DEVELOPMENT OF AN ANGULAR DISTRIBUTION FUNCTION
FOR THE STUDY OF ATOMIC LATTICE STRUCTURES
USED IN ATOMISTIC SIMULATION

THESIS

David Wesley, Captain, USAF

AFIT/GNE/ENP/91M-10

Approved for public release; distribution unlimited
An angular distribution function (ADF) was developed as a tool to be used in atomistic simulation. The ADF lets us easily distinguish between different lattice structures for systems of atoms by looking at the distribution of bond angles. The ADF is also a useful tool for determining the amount of order in a system. First, model structures of simple cubic, FCC, BCC, and diamond were developed. Then, the ADF was used on these model structures so that a set of model graphs of the ADF could be used to compare to real systems. Finally, simulated systems of FeTi, NiTi, and Silicon were analyzed with the ADF. The known structures of the simulated systems all matched their model structures. The ADF was also able to distinguish between liquid and amorphous FeTi, but could not distinguish between liquid and amorphous Silicon. Previously accomplished experiments to induce the transition from crystalline to amorphous with FeTi and NiTi (frenkel pairs and atom exchanges were introduced), were explored using the ADF and it was found that the ADF could be used to interpret the results accurately without the need to compute the structure factor.
DEVELOPMENT OF AN ANGULAR DISTRIBUTION FUNCTION FOR THE STUDY OF LATTICE STRUCTURES USED IN ATOMISTIC SIMULATION

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University
In partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Physics

David Wesley, B.N.E.
Captain, USAF

March 1991

Approved for public release; distribution unlimited
Preface

The purpose of this thesis was to develop a Fortran program which would analyze the distribution of bond angles between a system of atoms used in atomistic simulation experiments. By analyzing the bond angles it becomes possible to distinguish between lattice structures as well as determine the amount of order in the system. This new angular distribution function should prove to be a useful tool for the study of the crystalline-to-amorphous transition in materials and may also be useful in differentiating between amorphous and liquid systems.

In accomplishing this research I relied a great deal on the expertise and knowledge of my thesis advisor, Capt Michael J. Sabochick. I am indebted to his patience and assistance. I would also like to offer a word of thanks to the Galaxy main-frame computer operators whose success at keeping the computer on-line was immensely helpful. Finally, I wish to thank my wife Pamela for her perseverance under times of great stress. It's not easy to start a marriage when the cards and the school books are stacked against you, but Pamela has been steadfast and marvelous. Thank you Pamela, for the personal sacrifice that you have endured for my sake and for the sake of our marriage.

David Wesley
Table of Contents

1 Introduction ... 1
 1.1 Background .. 1
 1.2 General Approach .. 2
 1.3 Sequence of Presentation .. 2

2 Structure and Order ... 3
 2.1 Introduction .. 3
 2.2 RDF .. 3
 2.3 Structure Factor .. 4
 2.4 ADF .. 5

3 Model Systems ... 12
 3.1 Introduction .. 12
 3.2 Results .. 12

4 Simulated Systems ... 18
 4.1 Introduction .. 18
 4.2 Validation .. 18
 4.2.1 Results .. 18
 4.2.2 Discussion .. 19
 4.3 Liquid versus Amorphous ... 21
 4.3.1 Results .. 21
 4.3.2 Discussion .. 21
 4.4 Frenkel Pairs .. 33
 4.4.1 Results .. 33
 4.4.2 Discussion .. 33
 4.5 Chemical Disorder .. 37
 4.5.1 Results .. 37
 4.5.2 Discussion .. 37

5 Conclusion ... 41

6 Bibliography .. 42

7 Appendix A: Program Lattice for Generating Model Lattices 43

8 Appendix B: RDF Fortran Programs ... 48

9 Appendix C: ADF Fortran Programs ... 52

10 Vita ... 58
List of Figures

Figure 1: RDF for perfect and distorted simple cubic lattice 4
Figure 2: System of three atoms. ... 6
Figure 4: Inner ADF for perfect and distorted cubic lattice. 11
Figure 5: Outer ADF for perfect and distorted cubic lattice. 11
Figure 6: Unit cells for model systems. 14
Figure 7: RDF's for model systems. .. 15
Figure 8: Inner ADF's for model systems. 16
Figure 9: Outer ADF's for model systems. 17
Figure 10: Comparison of simulated systems with models. 20
Figure 11: Comparison of RDF's for liquid and amorphous FeTi 25
Figure 12: Comparison of FeTi and Si liquids. (Inner shell) 26
Figure 13: FeTi, NiTi, and Silicon Amorphous Systems (Inner) 26
Figure 14: FeTi and Silicon liquids. (Outer Shell) 27
Figure 15: FeTi, NiTi, and Si amorphous systems. (Outer) 27
Comparison of Liquid and Amorphous FeTi (Outer Shell) 28
Comparison of Liquid and Amorphous FeTi (Inner Shell) 28
Figure 16: Increasing shell size for liquid FeTi. (Outer) 29
Figure 17: Increasing shell size for amorphous FeTi. (Outer) 30
Figure 18: Increasing shell size for liquid FeTi. (Inner) 31
Figure 19: Increasing shell size for amorphous FeTi. (Inner) 32
Figure 20: Increasing numbers of frenkel pairs. (FeTi) 35
Figure 21: Increasing numbers of frenkel pairs. (NiTi) 36
Figure 24: Increasing numbers of switches in FeTi. 39
Figure 25: Increasing number of switches in NiTi. 40
Abstract

An angular distribution function (ADF) was developed as a tool to be used in atomistic simulation. The ADF lets us easily distinguish between different lattice structures for systems of atoms by looking at the distribution of bond angles. The ADF is also a useful tool for determining the amount of order in a system. First, model structures of simple cubic, FCC, BCC, and diamond were developed. Then, the ADF was used on these model structures so that a set of model graphs of the ADF could be used to compare to real systems. Finally, simulated systems of FeTi, NiTi, and Silicon were analyzed with the ADF. The known structures of the simulated systems all matched their model structures. The ADF was also able to distinguish between liquid and amorphous FeTi, but could not distinguish between liquid and amorphous Silicon. Previously accomplished experiments to induce the transition from crystalline to amorphous with FeTi and NiTi (frenkel pairs and atom exchanges were introduced), were explored using the ADF and it was found that the ADF could be used to interpret the results accurately without the need to compute the structure factor.
Development of an Angular Distribution Function for the Study of Lattice Structures Used in Atomistic Simulation

1 Introduction

1.1 Background

Atomistic simulation is a method of investigating the properties of materials using a computer. One of the properties of concern is whether or not a system of atoms has a random distribution (amorphous), or whether they are in an ordered structure (crystal) and what kind of order (simple cubic, face centered cubic, etc...) they may have. The output of an atomistic simulation experiment includes the positions of all the atoms which makes a calculation of the structure possible. Clearly, an atom in a crystal lattice will see neighbors at an ordered distance from itself, and will see an ordered set of bond angles between itself and other atoms. Currently, the most common ways of determining the order of a system is by calculating a function called the radial distribution function (RDF), or by computing what is called the structure factor $S(k)$.
Neither of these make direct use of the bond angles of the system. The purpose of this research is to develop and explore a means of using the bond angles in a system to determine the type and degree of order.

