Research was focused in two areas:
1. Using excite-and-probe anti-Stokes Raman scattering apparatus, the nonequilibrium phonons which participate in the overall complex nonradiative decay in tunable solid-state laser crystals, were directly identified. Rise and decay behavior of different Raman-active phonon modes were measured.
2. A new laser ion, Cr⁺ in chromium-doped forsterite was discovered, and its spectroscopic and laser characteristics were investigated.

Sixteen papers, twelve abstracts and one patent were published during this grant.
TABLE OF CONTENTS

1. Statement of the Problem Studied
2. Summary of the Most Important Results
3. List of All Publications
4. List of All Participating Scientific Personnel
5. Appendix
1. Statement of the Problem Studied

Over the past decade, there has been a great deal of interest in tunable solid-state lasers. The extensive research focused on either finding new host materials for the trivalent chromium ion (Cr$^{3+}$), or finding new ions to be used in already known hosts. We have initiated a research project to investigate, using methods of conventional optical spectroscopy and picosecond time-resolved spectroscopy, new potential tunable solid-state laser materials. Very little information is available about the fundamental physical processes behind vibronic laser operation. With this in mind we have undertaken studies of the kinetics of population relaxation among the excited states of lasing ions, as well as investigations of the optical phonon dynamics using ultrafast pump-and-probe anti-Stokes Raman scattering. Most of the investigations were performed on chromium-doped forsterite, new and unique laser crystal discovered by us during the course of this research.

2. Summary of the Most Important Results

Major breakthroughs were achieved in two areas: (1) Time-resolved nonequilibrium phonon dynamics in tunable solid-state laser crystals, and (2) Discovery of a new lasing ion, tetravalent chromium (Cr$^{4+}$) in chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) and studies of its spectroscopic and laser properties.

2.1 Nonequilibrium Phonon Dynamics in Tunable Solid-State Laser Crystals

Excite-and-probe anti-Stokes Raman scattering apparatus was developed to study phonon dynamics in the excited state in tunable solid-state laser materials.

Using this state-of-the-art experimental setup we have, for the first time, directly identified the nonequilibrium phonons which participate in the overall
complex nonradiative decay. By measuring the time dependence of the pump-probe Raman spectra in chromium-doped forsterite we have determined the rise and decay behavior of different Raman-active phonon modes involved in nonradiative decay.

The sample of Cr-doped forsterite was photoexcited above the Cr$^{4+}$ lasing level by a train of 450-fs, 590-nm pump pulses and probed by a time-delayed, cross-polarized pulses of same pulse duration and wavelength. We have monitored the change in the relative intensity of anti-Stokes Raman lines due to scattering of both the pump and the probe pulses as a function of pump-probe delay. Raman spectra show that the rise and the decay dynamics are different for different phonon modes, which in turn contribute to the overall nonradiative relaxation of photoexcited ions in this crystal.

In the measured anti-Stokes Raman spectra, the 370 cm$^{-1}$ Raman line is generated by the pump beam, while the 330 cm$^{-1}$ and 225 cm$^{-1}$ lines arise from Raman scattering of the probe beam. Different Raman spectra corresponding to the pump and to the probe beam are a consequence of different selection rules for the cross-polarized pump and probe beams. Measuring the ratio of the intensity of the anti-Stokes Raman lines corresponding to the probe beam and the intensity of the Raman line due to Raman scattering of the pump beam, for different pump-probe delays, a picture of the dynamics of the nonequilibrium phonons is developed. It was observed that the relative difference between the intensities of the pump and probe Raman lines in the anti-Stokes Raman spectrum changes considerably when the pump-probe delay time changes from 1 ps to 6 ps. There are differences in the rise and decay of these two modes which contribute differently to overall nonradiative decay. The two phonon modes "seen" by the probe beam exhibit an increase in the intensity ratio for the first 10 ps and a decay for the following 25 ps.
These results are an important contribution to the understanding of the underlying physics on which nonequilibrium phonons participate in the excited state nonradiative decay of photoexcited ions in crystals.

2.2 Spectroscopic and Laser Properties of chromium-doped forsterite

Measurements of the absorption, emission and excitation spectra, as well as the wavelength dependence of fluorescence lifetime provide convincing evidence that chromium ion may enter forsterite (Mg$_2$SiO$_4$) host in more than one valence states. Trivalent chromium (Cr$^{3+}$) enters substitutionally for divalent magnesium (Mg$^{2+}$) in two inequivalent octahedrally coordinated sites, while tetravalent chromium (Cr$^{4+}$) substitutes for Si$^{4+}$ at tetrahedrally coordinated sites. Of the two Cr$^{3+}$ centers, the one with mirror symmetry (C$_s$) is optically active due to lack of inversion symmetry and accounts for a number of features in the absorption and emission spectra. The center with inversion symmetry (C$_i$) is characterized with longer lifetimes that show strong temperature dependence. The absorption and emission due to transitions within the states of Cr$^{4+}$ ion overlap with those within the states of Cr$^{3+}$ ion. The absorption in the near infrared spectral region between 850 and 1150 nm is primarily due to transitions between the $3A_2$ ground state and the first excited state $3T_2$, of the Cr$^{4+}$ ion. The four-level, vibronic mode of laser operation in Cr-doped forsterite feeds on $3T_2 \rightarrow 3A_2$ transition.

Pulsed laser operation was obtained with samples rich in Cr$^{4+}$ in a stable cavity. Pulsed laser action was observed for both the 1064-nm and 532-nm pumping. The spectra of the free-running laser radiation for both the 1064-nm and 532-nm pumping peaked at 1235 nm and had linewidth of 30 nm and 27 nm, respectively. Highest slope efficiency obtained to date is $\sim 23\%$ for 1064-nm pumping with an output mirror having 13% transmission at 1200 nm.
Continuous-wave laser operation was obtained using 1064-nm radiation from a cw Nd:YAG laser as a pumping source. The lasing threshold was 1.25 W of absorbed power. The measured slope efficiency was 6.8%. The spectrum of the free-running laser output peaks at 1244 nm and has a bandwidth of 12 nm.

Tunable operation of Cr:forsterite laser has been demonstrated over the 1167 - 1345 nm spectral range. A birefringent, single crystal quartz plate at Brewster's angle was used as the intracavity dispersive element. Three different output mirrors with transmission in adjacent wavelength ranges were used to cover the range.

Maximum slope efficiency of 38% was obtained for cw operation using 11% transmission output mirror.

Limiting slope efficiency of the chromium-doped forsterite laser in the absence of passive losses was estimated to be >65%.

Excited-state absorption is not a major loss mechanism in chromium-doped forsterite. The peak of the excited-state absorption is predicted at 1670 nm, far out of the tuning range.
3. List of All Publications

Articles

Abstracts & Presentations

4. List of All Participating Scientific Personnel

Scientific personnel involved in the research project were:

R. R. Alfano
J. Buchert
S. K. Gayen
V. Petricevic
S. G. Demos
W. B. Wang
A. Seas

5. Appendix

Reprints of all the papers already published, and preprints of papers submitted for publication are attached, and made an integral part of this report.
Articles
Laser action in chromium-doped forsterite

V. Petričević, S. K. Gayen, and R. R. Alfano

Institute for Ultrashort Spectroscopy and Lasers, Photonics Application Laboratory, Departments of Physics and Electrical Engineering, The City College of New York, New York, New York 10031

Kiyoshi Yamagishi, H. Anzai, and Y. Yamaguchi

Electronic Materials Research Laboratory, Mitsui Mining and Smelting Co., Ltd., 1333-2 Haraiichi, Ageo-Shi, Saitama 362, Japan

(Received 7 December 1987; accepted for publication 1 February 1988)

Room-temperature vibronic pulsed laser action in trivalent chromium-activated forsterite (Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\)) is reported for the first time. The free-running laser emission is centered at 1235 nm of the broad \(A_2 \rightarrow A_1\) fluorescence band, and has a bandwidth of \(-22\) nm.

Prompted by the successful broadly wavelength-tunable, room-temperature operation of alexandrite\(^1\) and emerald\(^2-4\) lasers, the surge in research activities on tunable solid-state lasers has been extensive in the 1980s.\(^4-17\) The thrust of these research endeavors has been twofold: first to look for new host materials for the trivalent chromium ion,\(^7-11\) and second, to search for new ions that will lase in commonly used host crystals.\(^4-6,12-17\) These efforts have been rewarded by the successful wavelength-tunable laser operation of Cr\(^{3+}\) in a number of hosts,\(^7-11\) by the discovery of new lasing ions trivalent titanium (Ti\(^{3+}\),\(^6-12,13\) and divalent rhodium \(^{16}(\text{Rh}^{2+}),\) as well as by the "rediscovery" \(^4,5,14,15,17\) of tunable phonon-terminated lasers based on divalent transition metal ions Ni\(^{2+},\) Co\(^{3+},\) and V\(^{2+}.\) In this letter, we present the first room-temperature vibronic pulsed laser operation of Cr\(^{3+}\) in forsterite (Mg\(_2\)SiO\(_4\)).

Forsterite, like alexandrite, is a member of the olivine family of crystals. It is a naturally occurring gem. Single crystals of forsterite may be grown by the Czochralski method at the Electronic Materials Research Laboratory. Mitsui Mining and Smelting Co., Ltd., 1333-2 Haraiichi, Ageo-Shi, Saitama 362, Japan.

The single crystal of Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) used for spectroscopic and laser action measurements was grown by the Czochralski method at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Co., Ltd., Japan. The crystal is a 9 mm \(\times 9\) mm \(\times 4.5\) mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the \(b\), \(c\), and \(a\) crystallographic axes of the crystal. The crystal contains 0.04 at. % of Cr\(^{3+}\) ions, which is equivalent to a chromium ion concentration of \(6.9 \times 10^{18}\) ions/cm\(^3\).

The room-temperature fluorescence and absorption spectra of Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) for \(E||b\) crystallographic axis are shown in Fig. 1. The fluorescence spectrum of Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) was excited by the 488-nm radiation from an argon-ion laser and recorded by a germanium photodiode detector lock-in amplifier combination at the end of a 0.25-m monochromator equipped with a 1000-nm blazed grating. The room-temperature spectrum is a broad band covering the wavelength range 700–1400 nm. The room-temperature fluorescence lifetime is 15 \(\mu\)s.

