A DAMAGE MECHANICS SOURCE MODEL FOR UNDERGROUND NUCLEAR EXPLOSIONS

Charles G. Sammis

University of Southern California
Department of Geological Sciences
University Park
Los Angeles, CA 90089-0740

1 August 1991

Final Report
23 December 1988-30 June 1991

Approved for public release; distribution unlimited
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Solid Earth Geophysics Branch
Earth Sciences Division

JAMES F. LEWKOWICZ
Branch Chief
Solid Earth Geophysics Branch
Earth Sciences Division

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
Recent advances in the damage mechanics of brittle solids have made it possible to calculate stress-strain curves for the non-linear source regime of underground nuclear explosions where the rock is being actively fractured. It has been shown that the damage-based rheology can explain the anomalously broad source pulses observed in the free field of explosions in granite. It also offers a physical explanation for why such pulse broadening was not observed in laboratory experiments in terms of the scaling of rock strength with the size of preexisting fractures. In this report we discuss how damage mechanics may be used to modify the Mueller-Murphy source model to explicitly include the fracture distribution in the displacement medium thereby providing a physical interpretation of source parameters which specify the width of the pressure pulse at the elastic radius, and the elastic radius itself. These parameters are currently evaluated empirically using calibration shots of known yield for each site. The resultant improvement of our understanding of the relation between the source medium and seismic coupling at high frequencies is especially important in view of the recent trend toward the use of higher frequency regional phases for yield estimation and discrimination allowed by improved seismic accessibility to test sites.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SEISMIC SOURCE FUNCTIONS</td>
<td>2</td>
</tr>
<tr>
<td>A DAMAGE MECHANICS SOURCE MODEL</td>
<td>6</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>FIGURES</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Current seismic yield estimates are based on scaling laws which relate the seismic source spectrum to the yield and depth of burial (Mueller and Murphy, 1971; Helmberger and Hadley, 1981; von Seggern and Blandford, 1972). Since these scaling laws do not contain any physics relating to the inelastic source regime, they must be calibrated for each site using shots of known yield to fit source parameters. However, there is reason to expect that the source parameters in such scaling laws are especially sensitive to the pre-shot fracture spectrum in the source emplacement rock. Non-linear processes like crack growth and amplitude dependent attenuation are known to depend on the density and length distribution of preexisting cracks. By implication, both the size of the elastic radius and the pulse shape at that radius should depend on the fracture spectrum. The ultimate goal of the research reported below is to formulate a source function with parameters which can be determined from measurable physical parameters of the source rock such as velocity, density, porosity, initial fracture spectrum, and degree of water saturation. Such a scaling law would allow more accurate corrections for variations in the emplacement medium without requiring extensive calibration shots.

There is observational evidence that the source function is sensitive to the fracture spectrum in the emplacement medium. Rimer et al. (1987) performed numerical calculations of the particle velocity measured in the free field for underground tests in granite. Using laboratory data for rock strength, they were unable to predict pulse-width successfully. In order to make the models correspond to the field data, much lower fracture strength than those in the lab were required. Sammis (1989) offered the explanation that the weaker rheology was the direct result of larger fractures in the field. More recently, McEvilly and Johnson (1989) have measured the seismic radiation from a series of chemical explosions as a function of depth in a limestone quarry. As illustrated in Fig. 1, they observed a pronounced shift toward higher frequencies as the depth of burial increased. We hypothesize that this is due to the suppression of crack nucleation and
growth with confining pressure. In a recent review of source models and scaling laws, Denny and Johnson (1991) conclude that the cavity radius, the seismic moment and the corner frequency of explosions are all dependent on the depth of burial. They reference Larson’s (1984) work which suggests that these effects may result from the increase in shear strength with depth. Indeed, since shear failure in the damage mechanics model is a simple consequence of the growth of fracture damage to a critical level (where the stress-strain curve becomes unstable) the suppression of crack growth by confining pressure is equivalent to an increase in shear strength with depth.

If the nucleation and growth of fractures in the non-linear source regime can significantly broaden the source pulse and change the elastic radius, then the process may significantly reduce the radiation of seismic waves at the high-frequency end of the seismic spectrum. This is especially significant since recent yield verification and source discrimination schemes increasingly utilize higher frequency local phases as the joint verification program has allowed more local seismic monitoring. The spectrum of initial fracture sizes at a test site may turn out to be as important as emplacement rock type in determining the yield from seismic radiation.