1.2 General Approach

The approach to this research was first to write a program which calculates a function similar to the RDF but which includes bond angles. Once this was complete, model systems for simple cubic, face centered cubic (FCC), body centered cubic (BCC), and diamond were developed and the new function calculated for them. This would provide model ADP's for these systems so that an unknown system could be determined. Next, the function was calculated for the simulated systems of FeTi, NiTi, and Silicon. Finally, the results were analyzed to determine how the new function provides information on structure and order.

1.3 Sequence of Presentation

The presentation will start with a more detailed look at how structure and order are currently computed, and development of the new method. This is followed with the analysis of several model systems using this function. Finally, several simulated systems will be analyzed with the new function, and its validity will be determined.
2 Structure and Order

2.1 Introduction

As stated earlier, the most common means of determining structure and order are the radial distribution function, and the structure factor. Both of these will be explained, and then a new function which uses the bond angles will be introduced.

2.2 RDF

One of the most common methods of studying the structure of a system is to calculate the radial distribution function (RDF). The RDF is the ratio of a local number density in a spherical shell with the the bulk number density. (1:54-55). (See Appendix A for Fortran programs which generate the RDF). A crystalline system would tend to have sharp peaks because the atoms are at well defined distances from each other. The peaks correspond to shells of neighbors surrounding each atom. If a system is disordered, then the peaks would become smoother. Figure 1 Illustrates two RDF's; the top RDF is for a perfect simple cubic lattice while the bottom RDF is for a simple cubic lattice in which the atom positions have been distorted a random amount of up to 10% of the nearest neighbor distance.

A highly disordered system such as a liquid would show even smoother peaks which makes this technique very useful for distinguishing between highly-ordered and highly-disordered systems. Unfortunately, this technique washes out the angular distribution of the bonds
so it is more difficult to distinguish between systems which have some order but have a different structure. To compensate for this, a more complicated function called the structure factor is used.

![Simple Cubic](Perfect)

![Simple Cubic](10% Distortion)

Figure 1. RDF for perfect and distorted simple cubic lattice

2.3 Structure Factor

The structure factor is used when the comparison of RDF's is not rigorous enough to distinguish between the structure of two systems. This is especially true for systems with a high amount of disorder because the only distinguishable peaks in the RDF will be associated with the nearest neighbors. But, if long-range order is present in one of the systems, the structure factor will be able to determine this.

The structure factor $S(\mathbf{k})$ is given by
\[S(\mathbf{K}) = \frac{1}{N} \left| \sum_{j=1}^{N} \exp(i \mathbf{K} \cdot \mathbf{r}_j) \right|^2 \] (1)

where \(\mathbf{K} \) is a vector which represents a line of viewing through the system, \(N \) is the number of atoms, and \(\mathbf{r}_j \) is the vector position of atom \(j \) (2:3). The problem with this approach is that several viewing directions \(\mathbf{K} \) must be used in order to accurately analyze the system. In order to avoid this problem a simple solution would be to derive a function like the RDF but to incorporate the bond angles in such a manner that the structure of the system can be easily compared and distinguished from other systems. I have developed such a function which I will now refer to as an angular distribution function (ADF).

2.4 ADF

The ADF is built around the fact that every combination of three atoms forms a triangle with three bond angles. Therefore, the job of the ADF is to step through every combination of three atoms in a given system, determine the bond angles, and add those bond angles to a bin counter which represents some appropriate increment of 180 degrees of arc (such as one degree). After all bond angles are determined, each bin can be divided by the total number of bond angles so that each bin represents the probability that the bond angle between any three atoms will fall within that given increment of arc.

Although a true ADF should tell us the probability that the bond angle between any three atoms falls within a given increment of arc, it is
more informative to know bond angles between the first few nearest
neighbors than with other bond angles, because that is where the struc-
ture of the system is evident. Therefore some kind of weighting must be
applied to the data that is collected so that the importance of the nearest
neighbor bond angles is not lost. Because of this inherent need for
radial importance, the ADF will not give a true probability, but instead
will give important trends in the angular distribution which is all that is
really needed.

In order to come up with an appropriate weighting function the
system of three atoms in Figure 2 must be considered.

![Figure 2. System of Three Atoms](image)

The figure outlines two shells of radii r_1 and r_2. If the central
atom is assumed to be in the middle of a system of atoms, then the two
shells enclose a number of atoms which all interact with a distribution of
bond angles. As the radius of either shell is increased, the number of atoms will increase as well as the number of corresponding bond angles. In fact, in an infinite system the number of atoms and their bond angles would also become infinite. Therefore, a weighting factor must be defined so that as either radius approaches infinity, the ADF will remain finite, or

\[
\int_0^\infty \frac{4\pi r_1^2}{W(r_1)} dr_1 \int_0^\infty \frac{4\pi r_2^2}{W(r_2)} dr_2 \rightarrow \text{Finite} \tag{2}
\]

A simple solution for the weighting factor is then

\[
W(r_1, r_2) = W(r_1)W(r_2) = r_1^4r_2^2 \tag{3}
\]

By weighting each angle by this factor the importance of the nearest neighbors will not be lost regardless of the size of the system. However, there are still other complications involved in developing an ADF.

Developing an angular distribution function is not as simple as developing an RDF because of the sheer number of combinations of angles in a system of atoms. An RDF which looks at all pair combinations of \(N \) atoms would have to compute for \(N(N-1)/2 \) combinations, but angles are formed with three atoms instead of two and there are three angles for each combination of three atoms. Therefore, the total number of angles in a system of \(N \) atoms would be \(N(N-1)(N-2)/2 \). This means that for
a typical system of 1000 atoms, the amount of computation for the ADF would be approximately three orders of magnitude greater than for the RDF. In real time it means that if the RDF takes 15 seconds to be computed, then the ADF would take over 4 hours to complete. This amount of time and computation is unacceptable if the ADF is to be a useful tool. Therefore, a way to eliminate bond angles and still retain useful information must be determined.

Since the bond angles of the nearest neighbors are what really define the structure of a system, then it would be advantageous to establish a cutoff shell of the first or second nearest neighbor distance (easily found with the RDF) and eliminate all bond angles between atoms that fall outside this shell. This eliminates a vast majority of bond angles and decreases the computational time by orders of magnitude. In addition, to insure that valuable information from outside this shell is not lost, another distribution must be computed which will be of bond angles between atom pairs from inside the cutoff shell with atoms from outside the shell. The first distribution will be called the inner ADF, and the latter will be called the outer ADF. Adding the outer ADF increased the computational time but it is still orders of magnitude faster than looking at all of the bond angles and loss of any useful information has been avoided. The algorithm for an ADF is presented in Figure 3 and the Fortran Program which will read Dynamo restart files can be found in Appendix B.
Using the same two simple cubic lattices that were used to illustrate the RDF in section 2.2, an inner and outer ADF can be made. However, the RDF must first be found in order to determine a shell cutoff radius. The first and second peaks in the RDF represent the first and second neighbors in the lattice, so in this instance a value of 1.2 is chosen which is midway between the two peaks. Figure 4 is an example of the inner ADF, and Figure 5 is an example of the outer ADF. Since the ADF uses a weighting factor, it can't be normalized and the specific height of a peak doesn't give any useful information, so the y-axis of the ADF's will not have any units labeled. The ADF has been scaled so that the highest peaks in each graph are the same height. This makes it easier to compare the ADF's since the resolution of the peaks will be approximately the same.

