Attenuation Produced by Foam Earplugs
Worn by Chinchilla

By

James H. Patterson, Jr.
Ilia M. Lomba Gautier
Melvin Carrier, Jr.
Dennis L. Curd

Sensory Research Division

and

C. E. Hargett, Jr.

State University of New York
at Plattsburgh

May 1991

Approved for public release; distribution unlimited.
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Animal use

In conducting the research described in this report, the investigators adhered to the Guide for care and use of laboratory animals, as promulgated by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources Commission on Life Sciences, National Academy of Sciences-National Research Council.

Reviewed:

THOMAS L. FREZELL
ITC, MS
Director, Sensory Research Division

Released for publication:

ROGER W. WITHEY
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC
Commanding
Table of contents

Introduction ... 3
Methods and instrumentation ... 4
Results and discussion ... 4
Conclusions .. 6
References .. 7

List of tables

1. Average attenuation of 7 2.7 mm foam earplug in chinchilla 5

List of figures

1. Attenuation of earplugs worn by humans and chinchilla. The vertical lines indicate +/- 1 standard deviation .. 5
This page intentionally left blank.
Introduction

Animal studies of the effects of noise on the auditory system have exposed the animals to noise without hearing protection. By contrast, many occupational exposures to high level noise require the use of hearing protection. Military exposure to high level impulse noise from weapons firing is one of these occupational exposures requiring the use of hearing protectors. At the present time there is no generally accepted method to predict whether the hearing protection will be adequate for a given impulse noise. The study reported here is a preliminary to a series of experiments designed to address this problem in an animal model.

Before any noise exposures with protected animals can begin, we need to know two things. First, can the animal wear the protector? Earmuffs designed for human heads have obvious problems if one attempted to adapt them to most animals commonly used in noise research. The earplugs, especially the hand formed type, offer greater adaptability. Second, we must be able to characterize the attenuation provided by the protector when worn by the animal model. This requires determining an attenuation characteristic by a method similar to the real attenuation characteristic for humans (ANSI S12.6). This method involves the determination of audiometric thresholds with and without the protector in place. The difference between these two audiograms is used as a measure of the attenuation of the hearing protector. In the study reported here, we adapted this method to measure the attenuation characteristic of modified foam earplugs when inserted into the chinchilla.

This study was conducted in 1983, before the current version of the ANSI standard was issued. At the time, real ear attenuation measurement procedures were in a state of transition. The long standing procedures specified in ANSI Z24.22 (1957) used pure stimuli for the audiometry. This standard has been replaced with ANSI S3.19 (1974) which used 1/3 octave bands of noise as stimuli for audiometry. ANSI S3.19 was revised to become the current ANSI S12.6 (1984). Since a large amount of attenuation data for humans existed using pure tone audiometry under ANSI Z24.22 and the chinchilla audiometric test system used pure tones, the study reported here was patterned after the older Z24.22 methods.
Methods and instrumentation

The subjects for this experiment were 10 male chinchilla villadera. They were trained for behavioral audiometry using a shock avoidance procedure described previously (Burdick et al., 1978, and Patterson et al., 1986).

The method for determining the attenuation was adapted from ANSI Z24.22(1977). This standard used pure tone stimuli in a sound field to determine the audiogram. The ANSI method requires 10 subjects be tested three times each without the protector (unoccluded) and three times each with the protector (occluded). In this study, we used 10 subjects. We obtained five unoccluded and five occluded audiograms on each subject. The five unoccluded audiograms were averaged and subtracted from the average of the five occluded audiograms to produce an attenuation estimate for each subject. This was done to provide a better estimate of the attenuation for individual subjects.

The earplugs were foam earplugs (NSN 6515-00-137-6345) modified for the chinchilla. Since the chinchilla external ear canal is smaller than a human one, the diameter of the plugs had to be reduced. This was done by compressing the plug along the axis of the cylindrical shape to form a thin, circular disk. A 7.2 mm cork cutter was used to cut out the center of this disk. After reexpansion, this produced a cylindrical plug with a 7.2 mm diameter. The final size was chosen after trying several diameters for fit and ease of insertion. These modified plugs could be inserted easily into the chinchilla by rolling them into an even smaller cylinder. The rolled down plug was inserted into the external canal of the subject and allowed to reexpand in a manner analogous to the procedure used to insert a foam ear plug into a human subject.