The absorption spectrum was taken with a Perkin-Elmer Lambda-9 spectrophotometer along the 4.5-mm path length of the sample. It is characterized by two broad bands centered at 740 and 460 nm attributed to the \(A_2 \rightarrow A_1\) and \(A_1 \rightarrow A_1\) absorptive transitions, respectively, of the Cr\(^{3+}\) ion. The broad, weak absorption band between 850 and 1150 nm is not observed in the excitation spectrum.\(^20\) This indicates that the origin of this absorption is not transitions in Cr\(^{3+}\) ion, but in some other impurity ions, e.g., Fe\(^{3+}\) in the host crystal.\(^21\) It is evident from Fig. 1 that this background absorption overlaps a significant spectral region of Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) emission, and inhibits laser action in that region.

The experimental arrangement for investigating the laser action\(^22\) in Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) is shown schematically in Fig. 2. The sample is placed at the center of a stable resonator formed by two 30-cm-rad mirrors placed 20 cm apart. The mirrors were dielectric coated to transmit the 532-nm pump beam, and to have high reflectivity in the 1150–1250 nm spectral range. The reflectivity of the back mirror \(M_1\) is 99.9\%, while that of the output mirror \(M_2\) is \(-98\%\) for normal incidence over the specified wavelength range. It is

![Absorption and fluorescence spectra of Cr\(^{3+}:\text{Mg}_{2}\text{SiO}_{4}\) at room temperature. Both the spectra were taken for E||b axis and excitation along a axis. The thickness of the sample along a axis is 4.5 mm.](image-url)
to be noted that this spectral region does not correspond to the peak of the fluorescence spectrum, but was chosen so that the background absorption is minimal. The sample was longitudinally pumped by frequency-doubled 532-nm, 10-ns full width at half maximum (FWHM) pulses from a Q-switched Nd:YAG laser (Quanta Ray DCR-1) operating at a 10-Hz repetition rate. The spatial profile of the pump pulse was a doughnut, characteristic of an unstable cavity. The pump beam was linearly polarized along the b axis and propagated along the a axis of the sample. It was focused 3 cm before the sample by a 25-cm focal length lens. The radius of the pump beam at the center of the sample is $\sim 600 \mu m$. The output from the laser cavity was analyzed by a 0.25-m monochromator and monitored by a germanium photodiode detector. The output of the detector was displayed on a fast oscilloscope. No dispersive element was placed in the cavity and the laser operated in a free-running pulsed mode.

Pulsed laser operation was readily obtained for pumping at or above the lasing threshold of 2.2 mJ. A single output laser pulse was obtained, implying a gain-switched operation which is a consequence of pump-pulse duration being shorter than the laser-oscillation buildup time. The amplitude and duration of the laser pulse varied, as expected, with the pulse-to-pulse energy fluctuation of the pump pulse. The output was extremely sensitive even to a small misalignment of the cavity, or insertion of a glass plate (8% loss) in the cavity.

The temporal profile of the Cr$^{3+}$:Mg$_2$SiO$_4$ laser pulse is shown in Fig. 3(a), and fluctuations in its amplitude, duration, and delay with respect to the pump pulse are displayed in Fig. 3(b). The temporal duration (FWHM) of the output laser pulse varied from 200 ns at the threshold to 100 ns at 2.4 times the threshold energy. The delay between the peak of the pump pulse and the peak of the Cr$^{3+}$:Mg$_2$SiO$_4$ laser pulse also varied, as expected, with pump-pulse energy, from 700 ns at the threshold to 200 ns at 2.4 times the threshold energy. This indicates that the laser cavity is highly lossy, and several hundred round trips are required to build up the laser oscillation in the cavity.

The laser threshold and slope efficiency were measured for the cavity used in this experiment and the data are displayed in Fig. 4. The laser oscillation starts to build up at an absorbed input energy of 2.2 mJ. The measured slope efficiency of 1.4% is rather low, and indicates large losses in the cavity. These losses include $\sim 13\%$ reflection loss from the uncoated sample surfaces, scattering from inhomogeneities in the crystal, and a large mismatch between the size of the pump beam and the Cr$^{3+}$:Mg$_2$SiO$_4$ cavity modes in the sample.

The spectrum of Cr$^{3+}$:Mg$_2$SiO$_4$ laser is shown in Fig. 5, for an absorbed pump energy of 3.4 mJ. The spectrum peaks at 1235 nm and has a bandwidth (FWHM) of 22 nm. The wide spectrum of the laser output can be used to promote...
duce femtosecond pulses. The spectral range is limited at the high-energy end by the mirror transmission and the impurity absorption, while at the low-energy end by the mirror transmission as well as by the decrease in fluorescence intensity. Using different sets of mirrors, laser action in the 1.1–1.3 μm spectral range can be obtained.

In summary, pulsed laser operation has been obtained in Cr$^{3+}$:Mg$_2$SiO$_4$ at room temperature. The laser emission is centered at 1235 nm and has a bandwidth of ~22 nm. The spectral range for laser emission is expected to extend from 850 to 1300 nm if the parasitic impurity absorption may be minimized by improved crystal growth technique, making it one of the most widely tunable solid-state lasers in this spectral region. The large fluorescence bandwidth of the crystal promises ultrashort pulse generation through mode-locked operation. The fluorescence lifetime of 15 μs is suitable for effective energy storage and high-power Q-switched operation.

We would like to acknowledge Professor Roger Dorsinville for helpful discussions and Teruo Hiruma for help and support. The research is supported by National Aeronautics and Space Administration, Army Research Office, Hamamatsu Photonics, and City College of New York Organized Research.

A New Tunable Solid-State Laser

BY V. PETRICEVIC, S. K. GAYEN AND R. R. ALFANO

The eighties have been a decade of rapid development for tunable solid-state lasers\(^1\) with progress reaching the point where tunable solid-state lasers are making headway in the marketplace and attracting the financial community's interest. In the area of laser applications, interest in tunable solid-state lasers stems from their many advantages over dye lasers. These include wide wavelength tunability, compactness, long operational lifetime, rigidity, and ease of handling—all of which make them highly reliable and extremely suitable for spaceborne remote sensing, ranging, lidar and optical communication applications.

Tunable solid-state lasers also have a high potential for medical applications in eye surgery, cutting tissues, treating birthmarks and removing kidney stones. Industrial applications include on-line pollutant-emission monitoring and fiber optic communications along with basic scientific research.

In this article, we will introduce a new tunable solid-state laser system: Chromium-activated forsterite (Cr\(^{3+}\): Mg\(_2\)SiO\(_4\)), which has use potential for tunability from 850-1400 nm—one of the most widely tunable laser systems in this spectral region. Chromium-based crystals that are known to laser, cover a spectral range of 700-1100 nm. The first laser, ruby, operates only at a well-defined wavelength of 694.3 nm. Four different hosts are necessary to cover the 700-1100 nm range. The Cr\(^{3+}\): Mg\(_2\)SiO\(_4\) system extends the range further into the infrared and shows promise of covering most of the range and beyond.

We have observed pulsed laser action in Cr\(^{3+}\) at room temperature.\(^2\) The emission is centered at 1235 nm, and has a bandwidth (FWHM) of 22 nm. In the following sections, we will introduce the characteristics of the host crystal, present the basic spectroscopic properties of the system, describe the laser experiments and measurements, and point out the possibilities of the system.

Forsterite, like alexandrite, is a member of the olivine family of crystals and is a naturally occurring gem. The crystal appears different when looked at from different directions. Along the [100] axis it appears to have a bluish hue; along [010] it appears violet, while along the [001] axis it looks greenish.

Single crystals of Cr\(^{3+}\):Mg\(_2\)SiO\(_4\), may be grown by the Czochralski method. The crystal is easy to grow, and large crystals (several centimeters long and about a centimeter in diameter) are readily grown. The single crystal of Cr\(^{3+}\):Mg\(_2\)SiO\(_4\), used for spectroscopic and laser action measurements presented in this article was grown by the Czochralski method at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Co. Ltd., in Japan. The crystal is a 9 mm x 9 mm x 4.5 mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the b, c and a crystallographic axes of the crystal. The crystal contains 0.04 atomic percentage of Cr\(^{3+}\) ions, which is equivalent to a chromium-ion concentration of 6.9 x 10\(^8\) ions/cm\(^3\).

The room-temperature fluorescence and absorption spectra of Cr\(^{3+}\):Mg\(_2\)SiO\(_4\), for \(E \parallel b\) crystallographic axis are shown in Figure 1. The fluorescence spectrum was excited by the 488 nm radiation from an argon-ion laser and recorded by a germanium photodiode detector-lock-in-amplifier combination at the end of a 0.25 m monochromator equipped with a 1000 nm blazed grating. The room-temperature spectrum is a broad band covering 700-1400 nm. The room-temperature fluorescence lifetime is 15 μsec. The absorption spectrum is characterized by two broad bands centered at 740 nm and 460 nm, attributed to the 1A\(_g\) - T states, and 1A\(_g\) - T, absorption transitions, respectively, of the Cr\(^{3+}\) ion. The broad weak absorption band between 850-1150 nm is not observed in the excitation spectrum. This indicates that the origin of this absorption is not transitions in the Cr\(^{3+}\) ion, but in some other impurity ions, e.g., Fe\(^{3+}\) in the host crystal.

It is evident from Figure 1 that the background absorption overlaps a significant spectral region of Cr\(^{3+}\):Mg\(_2\)SiO\(_4\) emissions and inhibits laser action in that region. Both the emission and absorption spectra of such systems depend strongly on the polarization of the incident light.
Figure 2.
A photograph of the laser cavity (left) and a schematic of the experimental arrangement for investigating laser action in Cr-Mg$_2$SiO$_4$. Key: $P =$ 1060nm blocking filter, $P_2 =$ 532nm blocking infrared transmitting filter, $M_1 =$ back mirror, $M_2 =$ output mirror, $L =$ lens, $S =$ sample, Ge = germanium photodiode detector, $M =$ monochromator.

and the orientation of the crystallographic axes in the sample.