The broader peaks in the distorted lattice are indicative of the distortion, therefore the same sense of the amount of disorder that is available from the RDF is also present in the ADF. Also note, that the inner ADF is much easier to evaluate because of the number of peaks involved. For that reason, the inner ADF will always be used in the evaluations made in this paper unless the information is ambiguous or if more information is desired.
Given number of atoms NATOMS, atom positions RO, bin for outer angles BIN1(), bin for inner angles BIN2()

For I=1 to NATOMS-1
 For J=I+1 to NATOMS
 Find \(|\vec{r}_{i,j}| \)
 If \(|\vec{r}_{i,j}| \leq \) SHELL, Then
 For K=1 to NATOMS
 IF K \neq (I or J), Then
 Find \(|\vec{r}_{k,i}| \)
 Find \(|\vec{r}_{k,j}| \)
 WEIGHT1=\(r_{i,j}^4 \times r_{k,i}^4 \)
 WEIGHT2=\(r_{i,j}^4 \times r_{k,j}^4 \)
 \(\theta_1 = \cos^{-1} \frac{\vec{r}_{i,j} \cdot \vec{r}_{k,i}}{|\vec{r}_{i,j}| \times |\vec{r}_{k,i}|} \)
 \(\theta_2 = \cos^{-1} \frac{\vec{r}_{i,j} \cdot \vec{r}_{k,j}}{|\vec{r}_{i,j}| \times |\vec{r}_{k,j}|} \)
 If \(|\vec{r}_{k,i}| \geq \) SHELL, Then
 BIN1(\(\theta_1 \)) = BIN1(\(\theta_1 \)) + 1/WEIGHT1
 Else if K > J, Then
 BIN2(\(\theta_1 \)) = BIN2(\(\theta_1 \)) + 1/WEIGHT1
 End If
 If \(|\vec{r}_{k,j}| \geq \) SHELL, Then
 BIN1(\(\theta_2 \)) = BIN1(\(\theta_2 \)) + 1/WEIGHT2
 Else if K > J, Then
 BIN2(\(\theta_2 \)) = BIN2(\(\theta_2 \)) + 1/WEIGHT2
 End If
 End If
 End For
 End If
End For
End For

Figure 3. Algorithm for ADF
Figure 4. Inner ADF for Perfect and Distorted Cubic Lattice

Figure 5. Outer ADF for Perfect and Distorted Cubic Lattice
3 Model Systems

3.1 Introduction

A set of model systems must be produced so that simulated systems can be compared. The model systems that will be developed are simple cubic, FCC, BCC, and diamond. Since most simulated systems will not be at a temperature of 0 K, then there will be some distortion in the lattice. Therefore, the models will be developed with a built in distortion. This is accomplished by using a lattice in which the atom positions have been randomly moved up to 10% of the nearest neighbor distance.

3.2 Results

The first step in creating the model system is to generate the lattices. This was accomplished by writing the program Lattice which is in Appendix C. The program generates a lattice of atoms by stacking unit cells of the appropriate type which are shown in Figure 6. After the lattices have been made it is necessary to find the RDF for each one so that the appropriate shell cutoff distance can be found. The shell cutoff thickness will be at the first or second nearest neighbor distance and is indicated in the RDF as the first "major" valley between peaks. Figure 7 shows the RDF's for each of the model systems. The cutoff thicknesses that will be used are:
simple cubic: shell=1.2
FCC: shell=1.2
BCC: shell=1.4
diamond: shell=1.3

Note that for BCC the shell cutoff is between the second and third nearest neighbors. This is because the first and second nearest neighbors are so close in radial distance that it becomes impossible to distinguish separate peaks in the RDF as the disorder becomes greater. The results of the inner ADF can be found in Figure 8, and the results of the outer ADF are in Figure 9.
Figure 6. Unit Cells for Model Systems
Figure 7. RDF's for Model Systems. Arrows Mark ADF Shells
Figure 8. Inner ADF's for Model Systems
Figure 9. Outer ADF's for Model Systems
4 Simulated Systems

4.1 Introduction

Systems of FeTi, NiTi, (2) and Silicon (3) which were used by Sabochick and Lam for experiments with atomistic simulation will be analyzed using the ADF. Both FeTi and NiTi (1024 atoms in each system) have a structure which looks like BCC in their perfect states, while the Silicon (200 atoms in the system) has a diamond structure. First, each system will be compared to the model of its known crystal type to determine the validity of the model system. Next, the ADFs for the liquid and amorphous states of each system will be compared to see if the ADF can distinguish between the two states. Finally, for the FeTi and NiTi, the ADF will be used to look at systems which have switches and frenkel pairs, and then they will be compared with model systems and amorphous states.

4.2 Validation

4.2.1 Results

It is important to verify that the models produced accurately describe simulated systems. In order to do this model systems must be compared with simulated systems that have a known configuration. FeTi and NiTi are known to have a BCC configuration and Silicon has a diamond configuration. Compar-
ing the BCC and diamond models to these systems in Figure 10 it can be seen that the model systems do in fact accurately describe simulated systems.

4.2.2 Discussion

Since the models accurately describe simulated systems it is apparent that the ADF can be a useful tool for determining the structure of any ordered system. Note also that the simulated systems peaks are narrower than the Model peaks which were made with up to 10% distortion, therefore, the simulated systems have less that 10% distortion. If it was necessary to know the general amount of distortion in a system, a series of model ADFs with varying amounts of distortion could be made and used for comparison.
Figure 10. Comparison of Simulated Systems With Models
4.3 Liquid versus. Amorphous

4.3.1 Results

One of the important tools that this thesis hopes to provide is the ability to determine between a liquid and an amorphous solid. If the distinction is apparent, then the ADF will be able to establish where a liquid-solid interface exists by looking at blocks of atoms in a system. Both are characterized by disorder, so the RDF is not a good tool for distinguishing between the two (See Figure 11). Liquid systems for FeTi and Silicon, and amorphous systems for FeTi, NiTi, and Silicon were made available for this thesis. The Liquid Systems were made by heating a perfect lattice to 4000 K, and the amorphous systems were made by rapidly quenching the liquid to 160 K. Figure 12 compares the inner ADF's of the liquid and Figure 13 compares the inner ADF's of the amorphous states. Figure 14 and Figure 15 compare the outer ADF's of the liquid and amorphous states respectively. Finally, Figure 16 and Figure 17 show the outer and inner ADF's for comparisons of liquid and amorphous FeTi.

4.3.2 Discussion

The outer ADF's for the liquid and amorphous states are very similar. This is due to the fact that in a highly disordered system, the bond angles between a first or second
neighbor and neighbors farther out will become a smeared distribution. The Silicon system has a much rougher graph because the system only had approximately 200 atoms as compared to over 1000 for the FeTi and NiTi. The smallness of the Silicon system allows for gaps in the angular distribution. The similarity of the outer ADF's for liquid and amorphous systems appears to validate that the systems are in fact similar; namely that they are all very disordered.

