INTEGRATED ARRAY AND 3-COMPONENT PROCESSING USING A SEISMIC "MICROARRAY"

T. Kvaerna
F. Ringdal

NTNF/NORSAR
Post Box 51
N-2007 Kjeller, NORWAY

31 May 1991

Scientific Report No. 9

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHILLIPS LABORATORY
AIR FORCE SYSTEMS COMMAND
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Solid Earth Geophysics Branch
Earth Sciences Division

JAMES F. LEWKOWICZ
Branch Chief
Solid Earth Geophysics Branch
Earth Sciences Division

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
Integrated array and 3-component processing using a seismic "microarray"

A "microarray" as defined in this paper is modeled on a subgeometry of the NORESS array (Mykkeltveit et al., 1990), and comprises a 3-component center seismometer surrounded by 3 closely spaced vertical-component sensors deployed over a typical aperture of 0.3 km. Analysis of five days of continuous data has shown that such a system combines the benefits of array and 3-component processing in providing reliable automatic detection, phase identification and location of weak seismic events at local and regional distances. The data processing has comprised a) multiple-band filtering, b) coherent and incoherent beamforming, c) STA/LTA threshold detection, d) broadband frequency-wavenumber (f-k) analysis and e) automatic phase association and event location. Using vertical components only, broadband f-k array analysis enables correct phase identification (P-type og S-type phase) in 95 per cent of the cases, and gives S-wave azimuths with a root-mean-square (RMS) deviation of 13.9 degrees from the estimates of the full NORESS array. It is particularly significant that the small array eliminates the need for introducing particle motion...
models, which creates ambiguities in 3-component analysis of secondary phases when interfering
SH and SV phases occur. P-phase azimuths are estimated using integrated array and 3-component
f-k analysis, and have an RMS deviation relative to NORESS of only 9.6 degrees. Compared to the
full NORESS array, the P-wave detection capability is good for events with epicenters within 500
km of the station, but for greater distances the performance is significantly reduced. The S-phase
detection capability is enhanced by incoherent beamforming of the horizontal channels, and
approaches that of NORESS at all distances. A considerable reduction in the detector false alarm
rate is achieved by imposing constraints on the estimates of apparent velocity obtained from the f-k
analysis before accepting a detected phase.
Preface

Under Contract No. F49620-C-89-0038, NTNF/NORSAR is conducting research within a wide range of subjects relevant to seismic monitoring. The emphasis of the research program is on developing and assessing methods for processing of data recorded by networks of small-aperture arrays and 3-component stations, for events both at regional and teleseismic distances. In addition, more general seismological research topics are addressed.

Each quarterly technical report under this contract presents one or several separate investigations addressing specific problems within the scope of the statement of work. Summaries of the research efforts within the program as a whole are given in annual technical reports.

This Scientific Report No. 9 presents a manuscript entitled "Integrated array and 3-component processing using a seismic "microarray", by T. Kverna and F. Ringdal.

NORSAR Contribution No. 445
INTRODUCTION

In order to handle the large data volumes produced by modern digital seismic networks, a high degree of automated processing is essential. A case in point is the newly established network of regional arrays and three-component stations in northern Europe (Harjes, 1990; Mykkeltveit and Paulsen, 1990; Mykkeltveit et al., 1990; Uski, 1990). Current methods allow for successful real-time processing of the arrays within this network (Ringdal and Kværna, 1989; Bache et al., 1990), while the algorithms available for three-component data processing, as discussed in the following, do not yet meet the criteria required for real-time operation.

The problems remaining to be solved are primarily those of automatic phase identification and azimuth estimation. Such information is essential for successful automatic phase association and location of seismic events. It has been demonstrated that polarization analysis can provide P-wave azimuth estimates with good accuracy from a single three-component station (Plesinger et al., 1986; Magotra et al., 1987; Christofferson et al., 1988; Jurkevics, 1988; Ruud et al., 1988). Using SH and SV particle motion models, some success has also been reported in determining azimuth from S and Lg phases, although there is often a 90 or 180 degree ambiguity in the resulting estimates (Magotra et al., 1987; Jurkevics, 1988).