Laser action
The experimental arrangement for investigating the laser action in Cr-Mg$_2$SiO$_4$ is shown in Figure 2(a), and drawn schematically in Figure 2(b). The sample is placed at the center of a stable resonator formed by two 30cm-radius mirrors placed 20cm apart. The mirrors were dielectric coated to transmit the 532nm pump beam, and to have high reflectivity in the 1150-1250nm spectral range. It should be noted that this spectral region does not correspond to the peak of fluorescence spectrum, but was chosen to minimize background absorption. The sample was longitudinally pumped by frequency-doubled 532nm, 10ns FWHM pulses from a Q-switched Nd:YAG laser (Quantaray DCR-11) operating at a 10Hz repetition rate. The pump beam was linearly polarized along the b axis and propagated along the a axis of the sample. It was focused 3cm before the sample by a 25cm-focal-length lens. The radius of the pump beam at the center of the sample is ~600μm. The output from the laser cavity was analyzed by a 0.25m monochromator, monitored by a germanium photodiode detector and dis-

Picosecond/Gigahertz Photodetectors and Diode Laser Systems

Series PL Diode Lasers generate ultrashort, high power pulses at all popular wavelengths. Applications include:
- Bandwidth testing of optical fibers.
- Optical receiver testing.
- Optical oscilloscope/streak camera testing.

Series AR and ARX Photodetectors are used to detect ultrashort pulses and high-frequency modulated CW light. Applications include:
- Mode-locked YAG/dye laser pulse detection.
- Pulse dispersion measurements in optical fibers.
- High frequency laser diode/LED detection.

If you are looking for high-quality, affordable picosecond/gigahertz photodetectors and diode laser systems, please contact Antel for complete technical information and prices.

3258 MAINWAY • BURLINGTON, ONTARIO • CANADA • L7M 1A8
TELEPHONE 416/335-5507 TELEX 061-8489 FAX 416/335-5121

Circle No. 11
MORE NEW PRODUCTS FROM PULNIX

ASYNCHRONOUS RESET, VARIABLE SHUTTER AND INTEGRADABLE CCD

The PULNIX TM-845 camera features a high resolution (800 x 492 pixel) frame transfer CCD imager. The TM-845 offers both variable, asynchronous shuttering and random image integration in an extremely small (1.25" x 1.75" x 5.50") camera. Sync is internal/external.

Options include an external shutter control and a Peltier cooling attachment for optimum imaging in the integration mode. A CCIR version (TM-865) will be available soon.

REMOTE IMAGER CCD CAMERA

The PULNIX TM-540R remote imager CCD camera permits mounting of the lens/imager assembly within a very confined area. The 510 x 492 pixel imager is attached to the main camera module by a 48" flexible cable, which carries all video and power. The TM-540R comes standard with 48" remote (84" maximum distance); shorter distances are available by custom order.

To facilitate mounting, different versions of the imager module are offered. The TM-540R uses C-mount or special miniature lenses and accepts external sync.

PULNIX Offers the Most Complete Selection of Array Sizes Anywhere.

Choose the Right Camera

PULNIX is a leader in supplying the highest resolution solid-state cameras in miniaturized packages. Our new TM-840 CCD camera features a full 800 x 492 frame transfer array in a tiny, lightweight enclosure. We understand that truly cost-effective imaging systems never pay for unused resolving power. That's why we offer a full line of array types to meet your exact cost/performance specifications.

Cameras Built Your Way

Many of our innovative miniature cameras were developed in response to special customer needs. Custom factory adjustments, interfaces, cables, and enclosures are part of our everyday service. Our applications engineers are eager to assist you in providing the camera best suited for your system.

Now American Made

Our U.S. manufacturing facility has just expanded to better serve our customers. We now have even greater flexibility to deliver the camera you want, whether it's off the shelf or custom engineered.

Ask For Our Latest Catalog

The cameras shown above are just some of our many video cameras and accessories. We stock dozens of different monochrome and color solid-state array and linear array cameras, miniature and standard lenses, filters, close-up attachments, enclosures, and power supplies. Call our toll-free number today for a comprehensive catalog and further information.

All Cameras Feature A Full Three-Year Warranty!

The Company With Vision

PULNIX America, Inc., 770-A Lucerne Drive, Sunnyvale, CA 94086
Call Toll-Free 800-445-5444
Tel: 408-733-1560 Fax: 408-737-2968
Pulsed laser operation was readily obtained for pumping at or above the lasing threshold energy of 2.2 mJ. A single output laser pulse was obtained, implying a gain-switched operation, a consequence of pump-pulse duration being shorter than the lasing-level lifetime.

The spectrum peaks at 1235 nm and has a bandwidth FWHM of 25 nm. The measured slope efficiency is ~1.5 percent for the cavity configuration described above. With an optimized cavity, we expect the slope efficiency to increase substantially. We have observed laser action in this crystal for E, J, and c axes as well. This appears to be a unique property of this system, since most of the systems, including alexandrite, lase in only one preferred direction.

The chromium-activated forsterite system has a high potential to be a very useful and practical laser system in optical communications and ranging. The spectral range for laser emission is expected to extend from 850-1400 nm if the parasitic impurity absorption can be minimized by improving the crystal growth technique. The output at the low-energy end of this laser is of particular importance for transmission through optical fibers and eye-safe ranging. The large fluorescence bandwidth promises ultrashort pulse generation through mode-locked operation. Since large crystals can be readily grown, the system may be used as an amplifier medium in the near infrared region as well.

Acknowledgment

We would like to acknowledge Mr. Teruo Hiramatsu and Hamamatsu Photonics KK for help and support, and K. Yamagishi, H. Anzai, and Y. Yamaguchi of Mitsui Mining and Smelting Company for providing us with the crystals. The research is supported by National Aeronautics and Space Administration, Army Research Office, Hamamatsu Photonics KK and City College of New York Organized Research.

References

Meet the authors

The authors are associated with the Institute for Ultrastat Spectroscopy and Lasers (IUSL) and Photonics Laboratory (PAL) of the City College of New York. Vladimir Petricevic is a graduate student in electrical engineering. Swapan Kumar Gayen is a research associate at IUSL, and Robert R. Alfano is a Distinguished Professor of Science and Engineering, director of IUSL and PAL, and a member of Photonics Spectra's advisory board.

Judson HgCdTe Detectors

An assembly of high performers.

The Judson reputation for high quality, high performance PC HgCdTe IR detectors didn't just happen overnight. It was built on our ability to work with and meet each customer's requirements by assisting in the selection of an IR device to provide optimum performance at a specific wavelength.

Detector Specifications:
- Wavelength response: 2-22 μm
- Packages: Metal and Glass Dewars (77° K) Thermo-electric (240° K or 200° K) Joule-Thomson Cryostats (77° K)
- Sizes: 0.025 mm—4.0 mm square

Applications:
- Thermal Imaging
- CO₂ Laser Detection
- Missile Guidance
- FTIR Spectroscopy

Call Judson today at (215) 368-6900 for more information on our HgCdTe detectors and our complete line of IR devices, including Ge (0.8-1.8 micrometers), InAs (1-3.5 micrometers) and InSb (1-5.5 micrometers).

Judson HgCdTe Detectors

An assembly of high performers.

221 Commerce Drive
Montgomeryville, PA 18936
(215) 368-6900
TELEX 848120

Acknowledgment

We would like to acknowledge Mr. Teruo Hiramatsu and Hamamatsu Photonics KK for help and support, and K. Yamagishi, H. Anzai, and Y. Yamaguchi of Mitsui Mining and Smelting Company for providing us with the crystals. The research is supported by National Aeronautics and Space Administration, Army Research Office, Hamamatsu Photonics KK and City College of New York Organized Research.

References

Meet the authors

The authors are associated with the Institute for Ultrastat Spectroscopy and Lasers (IUSL) and Photonics Laboratory (PAL) of the City College of New York. Vladimir Petricevic is a graduate student in electrical engineering. Swapan Kumar Gayen is a research associate at IUSL, and Robert R. Alfano is a Distinguished Professor of Science and Engineering, director of IUSL and PAL, and a member of Photonics Spectra's advisory board.

Judson HgCdTe Detectors

An assembly of high performers.

The Judson reputation for high quality, high performance PC HgCdTe IR detectors didn't just happen overnight. It was built on our ability to work with and meet each customer's requirements by assisting in the selection of an IR device to provide optimum performance at a specific wavelength.

Detector Specifications:
- Wavelength response: 2-22 μm
- Packages: Metal and Glass Dewars (77° K) Thermo-electric (240° K or 200° K) Joule-Thomson Cryostats (77° K)
- Sizes: 0.025 mm—4.0 mm square

Applications:
- Thermal Imaging
- CO₂ Laser Detection
- Missile Guidance
- FTIR Spectroscopy

Call Judson today at (215) 368-6900 for more information on our HgCdTe detectors and our complete line of IR devices, including Ge (0.8-1.8 micrometers), InAs (1-3.5 micrometers) and InSb (1-5.5 micrometers).
Abstract

Room temperature vibronic laser action in trivalent chromium ion-doped forsterite (Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\)) is reported for the first time. The free running pulse laser emission is centered at 1235 nm of the broad \(\Delta_{2g}\) fluorescence band with a bandwidth of - 22 nm. The spectral range for laser emission is expected to cover the 800-1350 nm range if the parasitic absorption may be minimized, making it one of the most widely tunable solid state lasers.

In this paper we present the first room temperature vibronic pulsed laser operation of Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\). Forsterite is a naturally occurring gem\(^1\) which can be grown by the Czochralski method.\(^2\) The single crystal of Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\), used for spectroscopic and laser action measurements was grown at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Co., Ltd., Japan. The crystal is a 9 mm x 9 mm x 4.5 mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the b, c and a crystallographic axes of the crystal. The crystal contains 0.04 at.% of Cr\(^{3+}\) ions, which is equivalent to a chromium ion concentration of 6.9x10\(^{18}\) ions/cm\(^3\).

