SEISMIC SOURCE REPRESENTATION FOR SPALL

Steven M. Day
Keith L. McLaughlin

San Diego State University
Department of Geological Sciences
San Diego, CA 92182

21 November 1990

Scientific Report No. 3

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHILLIPS LABORATORY
AIR FORCE SYSTEMS COMMAND
HANSOM AIR FORCE BASE, MASSACHUSETTS 01731-5000
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ
Contract Manager
Solid Earth Geophysics Branch
Earth Sciences Division

DONALD H. ECKHARDT, Director
Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.
Spall may be a significant secondary source of seismic waves from underground explosions. The proper representation of spall as a seismic source is important for forward and inverse modeling of explosions for yield estimation and discrimination studies. We present a new derivation of a widely used point force representation for spall, which is based on a horizontal tension crack model. The derivation clarifies the relationship between point force and moment tensor representations of the tension crack. For wavelengths long compared with spall depth, the two representations are equivalent, and the moment tensor time history is proportional to the doubly integrated time history of the point force. Numerical experiments verify that, for regional seismic phases, this equivalence is valid for all frequencies for which the point-source (long wavelength) approximation is valid. Further analysis shows that the moment tensor and point force representations retain their validity for non-planar spall surfaces, provided that the average dip of the surface is small. The equivalency of the two representations implies that a singular inverse problem will result from attempts to infer simultaneously the spectra of both these source terms from seismic waveforms. If the spall moment tensor alone is estimated by inversion of waveform data, the inferred numerical values of its components will depend inversely upon the source depth which is assumed in the inversion formalism.
INTRODUCTION

Spall is a widely observed phenomenon accompanying underground nuclear explosions, and its seismic consequences are therefore of considerable interest in the context of verification of test limitation treaties. The proper representation of spall is of importance for forward and inverse seismic modeling of explosions for yield estimation and discrimination studies.

While spall is expected to have negligible effect on long period seismic waves (see Day et al., 1983), several studies suggest that it is a significant contributor to the short period seismic signal from explosions. If this is the case, spall may complicate explosion yield estimates, or at least influence our interpretation of empirically based yield estimation formulas.

For example, the isotropic seismic moment provides one estimate of explosion yield. Patton (1988) used regional, higher mode Rayleigh waves in the 0.2 to 0.5 Hz band to estimate the isotropic moment of the underground explosion HARZER. He concluded that the isotropic moment estimate was sensitive to assumptions about the amount of spall and its efficiency in generating seismic waves in this frequency band.

As a second example, several studies (e.g., McLaughlin, et al., 1988; Taylor and Randall, 1989) have suggested that spall could be a significant contributor to the regional phase Lg, which currently shows great promise as a low-variance yield estimator for explosions at the Soviet Shagan River test site (Hansen et al., 1990). This suggestion arises because spall has a deviatoric source component, which may significantly enhance the production of short period SV waves, compared with the predictions of purely isotropic explosion source models.

Teleseismic P wave amplitudes provide a third basis for yield estimation. At teleseismic distances, the effect of spall is to partially cancel the pP phase, replacing it with an attenuated and delayed phase which is not a replica of the direct P wave (e.g., Day et al., 1986). Schlittenhardt (1990) presents theoretical calculations showing that spall can potentially influence teleseismic P wave amplitudes, given plausible, but uncertain, assumptions about the characteristic mass and momentum of spall.
Day et al. (1983) (hereafter referred to as paper D83) presented a theoretical argument that surface waves of period 20 seconds and longer are not significantly affected by spall. These authors then proposed that the seismic consequences of spall be modeled by a shallow, horizontally oriented tension crack. They analyzed the implications of this model for surface waves with wavelength long compared to the crack dimension and depth, and showed that, in this approximation, the tension crack model was equivalent to a vertically oriented point force acting at the free surface, with the force time history proportional to the crack-separation acceleration history.

