Recently, a manner of articles have appeared in newspapers and popular magazines emphasizing a dichotomy in regard to fuzzy sets: the great potential benefit of using an intuitively appealing and simple approach to modeling uncertainties and its almost universal rejection or avoidance by orthodox scientists in the United States trained in probability theory. Thus, once more, it is of some interest to attempt to determine dispassionately what relations, if any, exist between fuzzy sets and probabilities.

Previously, Goodman et al. were the first to point out that rather basic connections do indeed exist between fuzzy set theory and probability theory via random sets and their one point coverage functions. (See, e.g., Goodman, "Some new results concerning random sets and fuzzy sets", Info. Sci. 34, 1984 or Goodman & Nguyen, Uncertainty Models for Knowledge-Based Systems (monograph), North-Holland Co., Amsterdam, 1985.) But relatively few individuals have utilized these connections (Dubois & Prade on occasion and Oblow emphasizing full random set representations through his hybrid "O-Theory"), mainly due to the foreboding complex structure of random sets - as compared to the relatively simple form of random variables or random vectors. Even the relatively recent contributions of Lindley, Klir, and others in comparing the roles and game theoretic admissibility properties of fuzzy sets and probabilities do not address the deeper relations between the two areas.

<table>
<thead>
<tr>
<th>NAME OF RESPONSIBLE INDIVIDUAL</th>
<th>TELEPHONE (Include Area Code)</th>
<th>OFFICE SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. R. Goodman</td>
<td>(619) 553-4014</td>
<td>Code 421</td>
</tr>
</tbody>
</table>
A RE-EXAMINATION OF THE RELATIONSHIP BETWEEN
FUZZY SET THEORY AND PROBABILITY THEORY

Dr. I.R. Goodman

Command & Control Department
Code 421
Naval Ocean Systems Center
San Diego, California 92152-5000

and

Prof. V.M. Bier

Department of Industrial Engineering
University of Wisconsin-Madison
Madison, Wisconsin 53706

Abstract of paper to be delivered
to the 29th Annual Bayesian Research
Conference, University of Southern
California, Los Angeles, Feb. 14-15,
1991, under the direction of Prof.
Ward Edwards and sponsored by the
University of Southern California (USC).
A RE-EXAMINATION OF THE RELATIONSHIP BETWEEN
FUZZY SET THEORY AND PROBABILITY THEORY

ABSTRACT

Recently, a number of articles have appeared in newspapers and popular magazines and journals emphasizing a dichotomy in regard to fuzzy sets: the great potential benefit of using an intuitively appealing and simple approach to modeling uncertainties and its almost universal rejection or avoidance by orthodox scientists in the United States trained in probability theory. Thus, once more, it is of some interest to attempt to determine dispassionately what relations, if any, exist between fuzzy sets and probabilities.

Previously, Goodman et al. were the first to point out that rather basic connections do indeed exist between fuzzy set theory and probability theory via random sets and their one point coverage functions. (See, e.g. Goodman, "Some new results concerning random sets and fuzzy sets", Info. Sci. 34, 1984 or Goodman & Nguyen, Uncertainty Models for Knowledge-Based Systems (monograph), North-Holland Co., Amsterdam, 1985.) But relatively few individuals have utilized these connections (Dubois & Prade on occasion and Oblow emphasizing full random set representations through his hybrid "O-Theory"), mainly due to the foreboding complex structure of random sets - as compared to the relatively simple form of random variables or random vectors. Even the relatively recent contributions of Lindley, Klir, and others in comparing the roles and game theoretic admissibility properties of fuzzy sets and probabilities do not address the deeper relations between the two areas.

The thrust of this paper is to explore a new connection between fuzzy sets and probability which is related to random sets, but does not require the full specifications involved in using them. In brief, it is not a new idea that any fuzzy set membership function \(f_A: X \to [0,1] \), with domain of definition \(X \) corresponding to attribute or fuzzy set \(A \), can be characterized completely as the mean function of a collection (not a stochastic process!) of zero-one random variables \((V_{A,x})_{x \in X} \), where \(V_{A,x} = 1 \) iff \(x \in A \) (or \(x \) has attribute \(A \) as a property, etc.) and \(V_{A,x} = 0 \) iff \(x \notin A \) (or \(x \) does not have attribute \(A \)), with \(E(V_{A,x}) = \text{prob}(V_{A,x} = 1) = f(x) \), for all \(x \) in \(X \). Obviously, one can estimate \(f_A(x) \) here by the standard sampling procedure counting the number of successful "hits" or 1-outcomes relative to a poll of people, population of stochastic entities, etc. At this point, relatively little else has been achieved in the literature, other than interpreting the zero-one random variables as being the indicator functions in some sense of corresponding random sets. However, by simply reversing the 0 and 1 values above - no informational difference occurs - Sklar's Copula Representation Theorem can be used to show that most standard fuzzy set operations and relations indeed have isomorphic counterparts among naturally corresponding ordinary set operations and relations acting upon zero-one random variables. These correspondences can be extended to arbitrary \(\text{wff}'s \) (well formed formula) of fuzzy expressions (still in the first order sense - i.e., having membership values lying in the unit interval), provided that the fuzzy set operators are restricted to \(\min, \max, \), \(1-(____)\), or \(\text{prod}, \text{probsum}, \text{1-(____)} \), for conjunction, disjunction, and negation, respectively.

The import of the above results is that now combination of evidence or data fusion problems involving both linguistic-based and stochastic information can be treated from a universal probabilistic viewpoint, rather than from a universal fuzzy set one, although one can employ the various fuzzy set techniques developed to first model the linguistic information aspect. Finally, a number of open issues are posed for future investigation, without explicit use of the restraining form of random set theory.