These efforts notwithstanding, the fundamental problem of phase identification using three-component data has not been satisfactorily solved. According to Jepsen and Kennett (1990) it is possible to identify P-waves and fundamental mode Rayleigh waves (Rg) from three-component data alone, but classification of other wave types appears to be much less reliable. Their results are all derived from offline analysis of high signal-to-noise ratio (SNR) recordings, and thereby give an upper bound on what can be achieved by automated procedures. Our own experience, based on several years with routine polarization analysis of the three-component elements within the NORESS array in southern Norway, confirms this. Thus, we have found that a high
degree of rectilinearity together with steep incidence angles, which in theory would indicate the presence of a P-phase, is quite often also seen for S and Lg phases, and even for noise bursts. To further complicate the situation, numerous P-phase are observed that do not meet the theoretically expected polarization characteristics.

Array developments

Small-aperture arrays of the NORESS type have proved to be very effective in processing of regional as well as teleseismic signals (Mykkeltveit et al., 1990). Their primary features are:

- Significant SNR gains at high frequencies.
- Reliable phase identification (P-type versus S-type phases).
- Precise azimuth estimates of all phases.

While the accuracy of NORESS azimuth estimates can be as good as ±1 degree for well calibrated regions (Kværna and Ringdal, 1986), the uncertainty of uncalibrated regions is often of the order of 10 degrees or more, due to lateral inhomogeneities near the receivers (Mykkeltveit et al., 1990). In practical schemes for automatic phase association (e.g., Mykkeltveit and Bungum, 1984), a tolerance of 30 degrees in azimuth deviation from the true value is often assumed. Given that the tolerance limits of the azimuth estimates for phase association purposes are much less restrictive than the optimum array capability, a natural question is whether a smaller array can achieve reliable phase identification as well as an acceptable uncertainty for the azimuth estimates.

In this paper we address this question, and we have chosen to evaluate the smallest such array available to us; the NORESS A-ring geometry (Fig. 1). This “microarray” comprises a center three-component seismometer A0, surrounded by three vertical-component sensors A1-A3. The diameter is 300 meters, i.e. a factor of 10 less than
NORESS, and the microarray thus spans an area only 1% of that of the full NORESS array.

We demonstrate in this paper that this very small array shows a remarkable performance in distinguishing between regional P and S-phases and in obtaining reliable azimuth estimates for all phase types. Our conclusion is that supplementing three-component stations with a small triangular array would to a large extent alleviate the problems now encountered in automatic three-component analysis.

DATA ANALYSIS

We conducted automatic detection processing and post-detection analysis of data from the A-ring microarray for a period of 5 days (22-26 October 1990). The detection processing was conducted using standard array processing techniques as described by Mykkeltveit et al. (1990). A STA/LTA detector was applied to a set of coherent and incoherent filtered beams (Mykkeltveit and Bungum, 1984; Ringdal et al., 1975). Parameters on filter bands, beam configuration and detection thresholds are given in Table 1. The post-detection processing included broadband f-k array analysis (Emersoy et al., 1985; Kværna and Doornbos, 1986) of each detected signal using the 4 vertical-component sensors. The resulting apparent velocity estimates were used to classify the detected signal as a P-type or S-type phase. For each P-phase, we subsequently carried out polarization analysis as well as integrated array and 3-component f-k analysis (using a P-wave particle motion model), applying the same methodology.