SEISMIC SOURCE FUNCTIONS

The uncertainty in seismic yield determination can be broken down into uncertainties associated with the propagation of the seismic waves and uncertainties associated with the source coupling. The recent use of high-frequency local phases such as L_g (see e.g. Ringdal, 1990) has significantly reduced uncertainties associated with propagation, but our understanding of the effects of the emplacement medium on seismic coupling has not significantly improved since the 1971 work of Mueller and Murphy.

The Mueller-Murphy source assumes a step function followed by an exponential decay of the pressure source which acts on a spherical surface at the “elastic radius” r_{el}:

$$p(t) = (p_0 e^{-\alpha t} + p_{oc}) H(t)$$ \hspace{1cm} (1)
This time function was chosen because it mimics near-field velocity records. The elastic radius is chosen such that it contains all the non-linear source phenomena; the medium is assumed to be perfectly elastic for $r > r_{el}$.

The elastic radius is defined by the assumption that the peak stress, p_{os}, at the elastic radius is a fixed fraction of the overburden pressure at the depth of burial h.

$$p_{os} = 1.5 \rho gh$$

(2)

The peak shock pressure in the non-linear regime is assumed to be of the form

$$p_s = \Delta W^m_{r^n}.$$

(3)

They further assume that n is independent of the emplacement medium and $m = n/3$, so the final scaling relation is

$$\frac{r_{el1}}{r_{el2}} = \left(\frac{A_1}{A_2} \right)^{1/n} \left(\frac{W_1}{W_2} \right)^{1/3} \left(\frac{p_{os2}}{p_{os1}} \right)^{1/n}$$

(4)

which, when the explosions are in the same medium, reduces to

$$\frac{r_{el1}}{r_{el2}} = \left(\frac{W_1}{W_2} \right)^{1/3} \left(\frac{h_2}{h_1} \right)^{1/n}$$

(5)

P wave amplitude spectra in the far-field were used to determine the empirical constants: $n = 2.4$, $A_{salt}/A_{t-r} = 12$, $A_{shale}/A_{t-r} = 5.3$, and $A_{v}/A_{t-r} = 0.23$ (where subscripts $t-r$ = tuff-rhyolite and vt = volcanic tuff). The constant α in equation (1) is assumed to be of the form

$$\alpha = k \left(\frac{c}{r_{el}} \right)$$

(6)

where c is the p-wave velocity and k depends on the source rock: for tuff, $k = 1.5$; rhyolite, $k = 2.0$; shale, $k = 2.4$; and salt, $k = 4.5$. The broad pulses observed in granite imply a very small k, which suggests that k may reflect the fracture structure as well as the porosity. Using our damage mechanics model, it should be possible to relate k to the initial damage spectrum.
Hence, the Mueller-Murphy source makes a number of reasonable assumptions about the source, and then uses calibration shots to fix the values of the media dependent parameters A, n, and k. One objective of the work described below is to use recent developments in the damage mechanics of brittle solids to make a physical interpretation of the coupling parameters of the Mueller-Murphy source model in terms of physical, measurable, properties of the source emplacement medium, thereby eliminating the need for calibration shots at each new site, and allowing an estimate of the variation in the source function as a function of geological setting at a given test site.

To help focus the discussion, consider the schematic diagram of buried explosive source shown in Fig. 2a. For our purposes, we simplify the source and identify three non-linear regimes as indicated in Fig. 2b: the "hydrodynamic regime" in which rock flows, the "damage regime" in which the rock behaves as a solid but stresses are large enough to extend existing cracks, and the non-linear attenuation regime (not shown in 2a) in which stresses are large enough to produce amplitude dependent attenuation by motion on preexisting fractures but not sufficiently large to cause additional fracture. The hydrodynamic radius, r_h, depends on the equation of state of the emplacement medium and is the subject of high pressure shock wave studies. The damage radius, r_d, is defined by the condition that the peak radial stress has fallen to a level which is just sufficient to nucleate fractures from initial flaws in the emplacement medium.

