ANNUAL REPORT

to

OFFICE OF NAVAL RESEARCH

Contract USN 00014-91-J-1189

January 1992

PREDICTION OF HYDROGEN ENTRY AND PERMEATION
IN METALS AND ALLOYS

H. W. Pickering

Department of Materials Science and Engineering
The Pennsylvania State University

92-02373
PENN STATE
College of Earth and Mineral Sciences

Undergraduate Majors
Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science; Mineral Economics; Mining Engineering, Petroleum and Natural Gas Engineering; Earth Sciences, Geosciences; Geography; Meteorology.

Graduate Programs and Fields of Research
Ceramic Science and Engineering, Fuel Science, Metals Science and Engineering, Polymer Science; Mineral Economics; Mining Engineering, Mineral Processing, Petroleum and Natural Gas Engineering; Geochemistry and Mineralogy, Geology, Geophysics; Geography; Meteorology.

Universitywide Interdisciplinary Graduate Programs Involving EMS Faculty and Students

Associate Degree Programs
Metallurgical Engineering Technology (Shenango Valley Campus).

Interdisciplinary Research Groups Centered in the College
C. Drew Stahl Center for Advanced Oil Recovery, Center for Advanced Materials, Coal Research Section, Earth System Science Center, Mining and Mineral Resources Research Institute, Ore Deposits Research Group.

Analytical and Characterization Laboratories (Mineral Constitution Laboratories)
Services available include: classical chemical analysis of metals and silicate and carbonate rocks; X-ray diffraction and fluorescence; electron microscopy and diffraction; electron microprobe analysis; atomic absorption analysis; spectrochemical analysis; surface analysis by secondary ion mass spectrometry (SIMS); and scanning electron microscopy (SEM).

The Pennsylvania State University, in compliance with federal and state laws, is committed to the policy that all persons shall have equal access to programs, admission, and employment without regard to race, religion, sex, national origin, handicap, age, or status as a disabled or Vietnam-era veteran. Direct all affirmative action inquiries to the Affirmative Action Officer, Suzanne Brooks, 201 Willard Building, University Park, PA 16802; (814) 863-0471.

U Ed. 87.1027
Produced by the Penn State Department of Publications
Predictions of Hydrogen Entry and Permeation in Metals and Alloys

Howard W. Pickering

The Pennsylvania State University
Department of Materials Science & Engineering
326 Steidle Building
University Park, PA 16802

Scientific Officer
Materials Division Code: 1131M
Office of Naval Research
Arlington, VA 22217-5000
ATTN: A. John Sedriks

Approved for public release; distribution is unlimited.

This report summarizes results of the past year on our continuing in-situ experiments directed to the problem of hydrogen entry and degradation of materials both for planar surfaces and for the more complicated recessed surface. For the planar surface the hydrogen permeation and scanning tunneling microscopy (STM) techniques are being used, and for the recessed surface the study uses a combined microscopy/electrochemical probe technique and a crevice geometry.

Further modeling of the hydrogen permeation technique has led to an experimental procedure that yields two previously unattainable rate constants that are important for controlling hydrogen absorption into a material from an aqueous environment, the hydrogen absorption (entry) and desorption (exiting) constants. STM has been further developed for in-situ study of hydrogen bonding at the atomic scale by successfully imaging hydrogen adsorption on the model Si(100)2X1 surface from a low pressure hydrogen gas phase. For the recessed surface hydrogen entry from an aqueous solution occurs for a much wider range of conditions than previously believed. Chloride ion and acidification indirectly promote hydrogen ion reduction and entry on the recessed surface through their direct effect on promoting the IR-induced mechanism of crevicing.

KEY WORDS: modeling of hydrogen electro permeation, diffusion of hydrogen, hydrogen absorption, chloride ion and acidification effects, hydrogen evolution in recesses.
CONTENTS

REPORT DOCUMENTATION PAGE..

INTRODUCTION ..

SECTION 1: PROGRESS SUMMARY..

PUBLICATIONS...

SECTION 2: HYDROGEN PERMEATION MODELING

SECTION 3: RECESSED SURFACES..

Role of Acidification...

Role of Chloride Ion...
INTRODUCTION

This report is divided into three selections. Section 1 is a summary of progress and a list of project publications in the past year. Section 2 is a report (reprint) on how to obtain the important hydrogen absorption (entry) and desorption* (exiting) rate constants from steady state hydrogen permeation data. Section 3 consists of two reprints, one that relates to the role of acidification and the other to the role of chloride ions in shifting the electrode potential inside a recess in the direction favoring proton reduction and hydrogen entry, and which present a combination of in-situ techniques: direct viewing of the crevice wall (through a transparent media that forms the other wall of the crevice) and simultaneously using an adjustable potential measuring probe inside the crevice.