The inner ADF's for the amorphous FeTi and NiTi are also very similar which is not surprising since they normally have the same structure, but the inner ADF's for the amorphous and liquid Silicon are both different from their FeTi and NiTi counterparts. This is not disturbing because there is no reason to expect these systems to have the same structure. What was disturbing was that the amorphous and liquid Silicon are both very similar to each other and in fact the ADF's appear to be just broadened peaks of the perfect diamond lattice. This may be because the potential function for Silicon which was used to create these lattices may not have created a true liquid which would tend toward a close-packed structure. Instead, the potential function seems to have kept the lattice in a diamond structure.

The FeTi and NiTi amorphous systems are supposed to be disordered, but they appear to have some sort of structure
which is indicated primarily by the peak at 60 degrees (in the inner ADF). To understand this, what has happened to the material must be understood. First, the metal is heated to melting, where many of the atomic bonds are ultimately broken. So that there is no longer any kind of crystalline structure. When the liquid is rapidly cooled (quenched), the atoms don’t have time to return to any kind of orderly arrangement based on atomic bonding. Instead, they jostle for position in the amount of space that they have and atomic repulsion from each other takes precedence over atomic bonding. The resulting arrangement of atoms will be some kind of a close-packed structure such as HCP or FCC and is one that you might expect if you poured marbles into the bottom of a box. One of the key angles in HCP or FCC is 60 degrees, which is very evident in the amorphous ADF. The apparent lack of angles below about 40 degrees for both the liquid and amorphous system is due to the fact that the atoms of concern are within a defined shell which contains only first or second neighbors. Therefore, the bond angles can not be very small, because the atoms repel themselves from each other. The reason that the angles taper off going towards 180 degrees is that for a close-pack structure, atoms that are 180 degrees are going to be farther away than atoms at 60 or 120 degrees. Since the function is weighted against distance then those large angles
are weighted smaller.

Their appears to be no conclusive difference between the liquid and amorphous outer ADF's. In fact, if the size of the shell is increased for both the liquid and amorphous FeTi, Figure 18 and Figure 19 show that eventually the outer ADF's are almost identical and show a general smear of all angles. On the other hand, Figure 20 and Figure 21 show that the inner ADF has maintained its distinction between liquid and amorphous. In fact, the inner ADF for the amorphous FeTi with increasing shell size shows a new peak begin to emerge between 35 and 40 degrees. This new peak corresponds to the second broad peak seen previously in the RDF for the amorphous FeTi. Therefore, the outer ADF is not a source of any real pertinent information for distinguishing between liquid and amorphous systems and can be removed as a useful tool. Instead, it might be advantageous to run more than one inner ADF at increasing shell sizes. This would provide all pertinent information and would take less computational time than running an outer ADF.

The primary difference between the FeTi and NiTi liquid and amorphous ADF's is that the amorphous systems have more well-defined peaks. This is enough to determine whether a system is liquid or quenched, but if the quenched system is heated up again, the peaks will broaden out and the distinction
between amorphous and liquid will be blurred unless the added heat allows the system to revert back into another type of crystal lattice. In that case the distinction between liquid and solid would be evident by structure and an interface could be established.

Figure 11. Comparison of RDF’s for Liquid and Amorphous FeTi
Figure 12. Comparison of FeTi and Silicon Liquids

(Inner Shell)

Figure 13. Comparison of FeTi, NiTi, and Silicon Amorphous Systems (Inner Shell)
Figure 14. Comparison of FeTi and Silicon Liquids (Outer Shell)

Figure 15. Comparison of FeTi, NiTi, and Silicon Amorphous Systems (Outer Shell)
Figure 16. Comparison of Liquid and Amorphous FeTi (Outer Shell)

Figure 17. Comparison of Liquid and Amorphous FeTi (Inner Shell)
Figure 18. Increasing Shell Size for Liquid FeTi

(Outer Shell)
Figure 19. Increasing Shell Size for Amorphous FeTi

(Outer Shell)
Figure 20. Increasing Shell Size for Liquid FeTi (Inner Shell)
Figure 21. Increasing Shell Size for Amorphous FeTi (Inner Shell)
4.4 Frenkel Pairs

4.4.1 Results

Under electron irradiation, a crystal lattice develops point defects. When the normal site for an atom in a crystal lattice is empty, it is a point defect called a vacancy. When an atom sits in a position which is not one of the lattice sights, this is called an interstitial. When both of these defects occur together it is called a frenkel pair. It is known that an introduction of point defects can cause a system to change from being crystalline to being amorphous. Studies by Sabochick and Lam have been made with FeTi and NiTi (systems of 1024 atoms each) which show that the introduction of approximately 300 and 500 frenkel pairs respectively (2:2-4), are enough to induce an amorphous state.

4.4.2 Discussion

When an increasing number of frenkel pairs occur in both FeTi and NiTi the system changes its lattice structure from BCC to amorphous. Figure 22 shows the ADF's for an increasing number of frenkel pairs in FeTi and compares the ADF for 300 frenkel pairs with amorphous FeTi. It is apparent that the FeTi did change to an amorphous structure. Figure 23 shows similar results for 500 frenkel pairs in NiTi. Therefore, the work of Sabochick and Lam (2) has been verified by the ADF.
These results have a significance greater than simply finding out whether the system becomes amorphous. The ADF now provides an easy method of pinpointing how many Frenkel pairs it takes to make the system amorphous.
Figure 22. ADF's for Increasing Numbers of Frenkel Pairs in FeTi (System of 1024 atoms)
Figure 23. ADF's for Increasing Number of Frenkel Pairs in NiTi
(System of 1024 atoms)
4.5 Chemical Disorder

4.5.1 Results

In a crystalline lattice made up of more than one type of atom, each atom type holds a specific location in the unit cell. Under electron irradiation, the point defects which occur can cause chemical disordering whereby two different types of atoms switch positions. In some simulated compounds it has been found that enough of these random switches can produce amorphization of the material and are therefore the driving mechanism behind amorphization. FeTi is known not to behave in this manner; instead it undergoes a structure change from BCC to FCC. Work by Sabochick and Lam using the structure factor has shown that NiTi also fails to become amorphous with increasing number of switches (2:4), even though its RDF would appear to indicate otherwise.

4.5.2 Discussion

When an increasing number of switches occurs in FeTi the system changes its lattice structure from BCC to FCC. Comparing the ADF for 800 switches in FeTi with model FCC in Figure 24 it is apparent that the FeTi did change to an FCC structure.

Comparing the ADF for 1000 switches in NiTi with the amorphous NiTi in Figure 25, shows that there is an extra peak between 170 and 175 degrees and the other two peaks don't
quite match up in location with the amorphous system. This is a direct but simple verification of the work previously cited and shows that the switching of atoms is not the mechanism which produces amorphization of NiTi.
Figure 24. ADF's for Increasing Numbers of Switches in FeTi
Figure 25. ADF's for Increasing Number of Switches in NiTi
5 Conclusion

A new function called an angular distribution function (ADF) has been developed for analyzing the structure of a system of atoms by finding the distribution of bond angles. Model systems of simple cubic, FCC, BCC, and diamond were developed so that they could be used for comparison with unknown structures. The model systems for BCC, FCC, and diamond were validated against atom systems of FeTi, NiTi, and Silicon which had those structures.