Briefly, this methodology is summarized as follows: We introduce the covariance matrix \(C \) as a function of slowness \(s \) by phase shifting the signals:

\[
C_{nm}(s) = \int_{\omega_1}^{\omega_2} F_n(\omega, s) F^*_m(\omega, s) \frac{d\omega}{2\pi}
\]

\[(1) \]
where

\[F_n(\omega, s) = F_n(\omega) \exp(i\omega s \cdot x_n), \]

\[F_n(\omega) \] is the Fourier spectrum at channel \(n \), and \(\omega_1 \) and \(\omega_2 \) define the frequency band for analysis. The normalized response is given by

\[P(s) = g^\dagger C g / \{ |g|^2 tr C \} \]

where \(g \) is the predicted displacement vector for slowness \(s \).

The method can be applied either to a three-component station or to an array comprising any combination of single-component and three-component stations. Thus for an array of single component seismometers: \(g^\dagger = (1, \ldots, 1) \). For a three-component station: \(g^\dagger = (g_x, g_y, g_z) \) (i.e., the displacement vector), and for an array of three-component seismometers: \(g^\dagger = (g_1^\dagger, \ldots, g_n^\dagger) \) with \(g_n^\dagger = (g_{nx}, g_{ny}, g_{nz}) \) denoting the displacement vector at site \(n \). The slowness estimate of the incoming wave is defined by the maximum of the normalized response.

To obtain a data base against which to evaluate our results, we extracted all seismic phases detected by the full NORESS array and associated to regional events for the 5-day period. The generalized beamforming procedure (Ringdal and Kvaerna, 1989) and the results from Intelligent Monitoring System (IMS) processing (Bache et al., 1990) were used in order to validate these reference events. P-coda detections and multiple S-phases were ignored, so that each event provided a maximum of 3 phases (P, S and Lg). These phases were then matched to the detection lists produced from the A-ring microarray, and the apparent velocity and azimuth estimates were compared.

Phase identification

Figure 2 shows the apparent velocity estimates using the vertical sensors of the microarray for P-phases (circles) and S-phases (asterisks) for the reference data set.
The separation is better than 95 per cent, which implies that even this very small array is able to provide correct phase identification automatically and with high confidence. We emphasize that this success rate is achieved in a completely automated mode using only the intrinsic features of each detected phase, most of which have very low SNR. Even further improvements would clearly be possible by off-line analysis and visual inspections of the traces.

P-wave azimuths

Figure 3 compares P-wave azimuths estimated by the full NORESS array and the vertical components of the microarray using broadband f-k analysis in both cases. The estimates are quite consistent with an RMS deviation of 13.7 degrees. A corresponding plot for P-waves analyzed from the three-component seismometer A0 is given in figure 4, and shows a similar amount of scatter, with an RMS deviation of 14.3 degrees. Figure 5 shows a corresponding plot using P-phase azimuth estimates derived from integrated array and three-component analysis. In this case the RMS deviation is considerably lower, 9.6 degrees, and all of the deviations are well within a tolerance limit of 30 degrees. The improvements relative to a single three-component station are particularly significant at low signal-to-noise ratios.

S-wave azimuths

Figure 6 compares azimuths of S-type phases estimated by the microarray (using the vertical components only) and the full NORESS array. Again, the correspondence is quite good, with an RMS deviation of 13.9 degrees. This implies that it is possible to use the algorithm described by Mykkeltveit and Bungum (1984) to achieve automatic regional phase association and event location using this microarray. Note that in the case of S-phases, we have not been able to obtain useful azimuth information from three-component or integrated processing, but it is of course possible that such
information could be extracted in certain cases, given that the phase first has been identified as S or Lg.

Detectability

Figures 7 and 8 illustrate the P and S-wave detectability of the microarray as a function of NORESS SNR. From Figure 7, it is seen that all P-phases with SNR > 20 dB (i.e., STA/LTA > 10 at NORESS) have been detected. At distances below 500 km, several events of relatively low SNR at NORESS has also microarray detections. This is due to the high signal frequencies which cause the full array SNR gains of these phases to be less than the theoretical \sqrt{N}, whereas the microarray still retains some SNR gain. At distances above 500 km, the superiority of the full NORESS array becomes apparent.