SECTION 1
PROGRESS SUMMARY

The problem of hydrogen-induced damage and failure of metallic systems starts with hydrogen entry. The hydrogen permeation technique has been successfully used for three decades for determining some of the important hydrogen/material parameters, e.g., the hydrogen diffusivity and hydrogen concentration inside the input surface, but most of the parameters related to hydrogen entry were not previously attainable from permeation data because of the incomplete nature of the quantitative treatment of hydrogen permeation available in the literature. Our work of the past few years on the project corrected this situation so now a more rigorous quantitative treatment of the permeation process is available (described in last year's Annual Report and various publications). As a result several additional parameters related to hydrogen entry became attainable from permeation data. These are the proton discharge rate constant, transfer coefficient and exchange current density, the hydrogen recombination rate constant, the hydrogen coverage, and the ratio of (but not the individual) hydrogen absorption and desorption rate constants. To obtain the individual absorption and desorption constants some further model development was required, and has recently been accomplished. This extension of the model

* The desorption or exiting rate constant is referred to as the adsorption rate constant in the reprint.
requires that the steady state permeation data are obtained as a function of membrane thickness. This extension of the model is described in Section 2.

The scanning tunneling microscope provides the opportunity for in-situ imaging of the surface over a wide range of scale including the atomic scale. Imaging adsorbates on surfaces is also possible. Initial STM studies on the project began with the easy-to-study silicon low index single crystal surfaces using the ultra high vacuum STM. Then, studies of hydrogen adsorption on these surfaces was started with the initial successful STM observations at the atomic level reported last year for the Si 111(7x7) surface (ONR Technical Report, February 1990). This initial success in imaging adsorbed hydrogen atoms is encouraging for the successful development of the STM technique, and alternatively the atomic force microscope (AFM) which we are now employing in our studies of adsorbed monolayers, for in-situ imaging of hydrogen adsorption on metals at the atomic level.

For most cases of nonuniform corrosion, the electrode potential varies over the surface, e.g., in the case of oxygen concentration cells, being more noble at cathodic sites of high oxidant availability and more negative at anodic sites. The shift of the electrode potential in the negative direction can be quite large and its magnitude is unknown in service applications since the anodic sites are in recesses (crevices, cracks, etc.). It follows that the tendency for the occurrence of the hydrogen evolution reaction, and thus for hydrogen entry into the metal structure, is greatest in the recesses.

Thus, it becomes important to know how and to what extent the various parameters e.g., acidification of the local cell environment, associated with recesses in particular during localized corrosion, affect the shift of the local electrode potential in the negative direction. This question does not appear to have been addressed in the literature but is not trivial as we now know from recent results on crevice corrosion of iron. During crevicing ever more negative electrode potentials to a limiting value exist along the crevice wall with increasing depth into the crevice, accompanied by the evolution of hydrogen gas (ONR Technical Reports, February 1988, January 1988 and October 1987, and reprints in Section 3 of this report). During the past year the roles of acidification, chloride ion, recess geometry, and other factors, on promoting the potential shift into the hydrogen evolution potential region within recesses have been under study. Both acidification and chloride ion have been found to increase the magnitude and
frequency of the potential shift within recesses in the negative direction. Thus, the tendency for hydrogen evolution and entry into the metal within recesses is increased by both of these parameters along with the tendency for localized corrosion. Results available to date are presented in Section 3.

PUBLICATIONS ON THE PROJECT

SECTION 2
HYDROGEN PERMEATION MODELING
Construction of Iso-Coverage Tafel Plots to Evaluate the HER Transfer Coefficient

Rajan N. Iyer and Howard W. Pickering*

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

This communication is a supplement to a recent paper (1) describing a new model of electrolytic hydrogen charging and permeation in metals. This model shows how the forward and backward rate constants of the hydrogen entry step, \(k_a \) and \(k_d \), respectively, can be obtained from permeation data as a function of membrane thickness, and that hydrogen evolution reaction (h.e.r.) transfer coefficient, \(\alpha \), should perhaps not be considered a constant for the entire range of hydrogen coverage, \(\theta_H \), on metallic surfaces. In the present paper we show that if, in addition, experiments are conducted for membranes of certain, rather than random, thicknesses, the \(\alpha \) values at constant hydrogen coverage can also be obtained.

For even small variations of \(\alpha \) with \(\theta_H \), iso-coverage \(\alpha \) values are needed in the newly developed (I-P-Z) model (1, 2) in order to accurately determine the above-mentioned and other previously unobtainable parameters of the h.e.r. and hydrogen permeation processes. It has been previously pointed out that the value of \(\alpha \) is important in determining the polarizability of the electrolytic reduction of protons to form adsorbed hydrogen atoms on a metallic electrode surface (3, 4). Especially when the surface hydrogen coverage is significant (\(\theta_H \approx 0.1 \)), corresponding to significant percentages (>2%) for iron (1) of the charging current (\(i_c \)) permeating through the membrane, rather than evolving as hydrogen gas, it will not be possible to evaluate \(\alpha \) from the conventional Tafel plot, log \(i_c \) vs. \(\eta \), since these plots will not be straight lines. This perhaps suggests the influence of \(\theta_H \) on \(\alpha \). Examples of non-straight Tafel plots are shown elsewhere (5-7). Since they occur for a wide range of hydrogen coverage, including very low \(\theta_H \), it now seems reasonable to consider, as we are doing in this note, that for some conditions \(\alpha \) may vary significantly with \(\theta_H \). In the following analysis, a novel technique for analysis of hydrogen permeation data as a function of thickness is advanced to enable construction of Tafel plots as iso-coverge lines from which \(\alpha \) (at constant \(\theta_H \)) can be accurately evaluated.