The damage mechanics developed by Ashby and Sammis (1990) allows a quantitative evaluation of r_d. Their equation for the radial stress σ_r required to initiate flaws when the hoop stress is σ_θ is

$$\sigma_r = \sigma_\theta + c_1 \sigma_\theta$$

(7)
where c_1 depends on the coefficient of friction μ on the starter flaws

$$c_1 = \frac{\sqrt{1+\mu^2} + \mu}{\sqrt{1+\mu^2} - \mu}$$

The other constant σ_0 is defined as

$$\sigma_0 = \frac{\sqrt{3}}{\sqrt{1+\mu^2} - \mu} \left(\frac{K_{1c}}{\sqrt{\pi a}} \right)$$

where K_{1c} is the critical stress intensity factor for tensile failure and a is the half-length of the largest initial flaws in the emplacement medium.

It is important to note that the damage radius is not simply a function of rock-type. In fact, the parameters K_{1c} and μ are almost independent of rock type. Rather, r_d is most sensitive to the size of the largest flaws in the emplacement medium. The effects of ground water saturation is to reduce the effective μ on pre-existing cracks thereby increasing r_d. Note that eqn. (7) is of the form assumed by Mueller and Murphy (1971) (eqn.2 above) as long as the depth of burial is great enough that $c_1\sigma_0 >> \sigma_0$.

The elastic radius r_{el} is more difficult to define because there is no physical cutoff to the non-linear attenuation. However, if amplitude dependent attenuation is due to motion on pre-existing flaws, than r_{el} can be expected to scale with flaw-size in a similar way as the damage radius since a smaller stress is required to produce motion on a larger fracture. In fact, if the source emplacement medium is heavily jointed, the elastic radius could be very large indeed. The possible role of joints is under investigation by several groups (see e.g. Heuze et al, 1991).
A DAMAGE MECHANICS SOURCE MODEL

The immediate objective of this project is to determine the change in pulse shape associated with the extensive rock fracture which occurs between the hydrodynamic radius and the damage radius (see Fig. 2). Further modification of the pulse caused by amplitude dependent attenuation beyond the damage radius is being investigated by other groups. Which process, if either, is more important remains to be determined.

A complete damage mechanics suitable for incorporation into the numerical codes which simulate underground explosions has two components:

a) A model for the nucleation, growth and interaction of tensile cracks which relates crack length to the applied stress field, and

b) A model for the effective elastic constants as a function of crack length.

Part (a) has been completed and verified by predicting the fracture nucleation and failure surfaces of a wide range of rocks as measured in triaxial laboratory experiments (Ashby and Sammis, 1990). We are now focusing our attention on Part (b), which is the main subject of this report.

Before discussing the elastic constants, it is interesting to see how the damage mechanics may be incorporated in the numerical source codes.

1) The current stress-state is used in the equations of motion to calculate displacements, which are used to update the strain field.

2) The elastic constants (which depend on the current state of damage) are used to calculate a new stress field based on the updated strain field.

3) The damage (crack growth) field is updated based on the new stress field.

4) Return to step (1) for another time increment.

Part (a) of the damage mechanics is used in step (3) to calculate the increase in crack growth associated with each change in the stress field. We have this part of the problem in control. Part (b) of the damage mechanics is used in step (2) to calculate the stress field from the strain field. This is the subject of current research.
The difficulty implementing this algorithm is that the elastic constants required in step 2 are not simple functions of the damage, but depend upon whether new damage has been done by the strain increment. The effective elastic constant is less when the cracks are actively extending as illustrated by the stress-strain curve in Fig. 3. At stresses below the fracture initiation stress nonlinear attenuation produces hysteresis in the stress-strain curve but the fracture spectrum remains unchanged. At stresses above the initiation stress the effective elastic modulus is lower when the cracks are growing than when they are simply sliding. The effective elastic modulus during subsequent loadings at the same stress will be larger as illustrated in the figure.

Another problem in modeling the effective elasticity of the damaged rock is caused by the fact that the crack growth associated with a spherical source is largely radial (parallel to the largest principal stress) and this produces an axial elastic anisotropy in each element. We thus have to deal with five elastic constants:

- $E_r = \text{radial Young's modulus}$
- $E_t = \text{transverse Young's modulus}$
- $\nu_{rt} = \text{radial - transverse Poisson's ratio}$
- $\nu_{tr} = \text{transverse - radial Poisson's ratio}$
- $G = \text{shear modulus}$.