In Figure 8 it is seen that the microarray is close to matching NORESS S-phase detectability at all distances. This is because the horizontal components of the A0 three-component system provide quite efficient detection of S and Lg phases, in particular when added incoherently to the vertical component. The full array does not have the same SNR gain for secondary phases as it does for P-phases, because of less signal coherency and (in particular) coherent “noise” caused by the P coda. Thus, relative to NORESS, the excellent secondary phase detection of the microarray is noteworthy.

False alarm consideration

In practical operation of any seismic surveillance system, the problem of false detections is very important. This is especially the case if the real-time detection is operated at a low detection threshold, and it is essential to be able to identify false alarms at as early a stage as possible.

To address this problem, we have analyzed in detail all the microarray detections for one day (24 October 1990). The results are presented in Table 2, again with NORESS results as a reference. From this table, it is seen that 132 of the 153
detections (86%) were correctly classified using the broadband f-k analysis applied to the microarray data. Of these 153 detections, 41 were P, 41 S (or Lg) and 71 noise (i.e., detections with low apparent velocity). Note that P coda detections were counted as P and that S coda detections were counted as S in these statistics. None of the 41 phases which (according to NORESS) were of the P type were misclassified by the microarray. Of the 41 S-phases, 4 were misclassified as P. Out of 71 noise detections, 8 were given P-phase velocities and 9 were given S-phase velocities when using the microarray. However, it is possible that some of these “noise” detections are in fact real P or S phases for events at very local distance.

These statistics must be considered satisfactory. In fact, it appears that the SNR threshold for the microarray detector could be lowered, and still produce a reasonable false alarm rate.

CONCLUSIONS

The problems encountered when using a three-component system in a real-time automatic processing environment appear to be effectively alleviated by supplementing the 3-component system with a very small 3-element array with a typical aperture of 300 meters. Based on this study of the NORESS A-ring microarray, we conclude that:

- Reliable phase identification (P type versus S-type phases) can be achieved for more than 95% of the detections applying broadband f-k analysis to the four vertical instruments.
- Azimuth estimates, with accuracy generally within 30 degrees, can be obtained both for P and S-phases. The accuracy of the P-wave azimuth estimates using integrated array and 3-component f-k analysis is particularly good, showing an RMS deviation from NORESS estimates of only 9.6 degrees.
• Good regional P-phase detectability can be obtained from this microarray out to 500 km epicentral distance. At greater distances, P-wave detectability relative to that of the full NORESS array deteriorates sharply.

• Detectability of S-phases is excellent at all distances, and comes close to matching that of the full NORESS array.

• The microarray f-k analysis makes it possible to isolate the majority of the noise detections, giving an acceptable false alarm rate in the automatic processing.

It is of course important to investigate whether the results obtained here can be achieved in other geological and geographical environments, e.g., by analyzing similar data for other existing arrays (ARCESS, GERESS, FINESA). It would also be of interest to conduct network detection and location experiments using such microarrays.

A microarray of the type described in this paper is especially suited for processing high signal frequencies. In fact, one might consider a much denser sensor deployment within the typical microarray aperture, with the aim to conduct array processing at frequencies above 20 Hz. This would of course require a higher sampling rate than the 40 Hz currently used at NORESS. Array processing at these frequencies would be of particular interest in the context of developing methods for monitoring cavity decoupled explosions, which might have significant signal energy in this frequency band.