The Butler-Volmer equation for hydrogen discharge when the backward reaction can be neglected (\(\eta >> RT/F \)) is (1, 2, 4)

\[
i_i = i_{\text{sep}} (1 - \theta_H) \exp \left(\frac{-RT}{F \eta} \right) \tag{1}
\]

where \(i_i \) is the cathodic current density,

\(i_{\text{sep}} = \frac{i_0}{1 - \theta_H} \)

\(i_0 \) = exchange current density,

\(\theta_H \) = (polarized) surface H coverage,

\(\eta \) = H overvoltage = polarization,

\(i_{\text{sep}} = \frac{F \alpha}{RT} \exp \left(\frac{-RT}{F \eta} \right) \)

\(\alpha \) = h.e.r. transfer coefficient,

\(\beta \) = hydrogen absorption-adsorption constant.

\(\text{R} \) = gas constant, 8.314 J (g-mol K)\(^{-1} \), and

\(\text{T} \) = temperature, K.

Equation [1] can be rewritten as

\[
\theta_H = 1 - \frac{i_i}{i_0} \tag{2}
\]

Equation [2] can be termed the polarized adsorption isotherm for a reaction sufficiently far from equilibrium so that the back-reaction can be neglected (1). Differentiating

\[
\frac{d\theta_H}{d\eta} = -\frac{i_i}{i_0} \left(\frac{\alpha + d \ln i_i}{d\eta} \right) \tag{3}
\]

Equation [3] shows that if the coverage, \(\theta_H \), can be fixed while polarizing the electrode, i.e., if \(\theta_H \) = constant, then \(d\theta_H/d\eta = 0 \) and

\[
\alpha = \frac{d \ln i_i}{d\eta} = \frac{1}{\frac{RT}{2.303F} \frac{d \log i_i}{d\eta}} \tag{4}
\]

where \(\alpha \) (\(\theta_H \) constant) is the h.e.r. transfer coefficient obtained at a particular \(\theta_H \) coverage. Equation [4] is the familiar Tafel equation, except that \(d\theta_H/d\eta = 0 \) has been applied as a condition to obtain an actual \(\alpha \) value.

The normal tendency for \(\theta_H \) to increase with increasing \(\eta \) (in the absence of permeation into the metal) can be controlled by decreasing the membrane thickness, \(L \), thereby increasing the steady-state permeation flux, \(j \), (or equivalently, the permeation current, \(i_c \)), in hydrogen permeation experiments utilizing the Devanathan-Stackurski cell (8), i.e., the \(i_c \) value can be manipulated by varying \(L \). This is possible because the steady-state hydrogen permeation through the bulk metal can be described as a simple rate-controlling diffusion process (8) and \(i_c. \theta_H \), and \(L \) are related by (1)

\[
\theta_H = \frac{L}{FD} \frac{i_c}{k' \text{D}} \tag{5}
\]

where

\(D_1 \) = the bulk hydrogen diffusivity in the metal, and

\(k' \) = the thickness-dependent hydrogen absorption-adsorption constant = \(k_{\text{abs}}/k_{\text{ads}} + D_1/L \)

Rearranging \(k' \) gives

\[
1 = \frac{1}{k'} = \frac{D_1}{i_c} \frac{L}{k_{\text{ads}}} \tag{6}
\]

where \(k' = \) (the thickness-independent) hydrogen absorption-adsorption constant under conditions of negligible permeation = \(k_{\text{abs}}/k_{\text{ads}} \).

It is now apparent from Eq. [5] that we can achieve a constant \(\theta_H \) (termed the iso-coverage condition) by setting \(i_c, L \)
(k*)\(^{-1}\) = constant. Then, using Eq. [5] and [6] one can prove that

\[
\frac{i_{\alpha}}{i_{\alpha}} = \frac{n_{L} + (D_{m}/k_{ads})}{i_{\alpha}} \tag{7}
\]

where \(i_{\alpha,n}\) and \(i_{\alpha,m}\) refer to \(i_{\alpha}\) values for membranes \(n\) and \(m\) of thicknesses \(L_{n}\) and \(L_{m}\). Equation [7] is applicable to any number of membranes, \(N\), of different thickness where \(m = 1, 2, \ldots; n = 2, 3, \ldots; N\); and \(n > m\). Equation [7] describes the relationship between the iso-coverage \(i_{\alpha}\) values for membranes \(n\) and \(m\). However, we have to know the \(D_{m}/k_{ads}\) value or eliminate this unknown quantity from Eq. [7] with other known quantities, as done below.