After training was complete, five unoccluded audiograms were obtained on successive test days. Then five occluded audiograms were obtained at 1-hour intervals on one test day. The plugs were inserted at least 5 minutes before audiometry began. The plugs remained in the ear canal for all five audiograms. After the audiometry was complete, the plugs were left in the ear canal until the next day when they were removed.

Results and discussion

The attenuation characteristics for each of the subjects and the overall average and standard deviation are shown in Table 1. Subjects K-134 and K-117 show lower attenuation values than the others. Thus, considerable individual differences in attenuation can be found. The overall attenuation characteristic is shown in Figure 1. Also shown in Figure 1 is the real attenuation for foam earplugs in human subjects using the ANSI 224.22 procedures.
Table 1.

Average attenuation of 7.2 mm foam earplug in chinchilla.

<table>
<thead>
<tr>
<th>Subject</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>1.0</th>
<th>1.4</th>
<th>2.0</th>
<th>2.8</th>
<th>4.0</th>
<th>5.7</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-134</td>
<td>18</td>
<td>33</td>
<td>41</td>
<td>33</td>
<td>39</td>
<td>34</td>
<td>41</td>
<td>27</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>K-121</td>
<td>46</td>
<td>40</td>
<td>34</td>
<td>46</td>
<td>48</td>
<td>44</td>
<td>38</td>
<td>32</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>K-126</td>
<td>40</td>
<td>41</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>44</td>
<td>46</td>
<td>40</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>K-113</td>
<td>39</td>
<td>55</td>
<td>45</td>
<td>47</td>
<td>51</td>
<td>37</td>
<td>47</td>
<td>43</td>
<td>49</td>
<td>37</td>
</tr>
<tr>
<td>K-122</td>
<td>40</td>
<td>52</td>
<td>46</td>
<td>50</td>
<td>56</td>
<td>50</td>
<td>46</td>
<td>48</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>K-110</td>
<td>42</td>
<td>54</td>
<td>56</td>
<td>48</td>
<td>56</td>
<td>44</td>
<td>46</td>
<td>46</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>K-113</td>
<td>46</td>
<td>48</td>
<td>52</td>
<td>50</td>
<td>52</td>
<td>46</td>
<td>48</td>
<td>50</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>K-119</td>
<td>38</td>
<td>46</td>
<td>56</td>
<td>40</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>K-104</td>
<td>38</td>
<td>50</td>
<td>58</td>
<td>56</td>
<td>60</td>
<td>50</td>
<td>51</td>
<td>48</td>
<td>38</td>
<td>52</td>
</tr>
<tr>
<td>K-117</td>
<td>17</td>
<td>33</td>
<td>43</td>
<td>33</td>
<td>39</td>
<td>37</td>
<td>41</td>
<td>25</td>
<td>35</td>
<td>37</td>
</tr>
</tbody>
</table>

Group

<table>
<thead>
<tr>
<th></th>
<th>56</th>
<th>45</th>
<th>48</th>
<th>44</th>
<th>49</th>
<th>42</th>
<th>44</th>
<th>40</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>s.d.</td>
<td>10.4</td>
<td>8.1</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>5.5</td>
<td>4.2</td>
<td>9.0</td>
<td>7.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Figure 1. Attenuation of earplugs worn by humans and chinchilla. The vertical lines indicate +/- 1 standard deviation.
The human data were taken from the box in which the plugs were received. The attenuation measured at the lower frequencies is greater than for human; while the reverse is true at higher frequencies. Since the individual data for the human subjects was not available, the difference at each frequency was tested using a t-test corrected for unequal variance (Brownlee, 1960). These tests indicate that the attenuation at 250 Hz and 500 Hz was higher for the chinchilla (P<.002) and that it was lower for the chinchilla at 4 kHz and 6 kHz (P<.05). All other frequencies had a P>.1. Following the method of Hays (1963) for multiple comparisons, for an overall significance level of .05 we test each of the nine mean differences at the .0055 level. The attenuation at 250 and 500 Hz is still significantly higher than for humans. It is not clear why this occurs. It may be related to the smaller diameter ear canal of the chinchilla.

All subjects tolerated the foam earplugs for extended periods of at least 24 hours. This result indicates that either the chinchilla cannot or does not attempt to remove these plugs. Informal observation indicated they made little effort to remove them.

Conclusions

We can conclude that the modified foam earplugs can be used in noise exposure studies involving chinchillas as subjects. The noise exposures could last for hours without concern that the plugs would be removed by the subject.