The room-temperature fluorescence and absorption spectra of Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\), for \(\vec{E} \parallel b\) crystallographic axis are shown in Fig. 1. The fluorescence spectrum of Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\) was excited by the 488-nm radiation from an argon-ion laser and recorded by a germanium photodiode detector-lock-in-amplifier combination at the end of a 0.25-m monochromator equipped with a 1000-nm blazed grating. The room-temperature spectrum is a broad band covering the wavelength range 700-1400 nm. The room-temperature fluorescence lifetime is 15 \(\mu\)s.

The absorption spectrum was taken with a Perkin-Elmer Lambda-9 spectrophotometer along the 4.5-mm path length of the sample. It is characterized by two broad bands centered at 740 nm and 460 nm attributed to the \(A_{2g}^\pm T_2\) and \(A_{2g}^\pm T_1\) absorptive transitions, respectively, of the Cr\(^{3+}\) ion. The broad, weak absorption band between 850-1150 nm is not observed in the excitation spectrum.\(^3\) This indicates that the origin of this

Fig. 1 Absorption and fluorescence spectra of Cr\(^{3+}:\text{Mg}_2\text{SiO}_4\) at room temperature. Both the spectra were taken for \(\vec{E} \parallel b\)-axis and excitation along a-axis. The thickness of the sample along a-axis is 4.5 mm.

423
absorption is not in transitions in Cr$^{3+}$ ion, but in some other impurity ions, e.g., Fe$^{2+}$ in the host crystal. It is evident from Fig. 1 that this background absorption overlaps a significant spectral region of Cr$^{3+}$:Mg$_2$SiO$\sb{4}$ emission, and inhibits laser action in that region.

The experimental arrangement for investigating the laser action in Cr$^{3+}$:Mg$_2$SiO$\sb{4}$ consisted of a stable resonator formed by two 30-cm-radius mirrors placed 20 cm apart. The mirrors were dielectric coated to transmit the 532-nm pump beam, and to have high reflectivity in the 1150-1250 nm spectral range. The reflectivity of the back mirror is 99.9%, while that of the output mirror is -98% for normal incidence over the specified wavelength range. It is to be noted that this spectral region does not correspond to the peak of the fluorescence spectrum, but was chosen so that the background absorption is minimal. The sample was longitudinally pumped by frequency-doubled 532-nm, 10-ns full-width-at-half-maximum (FWHM) pulses from a Q-switched Nd:YAG laser (Quanta Ray DCR-1) operating at a 10-Hz repetition rate, employing an unstable resonator configuration. The pump beam was linearly polarized along the b axis and propagated along the a axis of the sample. It was focused 3 cm before the sample by a 25-cm-focal-length lens. The radius of the pump beam at the center of the sample is ~600 µm. The output from the laser cavity was analyzed by a 0.25-m monochromator and monitored by a germanium photodiode detector. The output of the detector was displayed on a fast oscilloscope. No dispersive element was placed in the cavity and the laser operated in a free-running pulsed mode.

Pulsed laser operation was readily obtained for pumping at or above the lasing threshold of 2.2 mJ. A single output laser pulse was obtained, implying a gain-switched operation which is a consequence of pump-pulse duration being shorter than the lasing-level lifetime. The amplitude and duration of the laser pulse varied, as expected, with the pulse-to-pulse energy fluctuation of the pump laser. The temporal duration (FWHM) of the output laser pulse varied from 200 ns at the threshold to 100 ns at 2.4 times the threshold energy. The delay between the peak of the pump pulse and the peak of the Cr$^{3+}$:Mg$_2$SiO$\sb{4}$ laser pulse also varied with pump-pulse energy, from 700 ns at the threshold to 200 ns at 2.4 times the threshold energy. This indicates that the laser cavity is highly lossy, and several hundred round trips are required to build up the laser oscillation in the cavity.

The laser threshold and slope efficiency were measured for the cavity used in this experiment and the data is displayed in Fig. 2. The laser oscillation starts to build up at an absorbed input energy of 2.2 mJ. The measured slope efficiency of 1.4% is rather low, and indicates large losses in the cavity. These losses include ~13% reflection loss from the uncoated sample surfaces, scattering from inhomogeneities in the crystal, and a large mismatch between the size of the pump beam and the Cr$^{3+}$:Mg$_2$SiO$\sb{4}$ cavity modes in the sample.

The spectrum of Cr$^{3+}$:Mg$_2$SiO$\sb{4}$ laser is shown in Fig. 3, for an absorbed pump energy of 3.4 mJ. The spectrum peaks at 1235 nm and has a bandwidth (FWHM) of 22 nm. The spectral range is limited at the high energy end by the mirror transmission and the impurity absorption, while at the low energy end by the mirror transmission as well as by the decrease in fluorescence intensity.
Fig. 3 The spectrum of free-running Cr3+:Mg\textsubscript{2}SiO\textsubscript{4} laser for the resonator configuration described in the text.

In summary, pulsed laser operation has been obtained in Cr3+:Mg\textsubscript{2}SiO\textsubscript{4} at room temperature. The laser emission is centered at 1235 nm and has a bandwidth of ~22 nm. The spectral range for laser emission is expected to extend from 850-1300 nm if the parasitic absorption may be minimized by improved crystal growth technique, making it one of the most widely tunable solid state lasers in this spectral region. The large fluorescence bandwidth of the crystal promises ultrashort pulse generation through mode locked operation.

The research is supported by National Aeronautics and Space Administration, Army Research Office, Hamamatsu Photonics KK and CCNY Organized Research.

References

Laser action in chromium-activated forsterite for near infrared excitation

V. Petricevic, S. K. Gayen, and R. R. Affano

CUNY-City College, Institute for Ultrafast Spectroscopy & Lasers, New York, New York 10031.

Received 8 August 1988.

Sponsored by Govind P. Agrawal, AT&T Bell Laboratories.

0003-6935/88/204162-02S02.00/0.

Recently, we reported1-3 room-temperature pulsed laser action in chromium-activated forsterite (Cr:Mg\textsubscript{2}SiO\textsubscript{4}). The free-running laser output was centered at 1235 nm with a spectral bandwidth (full width at half-maximum, FWHM) of 22 nm. The laser emission was stimulated by the 532-nm excitation of the green-red absorption band of the system. The crystal is characterized by a shallow absorption band spanning the 850-1200-nm wavelength range, which overlaps a significant portion of the emission spectrum and was previously thought to inhibit laser action in that region. In this communication, laser action in chromium-doped forsterite for 1064-nm excitation of this band is reported. The near infrared absorption thus turns out to be effective in populating the initial level of the lasing transition.

The absorption and fluorescence characteristics of Cr:forsterite in the near infrared spectral region are shown in Fig. 1. The room-temperature absorption spectrum is a double-humped band covering the 850-1200-nm wavelength range. The room-temperature fluorescence spectrum extends from 1000 to 1400 nm and peaks at 1140 nm. At liquid nitrogen temperature both the spectra show a sharp zero-phonon line at 1093 nm followed by elaborately structured vibrational sidebands. A detailed analysis of the vibrational sidebands is out of the scope of the present paper and will be presented in a future publication. The fluorescence lifetime is 15 \mu s at room temperature and 20 \mu s at liquid nitrogen temperature.

The cavity arrangement used for obtaining laser action in Cr:Mg\textsubscript{2}SiO\textsubscript{4} has been described elsewhere.1 An identical arrangement was used in this measurement, except that the separation between the front and the back mirrors was 40 cm, and the pump beam was focused 5 cm in front of the sample by a 50-cm focal-length lens. The fundamental and second harmonic emissions from a Q-switched Nd:YAG laser (Quanta Ray DCR-1) operating at a 10-Hz repetition rate were used for excitation of the near infrared and visible bands, respectively. Pulsed laser action was readily observed for both the 1064- and 532-nm pumping at or above the respective thresholds. To switch from one pump wavelength to the other, one merely had to change a filter in the beam path to transmit the desired wavelength and block the other. The amplitude and duration of the Cr:Mg\textsubscript{2}SiO\textsubscript{4} laser

Table I. Properties of Laser Emission for the Two Excitation Wavelengths

<table>
<thead>
<tr>
<th>Property</th>
<th>1064 nm</th>
<th>532 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing threshold (absorbed energy)</td>
<td>1.25 mJ</td>
<td>1.37 mJ</td>
</tr>
<tr>
<td>Slope efficiency</td>
<td>1.8%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Spectral bandwidth (FWHM)</td>
<td>25 nm</td>
<td>22 nm</td>
</tr>
<tr>
<td>Center wavelength</td>
<td>1235 nm</td>
<td>1235 nm</td>
</tr>
</tbody>
</table>
pulse, as well as its delay with respect to the pump pulse, varied as expected with the pulse-to-pulse energy fluctuation of the pump pulses. However, for a similar level of excitation and within the time resolution of the experiment, there was no appreciable difference in the delay between the pump pulse and the output laser pulse for the two pump wavelengths. The laser thresholds and slope efficiencies for the two excitation wavelengths, 1064 and 532 nm, are shown in Fig. 2. The spectra of the free-running laser for pumping at 1064 and 532 nm are displayed in Figs. 3(a) and (b), respectively. Table I summarizes and compares the characteristics of laser emission for the two excitation wavelengths.

The close similarity of laser parameters clearly indicates that the infrared band is responsible for laser action for both the 532- and 1064-nm excitations. For 532-nm pumping there is a fast transfer of excitation from the levels directly pumped to the lasing level. Chromium-activated forsterite thus has the useful property that it can be pumped by the fundamental of Nd:YAG or Nd:glass lasers, and no frequency doubling is necessary. A detailed understanding of the spectroscopic properties that lead to this behavior of this system is an interesting problem and will be presented in an upcoming publication.

We thank K. Yamagishi of Mitsui Mining and Smelting Co. of Japan for providing us the Cr:MgSiO₄ crystals used in this study. The research is supported by National Aeronautics and Space Administration, Army Research Office, and City College of New York Organized Research.

Note added in proof: We obtained cw laser action in chromium-activated forsterite pumping with 1064-nm cw radiation from a Nd:YAG laser. Using a single plate birefringent filter in pulsed mode, tuning over 1167–1270 nm range has also been demonstrated.