If the h.e.r. occurs by a discharge-recombination process and if the (chemical) recombination process is not rate-limiting, it has been shown (1) that

\[
i_{\alpha} = K_{i}(L - L_{m}) \tag{8}
\]

where \(K_{i}\) is a function of \(L\). Since \(i_{\alpha}\) is constant (for constant \(\theta_{H}\)) and independent of \(L\), it follows from Eq. [7] and [8] that

\[
i_{\alpha,n} = (K_{m}/K_{n}) i_{\alpha,m} \tag{9}
\]

where \(K_{m}\) and \(K_{n}\) refer to the \(K\) values for membrane thicknesses \(L_{m}\) and \(L_{n}\), respectively. It may be noted that \(K\) is a constant for each of the membranes. From Eq. [8] and [9], one obtains after simplification

\[
i_{\alpha,n} = i_{\alpha,m} + ((K_{m}/K_{n}) - 1) i_{\alpha,m} \tag{10}
\]

Equation [10] can thus be used recursively to find iso-coverage \(i_{\alpha,n}\) (and hence \(\eta_{n}\)) values from polarization and permeation measurements on membranes with varying thickness. Since \(K\) is inversely proportional to \(L\), it is clear that \(K_{m}/K_{n} \neq 1\). This means that different iso-coverage \(i_{\alpha}\) (and hence \(\eta\)) values, can be obtained from Eq. [10] by using membranes of different thickness. But it is necessary to vary the thickness by one to two orders of magnitude depending on the magnitude of \(i_{\alpha}\). Since \(i_{\alpha}\) will best be obtained for a number of \(i_{\alpha}\) values, \(i_{\alpha}\) should always be low enough to avoid introducing nonsaturable traps, and should be applied in a sequence of decreasing magnitudes in order to have a stable trap density and to minimize film effects. The presence of a film will also have to be determined as described elsewhere (9, 10) in order to know if hydrogen is adsorbing on a film or on the metal surface.

If the assumptions in Eq. [8] (1) are not met, for example if the h.e.r. occurs by a more complex process such as discharge followed by simultaneous chemical and electrochemical desorption, or if the recombination process is rate-limiting, then Eq. [8] will be modified. An example of a modified relationship between \(i_{\alpha}\) and \(L\) occurs for the case of \(H_{2}S\) poisoning the h.e.r. and enhancing hydrogen entry into iron in acidic solutions (7, 9) for which the relationship is

\[
\text{log}(L/L_{m}) = \alpha_{H}(k'/k_{ads}) + \text{log}(k' / k_{ads})
\]

where \(k' \approx 1 = k_{ads} / k_{ads}\)

or

\[
g = \frac{1}{\alpha} = \frac{L + D_{m}/k_{ads}}{k_{ads}} \tag{11}
\]

where

\[
g = \frac{D_{m}/k_{ads}}{L + D_{m}/k_{ads}}
\]

At equilibrium of the h.e.r., \(i_{\alpha}\) is small but finite, corresponding to the equilibrium hydrogen coverage, \(\theta_{H}\), i.e., at \(\eta = 0, i_{\alpha} = \theta_{H}\). Then, Eq. [11] becomes

\[
L = \frac{g_{\alpha}}{i_{\alpha} k_{ads}} \tag{11b}
\]

Whereas \(\theta_{H}\) is considered to be independent of \(L\), \(i_{\alpha}\) depends on \(L\). By plotting \(L\) vs. \(1/i_{\alpha}\) (where \(1/i_{\alpha}\) is obtained by extrapolating the \(i_{\alpha}\) vs. \(\eta\) plot to \(\eta = 0\), we can evaluate \(g_{\alpha}\) = the slope, and \(-D_{m}/k_{ads}\) = intercept. This value of \(-D_{m}/k_{ads}\) can be used in Eq. [7] to calculate iso-coverage \(i_{\alpha}\) values recursively for various membranes.

It is to be noted that data need to be obtained on membranes whose thicknesses span one or two orders of magnitude. Depending on the hydrogen diffusivity, membranes with thicknesses ranging from about 50 \(\mu\)m to 5 mm can be used. Still, it may be that the intercept of \(L\) vs. \(1/i_{\alpha}\) is undeterminable by extrapolation. In these cases (with \(1/i_{\alpha} > 0\), one may instead use the slope, \(g_{\alpha}\). It can be easily shown using Eq. [11] for iso-coverage of two membranes, \(m\) and \(n\), that

\[
\frac{1}{i_{\alpha,n}} = \frac{1}{i_{\alpha,m}} + \frac{(L_{m} - L_{n})}{g_{n} k_{ads}} \tag{11c}
\]

where \(g_{n} = g_{\alpha}\) (Eq. [11a]) since \(\theta_{H,n} = \theta_{H,m}\) (iso-coverage).

Again, using Eq. [11] and [11b] for membrane \(m\), one can show that

\[
\frac{g_{m}}{i_{\alpha,m}} = \frac{g_{\alpha}}{i_{\alpha,m}} \tag{11d}
\]

From Eq. [11c] and [11d]

\[
i_{\alpha,n} = \left[1 + \frac{(L_{m} - L_{n})(i_{\alpha,m}/g_{m})}{g_{m}}\right]
\]

Once iso-coverage \(i_{\alpha}\) values are obtained on different membranes (by recursively using Eq. [10] or alternatively using Eq. [7] or [12] in conjunction with \(L\) vs. \(1/i_{\alpha}\) and Eq. [11b], corresponding iso-coverage \(\eta\) (i.e. \(\eta_{n}\)) and \(i_{\alpha}\) (i.e., \(i_{\alpha,n}\)) values are easily obtained. Thus \(\Delta \theta_{H,n}/\Delta \eta_{n} = \theta_{H,n}\) representing iso-coverage) and Eq. [4] will hold as

\[
\alpha(\theta_{H}) = -RT \frac{\Delta \log i_{\alpha,n}}{\Delta \theta_{H,n}} = \frac{RT \Delta \log i_{\alpha,n}}{2.303F} \tag{13}
\]

