERR=1300) IANS
 IF (IANS.NE.0.AND.IANS.NE.1) GO TO 1300
 IF (IANS.EQ.1) GO TO 50
 CALL SKIP(24)
 STOP

CALL SKIP(24)
END

SUBROUTINE CONT- USED TO HALT OPERATIONS UNTIL USER
IS READY TO CONTINUE

SUBROUTINE CONT
CHARACTER*1 ANS, BLK
DATA BLK/' '/
AN = BLK
WRITE(*,10)
10 FORMAT(/,' To continue, press RETURN key')
READ(*,20) ANS
20 FORMAT(A1)
RETURN
END

SUBROUTINE SKIP- SKIPS "N" LINES ON SCREEN DISPLAY

SUBROUTINE SKIP(N)
DO 10 I=1,N
 WRITE(*,*)'
10 CONTINUE
RETURN
END