The attenuation characteristic reported here can be used as a reference for typical attenuation for the modified foam plugs. However, the attenuation attained by each subject should be verified in any study of noise exposure with hearing protection since large individual differences can occur.
References

Burdick, C. K., Patterson, J. H., Mozo, B. T., and Camp, R. T. 1978. Threshold shifts in chinchillas exposed to octave bands of noise centered at 63 and 1000 hz for three days. The journal of the acoustical society of America. 64:458:466.

Initial distribution

Commander, U.S. Army Natick Research, Development and Evaluation Center
ATTN: STRNC-MIL (Documents Librarian)
Natick, MA 01760-5040

Naval Submarine Medical Research Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 06340

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Communications-Electronics Command
ATTN: AMSEI-RD ESA-D
Fort Monmouth, NJ 07703

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06340-5900

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Harry G. Armstrong Aerospace Medical Research Laboratory
Wright-Patterson
Air Force Base, OH 45433

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300
Commandant
U.S. Army Aviation
- Logistics School ATTN: ATSQ-TDN
Fort Eustis, VA 23604

Headquarters (ATMD)
U.S. Army Training
- and Doctrine Command
Fort Monroe, VA 23681

Structures Laboratory Library
USARTL-AVSCOM
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665

Naval Aerospace Medical
Institute Library
Building 1953, Code 03L
Pensacola, FL 32508-5600

Command Surgeon
HQ U.SCENTCOM (CCSG)
U.S. Central Command
MacDill Air Force Base FL 33608

Air University Library
(AUL/LSE)
Maxwell Air Force Base, AL 36112

U.S. Air Force Institute
- of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson
Air Force Base, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

Chief, Nation Guard Bureau
ATTN: NGB-ARS (COL Urbauer)
Room 410, Park Center 4
4501 Ford Avenue
Alexandria, VA 22302-1451

Commander
U.S. Army Aviation Systems Command
ATTN: SGRD-UAX-AL (MAJ Gillette)
4500 Goodfellow Blvd, Building 105
St. Louis, MO 63120

U.S. Army Aviation Systems Command
Library and Information Center Branch
ATTN: AMSAV-DII
4500 Goodfellow Boulevard
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
Library AAM-400X
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Academy
- of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200

AAMRL/HEX
Wright-Patterson
Air Force Base, OH 45433

John A. Dellinger,
Southwest Research Institute
P. O. Box 28510
San Antonio, TX 78284

Product Manager
Aviation Life Support Equipment
ATTN: AMCPM-ALSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798
Commander
U.S. Army Aviation
Systems Command
ATTN: AMSAV-ED
4300 Goodfellow Boulevard
St. Louis, MO 63120

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189-0407

Assistant Commandant
U.S. Army Field Artillery School
ATTN: Morris Swott Technical Library
Fort Sill, OK 73503-0312

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

Director of Professional Services
HQ USAF/SGDT
Bolling Air Force Base, DC 20332-6188

U.S. Army Dugway Proving Ground
Technical Library, Building 5330
Dugway, UT 84022

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

AFFTC Technical Library
6510 TW/TSTL
Edwards Air Force Base,
CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

U.S. Air Force School
of Aerospace Medicine
Strughold Aeromedical Library Technical Reports Section (TSKD)
Brooks Air Force Base, TX 78235-5301

Dr. Diane Damo
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army White Sands
Missile Range
ATTN: STEWS-IM-ST
White Sands Missile Range, NM 88002

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib) Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 262-3
Moffett Field, CA 94035

Commander, Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129
Mr. Frank J. Stagnaro, ME
Rush Franklin Publishing
300 Orchard City Drive
Campbell, CA 95008

Commander
U.S. Army Medical Materiel
Development Activity
Fort Detrick, Frederick, MD 21702-5009

Commander
U.S. Army Aviation Center
Directorate of Combat Developments
Building 507
Fort Rucker, AL 36362

U.S. Army Research Institute
Aviation R&D Activity
ATTN: PERI-IR
Fort Rucker, AL 36362

Commander
U.S. Army Safety Center
Fort Rucker, AL 36362

U.S. Army Aircraft Development
Test Activity
ATTN: STEBG-MP-P
Cairns Army Air Field
Fort Rucker, AL 36362

Commander U.S. Army Medical Research
and Development Command
ATTN: SGRD-PLC (COL Sedge)
Fort Detrick, Frederick, MD 21702

MAJ John Wilson
TRADOC Aviation LO
Embassy of the United States
APO New York 09777