The iso-coverage Tafel plots (log \(i_{\alpha,n}\) vs. \(\eta\)) will yield the \(\alpha\) values for the different hydrogen coverages, \(\theta_{H}\). The advantage of using a \(\alpha(\theta_{H})\) constant is in reducing the scatter in log \(i_{\alpha}\), vs. \(\eta\), and \(i_{\alpha,n}\) vs. \(\eta\) plots for the I-P-Z model (1), and thus yielding more accurate values of the various rate constants, surface coverages, etc. In reactions where significant coverages as well as both chemical recombination and electrochemical recombination rates for the h.e.r. are prevalent, such as in poisoned electrolytes (7, 9), it may become mandatory to use the iso-coverage Tafel plots, derived here, to determine \(\alpha\).

In conclusion, iso-coverage Tafel plots should be used to determine the most accurate \(\alpha\) values, especially if coverages are significant. The data base needed for this construction is simply the measured cathodic overvoltage (\(\eta\)), cathodic current density \(i_{\alpha}\), and steady-state permeation current \(i_{\alpha}\) for membranes with one to two orders (-50 \(\mu\)m to 5 mm) of variation in thickness.

Acknowledgments

Encouragement and financial support by A. John Sedriks and the Office of Naval Research, Contract No. N00014-84K-0201, are gratefully acknowledged.
Manuscript submitted Jan. 22, 1990; revised manuscript received June 15, 1990.

The Pennsylvania State University assisted in meeting the publication costs of this article.

REFERENCES
SECTION 3
RECESSED SURFACES

- ROLE OF ACIDIFICATION
- ROLE OF CHLORIDE IONS
Demonstration of Crevice Corrosion in Alkaline Solution Without Acidification

K. Cho* and H. W. Pickering**

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Brown, et. al. (1) showed that significant changes in pH occurred inside cracks. Then Pickering and co-workers (2-4) showed the same for electrode potential, E, inside pits and, even more clearly, inside crevices. Although generally under recognized, the importance of E in stabilizing local cells has gained in stature over the years so that today E is considered as important as pH. The roles of pH and E in stabilizing localized corrosion are shown in Fig. 1. Acidification within the crevice causes the passivation potential, E_{pp}, to move to the right, thereby extending the active region of the crevice electrolyte towards the outer surface potential, $E(x=0)$. Alternatively, $E(x)$ is a function of distance x into the crevice, shifting in the less oxidizing direction or to the left in Fig. 1. Hence, at some distance into the crevice, $E(x)$ is in the active region. In the limit, either the shift in pH or in E can solely stabilize the local cell process, whereas in general both E and pH participate in the stabilization. A criterion for the occurrence of stable local cell action is that IR $\geq IR^*$ (Fig. 1) since $E(x) = E(x=0) - IR$, where IR^* is determined by E_{pp} which is strongly pH dependent and by $E(x=0)$, and IR is determined by the factors associated with charge transport in electrolytes (3,4).

Following the recognition that large $E(x)$ gradients contribute to the stability and mechanism of local cell processes (2), Valdés (3,4) measured large $E(x)$ gradients within crevices in iron in acid solution (pH 2.8) for which there is no tendency for hydrolysis and in buffered acid solution (pH 4.6) for which the hydrolysis tendency is suppressed by the buffer. In these experiments for which the solution was already acid and acidification per se was not a factor, he found that active crevicing only occurred when the IR$>IR^*$ condition was met. Furthermore, in the absence of an active loop in the polarization curve as is generally true for iron in alkaline solution, active crevicing did not occur unless strong acidification occurred. In this case, acidification is needed to form an active loop thereby making it possible to meet the IR$\geq IR^*$ condition. Conversely, if an active loop exists in an alkaline solution, crevicing should occur even without acidification. The iron/ammoniacal solution is perhaps unique in this regard in that an active loop exists at pH 9 to 10 (Fig. 1). Also, the strongly iron complexing ammoniacal species and its strong buffering action both preclude hydrolysis, so that no significant acidification can be expected.

EXPERIMENTAL

Pure iron (Ferrovac E) and 1M NH$_4$OH - 1M NH$_4$NO$_3$ solution were used and the experimental set-up and sample arrangement are shown in Fig. 2. The crevice consisted of one metallic side, four inert (plexiglass) walls and one opening to the bulk solution. The crevice width was larger in the upper section with dimensions 0.05 cm x 0.5 cm x 0.5cm and the lower narrower section, 0.001 cm x 0.5 cm x 0.5 cm. In preliminary experiments it was found that crevicing only occurred in the narrower section where the condition IR$\geq IR^*$ was met. Lacquer was used to eliminate crevices between the iron and Teflon holder. Observations of the events inside the crevice and photographing them was possible with a stereomicroscope. Luggin-capillaries were used to monitor $E(x=0)$ in the passive region on the outer surface and $E(x)$ inside the crevice. Reproducible results have been obtained using a Luggin measuring probe with a diameter 0.005 cm, to measure local potentials in crevices of the same dimensions (3,6). A silver oxide electrode was developed into a microprobe for monitoring the pH inside the crevice. It was confirmed using buffer solutions of different pH that its equilibrium potential was a linear function of pH. Thus, both $E(x)$ and pH could be measured as a function of the depth x within the upper segment of the crevice but not in the lower segment because of its narrow opening. The pH was also measured by extracting solution with a syringe and along the crevice wall by applying pH papers.