Acknowledgement. This research was supported by the Advanced Research Projects Agency of the Department of Defence and was monitored by the Air Force Office of Scientific Research under Contract No. F49620-89-C-0038.
REFERENCES

Coherent beams

<table>
<thead>
<tr>
<th>Beam</th>
<th>Apparent vel.</th>
<th>Azimuth</th>
<th>Filter band</th>
<th>Configuration</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ01</td>
<td>∞</td>
<td>0.0</td>
<td>0.5-1.5</td>
<td>A0z, A1z, A2z, A3z</td>
<td>4.0</td>
</tr>
<tr>
<td>NZ02</td>
<td>∞</td>
<td>0.0</td>
<td>1.0-2.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.7</td>
</tr>
<tr>
<td>NZ03</td>
<td>∞</td>
<td>0.0</td>
<td>1.0-3.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.7</td>
</tr>
<tr>
<td>NZ04</td>
<td>∞</td>
<td>0.0</td>
<td>1.5-2.5</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ05</td>
<td>∞</td>
<td>0.0</td>
<td>1.5-3.5</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ06</td>
<td>∞</td>
<td>0.0</td>
<td>2.0-3.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ07</td>
<td>∞</td>
<td>0.0</td>
<td>2.0-4.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ08</td>
<td>∞</td>
<td>0.0</td>
<td>2.5-4.5</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ09</td>
<td>∞</td>
<td>0.0</td>
<td>3.0-5.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.5</td>
</tr>
<tr>
<td>NZ10</td>
<td>∞</td>
<td>0.0</td>
<td>3.5-5.5</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.7</td>
</tr>
<tr>
<td>NZ11</td>
<td>∞</td>
<td>0.0</td>
<td>4.0-8.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.7</td>
</tr>
<tr>
<td>NZ12</td>
<td>∞</td>
<td>0.0</td>
<td>5.0-10.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>3.7</td>
</tr>
<tr>
<td>NZ13</td>
<td>∞</td>
<td>0.0</td>
<td>8.0-16.0</td>
<td>A0z, A1z, A2z, A3z</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Incoherent beams

<table>
<thead>
<tr>
<th>Beam</th>
<th>Apparent vel.</th>
<th>Azimuth</th>
<th>Filter band</th>
<th>Configuration</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA01</td>
<td>∞</td>
<td>0.0</td>
<td>0.5-1.5</td>
<td>A0z, A0n, A0e</td>
<td>2.7</td>
</tr>
<tr>
<td>NA02</td>
<td>∞</td>
<td>0.0</td>
<td>1.0-2.0</td>
<td>A0z, A0n, A0e</td>
<td>2.6</td>
</tr>
<tr>
<td>NA03</td>
<td>∞</td>
<td>0.0</td>
<td>1.0-3.0</td>
<td>A0z, A0n, A0e</td>
<td>2.5</td>
</tr>
<tr>
<td>NA04</td>
<td>∞</td>
<td>0.0</td>
<td>1.5-2.5</td>
<td>A0z, A0n, A0e</td>
<td>2.5</td>
</tr>
<tr>
<td>NA05</td>
<td>∞</td>
<td>0.0</td>
<td>1.5-3.5</td>
<td>A0z, A0n, A0e</td>
<td>2.5</td>
</tr>
<tr>
<td>NA06</td>
<td>∞</td>
<td>0.0</td>
<td>2.0-3.0</td>
<td>A0z, A0n, A0e</td>
<td>2.6</td>
</tr>
<tr>
<td>NA07</td>
<td>∞</td>
<td>0.0</td>
<td>2.0-4.0</td>
<td>A0z, A0n, A0e</td>
<td>2.8</td>
</tr>
<tr>
<td>NA08</td>
<td>∞</td>
<td>0.0</td>
<td>2.5-4.5</td>
<td>A0z, A0n, A0e</td>
<td>3.4</td>
</tr>
<tr>
<td>NA09</td>
<td>∞</td>
<td>0.0</td>
<td>3.0-5.0</td>
<td>A0z, A0n, A0e</td>
<td>3.5</td>
</tr>
<tr>
<td>NA10</td>
<td>∞</td>
<td>0.0</td>
<td>3.5-5.5</td>
<td>A0z, A0n, A0e</td>
<td>2.8</td>
</tr>
<tr>
<td>NA11</td>
<td>∞</td>
<td>0.0</td>
<td>4.0-8.0</td>
<td>A0z, A0n, A0e</td>
<td>2.5</td>
</tr>
<tr>
<td>NA12</td>
<td>∞</td>
<td>0.0</td>
<td>5.0-10.0</td>
<td>A0z, A0n, A0e</td>
<td>2.5</td>
</tr>
<tr>
<td>NA13</td>
<td>∞</td>
<td>0.0</td>
<td>8.0-16.0</td>
<td>A0z, A0n, A0e</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 1. Parameters used for the microarray detector experiment
Table 2