References
Laser action in chromium-activated forsterite for near-infrared excitation: is Cr$^{4+}$ the lasing ion?

V. Petrović, S. K. Gayen, and R. R. Alfano
Institute for Ultraviolet Spectroscopy and Lasers, Departments of Physics and Electrical Engineering,
City College of New York, New York, New York 10031

(Received 9 May 1988; accepted for publication 18 October 1988)

Room-temperature pulsed laser action has been obtained in chromium-activated forsterite (Cr:Mg$_2$SiO$_4$) for excitation of the near-infrared absorption band of the system by the 1064 nm radiation from a Nd:YAG laser. The characteristics of laser emission are similar to those observed for 532 nm pumping. It is suggested that the laser action is due to a “center” other than the trivalent chromium (Cr$^{3+}$), presumably the tetravalent chromium (Cr$^{4+}$).

Recently, we reported$^{1-4}$ room-temperature pulsed laser action in chromium-activated forsterite (Cr:Mg$_2$SiO$_4$). The free-running laser output was centered at 1235 nm with a spectral bandwidth of 22 nm. The laser emission was stimulated by the 532 nm excitation of the green-red absorption band of the system. This absorption band, together with the one in the blue spectral region, originates from transitions between crystal-field-split states of the Cr$^{3+}$ ion. The origin of the shallow absorption band spanning the 850-1200 nm wavelength range has not been determined with any certainty, and was tentatively attributed to other impurity ions.5 This absorption band overlaps a significant portion of the emission band of the system and inhibits laser action in that region. Identical absorption band has been observed in gadolinium scandium gallium garnet crystals codoped with trivalent chromium and neodymium ions (GSGG:Nd$^{3+}$, Cr$^{3+}$).5,6 The chromium ion in this crystal acts as an efficient sensitizer of Nd$^{3+}$ emission, resulting in a significant reduction in laser efficiency relative to the Nd$^{3+}$:YAG crystal.7,8 The near-infrared absorption band of the system. This absorption band, together with the one in the blue spectral region, originates from transitions between crystal-field-split states of the Cr$^{3+}$ ion. The origin of the shallow absorption band spanning the 850-1200 nm wavelength range has not been determined with any certainty, and was tentatively attributed to other impurity ions.5 This absorption band overlaps a significant portion of the emission band of the system and inhibits laser action in that region. Identical absorption band has been observed in gadolinium scandium gallium garnet crystals codoped with trivalent chromium and neodymium ions (GSGG:Nd$^{3+}$, Cr$^{3+}$).5,6 The chromium ion in this crystal acts as an efficient sensitizer of Nd$^{3+}$ emission, resulting in a significant reduction in laser efficiency relative to the Nd$^{3+}$:YAG crystal.7,8 The near-infrared absorption band of the system.

The absorption and fluorescence spectra of the center in the near-infrared spectral region are shown in Figs. 1 and 2, respectively. The room-temperature absorption spectrum is a double-humped band covering the 850-1200 nm wavelength range. The room-temperature fluorescence spectrum extends from 1000 to 1400 nm and peaks at 1140 nm. At liquid-nitrogen temperature, both the spectra show a sharp zero-phonon line at 1093 nm followed by elaborately structured vibrational sidebands. A detailed analysis of the vibrational sidebands is out of the scope of the present letter and will be presented in a future publication. The fluorescence lifetime is 15 μs at room temperature and 20 μs at liquid-nitrogen temperature.

The cavity arrangement used for obtaining laser action in Cr:Mg$_2$SiO$_4$ has been described elsewhere.9 An identical arrangement was used in this measurement, except that the separation between the front and the back mirrors was 40 cm, and the pump beam was focused 5 cm in front of the sample by a 50 cm focal length lens. The fundamental and the second-harmonic emissions from a Q-switched Nd:YAG laser (Quanta Ray DCR-11 operating at a 10 Hz repetition rate were used for excitation of the near infrared and the visible bands, respectively. Pulsed laser action was readily observed for both the 1064 nm and the 532 nm pumping at or above the respective thresholds. To switch from one pump wavelength to the other, one merely had to change a filter in the beam path to transmit the desired wavelength and block the other. The amplitude and duration of the Cr:Mg$_2$SiO$_4$ laser pulse, as well as its delay with respect to the pump pulse, varied, as expected, with the pulse-to-pulse energy fluctuation of the pump pulses. However, for a similar level of excitation and within the time resolution of the experiment, there was no appreciable difference in the delay between the pump pulse and the output laser pulse for the two pump wavelengths. The laser thresholds and slope efficiencies for the two excitation wavelengths, 1064 and 532 nm, are shown in Fig. 3. The spectra of the free-running laser for pumping at 1064 and 532 nm are displayed in Figs. 4(a) and 4(b), respectively. Table I summarizes and compares...
the characteristics of laser emission for the two excitation wavelengths.

The data presented so far clearly indicate that the same center is active in laser action for both the 532 nm and 1064 nm excitations. For the 532 nm pumping there is a fast transfer of excitation from the levels directly pumped to the lasing level. The absorption at 532 nm and for that matter, the entire red-green band has been attributed to $A_s - T^*$ transitions in Cr$^{3+}$ ion. If that is the case, then the Cr$^{4+}$ ions act as a sensitizer, rapidly and efficiently transferring energy to the lasing center. However, the lasing center itself may have a higher lying absorption band that overlaps the Cr$^{3+}$ absorption in the red-green spectral region. Similar contributions to absorption in this spectral region have indeed been suggested for Cr$^{4+}$ in GSGG, and for iso electronic V$^{3+}$ in corundum. The growth of population in the lasing level for 532 nm pumping will then be due to vibrational nonradiative transitions which are very fast. Probably, both the interband nonradiative transitions, and the Cr$^{3+}$-lasing center energy transfer are effective in populating the lasing level for excitation in the visible. However, for the 1064 nm pumping, the lasing band is directly populated.

The key question that remains to be answered is, what is the origin of this lasing center. Trivalent chromium enters the forsterite crystal in two distinct sites, one with mirror (M2) and the other with inversion (M1) symmetry. Generally, the ions in the mirror sites are optically active. The polarized absorption spectra of chromium-activated forsterite have been analyzed in terms of Tanabe-Sugano formalism, and no infrared absorption band is predicted for Cr$^{1+}$ ions in mirror sites. For Cr$^{1+}$ ions in inversion sites, even ligand field-induced electric-dipole transitions are not possible. Dynamic interaction with lattice vibrations may result in a transient reduction of inversion symmetry, making transitions possible. However, such transitions are very weak and slow, as seen for Cr$^{2+}$ ions in inversion sites in alexandrite, where the fluorescence lifetime is -60 ms. The measured lifetime of 15 ms is too short for transitions within the states of a Cr$^{3+}$ ion in inversion site. It is highly unlikely that the infrared absorption is due to the Cr$^{3+}$ ions in inversion site.

Impurities other than chromium could be another possibility. Trivalent iron (Fe$^{3+}$) is a commonly occurring impurity in olivines, and exhibits a similar absorption band in the near infrared. However, the low-temperature spectrum of iron in olivine does not show the sharp-line structure as observed in chromium-activated forsterite. Chemical analysis of the sample did not indicate sufficient iron content to account for the observed absorption either.

A similar 850-1200 nm absorption band observed in Nd:Cr:GSGG was first assumed to be due to Cr$^{4+}$, and finally has been attributed to Cr$^{4+}$ centers. This band appears only in Cr-activated GSGG crystals and never in undoped or only Nd-doped crystals. The absorption coefficient of the band depends on the crystal growth condition and has been observed to vary over three orders of magnitude from a high of 2 cm$^{-1}$ down to 1×10^{-3} cm$^{-1}$ at 1061 nm, the
wavelength for Nd laser emission. After a series of careful tests for impurities and analytical chemistry studies, these authors established a correlation between the strength of this absorption and the level of divalent calcium impurity in the sample. Divalent calcium appears as an impurity in scandium oxide, the starting material for growing GSGG. Also, to promote the growth of garnet crystals a small amount of calcium oxide is sometimes added to the melt. The working hypothesis here is that the Ca$^{2+}$ causes Cr$^{3+}$ to change to Cr$^{4+}$, and the Cr$^{4+}$ ion on a tetrahedral site is responsible for the near-infrared absorption in question. In view of the similarities between the near-infrared absorption band in GSGG and forsterite, we tentatively assign the center in forsterite to Cr$^{4+}$ ion as well. The role of Ca$^{2+}$ is presumably played by Mg$^{2+}$ in forsterite. Substitution for Si$^{4+}$ in tetrahedrally coordinated sites is less frequent but possible, and may lead to tetrahedrally coordinated chromium ions in forsterite. Another possible identity of the lasing center may be the divalent chromium ion (Cr$^{2+}$) substituting for Mg$^{2+}$ in the inversion (M 1) site. It has been indicated that in distorted coordination sites, like the forsterite M 1 site, Cr$^{2+}$ may occur and be stable. According to the prediction of the crystal field theory such a center may account for the observed infrared absorption. The exact identification of the lasing center in chromium-activated forsterite still remains an interesting problem for further investigation.

Note added in proof. We have obtained cw laser action in chromium-activated forsterite by pumping the crystal with 1064 nm radiation from a cw Nd:YAG laser. By using a single-plate birefringent filter in pulsed mode, tuning over 1167-1345 nm has also been demonstrated.

We would like to acknowledge Dr. Alex Pertia, and Dr. John Caird of Lawrence Livermore National Laboratory for suggesting that the infrared absorption may be due to transitions in Cr$^{4+}$, and Dr. Roger Belt for providing a Cr: Nd: GSGG crystal and for helpful discussions. We thank K. Yamagishi of Mitsui Mining and Smelting Co. of Japan for providing us the Cr: Mg: SiO$_2$ crystals used in this study. The research is supported by the Army Research Office, National Aeronautics and Space Administration, and City College of New York Organized Research. Note: The submission date of this manuscript shows the priority of who obtained laser action in forsterite with the 1064 nm pumping first.
About the cover . . .