The resulting point force model has the property that the model parameters are, at least in principle, observable quantities. The spall mass and momentum, for example, can be estimated from near-field strong motion recordings at the U.S. Nuclear Test Site (NTS) (e.g., Viecelli, 1973; Sobel, 1978; Patton, 1990). This property of relating seismic waves to near-field observables has proven attractive, and the point force model of D83 has been applied extensively (e. g., Stump, 1985; Patton, 1988; Taylor and Randall, 1989), sometimes under conditions which depart significantly from those for which it was originally conceived, namely, low-frequency surface waves.

For this reason, we conclude that a useful purpose is served by presenting a derivation of the point force model which is more general than the original derivation. The new derivation brings out more clearly the relation of the point force representation to the tension-crack model, from which it arises by approximation. The derivation also clarifies the relationship between point force and moment tensor representations for spall, a result which has implications for the explosion-source inverse problem. We then examine numerically the limitations of the point-force representation. Finally, we show that some of the assumptions inherent in the original tension-crack model can be relaxed without requiring revision of the point-force and moment tensor representations.

This paper addresses the seismic representation of spall primarily within the confines of the point source approximation, i.e., wavelength long compared with the characteristic source dimensions. This is the framework within which most previous forward modeling and source inversion has been conducted. The important ancillary effects of lateral finiteness of the spall source will be discussed in a subsequent paper (Barker and Day, in preparation).
TENSION CRACK MODEL

D83 proposed that spall be represented as a horizontally oriented tension crack that opens and closes in the vertical direction (see Figure 1). With the aid of a Green’s tensor G, the displacement field u due to a tension crack can be written as a surface integral over the crack surface Σ (Aki and Richards, 1980, p. 39):

$$u_i (x) = \int_{\Sigma} v_j(\xi) \delta u_k(\xi) C_{jkpq}(\xi) G_{ip,q}(x,\xi) d\Sigma,$$

where v is the unit normal to the crack, ξ is the general position on Σ, δu is the spall separation, i.e., the displacement discontinuity across the crack, and C is the elastic tensor. For horizontal crack orientation, vertical spall separation, and crack depth h, (1) can be written in the form

$$u_i (x) = \int_{V} m_{pq}(\eta) G_{ip,q}(x;\eta) d^3 \eta,$$

where η is the general position in the source volume V, and m is the volumetric moment tensor density,

$$m_{pq}(\eta) = \delta u_3(\eta_1,\eta_2) C_{33pq} \delta(\eta_3-h)$$

($\delta(\cdot)$ is the Dirac delta function). Then, in the point source approximation (wavelength large relative to the maximum dimension of Σ), (2) reduces to

$$u_i (x) = M_{pq} G_{ip,q}(x;0,0,h),$$

where the moment tensor M (volume integral of m) for an isotropic earth model has the following matrix components:
Here δu_3 is the spall separation averaged over the crack area A, and λ and μ are the Lamé constants. It will be convenient to refer to (4) and (5) as the *spall moment tensor* representation.

POINT FORCE REPRESENTATION

An expression equivalent to (2) is

$$u_i(x) = \int \int \delta u_3(\eta_1, \eta_2) \ T_{33}(\eta_1, \eta_2, h) \ d\eta_1 d\eta_2,$$

(6)

in which we introduce the notation

$$T_{33}(\eta) = C_{33pq}G_{ip,q}(x;\eta).$$

(7)

This notation is introduced to emphasize that this factor can be interpreted, by reciprocity, as a component of the stress tensor T, induced at the (source) location η in response to a point force (in the i direction) acting at the (receiver) location x. That is, T is simply the stress tensor derived from the elastodynamic displacement field of a point force (note that this usage of the symbol T differs from that of chapters 2 and 3 of Aki and Richards, in which T represents a general traction vector). We expand the η_3 dependence of T_{33} in a Taylor series about the free surface, $\eta_3 = 0$:

$$T_{33}(\eta_1, \eta_2, h) = T_{33}(\eta_1, \eta_2, 0) + hT_{33,3}(\eta_1, \eta_2, 0) + O(h^2).$$