<table>
<thead>
<tr>
<th>Correct phase id</th>
<th>P (vel>6 km/s)</th>
<th>S or Lg (3.4<vel≤6 km/s)</th>
<th>Noise (vel≤3.4 km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S or Lg</td>
<td>4</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Noise</td>
<td>8</td>
<td>9</td>
<td>54</td>
</tr>
</tbody>
</table>

Total phases detected by the microarray detector: 153

Total phases correctly classified: 132 (86%)
Legend:

- Vertical short period
- 3-component short period
- ▲ 3-component broad band and 3-component short period

Fig. 1. Geometry of the NORESS array and of the A-ring geometry used in this study.
Fig. 2. Estimated apparent velocities from applying broadband frequency-wavenumber (f-k) analysis to vertical components of the A-ring microarray for detected P-phases (circles) and S-phases (asterisks). Note that the phases can be identified from the apparent velocity with more than 95 per cent accuracy.
FIG. 3. Comparison of estimated azimuths of P-phases using the NORESS array and the vertical components of the microarray (broadband f-k). The RMS azimuth deviation is 13.7 degrees.
Fig. 4. Comparison of estimated azimuths of P-phases using the NORESS array (broadband f-k) and the A0 three-component system (polarization analysis). Note that the consistency is similar to that of Figure 3, with a RMS azimuth deviation of 14.3 degrees.
FIG. 5. Comparison of estimated azimuths of P-phases using the NORESS array (broadband f-k) and all sensors in the microarray (integrated f-k processing). The RMS azimuth deviation is 9.6 degrees, i.e. significantly lower than in Figures 3 and 4.
Fig. 6. NORESS and microarray azimuth comparison for S-phases. Note that the consistency is as good as for P-phases (on figure 3), with a RMS azimuth deviation of 13.9 degrees.
Fig. 7. Illustration of P-phase detectability of the microarray. P-phases detected are marked as asterisks, whereas nondetected phases are marked as circles. Note that the reference array (NORESS) is clearly superior at distances > 500 km.
FIG. 8. Same as Figure 7, but for S-phases. Note that in this case the microarray comes close to matching the full array performance.
CONTRACTORS (United States)

Prof. Thomas Ahrens
Seismological Lab, 252-21
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Prof. Vernon F. Cornier
Department of Geology & Geophysics
U-45, Room 207
The University of Connecticut
Storrs, CT 06268

Prof. Charles B. Archambeau
CIRES
University of Colorado
Boulder, CO 80309

Professor Anton W. Dainty
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Dr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10260 Campus Point Drive
San Diego, CA 92121 (2 copies)

Prof. Steven Day
Department of Geological Sciences
San Diego State University
San Diego, CA 92182

Prof. Muawia Barazangi
Institute for the Study of the Continent
Cornell University
Ithaca, NY 14853

Dr. Zoltan A. Der
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. Jeff Barker
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Prof. Lewis M. Duncan
Dept. of Physics & Astronautics
Clemson University
Clemson, SC 29634-1901

Dr. Douglas R. Baumgardt
ENSCO, Inc
5400 Port Royal Road
Springfield, VA 22151-2388

Prof. John Ferguson
Center for Lithospheric Studies
The University of Texas at Dallas
P.O. Box 830688
Richardson, TX 75083-0688

Prof. Jonathan Berger
IGPP, A-025
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093