"Optics in 1988," our annual overview of the field, represents many of the principle advances in optics over the past year. While not meant to be all-inclusive, we have tried to highlight accomplishments in all areas, from classical geometric optics to modern quantum optics. Cover courtesy of CLARK DUNBAR/UNIPHOTO.
Bimodal Q distributions for the intracavity field in single-atom intracavity resonance fluorescence. The strength of the quantum fluctuations is inversely proportional to the size of the system, measured by the number of cavity photons needed to saturate the atomic transition. Figures (a) and (b) are plotted for saturation photon numbers of one and five, respectively.

Much attention has been paid to enhanced and inhibited spontaneous emission rates. Actually, cavity effects are much more diverse, even for the simplest configuration of a single atom transition. With cavity and atomic loss included, the quantum dynamics of this coupled system depend on the relative sizes of three parameters: the atomic decay rate, the cavity decay rate, and the coupling strength between the cavity mode and the atomic transition. Work at the University of Arkansas seeks to reach a global understanding of these dynamics.

Free-space behavior is recovered if the atom-field coupling strength is much smaller than the atomic and cavity decay rates. When it is not, the quantum statistics can differ markedly from free-space resonance fluorescence. A notable example of the possible behavior is the existence of bimodal states of the intracavity field. This is a single-atom version of absorptive optical bistability. Intracavity resonance fluorescence, therefore, provides a quantized version of a dissipative nonlinear dynamical system. It can be used to study the relationship between linear microscopic quantum mechanics and macroscopic nonlinearity, including the important questions that surround the subject of quantum chaos.

REFERENCES

MAJOR BREAKTHROUGH IN TUNABLE SOLID-STATE LASERS

V. PETRIEVIĆ, S.K. GAYEN, AND R.R. ALFANO
INSTITUTE FOR ULTRAFAST SPECTROSCOPY AND LASERS
PHOTONICS APPLICATION LABORATORY
DEPARTMENTS OF PHYSICS AND ELECTRICAL ENGINEERING
THE CITY COLLEGE OF NEW YORK
NEW YORK, N.Y.

Chromium-doped forsterite (Cr:Mg2SiO4) is a new member of the expanding family of tunable solid-state lasers. Forsterite is a member of the olivine family of crystals and like alexandrite, and emerald is a naturally occurring gem. Laser action in Cr:forsterite has been obtained for excitation by both the fundamental (1064 nm) and the second harmonic (532 nm) radiation from a Q-switched Nd:YAG laser. The laser emission peaks at 1235 nm, and to date has been tuned over the 1167-1270 nm wavelength range. In this review, a description of the spectroscopic and laser properties of forsterite laser crystal is presented.
Output energy of Cr:Mg2SiO4 laser as a function of input energy for (a) 1064 nm pumping, and (b) 532 nm pumping.

The room-temperature absorption spectrum of the crystal is characterized by three bands. For excitation with light polarized along the b-axis of the crystal, these bands span the 360–520 nm, 600–800 nm, and 850–1200 nm range. The 600 to 800 nm band changes dramatically with the polarization of the incident light, while the other two bands exhibit little significant change. The room-temperature fluorescence spectrum extends from 600–1400 nm.

At liquid nitrogen temperature, the fluorescence spectrum breaks up into three components and exhibits sharp line structures. The behavior of the fluorescence spectrum gives an indication that more than one center may be involved in the absorption and emission of radiation in this crystal. This is further substantiated by the wavelength-dependent fluorescence lifetime of the crystal. The room-temperature fluorescence lifetime for emission around 701 nm is 75 μsec while for emission in the lasing region it is 15 μsec.

Since the absorption spectrum of the crystal overlaps with a significant portion of the emission spectrum, laser action was obtained only in the infrared end, where the absorption losses are minimum. The sample was placed at the center of a stable resonator formed by two 30 cm radius mirrors. The mirrors were dielectric coated to transmit the 532 nm and 1060 nm pump beams, and to have high reflectivity in the 1150–1250 nm spectral range. Details of the cavity configuration have been presented elsewhere.

The sample was longitudinally pumped both by the 1064 nm fundamental, and the 532 nm second-harmonic radiation from a Q-switched Nd:YAG laser. Pulsed laser action was readily obtained for both the 1064 nm and the 532 nm pumping at or above the respective thresholds. The laser thresholds and slope efficiencies for the two excitation wavelengths, 1064 nm and 532 nm, are shown in the figure. The table summarizes and compares the characteristics of laser emission for the two excitation wavelengths.

To date, continuous tuning of the Cr:forsterite laser has been obtained over the 1167–1270 nm spectral range. A single-plate birefringent filter is used as a dispersive element in the laser cavity. Continuous wave laser operation was achieved using a chopped cw Nd:YAG radiation.

The forsterite crystals were provided by K. Yamagishi of Mitsui Mining and Smelting Co. of Japan. The research is supported by Army Research Office, National Aeronautics and Space Administration, Hamamatsu Photonics KK, and City College of New York Organized Research.

REFERENCES
Continuous-wave laser operation of chromium-doped forsterite

V. Petričević, S. K. Gayen,* and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, The City College of New York, New York, New York 10031

Received September 21, 1988; accepted March 12, 1989

Room-temperature continuous-wave laser action in chromium-activated forsterite (Cr:Mg2Si04) has been achieved for longitudinal pumping in a nearly concentric cavity by the 1064-nm radiation from a cw Nd:YAG laser. The laser emission is centered at 1244 nm and has a spectral bandwidth of 12 nm. An output-power slope efficiency of 6.8% is measured. The effective emission cross section is estimated to be \(\sim 1.1 \times 10^{-18} \) cm².

Chromium-doped forsterite (Cr:Mg2Si04), a new member of the family of tunable solid-state lasers, is emerging as a useful, important, and practical laser system for operation in the near-infrared spectral region. Recently we reported room-temperature pulsed laser action in this crystal for both 532- and 1064-nm pumping. The laser emission peaks at 1235 nm and is continuously tunable over the 1167-1345-nm spectral range. Successful operated tunable solid-state lasers such as alexandrite, emerald, Cr:GSGG, and other chromium-based crystals, together with Ti3+:Al2O3, span quite a different spectral range of 660-1090 nm. Chromium-activated forsterite is unique since it extends the spectral range further into the near infrared to 1345 nm. The most remarkable feature of the operating wavelength range of Cr:forsterite is that it lies near 1276 nm, a wavelength of zero material dispersion. The practical implication for optical communications is that the material dispersion will be minimal for a source that emits in the vicinity of this wavelength and hence would permit the maximum information capacity of the fiber to be exploited. This laser's spectral range also makes it suitable for eye-safe ranging and remote sensing.

Consequently, the cw operation of such a promising source of coherent radiation in the near infrared is of technological importance. Although a number of chromium-activated lasers have been operated in the cw mode, none covers the spectral range spanned by the Cr:forsterite laser. Successful pulsed operation does not ensure cw lasing either, as has been found for Nd:glass lasers. Room-temperature cw operation of a laser material, on the other hand, opens up the possibilities of the laser's being used in various oscillator and amplifier configurations. In this Letter we report, for the first time to our knowledge, the room-temperature cw laser operation of chromium-doped forsterite in the near-infrared spectral region.

The experimental arrangement used for obtaining cw laser action in Cr:forsterite is shown schematically in Fig. 1. The sample was placed at the center of a nearly concentric cavity formed by two 5-cm-radius mirrors. The input mirror was dielectric coated to transmit 70% of the 1064-nm pump beam and to have a reflectivity of 99.9% over the 1200-1400-nm wavelength range. The output mirror was similarly coated to have a reflectivity of 99% for the 1175-1250-nm range and to transmit 20% of 1064-nm pump beam. The single crystal of Cr:forsterite used in this study was grown by the Czochralski method at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Company, Ltd., Japan. The crystal is a 6 mm \(\times \) 6 mm \(\times \) 30 mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the \(a \), \(b \), and \(c \) crystallographic axes of the crystal. It contains \(2.8 \times 10^{18} \) chromium ions per cubic centimeter. The 6 mm \(\times \) 6 mm end faces of the crystal were broadband antireflection coated, such that the reflectivity over the 1050-1250-nm spectral range was less than 0.5%. The sample was sandwiched between two copper blocks to facilitate dissipation of heat.

The 1064-nm radiation from a cw Nd:YAG laser (Spectra-Physics Model 3460) was focused by a 75-mm focal-length lens to pump the sample longitudinally along its 30-mm path length. The pump beam propagated along the \(c \) axis and was linearly polarized along the \(b \) axis of the crystal. The beam was chopped at a duty factor (i.e., the ratio of the interval for which the beam is blocked to that for which the beam is open) of 9:1 to reduce heating effects. When the pump beam was not chopped, the Cr:forsterite laser operated at a 40% reduced power level, indicating the effect due to local heating. The measurements reported here were taken with a fixed cavity length corresponding to a cavity mode waist of 75 \(\mu \)m. The measurements reported here were taken with a fixed cavity length corresponding to a cavity mode waist of 75 \(\mu \)m. The

Fig. 1. Schematic diagram of the experimental arrangement for investigating cw laser action in Cr:forsterite: C, light chopper; F1, variable neutral-density filter; L, focusing lens; M1, input mirror; M2, output coupler; S, sample; F2, 1064-nm cutoff, Cr:forsterite laser light-transmitting filter; M, monochromator; D, germanium or PbS detector.
Fig. 2. Temporal behavior of the cw Cr:forsterite laser emission over the entire duration of the pump pulse (scale: 1 msec/cm).

waist of the pump beam at the center of the sample was 70 μm.

The transmitted 1064-nm light was blocked by cut-off filters. The output of the Cr:forsterite laser was monitored either by a slow PbS detector or by a fast germanium photodiode. A set of calibrated neutral density filters was used for output-power slope efficiency measurement. The spectrum of the free-running laser was recorded by a photodiode-lock-in-amplifier combination at the end of a 0.25-m monochromator equipped with a 1000-nm blazed grating.