The elastic constants can be found from the fracture energy release rate using the following expression:

$$G^i(L) = \frac{K^2(L)}{E_r(L)} = \frac{p^2}{2b} \frac{\partial C(L)}{\partial L}$$

(8)
where

\[G(L) = \text{strain energy release rate} \]
\[L = \text{current crack length} \]
\[K_1(L) = \text{stress intensity factor} \]
\[E_r(L) = \text{radial Young's modulus which we seek} \]
\[C(L) = \text{compliance} \]
\[b = \text{specimen width} \]
\[p = \text{load} \]

Referring to Figure 4, we see that \(C = u/p \), \(p = sA \), \(u = eh \), and \(E_r = s/e \), so

\[C = \frac{h}{E_r A} \] (9)

Substituting (9) into (8) gives

\[K_2^2(L) = \frac{\sigma^2}{2b} V \frac{\partial \ln E_r(L)}{\partial L} \] (10)

where \(V = hA \) = volume per crack. Integrating (10) gives

\[\ln \left(\frac{E_r(L)}{E_0} \right) = - \frac{2b}{V} \int_0^L \frac{K_2^2(L)}{\sigma^2} dL \] (11)

The factor \(2b/V \) can be written in terms of the crack density as

\[\frac{2b}{V} = 2 N_v^{2/3} \]

and the crack density \(N_v \) can be written in terms of the initial damage \(D_c \) as

\[N_v = \frac{3D_0}{4 \pi} \left(\frac{1}{\alpha a} \right)^3 \]

An analytic expression for \(K_1(L) \) is given in Ashby and Samir's (1990) which can be directly integrated as in (11) to find \(E_r(L) \).

The transverse modulus, \(E_t \), can be estimated using eqn. (4) with
\[K_1 = \sigma \sqrt{\frac{w \tan \left(\frac{a}{w} \right)}{w^2}} \]

(Tada, 1985) for the transversely loaded array of cracks shown in Fig 5. Integrating in this case gives:

\[F_d = F_0 \exp \left(\frac{2 h w^2}{h} \ln \left| \cos \left(\frac{\pi a}{w} \right) \right| \right) \tag{5} \]

The shear modulus is unaffected by crack growth in this geometry, and the Poisson's ratios can be estimated from the crack opening displacements (which are also functions of the stress intensity factors).

Figure 6 shows the uniaxial stress-strain curve calculated using eqn (11) compared with measurements for Berea Sandstone (This work was done in collaboration with Randy Martin and Xiaoming Tang at New England Research). At low stresses, the negative curvature of the data is caused by the closing of cracks and collapse of pores which are not included in the model. However, the positive curvature of the stress-strain curve near failure is associated with the accumulation of damage and is well modeled, as is the post-failure decrease in strength. Figure 7 shows stress-strain curves for the different rock types studied by Ashby and Sammis (1989). Fig. 8 shows the effect of different levels of initial damage on the elastic behavior. Fig. 9 explores the effect of confining pressure, and Fig. 10 shows the effect of a fluid in reducing the coefficient of friction on the preexisting fractures. We are currently planning further experiments to test these predictions.

DISCUSSION

The problem of using the damage mechanics model in numerical source simulation codes has been reduced to the problem of finding the stress-strain behavior of a damaged medium. This is not a simple problem because the effective elastic constant (the tangent modulus) is not a simple function of crack damage (as it is, for example, in the Budyansky and O'Connell (1979) low-strain theory) but also depends upon whether an increment in stress produces an increment in crack growth. The problem is further complicated by
anisotropy introduced by the directional (radial) growth of fractures in an explosive stress field. A method has been developed to calculate the effective elastic constants from the stress intensity factors derived by Ashby and Sammis (1990). Preliminary experimental tests of the theory look promising. Efforts are currently underway to build the damage mechanics into existing numerical source simulation codes.