Dr. Mark D. Fisk
Mission Research Corporation
735 State Street
P. O. Drawer 719
Santa Barbara, CA 93102

Dr. Gilbert A. Bollinger
Department of Geological Sciences
Virginia Polytechnic Institute
21044 Detting Hall
Blacksburg, VA 24061

Prof. Stanley Flatte
Applied Sciences Building
University of California
Santa Cruz, CA 95064

Dr. Lawrence J. Burdick
Woodward-Clyde Consultants
566 El Dorado Street
Pasadena, CA 91109-3245

Dr. Alexander Florence
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

Dr. Jerry Carter
Center for Seismic Studies
1300 North 17th St., Suite 1450
Arlington, VA 22209-2308

Dr. Clifford Frohlich
Institute of Geophysics
8701 North Mopac
Austin, TX 78759
Prof. Terry C. Wallace
Department of Geosciences
Building #77
University of Arizona
Tucson, AZ 85721

Dr. William Wortman
Mission Research Corporation
8560 Cinderbed Rd.
Suite # 700
Newington, VA 22122

Prof. Francis T. Wu
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901
UNITED STATES (Others)

Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Dr. Michael Browne
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Mr. Roy Burger
1221 Serry Road
Schenectady, NY 12309

Prof. Shelton S. Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Dr. Robert Burridge
Schlumberger-Doll Research Center
Old Quarry Road
Ridgefield, CT 06877

Dr. Kenneth Anderson
BBNSTC
Mail Stop 14/1B
Cambridge, MA 02238

Prof. W. Winston Chan
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314-1581

Dr. Ralph Archuleta
Department of Geological Sciences
University of California at Santa Barbara
Santa Barbara, CA 93102

Dr. Theodore Cherry
Science Horizons, Inc.
710 Encinitas Blvd., Suite 200
Encinitas, CA 92024 (2 copies)

Dr. Susan Beck
Department of Geosciences
Bldg. # 77
University of Arizona
Tucson, AZ 85721

Prof. Jon F. Claerbout
Department of Geophysics
Stanford University
Stanford, CA 94305

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Prof. Robert W. Clayton
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Mr. William J. Best
907 Westwood Drive
Vienna, VA 22180

Prof. F. A. Dahlen
Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636

Dr. N. Biswas
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Mr. Charles Doll
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton St.
Cambridge, MA 02142

Dr. Stephen Bratt
Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209

Prof. Adam Dziewonski
Hoffman Laboratory, Harvard Univ.
Dept. of Earth Atmos. & Planetary Sciences
20 Oxford St
Cambridge, MA 02138
J. J. Zucca
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550
Dr. Ramon Cabre, S.J.
Observatorio San Calixto
Casilla 5939
La Paz, Bolivia

Prof. Hans-Peter Harjes
Institute for Geophysik
Ruhr University/Bochum
P.O. Box 102148
4630 Bochum 1, FRG

Prof. Eystein Husebye
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Prof. Brian L.N. Kennett
Research School of Earth Sciences
Institute of Advanced Studies
G.P.O. Box 4
Canberra 2601, AUSTRALIA

Dr. Bernard Massinon
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Pierre Mecheler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE

Dr. Svein Mykkeltveit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 copies)
Dr. Peter Basham
Earth Physics Branch
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Tormod Kvaerna
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Eduard Berg
Institute of Geophysics
University of Hawaii
Honolulu, HI 96822

Dr. Peter Marshall
Procurement Executive
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Michel Bouchon
I.R.I.G.M.-B.P. 68
38402 St. Martin D'Heres
Cedex, FRANCE

Prof. Ari Ben-Menahem
Department of Applied Mathematics
Weizman Institute of Science
Rehovot, ISRAEL 951729

Dr. Hilmar Bungum
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Robert North
Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Dr. Frode Ringdal
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA M5S 1A7