The ADF is useful in several ways. First, it is an indicator of the amount of order in a system in the same way that the RDF is an indicator; the broader the peaks are, the more disorder there is. Unlike the RDF, the ADF can reveal the type of structure that is inherent to the system. If a series of experiments are performed which lead to a change in structure (to include amorphicity) then the ADF will help to verify at what point in the experiment the change has occurred.

One thing that is not yet clear, is whether or not the ADF can be used in general to distinguish between a liquid system and a solid amorphous one. The studies here find that they are distinguishable for FeTi, but if the amorphous system were heated up, the peaks would broaden and the difference between the two would diminish. Further work should be accomplished in this area before it can be stated unequivocally that liquid and amorphous systems can be distinguished.
6 Bibliography

Program Lattice makes model lattices by building a series of unit cells to a set of dimensions which are input by the user.

```
CHARACTER *15, OUTFILE

--OPEN FILES--

10 WRITE(6,*) 'ENTER OUTPUT FILENAME: '
READ(5,20) OUTFILE
20 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=20, FILE=OUTFILE, STATUS='NEW', ERR=10)

--SET PARAMETERS--

Set the dimensions of the cell

WRITE(6,*) 'ENTER NUMBER OF CELLS (X-DIRECTION): '
READ(5,*1)NXCELLS
WRITE(6,*) 'ENTER NUMBER OF CELLS (Y-DIRECTION): '
READ(5,*1)NYCELLS
WRITE(6,*) 'ENTER NUMBER OF CELLS (Z-DIRECTION): '
READ(5,*1)NZCELLS
WRITE(6,*) 'ENTER CELL THICKNESS (ANGSTROMS): '
READ(5,*1)THICK

Determine the type of lattice for generation

WRITE(6,*) 'ENTER # FOR TYPE OF CRYSTAL LATTICE'
WRITE(6,*) 'SIMPLE CUBIC=1'
WRITE(6,*) 'FCC=2'
WRITE(6,*) 'BCC=3'
WRITE(6,*) 'DIAMOND=4'
READ(5,*1)NTYPE

Enter a number < 1 and the atom positions will be randomly distorted up to the entered fraction of the nearest neighbor distance

WRITE(6,*) 'ENTER FRACTION FOR RANDOM DISTORTION'
READ(5,*1)PERCENT

PI=ACOS(-1.0)
```
DO 50, I=0,NXCELLS-1
 DO 40, J=0,NYCELLS-1
 DO 30, K=0,NZCELLS-1

 Find the corner position of the unit cell
 X=I*THICK
 Y=J*THICK
 Z=K*THICK

 Generate a Simple Cubic Lattice
 (1 atom per cell)

 IF (NTYPE.EQ.1) THEN
 RMAX=PERCENT*THICK
 R1=RMAX*RAND(0)
 PHI1=PI*RAND(0)
 THETA1=2.0*PI*RAND(0)
 X1=X+R1*SIN(PHI1)*COS(THETA1)
 Y1=Y+R1*SIN(PHI1)*SIN(THETA1)
 Z1=Z+R1*COS(THETA1)
 WRITE(20,*)X1,Y1,Z1
 ELSE

 Generate an FCC Lattice
 (4 atoms per cell)

 IF(NTYPE.EQ.2) THEN
 RMAX=PERCENT*THICK/SQRT(2.0)
 R1=RMAX*RAND(0)
 PHI1=PI*RAND(0)
 THETA1=2.0*PI*RAND(0)
 X1=X+R1*SIN(PHI1)*COS(THETA1)
 Y1=Y+R1*SIN(PHI1)*SIN(THETA1)
 Z1=Z+R1*COS(THETA1)
 R2=RMAX*RAND(0)
 PHI2=PI*RAND(0)
 THETA2=2.0*PI*RAND(0)
 X2=X+0.5*THICK+R2*SIN(PHI2)*COS(THETA2)
 Y2=Y+R2*SIN(PHI2)*SIN(THETA2)
 Z2=Z+0.5*THICK+R2*COS(THETA2)
 R3=RMAX*RAND(0)
 PHI3=PI*RAND(0)
 THETA3=2.0*PI*RAND(0)
 X3=X+0.5*THICK+R3*SIN(PHI3)*COS(THETA3)
Y3 = Y + 0.5*THICK + R3*SIN(PHI3)*SIN(THETA3)
Z3 = Z + R3*COS(THETA3)

R4 = RMAX*RAND(0)
PHI4 = PI*RAND(0)
THETA4 = 2.0*PI*RAND(0)
X4 = X + R4*SIN(PHI4)*COS(THETA4)
Y4 = Y + 0.5*THICK + R4*SIN(PHI4)*SIN(THETA4)
Z4 = Z + 0.5*THICK + R4*COS(THETA4)

WRITE(20,*)X1,Y1,Z1
WRITE(20,*)X2,Y2,Z2
WRITE(20,*)X3,Y3,Z3
WRITE(20,*)X4,Y4,Z4

ELSE

Generate a BCC Lattice
(2 atoms per cell)

IF(NTYPE.EQ.3) THEN
 RMAX = PERCENT*THICK*SQR(3.0)/2.0

 R1 = RMAX*RAND(0)
 PHI1 = PI*RAND(0)
 THETA1 = 2.0*PI*RAND(0)
 X1 = X + R1*SIN(PHI1)*COS(THETA1)
 Y1 = Y + R1*SIN(PHI1)*SIN(THETA1)
 Z1 = Z + R1*COS(THETA1)

 R2 = RMAX*RAND(0)
 PHI2 = PI*RAND(0)
 THETA2 = 2.0*PI*RAND(0)
 X2 = X + 0.5*THICK + R2*SIN(PHI2)*COS(THETA2)
 Y2 = Y + 0.5*THICK + R2*SIN(PHI2)*SIN(THETA2)
 Z2 = Z + 0.5*THICK + R2*COS(THETA2)

 WRITE(20,*)X1,Y1,Z1
 WRITE(20,*)X2,Y2,Z2

ELSE

Generate a Diamond Lattice
(8 atoms per cell)

IF(NTYPE.EQ.4) THEN
 RMAX = PERCENT*THICK*SQR(3.0)/4

 R1 = RMAX*RAND(0)
 PHI1 = PI*RAND(0)
 THETA1 = 2.0*PI*RAND(0)