Quasi-cw laser operation was readily obtained for pumping above the lasing threshold of 1.25 W of absorbed power. The laser output is polarized along the b axis of the crystal. The crystal could be pumped by a beam polarized along the a axis, but the emission would still be polarized along the b axis. The time evolution of laser output is displayed in the oscilloscope trace shown in Fig. 2.

The spectrum of free-running cw Cr:forsterite laser is shown in Fig. 3 for an absorbed pump power of 3 W. The spectrum looks similar to that for the pulsed mode; however, the peak is shifted from 1235 to 1244 nm and the bandwidth reduces to 12 nm compared with 25 nm for the pulsed case. The shift of the center wavelength is attributed to the transmission characteristics of the output coupler used in the cw lasing experiment. The reduction in spectral bandwidth indicates that a laser medium has to be driven harder for cw operation than for pulsed operation.

The cw output power of the Cr:forsterite laser as a function of the absorbed pump power was measured for the cavity used in this experiment, and the data are displayed in Fig. 4. The laser oscillation starts to build up at an absorbed input power of 1.25 W. The measured slope efficiency is 6.8%.

The experimentally obtained values of the absorbed pump power at the threshold and the slope efficiency together with known mirror reflectivities may be used to estimate a number of key laser parameters. The slope efficiency η is given by:

$$\eta = \frac{\lambda_p}{\lambda_c (T + L)}$$ \hspace{1cm} (1)

where T is the total transmission of the cavity mirrors and L is the cavity loss. Using the data in Fig. 4, we obtain a value of 12.7% for L. This value of L should be compared with the absorption losses of ~9% measured with a Perkin-Elmer Lambda 9 spectrophotometer. The disagreement between the two values indicates that additional small loss mechanisms, e.g., excited-state absorption and nonradiative relaxation, are operative as well.

The threshold pump power depends on the cavity losses and the effective emission cross section. An expression relating these parameters for a longitudinally pumped laser has been developed and is readily applicable to the present system and experimental conditions:

$$P_t = \frac{x E_p \omega_L^2 (L + T)(\alpha^2 + 1)}{4\sigma[1 - \exp(-\alpha L)]}$$ \hspace{1cm} (2)

where P_t is the incident threshold pump power; σ is the effective emission cross section; E_p is the energy of a pump photon; ω_L is the radius of the laser cavity mode in the crystal; α is the ratio ω_p/ω_L, where ω_p is the pump-beam radius; τ is the lasing state lifetime; α is the pump-beam absorption coefficient; and L is the length of the crystal. We estimate a value of 1.1 × 10^{-19} cm^2 for the effective emission cross section, using the measured threshold pump power (absorbed), $P_t[1 - \exp(-\alpha L)]$ of 1.25 W, the beam waist parameters
These absorption and emission bands are attributed to transitions within the states of a second center other than Cr\(^{3+}\), which has tentatively been identified as tetravalent chromium ion (Cr\(^{4+}\)). The details of the spectroscopic properties of Cr:forsterite, and the role played by the two centers, are interesting and intriguing. However, they are outside the scope of this Letter and will be presented in a forthcoming publication.

Both the emission line shape and the fluorescence lifetime used in emission cross-section calculation were measured by exciting the 850-1200-nm absorption band. It is these absorption and emission bands that are effective in laser action in Cr:forsterite.\(^{3,13}\) These absorption and emission bands are attributed to transitions within the states of a second center other than Cr\(^{3+}\), which has been tentatively identified as tetravalent chromium ion (Cr\(^{4+}\)). The details of the spectroscopic properties of Cr:forsterite, and the role played by the two centers, are interesting and intriguing. However, they are outside the scope of this Letter and will be presented in a forthcoming publication.

Both the emission line shape and the fluorescence lifetime used in emission cross-section calculation were measured by exciting the 850-1200-nm absorption band of the sample by 1064-nm radiation, thus ensuring that only the emission from Cr\(^{4+}\) ions is taken into account. The emission spectrum thus obtained has been reported earlier\(^{4,13}\) and hence is not repeated here. The value of the emission cross section was calculated by approximating the fluorescence spectrum mentioned above by a center wavelength and an emission linewidth. The fluorescence lifetime for 1064-nm excitation is 15 \(\mu\)sec, which is the value used for the radiative lifetime.

The value of the emission cross section obtained from the emission lifetime and line shape is \(3.3 \times 10^{-19}\) cm\(^2\), a factor of 3 larger than that estimated from the cw lasing threshold condition, Eq. (2). This large discrepancy may arise from two factors. First, there may be substantial nonradiative relaxation, which will imply that fluorescence lifetime is not a good approximation for the radiative lifetime used in the calculation. Second, excited-state absorption may be operative. The presence of such loss mechanisms has also been suggested from the discrepancy in the values of cavity loss discussed above.

From the emission cross section and threshold pump power, we estimate the threshold population inversion density from the threshold condition\(^{11}\):

\[2\alpha N_i l = L + T. \] (3)

A value of \(2 \times 10^{17}\) cm\(^{-3}\) for the population inversion is calculated. The key cw laser parameters are summarized in Table I.

The successful cw lasing of Cr:forsterite together with its large fluorescence bandwidth promises high-repetition-rate mode-locked operation (e.g., by synchronous pumping) for generating ultrashort pulses in the near infrared. Since large crystals may be readily grown, various types of oscillator and amplifier design are now possible.

We thank K. Yamagishi, H. Anzai, and Y. Yamaguchi of Mitsui Mining and Smelting Company, Japan, for providing us the crystal used in this measurement. The research is supported by the U.S. Army Research Office, the National Aeronautics and Space Administration, and City College of New York Organized Research.

* Present address, Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030.

References

Near infrared tunable operation of chromium doped forsterite laser

V. Petricevic, S. K. Gayen, and R. R. Alfano

When this work was done all authors were with City University of New York, City College, Institute for Ultrafast Spectroscopy and Lasers, New York, New York 10031; S. K. Gayen is now with Stevens Institute of Technology, Department of Physics & Engineering Physics, Hoboken, New Jersey 07030.

Received 1 December 1988.
0003-6935/89/091609-01/0.00/0.
© 1989 Optical Society of America.

Tunable, room temperature pulsed laser operation of a chromium-doped forsterite laser for 1064-nm pumping is reported. Using different sets of mirrors and a single birefringent plate as the intracavity wavelength selecting element, tunability over the 1167-1345-nm spectral range has been demonstrated.

The practical utility of an infrared solid state laser is determined, to a great extent, by the wavelength range over which it can be tuned effectively. Laser emission in the infrared is of technological importance for eye-safer ranging, remote sensing, and optical communication. A number of chromi-

![Fig. 1. Schematic diagram of the experimental arrangement used for wavelength tuning the Cr:forsterite laser.](image-url)

- F$_1$: 1064-nm transmitting, visible blocking filter.
- F$_2$: pump beam blocking, laser output transmitting filter.
- L: focusing lens.
- M: monochromator and detector.
- M$_1$: back mirror.
- M$_2$: output mirror.
- S: sample.
- T: birefringent plate tuning element.
The dispersive element used for frequency tuning the Cr:forsterite laser output was a single birefringent crystalline quartz plate provided by Apollo Lasers, Inc. The plate was a 30- × 31.75-mm rectangle, 0.5 cm thick, with the optic axis in the plane of the plate and parallel to the 30-mm side. The plate was inserted in the cavity at the Brewster angle with respect to the cavity axis, which is also the ray axis. The tuning of the laser output was effected by rotating the tilted plate about an axis perpendicular to its surface.

The single crystal of Cr:forsterite used in this study was grown by the Czochralski method at the Electronic Materials Research Laboratory of the Mitsui Mining & Smelting Co., Ltd., Japan. The crystal is a 6- × 6- × 30-mm rectangular parallelepiped with three mutually orthogonal axes oriented along the a, b, c, crystallographic axes of the crystal. The chromium-ion concentration in the crystal is \(2.8 \times 10^{17}\) cm\(^{-3}\). The 6- × 6-mm endfaces of the crystal are broadband antireflection coated, such that reflectivity over the 1050-1250-nm spectral range was <0.5%.

The sample was longitudinally pumped by the fundamental 1064-nm, 10-ns full width at half-maximum (FWHM) pulses from a Q-switched Nd:YAG laser (Quanta-Ray DCR-1) operating at a 10-Hz repetition rate. The spatial profile of the pump pulse was a Gaussian. The pump beam was linearly polarized along the a-axis and propagated along the c-axis of the sample. The 1064-nm beam was focused into the center of the sample by a 50-cm focal length lens. The waist of the cavity mode at the sample was ~225 \(\mu\)m. The position of the focusing lens was adjusted to optimize the overlap between the pump beam spot size and the cavity mode waist monitored by maximizing the laser output. The laser output was analyzed by a 0.25-m monochromator equipped with a 1000-nm blazed grating and monitored by a fast germanium photodiode.

The first proof of wavelength tunability was that for four different output couplers, A, B, C, and D (free-running laser outputs were centered at 1235, 1200, 1192, and 1250 nm, respectively.

With the birefringent plate inserted in the cavity, smooth tuning was obtained and the result is displayed in Fig. 2.

![Fig. 2](image-url)
Fig. 2. Ratio of Cr:forsterite laser output \(E_O\) to the absorbed pump energy \(E_p\) as a function of wavelength. The curve in the center was taken with output coupler A, the one to the left with output coupler B, and the curve to the right with a set of mirrors coated for the 1275-1375-nm range. The transmission characteristics of the mirrors and output couplers are described in the text.
The tuning curve taken with output coupler A shows the ratio of the output laser energy to the absorbed input energy as a function of wavelength, spanning the 1205-1268-nm spectral range. At the peak of the tuning curve at 1220 nm, the output laser pulse energy is ~7 μJ/pulse for an input absorbed energy of 0.9 mJ/pulse.