(8)

The first term is zero by virtue of the free surface boundary condition. Furthermore, T satisfies the equation of motion, so (in any region which excludes the point x) we have

$$T_{3j,k}(\eta) = -\omega^2 \rho G_{ij}(x;\eta).$$

(9)

The free surface boundary conditions ensure that $T_{3j,k}$ vanishes, for all j and for $k=1,2$, in the limit that η_3 goes to zero. Hence, the limiting form of the momentum equation (9) is
Substituting (10) into the Taylor series (8), and the result into the surface integral representation (6), yields, to first order in the spall depth h,

$$u_i(x) = -h \int \int \rho \omega^2 \delta u_3(\eta_1, \eta_2) \, G_{13}(x; \eta_1, \eta_2, 0) \, d\eta_1 d\eta_2 .$$ \hspace{1cm} (11)

In (11), the Green's function is evaluated for source points at the free surface, so that its coefficient

$$\sigma_s = -h \rho \omega^2 \delta u_3(\eta_1, \eta_2)$$ \hspace{1cm} (12)

can be interpreted as a normal traction applied at the earth's surface (not the spall surface), with amplitude given by the areal density of the spall layer, ρh, and time history proportional to the acceleration of the spall layer relative to the substrate. The integral (11) thus represents spall as a distributed vertical surface traction; this is an accurate alternative to the moment tensor density representation (2) as long as the higher order terms in the Taylor series (8) are negligible, i.e., when the wavelength is long compared to the source depth. This criterion will frequently be satisfied in practice; for example, for a depth of 150 meters and wavespeed of 3000 m/sec, a quarter wavelength criterion for spall depth corresponds to 5 Hz seismic waves. Numerical experiments discussed below indicate that, in practice, (11) is actually accurate for spall depths up to about half a wavelength.

Finally, in the point source approximation, (11) becomes what we will call the spall point force representation:

$$u_i(x) = F_s \, G_{13}(x; 0),$$ \hspace{1cm} (13)

where the point force amplitude F_s is the surface integral of σ_s, and equals the product of the spall mass m_s and the crack separation acceleration:

$$F_s = -m_s \omega^2 \delta u_3, \hspace{1cm} (14)$$

$$m_s = \rho h A \hspace{1cm} (15)$$
Strong motion observations show that the lateral extent of spall typically exceeds its depth by a substantial amount. For example, Patton (1990) finds that, on average, spall radius is roughly a factor of 6 greater than spall depth at the Pahute Mesa area of NTS. As a consequence, lateral finiteness effects will vitiate the point source approximation long before the half wavelength criterion for the spall depth is violated. Thus, the spall moment tensor and spall point force are, in practice, equivalent mathematical representations of the tension crack model. From (5), (14), and (15), it follows that the source spectra M and F_s are related by

$$M(\omega) = -\frac{\alpha^2}{\omega^2}F_s(\omega) \begin{bmatrix} \frac{\lambda}{\lambda + 2\mu} & 0 & 0 \\ 0 & \frac{\lambda}{\lambda + 2\mu} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$ (16)

where α is the P wave speed. The spall moment tensor time history is $\alpha^2 h$ times the doubly time integrated point force time history.

NUMERICAL EXAMPLE

We use regional-distance synthetic seismograms to verify the assertion that the point force and moment tensor formulations are equivalent throughout the frequency range in which lateral finiteness can be neglected. Our focus on regional distance reflects the importance of that distance range for the seismic verification problem. Moreover, regional seismograms contain a complex mixture of wave types, and provide an appropriate test of generality of the purported equivalence of point force and moment tensor. Synthetics are computed using the PROSE code developed by Apsel (1979).