45
\[
\begin{align*}
X_1 &= X + R_1 \sin(\phi_1) \cos(\theta_1) \\
Y_1 &= Y + R_1 \sin(\phi_1) \sin(\theta_1) \\
Z_1 &= Z + R_1 \cos(\theta_1) \\
C \\
R_2 &= R_{MAX} \times \text{RAND}(0) \\
\phi_2 &= \pi \times \text{RAND}(0) \\
\theta_2 &= 2.0 \pi \times \text{RAND}(0) \\
X_2 &= X + 0.5 \times \text{THICK} + R_2 \sin(\phi_2) \cos(\theta_2) \\
Y_2 &= Y + R_2 \sin(\phi_2) \sin(\theta_2) \\
Z_2 &= Z + 0.5 \times \text{THICK} + R_2 \cos(\theta_2) \\
C \\
R_3 &= R_{MAX} \times \text{RAND}(0) \\
\phi_3 &= \pi \times \text{RAND}(0) \\
\theta_3 &= 2.0 \pi \times \text{RAND}(0) \\
X_3 &= X + 0.5 \times \text{THICK} + R_3 \sin(\phi_3) \cos(\theta_3) \\
Y_3 &= Y + 0.5 \times \text{THICK} + R_3 \sin(\phi_3) \sin(\theta_3) \\
Z_3 &= Z + R_3 \cos(\theta_3) \\
C \\
R_4 &= R_{MAX} \times \text{RAND}(0) \\
\phi_4 &= \pi \times \text{RAND}(0) \\
\theta_4 &= 2.0 \pi \times \text{RAND}(0) \\
X_4 &= X + R_4 \sin(\phi_4) \cos(\theta_4) \\
Y_4 &= Y + 0.5 \times \text{THICK} + R_4 \sin(\phi_4) \sin(\theta_4) \\
Z_4 &= Z + 0.5 \times \text{THICK} + R_4 \cos(\theta_4) \\
C \\
R_5 &= R_{MAX} \times \text{RAND}(0) \\
\phi_5 &= \pi \times \text{RAND}(0) \\
\theta_5 &= 2.0 \pi \times \text{RAND}(0) \\
X_5 &= X + 0.25 \times \text{THICK} + R_5 \sin(\phi_5) \cos(\theta_5) \\
Y_5 &= Y + 0.75 \times \text{THICK} + R_5 \sin(\phi_5) \sin(\theta_5) \\
Z_5 &= Z + 0.25 \times \text{THICK} + R_5 \cos(\theta_5) \\
C \\
R_6 &= R_{MAX} \times \text{RAND}(0) \\
\phi_6 &= \pi \times \text{RAND}(0) \\
\theta_6 &= 2.0 \pi \times \text{RAND}(0) \\
X_6 &= X + 0.75 \times \text{THICK} + R_6 \sin(\phi_6) \cos(\theta_6) \\
Y_6 &= Y + 0.25 \times \text{THICK} + R_6 \sin(\phi_6) \sin(\theta_6) \\
Z_6 &= Z + 0.25 \times \text{THICK} + R_6 \cos(\theta_6) \\
C \\
R_7 &= R_{MAX} \times \text{RAND}(0) \\
\phi_7 &= \pi \times \text{RAND}(0) \\
\theta_7 &= 2.0 \pi \times \text{RAND}(0) \\
X_7 &= X + 0.25 \times \text{THICK} + R_7 \sin(\phi_7) \cos(\theta_7) \\
Y_7 &= Y + 0.25 \times \text{THICK} + R_7 \sin(\phi_7) \sin(\theta_7) \\
Z_7 &= Z + 0.75 \times \text{THICK} + R_7 \cos(\theta_7) \\
C \\
R_8 &= R_{MAX} \times \text{RAND}(0) \\
\phi_8 &= \pi \times \text{RAND}(0) \\
\theta_8 &= 2.0 \pi \times \text{RAND}(0)
\end{align*}
\]
X8 = X + 0.75*THICK + R8*SIN(PHI8)*COS(THETA8)
Y8 = Y + 0.75*THICK + R8*SIN(PHI8)*SIN(THETA8)
Z8 = Z + 0.75*THICK + R8*COS(THETA8)

C

WRITE(20,*)X1,Y1,Z1
WRITE(20,*)X2,Y2,Z2
WRITE(20,*)X3,Y3,Z3
WRITE(20,*)X4,Y4,Z4
WRITE(20,*)X5,Y5,Z5
WRITE(20,*)X6,Y6,Z6
WRITE(20,*)X7,Y7,Z7
WRITE(20,*)X8,Y8,Z8

ELSE
 STOP
END IF

END IF

CONTINUE

STOP
END
8 Appendix B: RDF Fortran Programs

PROGRAM RDF1
C
C Program to find the RDF of a lattice generated by
the program Lattice
C
PARAMETER(MAXATMS=4000, MAXSIZE=200)
DIMENSION R(MAXATMS,3), BINDIST(0:MAXSIZE), WIDTH(3)
CHARACTER*15 OUTFILE, INPUT
REAL MAXDIST
C
--OPEN FILES--
C
10 WRITE(6,*) 'ENTER OUTPUT FILENAME: '
READ(5,20)OUTFILE
20 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=20, FILE=OUTFILE, STATUS='NEW', ERR=10)
30 WRITE(6,*) 'ENTER INPUT FILENAME: '
READ(5,40)INPUT
40 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=30, FILE=INPUT, STATUS='OLD', ERR=30)
C
--SET PARAMETERS--
C
WRITE(6,*) 'ENTER NUMBER OF ATOMS: '
READ(5,*) NATOMS
WRITE(6,*) 'ENTER THICKNES OF CELL (ANGSTROMS): '
READ(5,*) THICK
WRITE(6,*) 'ENTER EXPECTED FRACTION OF DISTORTION: '
READ(5,*) FRAC
WRITE(6,*) 'ENTER # OF CELLS ACROSS (X-DIRECTION): '
READ(5,*) NXCELLS
WRITE(6,*) 'ENTER # OF CELLS ACROSS (Y-DIRECTION): '
READ(5,*) NYCELLS
WRITE(6,*) 'ENTER # OF CELLS ACROSS (Z-DIRECTION): '
READ(5,*) NZCELLS
WRITE(6,*) 'ENTER NUMBER OF BINS FOR RDF: '
READ(5,*) NUMBINS
C
WIDTH(1)=THICK*NXCELLS
WIDTH(2)=THICK*NYCELLS
WIDTH(3)=THICK*NZCELLS
MAXDIST=SQRT(WIDTH(1)**2+WIDTH(2)**2+WIDTH(3)**2)*
*(1.0+FRAC)/2.0
BINSIZE=MAXDIST/NUMBINS
AVGDENS=NATOMS/(WIDTH(1)*WIDTH(2)*WIDTH(3))
PI=ACOS(-1.0)
NEXTRA=0

--INPUT POSITIONS--
DO 50 I=1,NATOMS
 READ(30,*)R(I,1),R(I,2),R(I,3)
50 CONTINUE

DO 100 I=1,NATOMS-1
 DO 80 J=I+1,NATOMS
 R2=0.0
 DO 60 K=1,3
 DR=R(I,K)-R(J,K)
 IF(ABS(DR).GT.(WIDTH(K)/2.0))THEN
 DR=WIDTH(K)-ABS(DR)
 END IF
 R2=R2+DR**2
 60 CONTINUE
 DIST=SQRT(R2)
 N=NINT(DIST/BINSIZE)
 IF(N.LE.NUMBINS) THEN
 BINDIST(N)=BINDIST(N)+1
 ELSE
 NEXTRA=NEXTRA+1
 END IF
80 CONTINUE
100 CONTINUE

--NORMALIZE--
DO 120 I=1,NUMBINS
 VOLUME=4.0/3.0*PI*((BINSIZE*I)**3-(BINSIZE*(I-1))**3)
 BINDIST(I)=(BINDIST(I)/VOLUME)/AVGDENS/NATOMS*2
120 CONTINUE