RESULTS

With the outer top surface of the iron sample anodically polarized in the passive region at +200 mV, SCE, as illustrated in Fig. 1, the dissolution processes observed on the iron crevice wall are shown in Fig. 3. The horizontal line halfway down (x=0.5 cm) the crevice wall is the boundary between the two segments of the crevice and the vertical white line down the middle is the fine Luggin-capillary used to measure the electrode potential at the halfway mark, $E(x=0.5 cm)$. The outer(top) surface of the iron sample is in the passive region, as is the crevice wall down to the (lower)
horizontal line (x=0.7 cm) indicated by the arrow in the 16 hour photograph of Fig. 3. Below the arrow (brighter region) iron is dissolving or crevicing. In this region a dark-green corrosion product and an increasingly aggressive dissolution were observed. The latter was also indicated by an increasing current flowing out of the crevice with time, as shown in Fig. 4. The time dependent electrode potential, E(x=0.5 cm), at the opening of the narrower crevice is also shown in Fig. 4. At 18 hr, E(x=0.5 cm) is almost 600 mV less oxidizing than E(x=0) at the outer passivated surface, and it can be easily inferred that at a greater depth into the (narrower) crevice (specifically below the arrow in Fig. 3), E(x=0.7 cm) < E_pp, so that active iron dissolution or crevicing occurs. In this experiment a 1:1 correspondence between active crevicing and a sharp E(x) gradient, so that IR > IR*, was always observed. The measured pH of the crevice solution was always the same within the experimental error (approx. ± 0.5 pH unit) as the bulk (pH = 9.7) solution.

REFERENCES

Acknowledgments

This work was sponsored by the Office of Naval Research, Contract No. N00014-84-K-0201. We gratefully acknowledge helpful comments regarding the iron/ammoniacal system by Y. T. Kho. Manuscript received April 26, 1990.

The Pennsylvania State University assisted in meeting the publication costs of this article.

Fig. 1. Anodic polarization curve of iron in deaerated ammoniacal solution, pH 9.7, 0.1 mV s⁻¹ (5).
The Role of Chloride Ions in the IR > IR* Criterion for Crevice Corrosion in Iron

K. Cho* and H. W. Pickering**

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

ABSTRACT

Although chloride ions have long been known to promote crevice corrosion in metals, little detailed understanding is available. In this paper, measurements of the potential, pH, and current inside the crevice, and simultaneous viewing of the crevice wall through a transparent portion of the crevice, have provided new results, and understanding of the role of chloride in promoting crevice corrosion. The results also are a proof of the potential shift theory of crevice corrosion.

Acidification (of neutral or alkaline solutions) and a buildup of the so-called aggressive ions, e.g., Cl ions, occur inside crevices of iron, and both promote the crevicing process (1-3). Recently, it has been shown that i.) relatively large IR drops, sufficient to shift the electrode potential within the crevice into the active region, are necessary for crevicing to occur in iron (4-7), and ii.) acidification promotes crevicing by enlarging the active loop (the active/passive potential shifts to more noble values), and is sometimes necessary to create an active loop, but is not in the case of acid and some alkaline solutions for which an active loop is already present (4-7). An example system in which crevicing occurs in the absence of acidification is iron in the alkaline ammoniacal solution, for which an active loop exists in the alkaline region because of the stable iron amine complex ion. It was found that crevicing occurs in this system when the electrode potential at the crevicing site shifts into the active region, and that the pH holds constant in the crevice at the pH 9.8 bulk value (6). In these experiments on the IR drop criterion for crevicing and on the role of acidification (4-7), there were no chlorides present in the solutions, so it is clear that chloride anions are not necessary for crevicing to occur in iron over the acid-to-alkaline pH range. Nevertheless, it is known that Cl ion promotes the crevicing process. The purpose of the present paper is to investigate the role of chloride in the crevicing process using the same experimental procedure that has led to the above-mentioned identification of the IR drop mechanism of crevicing and improved understanding of the role of acidification in the crevicing process. Thus, crevice corrosion has been found to occur when \(\Delta V < \Delta V^* \), where \(\Delta V \) is the voltage drop in the electrolyte between...
was anodically polarized on the outer surface at 600 mV vs. E_sce in regions of the crevice, wall, and other magnified photographs of the crevice wall were taken continually during the experiment. The simultaneously measured E(x) value at the pitted/unpitted interface, x_p in Fig. 3, corresponds to E_pit (Fig. 1). The presence of the pitting front on the crevice wall (Fig. 3b) is another independent confirmation of the large potential distribution along the crevice wall during crevicing and its correspondence to the anodic polarization curve of the dissolving metal with its active and passive regions (4-7). The measured limiting poten-

the cathodic site at the outer surface (where oxygen is plentiful) and the crevicing site, and Δφ⁺ is defined in Fig 1 as the difference between the cathodic site, electrode potential, E_surface, and the active/passive potential of the crevice electrolyte, E_pass. The measurable voltage drop, Δφ, is the product of the metal dissolution current flowing out of the crevice (in the x direction) and the resistance of the electrolyte path to current flow, i.e., Δφ = IR, and IR > IR⁺ is equivalent to Δφ > Δφ⁺.