Figure 2 compares synthetic vertical component displacements at 300 km range for the two source representations. The spall separation time history is a delta function, the earth model (Table 1) is the Eastern Kazakhstan crustal model of McLaughlin et al. (1988), and the synthetics are complete for the 0 - 5 Hz frequency band. The point force and moment tensor representations give indistinguishable results for all seismic phases over this pass band when the spall depth is 100 meters. For larger spall depths, the agreement at high frequency only gradually degrades.
Figure 3 compares the Fourier spectra for the two representations, for windows taken around the P_g, L_g, and R_g phases, respectively. Evidently, in the absence of lateral finiteness effects, the spall point force representation is an excellent approximation to the spall moment tensor representation for spall depths up to at least one half wavelength. Patton (1990) found, for Pahute Mesa explosions below the water table, that maximum spall depth was approximately 60 m/kt$^{1/3}$. For a 125 kt event, for example, the point force representation would not be expected to deviate significantly from the moment tensor representation for frequencies less than roughly 2.5 Hz (assuming a near-surface S wave velocity of about 1.6 km/sec, following Bache et al., 1978). As already noted, the point source approximation is invalidated by lateral finiteness effects at considerably lower frequencies than this.

GENERALIZED TENSION CRACKS

In the tension crack model which is the basis of the foregoing analysis, material failure is confined to a horizontal plane. It is possible, however, that in actual explosions, the depth of the detachment horizon may vary laterally across the spall region. For example, Stump (1985) found evidence of variable-depth spall in sub-surface accelerometer recordings of a buried chemical explosion. Furthermore, some numerical simulations of buried explosions indicate spalling over a roughly conical surface, deepest beneath ground zero and shallowing with increasing radial distance from ground zero (see, e.g., Figure 1 of Walton and Heuze, 1989). In such cases, vertical movement of the spall mass implies both normal and tangential components of relative motion across the spall surface. It might be supposed that such an effect would require modification of the spall representations discussed in the previous sections.

However, a simple analysis shows that the spall moment tensor and spall point force representations derived from the horizontal tension crack model will usually be valid even when the spall surface Σ is non-planar, provided (i) spall separation is predominantly vertical, and (ii) the mean dip of Σ is small (but arbitrarily rough relief is permitted on Σ). Assumption one is supported by strong motion observations in the spall zone. Likewise, assumption two is supported by the observation that lateral extent of spall generally exceeds its depth by a substantial factor (recall that Patton, 1990, infers a radius to depth ratio of roughly 6). Furthermore, any axisymmetric spall surface has zero mean dip, and any spall surface which terminates by intersecting the earth's surface has, neglecting asymmetric topography, zero mean dip.
To verify the assertion that the moment tensor and point force derived from the horizontal tension crack have this more general validity, we take the spall depth to be a given function \(h(\eta_1, \eta_2) \) of the horizontal coordinates, so that the spall surface is specified by

\[
\eta_3 - h(\eta_1, \eta_2) = 0.
\]

The representation theorem (1) becomes

\[
\begin{align*}
u_i(x) & = \delta u_3 \nu_j C_{j3pq} G_{ip,q} d\Sigma \\
& = \iint \delta u_3 \nu_j C_{j3pq} G_{ip,q} \frac{d\eta_1 d\eta_2}{\nu_3}.
\end{align*}
\]

(18)

(The double integration is over the projection of \(\Sigma \) onto the \(\eta_1, \eta_2 \) plane). We decompose the summation on \(j \), which is implicit in (18), into two parts. The first part, \(I_V \), corresponds to \(j = 3 \) (vertical component of the normal vector \(\nu \)), the second part, \(I_H \), corresponds to \(j = 1, 2 \) (horizontal components of \(\nu \)):

\[
u_i(x) = I_V + I_H,
\]

in which

\[
\begin{align*}I_V & = \iint \delta u_3 T_{33}(\eta_1, \eta_2, h(\eta_1, \eta_2)) d\eta_1 d\eta_2 \\
I_H & = \iint \delta u_3 T_{3\alpha} \frac{\nu_\alpha}{\nu_3} d\eta_1 d\eta_2,
\end{align*}
\]