--OUTPUT--
DO 200 I=0,NUMBINS
 WRITE(20,*) I*BINSIZE, BINDIST(I)
200 CONTINUE

WRITE(6,*'NUMBER OF EXTRAS WHICH DID NOT FIT IN *BINS=',NEXTRA)

--CLOSE FILES--
ENDFILE(UNIT=20)
CLOSE(UNIT=20)

--THE END--
STOP
END
PROGRAM RDF2

Program to find the RDF of a lattice generated by the program Dynamo

PARAMETER(MAXATMS=4000, MAXSIZE=200)
DIMENSION R(MAXATMS,3), BINDIST(0:MAXSIZE), WIDTH(3)
CHARACTER *15 OUTFILE, INPUT
CHARACTER *80 STRING1
REAL MAXDIST

-- OPEN FILES --

WRITE(6,*) 'ENTER OUTPUT FILENAME: '
READ(5,20) OUTFILE
20 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=20, FILE=OUTFILE, STATUS='NEW', ERR=10)

WRITE(6,*) 'ENTER INPUT FILENAME: '
READ(5,40) INPUT
40 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=30, FILE=INPUT, STATUS='OLD', ERR=30)

-- SET PARAMETERS --

WRITE(6,*) 'ENTER NUMBER OF BINS FOR RDF: '
READ(5,*) NUMBINS

-- INPUT DATA FROM FILE --
READ(30,*) STRING1
READ(30,*) NATOMS, NTYPES, TRASH1
READ(30,*) WIDTH(1), WIDTH(2), WIDTH(3)
READ(30,*) TRASH2, TRASH3, TRASH4
DO 45 I=1, NTYPES
 READ(30,*) TRASH5, TRASH6
45 CONTINUE
DO 50 I=1, NATOMS
 READ(30,*) R(I,1), R(I,2), R(I,3)
 READ(30,*) TRASH7, TRASH8, TRASH9
 READ(30,*) TRASH10
50 CONTINUE

MAXDIST=SQRT(WIDTH(1)**2+WIDTH(2)**2+WIDTH(3)**2)/2.0
BINSIZE=MAXDIST/NUMBINS
AVGDENS=NATOMS/(WIDTH(1)*WIDTH(2)*WIDTH(3))
PI=ACOS(-1.0)
DO 100 I=1,NATOMS-1
 DO 80 J=I+1,NATOMS
 R2=0.0
 DO 60 K=1,3
 DR=R(I,K)-R(J,K)
 IF (ABS(DR) .GT. (WIDTH(K)/2.0)) THEN
 DR=WIDTH(K)-ABS(DR)
 END IF
 R2=R2+DR**2
 60 CONTINUE
 DIST=SQRT(R2)
 N=NINT(DIST/BIN SIZE)
 BINDIST(N)=BINDIST(N)+1
 80 CONTINUE
100 CONTINUE
C
C -- NORMALIZE --
C
 DO 120 I=1,NUMBINS
 VOLUME=4.0/3.0*PI*((BIN SIZE*I)**3-(BIN SIZE*(I-1))**3)
 BINDIST(I)=(BINDIST(I)/VOLUME)/AVGDENS/NATOMS**2
120 CONTINUE
C
C -- OUTPUT --
C
 DO 200 I=0,NUMBINS
 WRITE(20,*') I*BINSIZE, BINDIST(I)
200 CONTINUE
C
C -- CLOSE FILES --

 ENDFILE(UNIT=20)
 CLOSE(UNIT=20)
C
C -- THE END --
STOP
END
Appendix C: ADF Fortran Programs

PROGRAM ADF1

Program to find the ADF of a lattice generated by the program Lattice

PARAMETER(MAXATMS=4000)
DIMENSION R(MAXATMS,3), BIN1(0:180), BIN2(0:180), *A(3), B(3), C(3), WIDTH(3)
CHARACTER *15 OUTFILE,INPUT
REAL MAGA2, MAGB2, MAGC2, MAGA, MAGE, MAGC
INTEGER U, V

--OPEN FILES--

WRITE(6,*) 'ENTER OUTPUT FILENAME: '
READ(5,20)OUTFILE
20 FORMAT(A)
WRITE 6,*)
OPEN(UNIT=2O, FILE=OUTFILE, STATUS='NEW', ERR=10)

WRITE(6,*) 'ENTER INPUT FILENAME: '
READ(5,40)INPUT
40 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=3O, FILE=INPUT, STATUS='OLD', ERR=30)

--SET PARAMETERS--

WRITE(6,*) 'ENTER NUMBER OF ATOMS: '
READ(5,*) NATOMS
WRITE(6,*) 'ENTER THICKNESS OF CELL: '
READ(5,*) THICK
WRITE(6,*) 'ENTER # OF CELLS THICK (X-DIRECTION): '
READ(5,*) NXCELLS
WRITE(6,*) 'ENTER # OF CELLS THICK (Y-DIRECTION): '
READ(5,*) NYCELLS
WRITE(6,*) 'ENTER # OF CELLS THICK (Z-DIRECTION): '
READ(5,*) NZCELLS
WRITE(6,*) 'ENTER RADIAL SUPPRESSION CUTOFF THICKNESS'
READ(5,*) SHELL

WIDTH(1)=NXCELLS*THICK
WIDTH(2)=NYCELLS*THICK
WIDTH(3)=NZCELLS*THICK
PI=ACOS(-1.0)

--INPUT POSITIONS--

DO 50 I=1,NATOMS
READ(30,*)R(I,1),R(I,2),R(I,3)
50 CONTINUE
C
C
DO 100 I=1,NATOMS-1
 DO 90 J=I+1,NATOMS
 MAGA2=0.0
 DO 80 L=1,3
 A(L)=R(J,L)-R(I,L)
 IF(ABS(A(L)).GT.(WIDTH(L)/2))THEN
 IF(A(L).GT.0.0)THEN
 A(L)=A(L)-WIDTH(L)
 ELSE
 A(L)=A(L)+WIDTH(L)
 END IF
 END IF
 MAGA2=MAGA2+A(L)**2
 80 CONTINUE
 MAGA=SQRT(MAGA2)
 IF(MAGA.LE.SHELL) THEN
 DO 70 K=1,NATOMS
 IF(K.NE.I.AND.K.NE.J)THEN
 MAGB2=0.0
 MAGC2=0.0
 DO 60 L=1,3
 B(L)=R(J,L)-R(K,L)
 IF(ABS(B(L)).GT.(WIDTH(L)/2))THEN
 IF(B(L).GT.0.0)THEN
 B(L)=B(L)-WIDTH(L)
 ELSE
 B(L)=B(L)+WIDTH(L)
 END IF
 END IF
 MAGB2=MAGB2+B(L)**2
 60 CONTINUE
 MAGB=SQRT(MAGB2)
 MAGC=SQRT(MAGC2)
 WGHT1=(MAGA*MAGB)**4
 COSTH1=(A(1)*B(1)+A(2)*B(2)+A(3)*
*

B(3)/(MAGA*MAGB)
IF(COSTH1.GT.1.0) THEN
 COSTH1=1.0
ELSEIF(COSTH1.LT.-1.0) THEN
 COSTH1=-1.0
END IF
ANGLE1=ACOS(COSTH1)*180.0/PI
U=NINT(ANGLE1)
IF(MAGB.GT.SHELL) THEN
 BIN1(U)=BIN1(U)+1/WGHT1
ELSE
 BIN2(U)=BIN2(U)+1/WGHT1
END IF