REFERENCES

Figure 1. Comparison of three 1000 pound chemical explosions detonated at depths of 42, 106, and 217 meters in a limestone quarry (from McEvilly and Johnson, 1989). Fig. 1a compares the first arrivals on the vertical component at one location. The pulses have been scaled to have the same amplitude. Fig. 1b compares the amplitude densities of the isotropic moment rate tensors for the three events while Fig. 1c gives the amplitude density spectra of the pulses in Fig. 1a.
Figure 2. Schematic diagram of the non-linear zones around an underground nuclear explosion. Fig. 2a is from Bishop, 1963. Fig. 2b illustrates the hydrodynamic radius \(r_h \), the damage radius \(r_d \), and the elastic radius \(r_{el} \) which are discussed in the text.
Figure 3. Stress-strain curve illustrating the differences in behavior above and below the fracture initiation stress (which is a function of the current crack damage). At the damage radius \(r \) the stresses have fallen below the initiation stress of the preexisting fractures in the emplacement medium.
Figure 4. Geometry used to estimate the reduction in the radial Young's modulus associated with crack growth.
Figure 5. Geometry used to estimate the reduction in the transverse Young's modulus associated with crack growth.
Figure 6. Uniaxial stress-strain curve for Berea sandstone showing a comparison between theory and experiment. Note that the reduction in effective modulus near failure is well modeled.
Figure 7. Comparison of the uniaxial stress-strain behavior of the various rock types studied by Ashby and Sammis (1990). Note that the more brittle rocks have a more unstable post-failure regime.
Figure 8. Effect of the initial damage on the uniaxial stress-strain behavior. Note that the strength decreases and the post-failure regime becomes more stable with increasing initial damage.
Figure 9. Effect of the confining pressure on the uniaxial stress-strain behavior. Note that the strength increases and the post-failure regime becomes more stable with increasing confining pressure.
Figure 10. Effect of the fluid-wetting of the preexisting flaws on the uniaxial stress-strain behavior. Note that the strength decreases and the post-failure regime becomes more stable as the coefficient of the friction μ is reduced by wetting.
Prof. Thomas Ahrens
Seismological Lab, 252-21
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Charles B. Archambeau
C�RES
University of Colorado
Boulder, CO 80309

Dr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10260 Campus Point Drive
San Diego, CA 92121 (2 copies)

Prof. Muawia Barazangi
Institute for the Study of the Continent
Cornell University
Ithaca, NY 14853

Dr. Jeff Barker
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Dr. Douglas R. Baumgardt
ENSCO, Inc
5400 Port Royal Road
Springfield, VA 22151-2388

Prof. Jonathan Berger
IGPP, A-025
 Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92039

Dr. Gilbert A. Bollinger
Department of Geological Sciences
Virginia Polytechnical Institute
21044 Deming Hall
Blacksburg, VA 24061

Dr. Lawrence J. Burdick
Woodward-Clyde Consultants
566 El Dorado Street
Pasadena, CA 91109-3245

Dr. Jerry Carter
Center for Seismic Studies
1501 North 7th St., Suite 1450
Arlington, VA 22209-3208

Prof. Vernen F. Cormier
Department of Geology & Geophysics
U-45, Room 207
The University of Connecticut
Storrs, CT 06268

Professor Anton W. Dainty
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Prof. Steven Day
Department of Geological Sciences
San Diego State University
San Diego, CA 92182

Dr. Zoltan A. Der
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Prof. Lewis M. Duncan
Dept. of Physics & Astronautics
Clemson University
Clemson, SC 29634-1901

Prof. John Ferguson
Center for Lithospheric Studies
The University of Texas at Dallas
P.O. Box 830683
Richardson, TX 75083-0683

Dr. Mark D. Fisk
Mission Research Corporation
735 State Street
P.O. Drawer 719
Santa Barbara, CA 93102

Prof. Stanley Flatte
Applied Sciences Building
University of California
Santa Cruz, CA 95064