(20)

where \(\alpha = 1, 2 \), and the summation convention on \(\alpha \) applies. The first term, \(I_V \), is analogous to our result for the simple tension crack, and can be transformed to a surface traction representation by the same steps leading to (11-12):

\[
I_V = \iint \sigma_3(\eta_1, \eta_2, 0) G_{13}(x; \eta_1, \eta_2, 0) d\eta_1 d\eta_2,
\]

(22)
where σ_s is the surface density of the (variable-depth) spall layer times the spall acceleration,

$$\sigma_s = -\rho h(\eta_1, \eta_2) \omega^2 \delta u_3(\eta_1, \eta_2).$$

(23)

In the point source approximation, we obtain the analogue of (13-15),

$$I_v = F_s G_{13}(x; 0),$$

(24)

where

$$F_s = \iiint \sigma_s(\eta_1, \eta_2) \, d\eta_1 d\eta_2.$$

(25)

The second term, I_H (Equation 21), can be transformed using the identity

$$\frac{\nu_\alpha}{\nu_3} = \frac{\partial h}{\partial \eta_\alpha},$$

(26)

to give

$$I_H = \iiint \delta u_3 \, T_{3\alpha} \partial h \, d\eta_1 d\eta_2.$$

(27)

Since $T_{3\alpha}$ vanishes at $h = 0$, (27) is, to first order in h,

$$I_{HI} = \iiint h \partial \partial h \, \delta u_3 \, T_{3\alpha,3} \, d\eta_1 d\eta_2$$

$$= \iiint \partial \phi \, \delta u_3 \, T_{3\alpha,3} \, d\eta_1 d\eta_2,$$

(28)

where

$$\phi = \frac{1}{2} h^2.$$

(29)
In the point source approximation, (28) becomes

\[I_H = T_{3\alpha,3} \int \int \partial \alpha \phi \ \delta u_3 \ d\eta_1 d\eta_2, \]

(30)

and if we add the assumption that \(\delta u_3 \) is uncorrelated with \(\partial \alpha \phi \), then we can factor the mean spall separation \(\delta \tilde{u}_3 \) out of the integral in (30). The result is

\[I_H = \frac{1}{2} \delta \tilde{u}_3 T_{3\alpha,3} \int h^2 \gamma_\alpha \ dl, \]

(31)

where the line integral is over the periphery of the projection of the spall surface \(\Sigma \) onto the horizontal plane, and \(\hat{\gamma} \) is the unit (two-dimensional) outward normal to this curve (lying in the \(\eta_1, \eta_2 \) plane). The line integral in (31) vanishes whenever the spall surface is bounded by a level curve, and will be small whenever the mean dip of the spall surface is small. The latter interpretation follows if \(h \) is expanded to first order about the mean depth, \(h_0 \). Then the integral reduces to \(h_0 A d_\alpha \), where \(A \) is the (projected) area of spall, and \(d_\alpha \) is the average value of the slope \(\partial \alpha h \). Thus, it is likely that \(I_H \) can be neglected in most cases of interest. The remaining term, \(I_V \), is identical to the point force representation for the simple crack, as shown by comparing (24-25) with (13-15) (although we can no longer factor \(F_s \), Equation 25, into the product of spall mass and average acceleration, unless \(\delta u_3 \) and \(h \) are uncorrelated in \(\eta_1, \eta_2 \)).

DISCUSSION

D83 derived the point force representation (Equations 13 - 15) for the special case of Rayleigh waves. The present derivation justifies the subsequent application of the point force representation, by numerous authors, to model other seismic phases (i.e., the approach is justified to the extent that the generalized tension crack approximates the geometry of actual spall, the separation function \(\delta u_3 \) is appropriately prescribed to represent the kinematics of spall, and the wavelength limitation is honored). The derivation also serves to underscore that fact that, while the spall moment tensor is located at spall depth, the spall point force is located at the earth's surface.
The derivation makes clear the redundancy of representing spall using both the spall moment tensor and the spall point force concurrently; since the two are equivalent, any attempt to infer simultaneously the spectra of both of these source terms from seismic waveforms will lead to a singular inverse problem. This was previously noted by Stump (1987, 1990) on the basis of numerical experiments. Generally, a singular inverse problem will result if the point force representation is combined with any moment tensor representation from which (5) can be constructed by linear combination.