C

WGHT2=(MAGA*MAGC)**4
COSTH2=(C(1)*A(1)+C(2)*A(2)+C(3)*
A(3))/(MAGC*MAGA)
IF(COSTH2.GT.1.0) THEN
 COSTH2=1.0
ELSEIF(COSTH2.LT.-1.0) THEN
 COSTH2=-1.0
END IF
ANGLE2=ACOS(COSTH2)*180.0/PI
V=NINT(ANGLE2)
BIN1(V)=BIN1(V)+1/WGHT2
IF(MAGC.GT.SHELL) THEN
 BIN1(V)=BIN1(V)+1/WGHT1
ELSE
 BIN2(V)=BIN2(V)+1/WGHT1
END IF

END IF
70 CONTINUE
END IF
90 CONTINUE
100 CONTINUE
C
--OUTPUT--
DO 200 I=0,180
 WRITE(20,*) I,BIN1(I),BIN2(I)
200 CONTINUE
C
--CLOSE FILES--
ENDFILE(UNIT=20)
CLOSE(UNIT=20)
C
--THE END--
STOP
END
PROGRAM ADF2

C Program to find the ADF of a lattice generated by
C the program Dynamo.

PARAMETER(MAXATMS=4000)
DIMENSION R(MAXATMS,3), BIN1(0:180), BIN2(0:180),
*A(3), B(3), C(3), WIDTH(3)
CHARACTER *15 OUTFILE, INPUT
CHARACTER *60 STRING1
REAL MAGA2, MAGB2, MAGC2, MAGA, MAGB, MAGC
INTEGER U, V

-- OPEN FILES --

10 WRITE(6,*) 'ENTER OUTPUT FILENAME: '
READ(5,20)OUTFILE
20 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=20, FILE=OUTFILE, STATUS='NEW', ERR=10)
30 WRITE(6,*) 'ENTER INPUT FILENAME: '
READ(5,40)INPUT
40 FORMAT(A)
WRITE(6,*)
OPEN(UNIT=30, FILE=INPUT, STATUS='OLD', ERR=30)

-- SET PARAMETERS --

WRITE(6,*) 'ENTER RADIAL SUPPRESSION CUTOFF THICKNESS'
READ(5,*) SHELL

-- INPUT DATA FROM FILE --

READ(30,*)STRING1
READ(30,*)NATOMS, NTYPES, TRASH1
READ(30,*)WIDTH(1), WIDTH(2), WIDTH(3)
READ(30,*)TRASH2, TRASH3, TRASH4
DO 45 I=1, NTYPES
 READ(30,*)TRASH5, TRASH6
45 CONTINUE
DO 50 I=1, NATOMS
 READ(30,*)R(I,1), R(I,2), R(I,3)
 READ(30,*)TRASH7, TRASH8, TRASH9
 READ(30,*)TRASH10
50 CONTINUE

PI=ACOS(-1.0)

DO 100 I=1, NATOMS-1

55
DO 90 J=I+1,NATOMS
MAGA2=0.0
DO 80 L=1,3
 A(L)=R(J,L)-R(I,L)
 IF(ABS(A(L)).GT.(WIDTH(L)/2))THEN
 IF(A(L).GT.0.0)THEN
 A(L)=A(L)-WIDTH(L)
 ELSE
 A(L)=A(L)+WIDTH(L)
 END IF
 END IF
 MAGA2=MAGA2+A(L)**2
80 CONTINUE
MAGA=SQRT(MAGA2)
IF(MAGA.LE.SHELL)THEN
 DO 70 K=1,NATOMS
 IF(K.NE.I.AND.K.NE.J) THEN
 MAGB2=0.0
 MAGC2=0.0
 DO 60 L=1,3
 B(L)=R(J,L)-R(K,L)
 IF(ABS(B(L)).GT.(WIDTH(L)/2))THEN
 IF(B(L).GT.0.0)THEN
 B(L)=B(L)-WIDTH(L)
 ELSE
 B(L)=B(L)+WIDTH(L)
 END IF
 END IF
 MAGB2=MAGB2+B(L)**2
 C(L)=R(K,L)-R(I,L)
 IF(ABS(C(L)).GT.(WIDTH(L)/2))THEN
 IF(C(L).GT.0.0)THEN
 C(L)=C(L)-WIDTH(L)
 ELSE
 C(L)=C(L)+WIDTH(L)
 END IF
 END IF
 MAGC2=MAGC2+C(L)**2
60 CONTINUE
MAGB=SQRT(MAGB2)
MAGC=SQRT(MAGC2)
C
 WGHT1=(MAGA*MAGB)**4
 COSTH1=(A(1)*B(1)+A(2)*B(2)+A(3)*B(3))/(MAGA*MAGB)
 IF(COSTH1.GT.1.0)THEN
 COSTH1=1.0
 ELSEIF(COSTH1.LT.-1.0)THEN
 COSTH1=-1.0
 ELSE
 COSTH1=(A(1)*B(1)+A(2)*B(2)+A(3)*B(3))/(MAGA*MAGB)
 END IF
END IF
ANGLE1 = ACOS(COSTH1) * 180.0 / PI
U = NINT(ANGLE1)
IF (MAGB.GT. SHELL) THEN
 BIN1(U) = BIN1(U) + 1 / WGHT1
ELSE
 BIN2(U) = BIN2(U) + 1 / WGHT1
END IF

WGHT2 = (MAGA* MAGC)**4
COSTH2 = (C(1)*A(1) + C(2)*A(2) + C(3)*
A(3))/(MAGC* MAGA)
IF (COSTH2.GT.1.0) THEN
 COSTH2 = 1.0
ELSEIF (COSTH2.LT.-1.0) THEN
 COSTH2 = -1.0
END IF
ANGLE2 = ACOS(COSTH2) * 180.0 / PI
V = NINT(ANGLE2)
BIN1(V) = BIN1(V) + 1 / WGHT2
IF (MAGC.GT. SHELL) THEN
 BIN1(V) = BIN1(V) + 1 / WGHT1
ELSE
 BIN2(V) = BIN2(V) + 1 / WGHT1
END IF

END IF

CONTINUE

END IF

CONTINUE

CONTINUE

C
--OUTPUT--
DO 200 I = 0, 180
 WRITE(20,*) I, BIN1(I), BIN2(I)
200 CONTINUE
C
--CLOSE FILES--

ENDFILE(UNIT=20)
CLOSE(UNIT=20)
C
--THE END--
STOP
END
10 Vita

Captain David Wesley was born on 15 August 1958 in Ventura, California. He graduated from Cloverdale High School in Cloverdale, California in 1976. After two years of college in California he enlisted in the U.S. Air Force and had several assignments before attending the Georgia Institute of Technology. He graduated from Georgia Tech in September 1986 with a Bachelor of Nuclear Engineering. He then attended Officer Training School whereupon he received a regular commission in the USAF and an assignment to Kirtland AFB, New Mexico. He performed duties as an aircraft nuclear safety engineer for the Air Force Weapons Laboratory with primary responsibility for the F-16 until entering the School of Engineering, Air Force Institute of Technology, in August 1989.