Dr. Alexander Florence
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

Dr. Clifford Frolich
Institute of Geophysics
8701 North Mopec
Austin, TX 78753
<table>
<thead>
<tr>
<th>Dr. Holy K. Given</th>
<th>Prof. Henry L. Gray</th>
<th>Prof. David G. Harkrider</th>
<th>Prof. Danny Harvey</th>
<th>Prof. Eugene Herrin</th>
<th>Prof. Donald V. Helmberger</th>
<th>Prof. Bryan Isaacks</th>
<th>Dr. Rong-Song Jih</th>
<th>Prof. Lane R. Johnson</th>
<th>Dr. Richard LaCoss</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGPP, A-025</td>
<td>Vice Provost and Dean</td>
<td>Seismological Laboratory</td>
<td>CIRES</td>
<td>Institute for the Study of Earth and Man</td>
<td>Seismological Laboratory</td>
<td>Cornell University</td>
<td>Teledyne Geotech</td>
<td>Seismographic Station</td>
<td>MIT-Lincoln Laboratory</td>
</tr>
<tr>
<td>Scripps Institute of Oceanography</td>
<td>Department of Statistical Sciences</td>
<td>Division of Geological & Planetary Sciences</td>
<td>University of Colorado</td>
<td>Geophysical Laboratory</td>
<td>Division of Geological & Planetary Sciences</td>
<td>Department of Geological Sciences</td>
<td>314 Montgomery Street</td>
<td>Seismographic Station</td>
<td>M-200B</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>Southern Methodist University</td>
<td>California Institute of Technology</td>
<td>Boulder, CO 80309</td>
<td>Southern Methodist University</td>
<td>California Institute of Technology</td>
<td>SNEE Hall</td>
<td>Alexandria, VA 22314</td>
<td>University of California</td>
<td>P. O. Box 73</td>
</tr>
<tr>
<td>La Jolla, CA 92039</td>
<td>Dallas, TX 75275</td>
<td>Pasadena, CA 91125</td>
<td>314 Montgomery Street</td>
<td>Dallas, TX 75275</td>
<td>Pasadena, CA 91125</td>
<td>Ithaca, NY 14850</td>
<td>Alexandria, VA 22314</td>
<td>Berkeley, CA 94720</td>
<td>Lexington, MA 02173-0073</td>
</tr>
<tr>
<td>Prof. Dr. Indra Gupta</td>
<td>Prof. Fred K. Lamb</td>
<td>Prof. Charles A. Langston</td>
<td>Prof. Torne Lay</td>
<td>Prof. Arthur Lerner-Lam</td>
<td>Dr. Christopher Lynnes</td>
<td>Prof. Peter Malin</td>
<td>Dr. Randolph Martin, III</td>
<td>Prof. Thomas V. McEvilly</td>
<td>Dr. Keith L. McLaughlin</td>
</tr>
<tr>
<td>Teledyne Geotech</td>
<td>University of Illinois at Urbana-Champaign</td>
<td>Geosciences Department</td>
<td>Institute of Tectonics</td>
<td>Lamont-Doherty Geological Observatory</td>
<td>Teledyne Geotech</td>
<td>Department of Geology</td>
<td>New England Research, Inc.</td>
<td>Seismographic Station</td>
<td>S-CUBED</td>
</tr>
<tr>
<td>314 Montgomery Street</td>
<td>Department of Physics</td>
<td>403 Deike Building</td>
<td>Earth Science Board</td>
<td>of Columbia University</td>
<td>314 Montgomery Street</td>
<td>Old Chemistry Bldg.</td>
<td>76 Olcott Drive</td>
<td>University of California</td>
<td>A Division of Maxwell Laboratory</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td>1110 West Green Street</td>
<td>The Pennsylvania State University</td>
<td>University of California, Santa Cruz</td>
<td>Palisades, NY 10964</td>
<td>Alexandria, VA 22314</td>
<td>Duke University</td>
<td>White River Junction, VT 05001</td>
<td>Berkeley, CA 94720</td>
<td>P. O. Box 1526</td>
</tr>
<tr>
<td></td>
<td>Urbana, IL 61801</td>
<td>University Park, PA 16802</td>
<td>Santa Cruz, CA 95064</td>
<td></td>
<td></td>
<td>Durham, NC 27706</td>
<td></td>
<td></td>
<td>La Jolla, CA 92038-1620</td>
</tr>
</tbody>
</table>
OTHERS (United States)

Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Michael Browne
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Mr. Roy Burger
1221 Serry Road
Schenectady, NY 12309

Prof. Shelton S. Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Dr. Robert Burridge
Schlumberger-Doll Research Center
Old Quarry Road
Ridgefield, CT 06877

Dr. Kenneth Anderson
BBNSTC
Mail Stop 14/1B
Cambridge, MA 02233

Dr. W. Winston Chan
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314-1581

Dr. Ralph Archuleta
Department of Geological Sciences
University of California at Santa Barbara
Santa Barbara, CA 93102

Dr. Theodore Cherry
Science Horizons, Inc.
710 Encinitas Blvd., Suite 200
Encinitas, CA 92024 (2 copies)

Dr. Susan Beck
Department of Geosciences
Bldg. # 77
University of Arizona
Tucson, AZ 85721

Prof. Jon F. Claerbout
Department of Geophysics
Stanford University
Stanford, CA 94305

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Prof. Robert W. Clayton
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Mr. William J. Best
907 Westwood Drive
Vienna, VA 22180