In practice, the deconvolution of the IR product is not trivial, since both the current flowing out of the crevice and the resistivity of the current path vary with distance x into the crevice. The latter is especially evasive because H₂ gas bubbles regularly form deep inside the crevice where E_pit is in the hydrogen evolution potential range, as indicated in Fig. 1. In some regions of the crevice, wall, x_p < x < X limits. In Fig. 1, the condition Δφ > Δφ⁺ is met, meaning that E(x) is in the active region, E_pit > E_surface > E_pass. Here E(x) is related to Δφ by the equation, E(x) = E_surface - Δφ. Acidification shifts E_pass to significantly more noble potentials inside the crevice for most neutral and alkaline bulk solutions. As a result, Δφ⁺ is decreased and Δφ may be increased because metal dissolution rates can then occur in the active region. Thus, the condition Δφ > Δφ⁺ is met more easily within the crevice as acidification occurs. In this paper we address the question: does Cl⁻ ion similarly decrease Δφ⁺ by shifting E_pass in the noble direction, or does it increase Δφ (without an accompanying Δφ⁺ shift), and if so how?

Experimental

An iron/Plexiglas crevice (Fig. 2) described elsewhere (4, 5) was anodically polarized on the outer surface at 600 mV vs. saturated calomel electrode (SCE) (passive region) in a buffered (pH 4.6) solution containing chloride. This system is known to contain an active loop and to hold a constant pH (4.6 - 0.5) inside the crevice during the crevicing process (4, 5). The crevice opening was 0.5 mm × 5 mm and the depth was 10 mm. Lacquer was used to eliminate crevices between the iron walls and the Teflon holder. The lacquer edges, themselves, underwent some inconsequential crevicing, and preferential pitting when the solution contained chloride anions. In situ observation of the crevicing action on the iron wall was accomplished through the transparent Plexiglas using a photographic camera with attached macro-lenses. A three-directional micrometer stage enabled precise positioning of the Luggin measuring probe at the opening of the crevice and elsewhere inside the crevice, in order to monitor the local electrode potential inside the crevice as a function of position and time. The pH was measured by extracting solution with a syringe connected to a fine glass capillary and by applying pH papers along the crevice wall after disassembling. All of these procedures have been tested and described (4-8).

Results

During crevicing, the visual changes on the iron crevice wall were the same as reported previously (4-7), except pitting occurred on the outer surface and part way into the crevice to a certain distance along a horizontal front at x_p, as shown in Fig. 3. Figure 3b and other magnified photographs of the crevice wall were taken continually during the experiment. The simultaneously measured E(x) value at the pitted/unpitted interface, x_p in Fig. 3, corresponds to E_pit (Fig. 1). The presence of the pitting front on the crevice wall (Fig. 3b) is another independent confirmation of the large potential distribution along the crevice wall during crevicing and its correspondence to the anodic polarization curve of the dissolving metal with its active and passive regions (4-7). The measured limiting poten-
of the outer surface at the crevice, surface contribution) and electrode potential at the bottom of the crevice, \(E_{\text{outer}} \), as a function of time for \(E_{\text{ox}} \), 600 mV vs. SCE.

Fig. 3. Schematic (left) and photograph (right) of the iron crevice wall taken through the Plexiglas during anodic polarization of the outer surface at 600 mV vs. SCE in 0.5M CH\(_3\)COOH - 0.6M Na\(_2\)H\(_2\)O\(_2\) - 0.03M NaCl.

Fig. 4. Current flowing out of the crevice (includes outer surface contribution) and electrode potential at the bottom of the crevice, \(E_{\text{crv}} \), 10 mm, as a function of time for \(E_{\text{ox}} \), 600 mV vs. SCE.

References:

5. H. W. Pickering, ibid., pp. 77-84.
BASIC DISTRIBUTION LIST

Technical Reports and Publications
Feb 1990

<table>
<thead>
<tr>
<th>Organization</th>
<th>Copies</th>
<th>Organization</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Documentation Center</td>
<td>12</td>
<td>Naval Air Propulsion Center</td>
<td>1</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
<td>Trenton, NJ 08628</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>3</td>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Dept. of the Navy</td>
<td></td>
<td>Port Hueneme, CA 94043</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>ATTN: Materials Div.</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 1131</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
<td>Naval Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Washington, DC 20375</td>
<td></td>
<td>San Diego, CA 92152</td>
<td></td>
</tr>
<tr>
<td>ATTN: Codes 6000</td>
<td>1</td>
<td>ATTN: Electronic Materials Sciences Division</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2627</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td>1</td>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Code 506</td>
<td></td>
<td>David Taylor Research Center</td>
<td></td>
</tr>
<tr>
<td>Warminster, PA 18974</td>
<td></td>
<td>Bethesda, MD 20084</td>
<td></td>
</tr>
<tr>
<td>ATTN: Dr. J. DeLuccia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
<td>Naval Underwater System Ctr.</td>
<td>1</td>
</tr>
<tr>
<td>Naval Surface Warfare Center</td>
<td></td>
<td>Newport, RI 02840</td>
<td></td>
</tr>
<tr>
<td>Silver Spring, MD 20903-5000</td>
<td>1</td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code R33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>San Diego, CA 92152-5000</td>
<td></td>
<td>China Lake, CA 93555</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td>1</td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td></td>
<td>NASA</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td>1</td>
<td>Lewis Research Center</td>
<td></td>
</tr>
<tr>
<td>ATTN: Mechanical Engineering Department</td>
<td></td>
<td>21000 Brookpark Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td>1</td>
<td>National Institute of Standards and Technology</td>
<td>1</td>
</tr>
<tr>
<td>Washington, DC 20360</td>
<td></td>
<td>Gaithersburg, MD 20899</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 310A</td>
<td>1</td>
<td>ATTN: Metallurgy Division</td>
<td></td>
</tr>
<tr>
<td>Code 53048</td>
<td>1</td>
<td>Ceramics Division</td>
<td></td>
</tr>
<tr>
<td>Code 931A</td>
<td>1</td>
<td>Fracture & Deformation Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resident Representative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio State University Research Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960 Kenny Rd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbus, OH 43210-1063</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Distribution List