Equation 16, which expresses the correspondence between the source spectra $M(\omega)$ and $F_s(\omega)$, has an additional consequence which should be noted. If $M(\omega)$ is estimated by inversion of seismic data (e.g., Stump, 1988, 1990; Johnson, 1988), the numerical values associated with $M(\omega)$ are expected to depend inversely upon the source depth which is assumed for the inversion (whereas inversion for $F_s(\omega)$ does not incorporate an assumption of source depth). This point becomes important when inversions based on the two alternative representations are compared quantitatively, as they sometimes have been in the seismic literature on spall.

ACKNOWLEDGMENTS

This work was supported by the Defense Advanced Research Projects Agency under Geophysics Laboratory contracts F19628-89-C-0043 and F199628-88-K-0039.

REFERENCES

FIGURE CAPTIONS

Figure 1. Geometry of the tension crack spall model.

Figure 2. Synthetic seismograms for the point force and moment tensor representations. Sources for the 4 depths h have been scaled to constant spall mass ρA.

Figure 3. Fourier spectral ratios for the synthetics shown in Figure 2. Separate spectra are shown for time windows about the P_g, L_g, and R_g phases, respectively.
FIGURE 1
Spall Representations (Vertical, 300 Km, 0 to 5 Hz)

Point Force

Moment Tensor

h=100m

h=300m

h=500m

h=700m

Seconds

FIGURE 2
FIGURE 3
Prof. Thomas Ahrens
Seismological Lab, 252-21
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Professor Anton W. Dainty
Earth Resources Laboratory
Massachusetts Institute of Technology
42 Carleton Street
Cambridge, MA 02142

Prof. Charles B. Archambeau
CIRES
University of Colorado
Boulder, CO 80309

Prof. Steven Day
Department of Geological Sciences
San Diego State University
San Diego, CA 92182

Dr. Thomas C. Bache, Jr.
Science Applications Int'l Corp.
10260 Campus Point Drive
San Diego, CA 92121 (2 copies)

Dr. Zoltan A. Der
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Prof. Muawia Barazangi
Institute for the Study of the Continent
Cornell University
Ithaca, NY 14853

Prof. John Ferguson
Center for Lithospheric Studies
The University of Texas at Dallas
P.O. Box 830688
Richardson, TX 75083-0688

Dr. Douglas R. Baumgardt
ENSCO, Inc
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. Mark D. Fisk
Mission Research Corporation
735 State Street
P. O. Drawer 719
Santa Barbara, CA 93102

Prof. Jonathan Berger
IGPP, A-025
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093

Prof. Stanley Flatte
Applied Sciences Building
University of California
Santa Cruz, CA 95064

Dr. Lawrence J. Burdick
Woodward-Clyde Consultants
566 El Dorado Street
Pasadena, CA 91109-3245

Dr. Alexander Florence
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

Dr. Jerry Carter
Center for Seismic Studies
1300 North 17th St., Suite 1450
Arlington, VA 22209-2308

Dr. Indra Gupta
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314

Prof. Vernon F. Cormier
Department of Geology & Geophysics
U-45, Room 207
The University of Connecticut
Storrs, CT 06268

Prof. David G. Harkrider
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125
OTHERS (UNITED STATES)

Dr. Monem Abdel-Gawad
Rockwell International Science Center
1049 Camino Dos Rios
Thousand Oaks, CA 91360

Dr. G.A. Bollinger
Department of Geological Sciences
Virginia Polytechnic Institute
21044 Derring Hall
Blacksburg, VA 24061

Prof. Keiiti Aki
Center for Earth Sciences
University of Southern California
University Park
Los Angeles, CA 90089-0741