Prof. F. A. Dahlen
Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. Susan Beck
Department of Geosciences
Bldg. # 77
University of Arizona
Tucson, AZ 85721

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Dr. N. Biswas
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Mr. Charles Doll
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton St.
Cambridge, MA 02142

Dr. Stephen Bratt
Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209

Prof. Adam Dziewonski
Hoffman Laboratory, Harvard Univ.
Dept. of Earth Atmos. & Planetary Sciences
20 Oxford St.
Cambridge, MA 02138
William Kikendall
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Prof. Leon Knopeff
University of California
Institute of Geophysics & Planetary Physics
Los Angeles, CA 90024

Prof. John Kuo
Aldridge Laboratory of Applied Geophysics
Columbia University
842 Mudd Bldg.
New York, NY 10027

Prof. L. Timothy Long
School of Geophysical Sciences
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Gary McCartor
Department of Physics
Southern Methodist University
Dallas, TX 75275

Prof. Art McGarr
Mail Stop 977
Geological Survey
345 Middlefield Rd.
Menlo Park, CA 94025

Dr. George Mellman
Sierra Geophysics
11255 Kirkland Way
Kirkland, WA 98033

Prof. John Nabelek
College of Oceanography
Oregon State University
Corvallis, OR 97331

Prof. Geza Nagy
University of California, San Diego
Department of Ames, M.S. B-010
La Jolla, CA 92093

Dr. Keith K. Nakanishi
Lawrence Livermore National Laboratory
L-205
P.O. Box 808
Livermore, CA 94550

Prof. Amos Nur
Department of Geophysics
Stanford University
Stanford, CA 94305

Prof. Jack Oliver
Department of Geology
Cornell University
Ithaca, NY 14850

Dr. Kenneth Olsen
P.O. Box 1273
Linwood, WA 98046-1273

Prof. Jeffrey Park
Department of Geology and Geophysics
Kline Geology Laboratory
P.O. Box 6666
New Haven, CT 06511-8130

Howard J. Patton
Lawrence Livermore National Laboratory
L-205
P.O. Box 808
Livermore, CA 94550

Prof. Robert Phinney
Geological & Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. Paul Pomeroy
Rondout Associates
P.O. Box 224
Stone Ridge, NY 12484

Dr. Norton Rimer
S-CUBED
A Division of Maxwell Laboratory
P.O. Box 1620
La Jolla, CA 92038-1620

Prof. Larry J. Ruff
Department of Geological Sciences
1006 C.C. Little Building
University of Michigan
Ann Arbor, MI 48109-1063

Dr. Richard Sailor
TASC Inc.
55 Walkers Brook Drive
Reading, MA 01867
Dr. Eileen Vergino
Lawrence Livermore National Laboratory
L-205
P. O. Box 808
Livermore, CA 94550

J. J. Zucca
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550
Dr. Ralph A. Alewine
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Dr. Dale Glover
DIA/DT-1B
Washington, DC 20301

Mr. James C. Batis
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. T. Hanks
USGS
Natl Earthquake Research Center
345 Middlefield Road
Menlo Park, CA 94025

Harley Benz
U.S. Geological Survey, MS-977
345 Middlefield Rd.
Menlo Park, CA 94025

Dr. Roger Hansen
AFTAC/TT
Patrick AFB, FL 32925

Dr. Robert Blandford
AFTAC/TT
Center for Seismic Studies
1300 North 17th St. Suite 1450
Arlington, VA 22209-2308

Paul Johnson
ESS-4, Mail Stop J979
Los Alamos National Laboratory
Los Alamos, NM 87545

Eric Chael
Division 9241
Sandia Laboratory
Albuquerque, NM 87185

Janet Johnston
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. John J. Cipar
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. Katharine Kadinsky-Cade
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Cecil Davis
Group P-15, Mail Stop D406
P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87544

Ms. Ann Kerr
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Mr. Jeff Duncan
Office of Congressman Markey
2133 Rayburn House Bldg.
Washington, DC 20515

Dr. Max Koontz
US Dept of Energy/DP 5
Forrestal Building
1000 Independence Avenue
Washington, DC 20585

Dr. Jack Evernden
USGS - Earthquake Studies
345 Middlefield Road
Menlo Park, CA 94025

Dr. W.H.K. Lee
Office of Earthquakes, Volcanoes, & Engineering
345 Middlefield Road
Menlo Park, CA 94025