Dr. Jorg Schlittenhardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Dr. Alan Douglas
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Universita Degli Studi Di Trieste
Facolta Di Ingegneria
Istituto Di Miniere E. Geofisica Applicata, Trieste, ITALY

Dr. Manfred Henger
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FRG

Dr. John Woodhouse
Oxford University
Dept of Earth Sciences
Parks Road
Oxford 0X13PR, ENGLAND

Ms. Eva Johannisson
Senior Research Officer
National Defense Research Inst.
P.O. Box 27322
S-102 54 Stockholm, SWEDEN

Dr. Fekadu Kebede
Geophysical Observatory, Science Faculty
Addis Ababa University
P. O. Box 1176
Addis Ababa, ETHIOPIA
Dr. Ralph Alewine III
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Mr. James C. Battis
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Harley Benz
U.S. Geological Survey, MS-977
345 Middlefield Rd.
Menlo Park, CA 94025

Dr. Robert Blandford
AFTAC/TT
Center for Seismic Studies
1300 North 17th St. Suite 1450
Arlington, VA 22209-2308

Eric Chael
Division 9241
Sandia Laboratory
Albuquerque, NM 87185

Dr. John J. Cipar
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Cecil Davis
Group P-15, Mail Stop D406
P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87544

Mr. Jeff Duncan
Office of Congressman Markey
2133 Rayburn House Bldg.
Washington, DC 20515

Dr. Jack Evernden
USGS - Earthquake Studies
345 Middlefield Road
Menlo Park, CA 94025

Art Frankel
USGS
922 National Center
Reston, VA 22092
Dr. Richard Lewis
Director, Earthquake Engineering & Geophysics
U.S. Army Corps of Engineers
Box 631
Vicksburg, MS 39180

James F. Lewkowicz
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Mr. Alfred Lieberman
ACDA/VI-OA'State Department Bldg
Room 5726
320 - 21st Street, NW
Washington, DC 20451

Stephen Mangino
Phillips Laboratory/LWH
Hanscom AFB, MA 01731-5000

Dr. Robert Masse
Box 25046, Mail Stop 967
Denver Federal Center
Denver, CO 80225

Art McGarr
U.S. Geological Survey, MS-977
345 Middlefield Road
Menlo Park, CA 94025

Richard Morrow
ACDA/VI, Room 5741
320 21st Street N.W
Washington, DC 20451

Dr. Carl Newton
Los Alamos National Laboratory
P.O. Box 1663
Mail Stop C335, Group ESS-3
Los Alamos, NM 87545

Dr. Bao Nguyen
AFTAC/TTR
Patrick AFB, FL 32925

Dr. Kenneth H. Olsen
Los Alamos Scientific Laboratory
P. O. Box 1663
Mail Stop D-406
Los Alamos, NM 87545

Mr. Chris Paine
Office of Senator Kennedy
SR 315
United States Senate
Washington, DC 20510

Colonel Jerry J. Perrizo
AFOSR/NP, Building 410
Bolling AFB
Washington, DC 20332-6448

Dr. Frank F. Pilotte
HQ AFTAC/TTR
Patrick AFB, FL 32925-6001

Katie Poley
CIA-ACIS/TMC
Room 4X16NH8
Washington, DC 20505

Dr. Jack Rachlin
U.S. Geological Survey
Geology, Rm 3 C136
Mail Stop 928 National Center
Reston, VA 22092

Dr. Robert Reinke
WL/NTESG
Kirtland AFB, NM 87117-6008

Dr. Byron Ristvet
HQ DNA, Nevada Operations Office
Attn: NV/CG
P.O. Box 98539
Las Vegas, NV 89193

Dr. George Rothe
HQ AFTAC/TTR
Patrick AFB, FL 32925-6001

Dr. Alan S. Ryall, Jr.
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Dr. Michael Shore
Defense Nuclear Agency/SPSS
6801 Telegraph Road
Alexandria, VA 22310