Feb 1990

Prof. G.H. Meier and F.S. Pettit
Dept. of Metallurgical and Materials Eng.
University of Pittsburgh
Pittsburgh, PA 15261

Prof. H.K. Birnbaum
Dept. of Metallurgy & Mining Eng.
University of Illinois
Urbana, IL 61801

Prof. H.W. Pickering
Dept. of Materials Science and Eng.
The Pennsylvania State University
University Park, PA 16802

Prof. D.J. Duquette
Dept. of Metallurgical Eng.
Rensselaer Polytechnic Inst.
Troy, NY 12181

Prof. D. Tomanek
Michigan State University
Dept. of Physics and Astronomy
East Lansing, MI 48824-1116

Dr. M. W. Kendig
Rockwell International Science Center
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360

Prof. R. A. Rapp
Dept. of Metallurgical Eng.
The Ohio State University
116 West 19th Avenue
Columbus, OH 43210-1179

Dr. R. W. Drisko
Code L-52
Naval Civil Engineering Laboratory
Port Hueneme, CA 93043-5003

Dr. R.D. Granata
Zettlemoyer Center for Surface Studies
Sinclair Laboratory, Bld. No. 7
Lehigh University
Bethlehem, PA 18015

Dr. G. D. Davis
Martin Marietta Laboratories
1450 South Rolling Rd.
Baltimore, MD 21227-3898

Prof. P.J. Moran
Dept. of Materials Science & Eng.
The Johns Hopkins University
Baltimore, MD 21218

Prof. J. Kruger
Dept. of Materials Science & Eng.
The Johns Hopkins University
Baltimore, MD 21218

Dr. B.G. Pound
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Prof. C.R. Clayton
Department of Materials Science
& Engineering
State University of New York
Stony Brook
Long Island, NY 11794

Dr. J. W. Oldfield
Contest Laboratories Ltd
23 Shepherd Street
Sheffield, S3 7BA, England

Prof. Boris D. Cahan
Dept. of Chemistry
Case Western Reserve Univ.
Cleveland, Ohio 44106

Prof. G. Simkovich
Dept. of Materials Science & Eng.
The Pennsylvania State University
University Park, PA 16802

Prof. M.E. Orazem
Dept. of Chemical Engineering
University of Florida
Gainesville, FL 32611
Dr. P. S. Pao
Code 6303
Naval Research Laboratory
Washington, D.C. 20375

Prof. J. O'M. Bockris
Dept. of Chemistry
Texas A & M University
College Station, TX 77843

Dr. M. S. Bornstein
United Technologies Research Center
East Hartford, CT 06108

Dr. V. S. Agarwala
Code 6062
Naval Air Development Center
Warminster, PA 18974-5000

Prof. R. M. Latanision
Massachusetts Institute of Technology
Room 8-202
Cambridge, MA 02139

Prof. Harovel G. Wheat
Dept. of Mechanical Engineering
The University of Texas
ETC 11 5.160
Austin, TX 78712-1063

Dr. R. E. Ricker
National Institute of Standards and Technology
Metallurgy Division
Bldg. 223, Room B-266
Gaithersburg, MD 20899

Prof. S. C. Dexter
College of Marine Studies
University of Delaware
700 Pilottown Rd.
Lewes, DE 19958

Dr. F. B. Mansfeld
Dept. of Materials Science
University of Southern California
University Park
Los Angeles, CA 90089

Dr. R. V. Sara
Union Carbide Corporation
UCAR Carbon Company Inc.
Parma Technical Center
12900 Snow Road
Parma, Ohio 44130

Dr. W. R. Bitler
Dept. of Materials Sci. and Eng.
115 Steidle Building
The Pennsylvania State University
University Park, PA 16802

Prof. G. R. St. Pierre
Dept. of Metallurgical Eng.
The Ohio State University
116 West 19th Avenue
Columbus, OH 43210-1179

Dr. S. Smialowska
Dept. of Metallurgical Engineering
The Ohio State University
116 West 19th Avenue
Columbus, OH 43210-1179

Dr. R. E. McCafferty
Code 6322
Naval Research Laboratory
Washington, D.C. 20375