Am Fruekel
USGS
922 National Center
Reston, VA 22092

Dr. William Leith
U.S. Geological Survey
Mail Stop 928
Reston, VA 22092
Dr. Richard Lewis
Director, Earthquake Engineering & Geophysics
U.S. Army Corps of Engineers
Box 631
Vicksburg, MS 39180

Mr. Chris Paine
Office of Senator Kennedy
SR 315
United States Senate
Washington, DC 20510

James F. Lewkowicz
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Colonel Jerry J. Perrizo
AFOSR/NP, Building 410
Bolling AFB
Washington, DC 20332-6448

Mr. Alfred Lieberman
ACDA/VI-OA'State Department Bldg
Room 5726
320 - 21st Street, NW
Washington, DC 20451

Dr. Frank F. Pilotte
HQ AFTAC/TT
Patrick AFB, FL 32925-6001

Stephen Mangino
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Katie Poley
CIA-ACIS/TMC
Room 4X16NHB
Washington, DC 20505

Dr. Robert Masse
Box 25046, Mail Stop 967
Denver Federal Center
Denver, CO 80225

Mr. Jack Rachlin
U.S. Geological Survey
Geology, Rm 3 C136
Mail Stop 928 National Center
Reston, VA 22092

Art McGarr
U.S. Geological Survey, MS-977
345 Middlefield Road
Menlo Park, CA 94025

Dr. Robert Reinke
WL/NTESG
Kirtland AFB, NM 87117-6008

Richard Morrow
ACDA/VI, Room 5741
320 21st Street N.W
Washington, DC 20451

Dr. Byron Ristvet
HQ DNA, Nevada Operations Office
Attn: NVCG
P.O. Box 98539
Las Vegas, NV 89193

Dr. Carl Newton
Los Alamos National Laboratory
P.O. Box 1663
Mail Stop C335, Group ESS-3
Los Alamos, NM 87545

Dr. George Rothe
HQ AFTAC/TT
Patrick AFB, FL 32925-6001

Dr. Bao Nguyen
AFTAC/TT
Patrick AFB, FL 32925

Dr. Alan S. Ryall, Jr.
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Dr. Kenneth H. Olsen
Los Alamos Scientific Laboratory
P.O. Box 1663
Mail Stop D-506
Los Alamos, NM 87545

Dr. Michael Shore
Defense Nuclear Agency/SPSS
6801 Telegraph Road
Alexandria, VA 22310
Dr. Ramon Cabre, S.J.
Observatorio San Calixto
Casilla 5939
La Paz, Bolivia

Prof. Hans-Peter Harjes
Institute for Geophysik
Ruhr University/Bochum
P.O. Box 102148
4630 Bochum 1, FRG

Prof. Eystein Husebye
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Prof. Brian L.N. Kennett
Research School of Earth Sciences
Institute of Advanced Studies
G.P.O. Box 4
Canberra 2601, AUSTRALIA

Dr. Bernard Massinon
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Pierre Mecheler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE

Dr. Svein Mykkeltveit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 copies)
FOREIGN (OTHERS)

Dr. Peter Basham
Earth Physics Branch
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Eduard Berg
Institute of Geophysics
University of Hawaii
Honolulu, HI 96822

Dr. Michel Bouchon
I.R.I.G.M.-B.P. 68
38402 St. Martin d'Herès
Cedex, FRANCE

Dr. Hilmar Bungum
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA M5S 1A7

Dr. Alan Douglas
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Manfred Henger
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Ms. Eva Johannisson
Senior Research Officer
National Defense Research Inst.
P.O. Box 27322
S-102 54 Stockholm, SWEDEN

Dr. Fekadu Kebede
Geophysical Observatory, Science Faculty
Addis Ababa University
P. O. Box 1176
Addis Ababa, ETHIOPIA

Dr. Tormod Kvaema
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Peter Marshall
Procurement Executive
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Prof. Ari Ben-Menahem
Department of Applied Mathematics
Weizman Institute of Science
Rehovot, ISRAEL 951729

Dr. Robert North
Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Frode Ringdal
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Jorg Schlittenhardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Universita Degli Studi Di Trieste
Facolta Di Ingegneria
Istituto Di Miniere E. Geofisica Applicata, Trieste, ITALY

Dr. John Woodhouse
Oxford University
Dept of Earth Sciences
Parks Road
Oxford OX13PR, ENGLAND