Netherlands Army Liaison Office
Building 602
Fort Rucker, AL 36362

British Army Liaison Office
Building 602
Fort Rucker, AL 36362

Italian Army Liaison Office
Building 602
Fort Rucker, AL 36362

Directorate of Training Development
Building 502
Fort Rucker, AL 36362

Chief
USAHEL/USAAVNC Field Office
P. O. Box 716
Fort Rucker, AL 36362-5349

Commander U.S. Army Aviation Center
and Fort Rucker
ATTN: ATZQ-CG
Fort Rucker, AL 36362

Commander/President
TEXCOM Aviation Board
Cairns Army Air Field
Fort Rucker, AL 36362

MAJ Terry Newman
Canadian Army Liaison Office
Building 602
Fort Rucker, AL 36362

German Army Liaison Office
Building 602
Fort Rucker, AL 36362

LTC Patrick Laparre
French Army Liaison Office
USAAVNC (Building 602)
Fort Rucker, AL 36362-5021

Australian Army Liaison Office
Building 602
Fort Rucker, AL 36362

12
Dr. Garrison Rapmund
6 Burning Tree Court
Bethesda, MD 20817

Commandant Royal Air Force
Institute of Aviation Medicine
Farnborough Hampshire GU14 65Z UK

Dr. A. Kornfield, President
Biosearch Company
3016 Revere Road
Drexel Hill, PA 29026

Commander
U.S. Army Biomedical Research
and Development Laboratory
ATTN: SGRD-UBZ-I
Fort Detrick, Frederick, MD 21702

Defense Technical Information Center
Cameron Station
Alexandria, VA 22313

Commander, U.S. Army Foreign Science
and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Director,
Applied Technology Laboratory
USARTL-AVSCOM
ATTN: Library, Building 401
Fort Eustis, VA 23604

U.S. Air Force Armament
Development and Test Center
Eglin Air Force Base, FL 32542

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Commander, U.S. Army Missile
Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R/ILL
Documents Redstone Arsenal, AL 35898

U.S. Army Research and Technology
Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

Col. Otto Schramm Filho
c/o Brazilian Army Commission
Office-CEBW
4632 Wisconsin Avenue NW
Washington, DC 20016

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900

COL Eugene S. Channing, O.D.
Brooke Army Medical Center
ATTN: HSHE-EAH-O
Fort Sam Houston, TX 78234-6200

U.S. Army Training
and Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651-5000
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
 Approved for public release; distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
 USAARL Report No. 91-16

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
 Sensory Research Division
 U.S. Army Aeromedical Research Lab

6b. OFFICE SYMBOL
 SGRD-UAX-AS

6c. ADDRESS (City, State, and ZIP Code)
 P.O. Box 577
 Fort Rucker, AL 36362-5292

7a. NAME OF MONITORING ORGANIZATION
 U.S. Army Medical Research and Development Command

7b. ADDRESS (City, State, and ZIP Code)
 Fort Detrick
 Frederick, MD 21701-5012

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS
 PROGRAM ELEMENT NO.
 62777A
 PROJECT NO.
 381627778A878
 TASK NO.
 AA
 WORK UNIT
 0601102A
 ACCESSION NO.
 3M161102BS15
 282

11. TITLE (Include Security Classification)
 Attenuation Produced by Foam Earplugs Worn by Chinchilla

12. PERSONAL AUTHOR(S)
 James H. Patterson, Jr., Ilia M. Lomba Gautier, Melvin Carrier, Jr.,
 Dennis L. Curd, and C. E. Hargett, Jr.

13a. TYPE OF REPORT
 Final

13b. TIME COVERED
 FROM TO

14. DATE OF REPORT (Year, Month, Day)
 1991 May

15. PAGE COUNT
 7

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
 Hearing protectors, chinchilla, audiometry

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

 This report documents the attenuation of modified foam earplugs (NSN 6515-00-137-6345)
 when worn by chinchilla. Since the ear canal of the chinchilla is smaller than human,
 the earplugs were trimmed to a diameter of 7.2 mm. This provided a good fit to the
 chinchilla ear canal. Methods for determining the attenuation were adapted from ANSI
 standard methods for determining attenuation for humans. The average attenuation of
 the earplugs for the chinchilla was generally higher than for humans; however, this
 difference was not statistically significant.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
 □ UNCLASSIFIED/UNLIMITED □ SAME AS RPT □ DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL
 Chief, Scientific Information Center

22b. TELEPHONE (Include Area Code)
 (205) 255-6907

22c. OFFICE SYMBOL
 SGRD-UAX-AS

DD Form 1473, JUN 86

Previous editions are obsolete.