Dr. Stephen Bratt
Center for Seismic Studies
1300 North 17th Street
Suite 1450
Arlington, VA 22209

Prof. Shelton S. Alexander
Geosciences Department
403 Deike Building
The Pennsylvania State University
University Park, PA 16802

Michael Browne
Teledyne Geotech
3401 Shiloh Road
Garland, TX 75041

Dr. Kenneth Anderson
BBNSTC
Mail Stop 14/1B
Cambridge, MA 02238

Mr. Roy Burger
1221 Serry Road
Schenectady, NY 12309

Dr. Ralph Archuleta
Department of Geological Sciences
University of California at Santa Barbara
Santa Barbara, CA 93102

Dr. Robert Burridge
Schlumberger-Doll Research Center
Old Quarry Road
Ridgefield, CT 06877

Dr. Jeff Barker
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Dr. W. Winston Chan
Teledyne Geotech
314 Montgomery Street
Alexandria, VA 22314-1581

Dr. Susan Beck
Department of Geosciences
Bldg. # 77
University of Arizona
Tucson, AZ 85721

Dr. Theodore Cherry
Science Horizons, Inc.
710 Encinitas Blvd., Suite 200
Encinitas, CA 92024 (2 copies)

Dr. T.J. Bennett
S-CUBED
A Division of Maxwell Laboratory
11800 Sunrise Valley Drive, Suite 1212
Reston, VA 22091

Prof. Jon F. Claerbout
Department of Geophysics
Stanford University
Stanford, CA 94305

Mr. William J. Best
907 Westwood Drive
Vienna, VA 22180

Prof. Robert W. Clayton
Seismological Laboratory
Division of Geological & Planetary Sciences
California Institute of Technology
Pasadena, CA 91125

Dr. N. Biswas
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

Prof. F. A. Dahlen
Geological and Geophysical Sciences
Princeton University
Princeton, NJ 08544-0636
Dr. Gregory Wojcik
Weidlinger Associates
4410 El Camino Real
Suite 110
Los Altos, CA 94022

Dr. Lorraine Wolf
GL/LWH
Hanscom AFB, MA 01731-5000

Prof. Francis T. Wu
Department of Geological Sciences
State University of New York
at Binghamton
Vestal, NY 13901

Dr. Gregory B. Young
ENSCO, Inc.
5400 Port Royal Road
Springfield, VA 22151-2388

Dr. Eileen Vergino
Lawrence Livermore National Laboratory
L-205
P. O. Box 808
Livermore, CA 94550

J. J. Zucca
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550
Dr. Ralph Alewine III
DARPA/NMRO
1400 Wilson Boulevard
Arlington, VA 22209-2308

Mr. James C. Battis
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. Robert Blandford
AFTAC/TT
Center for Seismic Studies
1300 North 17th St., Suite 1450
Arlington, VA 22209-2308

Eric Chael
Division 9241
Sandia Laboratory
Albuquerque, NM 87185

Dr. John J. Cipar
GL/LWH
Hanscom AFB, MA 01731-5000

Cecil Davis
Group P-15, Mail Stop D406
P.O. Box 1663
Los Alamos National Laboratory
Los Alamos, NM 87544

Mr. Jeff Duncan
Office of Congressman Markey
2133 Rayburn House Bldg.
Washington, DC 20515

Dr. Jack Evernden
USGS - Earthquake Studies
345 Middlefield Road
Menlo Park, CA 94025

Art Frankel
USGS
922 National Center
Reston, VA 22092

Dr. Dale Glover
DIA/DT-1B
Washington, DC 20301

Dr. T. Hanks
USGS
Nat'l Earthquake Research Center
345 Middlefield Road
Menlo Park, CA 94025

Paul Johnson
ESS-4, Mail Stop J979
Los Alamos National Laboratory
Los Alamos, NM 87545

Janet Johnston
GL/LWH
Hanscom AFB, MA 01731-5000

Dr. Katharine Kadinsky-Cade
GL/LWH
Hanscom AFB, MA 01731-5000

Ms. Ann Kerr
IGPP, A-025
Scripps Institute of Oceanography
University of California, San Diego
La Jolla, CA 92093

Dr. Max Koontz
US Dept of Energy/DP 5
Forrestal Building
1000 Independence Avenue
Washington, DC 20585

Dr. W.H.K. Lee
Office of Earthquakes, Volcanoes, & Engineering
345 Middlefield Road
Menlo Park, CA 94025

Dr. William Leith
U.S. Geological Survey
Mail Stop 928
Reston, VA 22092

Dr. Richard Lewis
Director, Earthquake Engineering & Geophysics
U.S. Army Corps of Engineers
Box 631
Vicksburg, MS 39180

James F. Lewkowicz
GL/LWH
Hanscom AFB, MA 01731-5000
Dr. Ramon Cabre, S.J.
Observatorio San Calixto
Casilla 5939
La Paz, Bolivia

Prof. Hans-Peter Harjes
Institute for Geophysik
Ruhr University/Bochum
P.O. Box 102148
4630 Bochum 1, FRG

Prof. Eystein Husebye
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY

Prof. Brian L.N. Kennett
Research School of Earth Sciences
Institute of Advanced Studies
G.P.O. Box 4
Canberra 2601, AUSTRALIA

Dr. Bernard Massinon
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE (2 Copies)

Dr. Pierre Mecheler
Societe Radiomana
27 rue Claude Bernard
75005 Paris, FRANCE

Dr. Svein Mykkeltveit
NTNF/NORSAR
P.O. Box 51
N-2007 Kjeller, NORWAY (3 copies)
Dr. Peter Basham
Earth Physics Branch
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Fekadu Kebede
Geophysical Observatory, Science Faculty
Addis Ababa University
P. O. Box 1176
Addis Ababa, ETHIOPIA

Dr. Eduard Berg
Institute of Geophysics
University of Hawaii
Honolulu, HI 96822

Dr. Tormod Kvaerna
NTNF/NORSAR
P. O. Box 51
N-2007 Kjeller, NORWAY

Dr. Michel Bouchon
I.R.I.G.M.-B.P. 68
38402 St. Martin D'Heres Cédex, FRANCE

Dr. Peter Marshall
Procurement Executive
Ministry of Defense
Blackness, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Hilmar Bungum
NTNF/NORSAR
P. O. Box 51
N-2007 Kjeller, NORWAY

Prof. Ari Ben-Menahem
Department of Applied Mathematics
Weizman Institute of Science
Rehovot, ISRAEL 951729

Dr. Michel Campillo
Observatoire de Grenoble
I.R.I.G.M.-B.P. 53
38041 Grenoble, FRANCE

Dr. Robert North
Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario, CANADA K1A 0Y3

Dr. Kin Yip Chun
Geophysics Division
Physics Department
University of Toronto
Ontario, CANADA M5S 1A7

Dr. Frode Ringdal
NTNF/NORSAR
P. O. Box 51
N-2007 Kjeller, NORWAY

Dr. Alan Douglas
Ministry of Defense
Blacknest, Brimpton
Reading RG7-4RS, UNITED KINGDOM

Dr. Jorg Schlittehardt
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FEDERAL REPUBLIC OF GERMANY

Dr. Roger Hansen
NTNF/NORSAR
P. O. Box 51
N-2007 Kjeller, NORWAY

Universita Degli Studi Di Trieste
Facolta Di Ingegneria
Istituto Di Miniere E. Geofisica Applicata, Trieste, ITALY

Dr. Manfred Henger
Federal Institute for Geosciences & Nat'l Res.
Postfach 510153
D-3000 Hannover 51, FRG

Ms. Eva Johannisson
Senior Research Officer
National Defense Research Inst.
P. O. Box 27322
S-102 54 Stockholm, SWEDEN