The tuning curve on the left covering 1167-1206 nm was obtained with output coupler B described earlier in the text. The laser output peaks at 1200 nm with an energy per pulse of 125 μJ for an absorbed input pulse energy of 1.9 mJ. This order of magnitude larger output power for this output coupler is attributed to its higher transmission (13% at 1200 nm) compared with that for output coupler A (<2% over the tuning range). The free-running output slope efficiencies for the two output couplers, 21% for Coupler B compared with 4% for coupler A, also reflect the same behavior. The lasing threshold of 317 μJ for output coupler B is a factor of ~3.5 higher than that for coupler A which is expected since the cavity with coupler B is lossier than the one with output coupler A, and is consistent with the respective output slope efficiencies. The tuning curve on the right was obtained using a pair of mirrors coated for the 1275-1375-nm range. It covers the 1236-1345-nm range. The output peaks at 1245 nm with an energy per pulse of 85 μJ for an absorbed pump energy of 2.4 mJ. The free-running output slope efficiency for this pair of mirrors was 12% with a lasing threshold of 0.27 mJ. It should be noted that we have obtained similar tunable operation for 532-nm and 630-nm pumping as well.

In summary, we have demonstrated continuously tunable operation of a Cr:forsterite laser over the 1167-1345-nm spectral range. At the peak of the tuning curve at 1200 nm an output of 125 μJ/pulse is obtained, with an output to absorbed input energy ratio of 6.6%. A maximum output slope efficiency of ~21% has been obtained so far.

We would like to acknowledge K. Yamagishi, M. Anzai, and Y. Yamaguchi of Mitsui Mining & Smelting Co. for growing the forsterite crystal, Ralph Page of Apollo Lasers, Inc. for providing us with the birefringent plate used as the tuning element in this study, and Y. Budansky for technical help. The research is supported by Army Research Office and National Aeronautics and Space Administration.

References

LASER AND SPECTROSCOPIC PROPERTIES OF CHROMIUM-ACTIVATED FORSTERITE

V. Petricevic, S. K. Gayen* and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers
Departments of Physics and Electrical Engineering
City College of New York
New York, NY 10031

Abstract

Room-temperature pulsed laser action has been obtained in chromium-activated forsterite (Cr:Mg₂SiO₄) for both 532-nm and 1064-nm pumping. Free running laser emission in both cases is centered at 1235 nm and has bandwidth of ~30 nm. Slope efficiency as high as 22% has been measured. Using different sets of output mirrors and a single birefringent plate as the intracavity wavelength-selecting element tunability over the 1167-1258 nm spectral range has been demonstrated. Continuous-wave laser operation at room temperature has been obtained for 1064-nm pumping from a cw Nd:YAG laser. The output power slope efficiency is 5.3%. The gain cross section is estimated to be 1.1×10^{-19} cm². Spectroscopic studies suggest that the laser action is due to a 'center' other than the trivalent chromium (Cr³⁺), presumably the tetravalent chromium (Cr⁴⁺) in a tetrahedrally coordinated site.

I. INTRODUCTION

Recently, we have reported room-temperature pulsed laser action in chromium-doped forsterite (Cr:Mg₂SiO₄) for both 532-nm and 1064-nm excitation. Laser emission is continuously tunable over the 1167-1258 nm spectral range, with a potential for extending the tuning range beyond 1300 nm. This wavelength range is of great importance in optical communication and eye-safe ranging. The large bandwidth of the laser emission promises generation of ultrashort pulses through mode-locked operation. Large crystals of chromium-doped forsterite can be grown by Czochralski method, which means that this crystal has a potential to be used as an amplifier medium in the near infrared. Furthermore, the successful cw laser operation of Cr forsterite has the practical implication that various types of laser and amplifier designs are possible.

On the other hand, spectroscopy of chromium-doped forsterite is very unusual and intriguing. It is the first chromium-activated laser crystal, to our knowledge, where the tetravalent chromium ion (Cr⁴⁺) in a tetrahedral site is presumably responsible for laser action in the near infrared.

In this paper we review the lasing and spectroscopic properties of this new and important tunable solid-state laser crystal.
II. CRYSTAL PROPERTIES AND SPECTROSCOPY

Forsterite is a member of the olivine family of crystals. A unit cell of forsterite has four formula units in an orthorhombic structure of the space group Pbnm. The unit cell dimensions are: a=4.78Å, b=10.22Å, and c=5.99Å. The Cr³⁺ ion substitutes for the Mg²⁺ ion in two distinct octahedrally coordinated sites: one (M1) with inversion symmetry (C₁) and the other (M2) with mirror symmetry (C₃). The occupation ratio of the two sites by the Cr³⁺ ion is M1:M2=3:2.

Both the single crystals of Cr:Mg₂SiO₄ used for spectroscopic and laser experiments were grown by the Czochralski method at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Co., Ltd., Japan. The first crystal, referred to as sample 1 hereafter, is a 9mm×9mm×4.5mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the b, c, and a crystallographic axes of the crystal. It contains 0.04 at. % of Cr ions which is equivalent to a chromium ion concentration of 6.9x10¹⁸ ions/cm³. The second crystal (sample 2) is a 6mm×6mm×30mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the a, b, c, crystallographic axes of the crystal. It contains 2.8x10¹⁸ chromium ions per cm³. The 6mm×6mm faces of the crystal were broad-band anti-reflection coated, such that the reflectivity over the 1050-1250 nm spectral range is less than 0.5%.

The room-temperature fluorescence and absorption spectra of Cr:Mg₂SiO₄, taken with sample 1 for E||b axis are shown in Fig. 1.

![Absorption and fluorescence spectra of Cr:Mg₂SiO₄, at room temperature. Both the spectra were taken for E||b axis and excitation along a axis. The thickness of the sample along a axis is 4.5 mm.](image)

The room-temperature fluorescence is a broad band covering the wavelength range from 680-1400 nm. The absorption spectrum is characterized by two broad bands centered at 740 nm and 460 nm, attributed to the "A₂ + "T₂ and "A₂ + "T₁ transitions, respectively, of the Cr³⁺ ion. The broad, weak absorption band spanning the 850-1200 nm range is similar to the one observed in chromium-doped GSGG and is attributed to transitions between states in another 'center', presumably the tetravalent Cr⁴⁺ ion in a tetrahedral site. This
absorption band overlaps a significant portion of Cr:Mg$_2$SiO$_4$ emission, and inhibits laser action in that region.

The absorption and fluorescence spectra of the 'center' in the near infrared spectral region are shown in Fig. 2. The room-temperature absorption spectrum is a double-humped band covering the 350-1200 nm wavelength range. The room-temperature fluorescence spectrum, excited by 1064-nm radiation from a cw Nd:YAG laser extends from 1000-1400 nm and peaks at 1140 nm. At liquid nitrogen temperature both the spectra show a sharp zero-phonon line at 1093 nm followed by elaborately structured sidebands. The fluorescence lifetime is 15 μs at room-temperature and 20 μs at liquid nitrogen temperature.

![Fig. 2. Near infrared absorption and fluorescence spectra of Cr:Mg$_2$SiO$_4$, for 1064-nm excitation at room temperature (solid line) and liquid-nitrogen temperature (broken line) for E∥b axis.](image)

III. PULSED LASER ACTION

The first laser experiments were conducted with sample 1 in a stable cavity. Details of the cavity arrangement have been described elsewhere. The fundamental and the second harmonic emissions from a Q-switched Nd:YAG laser operating at a 10-Hz repetition rate were used for excitation of the near-infrared and the visible bands, respectively. Pulsed laser action was observed for both the 1064-nm and the 532-nm pumping at or above the respective thresholds of 1.25 mJ and 1.37 mJ of absorbed energy. The amplitude and duration of the Cr:Mg$_2$SiO$_4$ laser pulse, as well as its delay with respect to the pump pulse, varied with the pulse-to-pulse energy fluctuation of the pump pulses. However, for similar level of excitation and within the time resolution of the experiment, there was no appreciable difference in the delay between the pump pulse and the output laser pulse for the two pump wavelengths. The spectra of the free-running Criforsterite laser for both 1064-nm and 532-nm pumping peaked at 1235 nm and had FWHM of 30 nm and 27 nm, respectively. These facts clearly indicate that the same 'center' is active in laser action for both the 532-nm and 1064-nm excitations. For 532-nm pumping there is a fast transfer of excitation from the levels directly pumped to the lasing level. In case of 1064-nm pumping, the lasing level is directly populated. The output power slope efficiencies were 1.8%
for 1064-nm pumping and 1.4% for 532-nm pumping, indicating high losses in the cavity.

To improve the laser performance by reducing the losses anti-reflection-coated sample 2 was used, and care was taken to overlap the pump beam and cavity mode accurately. The sample was longitudinally pumped by the fundamental 1064-nm, 10-ns pulses from a Q-switched Nd:YAG laser in a cavity similar to that used earlier. An output power slope efficiency of 22% was obtained using an output coupler having 87% reflectivity over the lasing region.

IV. TUNABLE OPERATION OF FORSTERITE LASER

Tunable operation of Cr:forsterite laser has been obtained over the 1167-1268 nm spectral range. A single birefringent crystalline quartz plate was inserted in the cavity at Brewster's angle with respect to the cavity axis as the intracavity wavelength-selective element. Smooth tuning over the 1167-1268 nm spectral range was obtained by rotating the tilted plate about an axis perpendicular to its surface and the result is displayed in Fig. 3.

![Fig. 3. The ratio of Cr:forsterite laser output (E_L) to the absorbed pump energy (E_p) as a function of wavelength. The curve to the right was taken with an output coupler having 98% reflectivity for 1200-1300 nm range, and one to the left with an output coupler with reflectivity that varied from 99% at 1150 nm to 87% at 1200 nm. At the peak of the tuning curve at 1220 nm, the output laser energy is ~ 7 µJ/pulse for an absorbed pump energy of 0.9 mJ/pulse. Similar tunable operation has been obtained for 532-nm pumping as well.](image)

IV. CW LASER OPERATION

To obtain cw laser action in Cr:forsterite, sample 2 was placed at the center of a nearly concentric cavity formed by two 5-cm radius mirrors. The output mirror had - 1% transmission for the 1175-1250 nm range. The 1064-nm radiation from a cw Nd:YAG laser was focused
by a 75-mm focal length lens to longitudinally pump the sample along the 30-mm path length. The pump beam propagated along the c axis and was linearly polarized along the b axis of the crystal. The pump beam was chopped at a duty factor of 9:1 to reduce heating effects. When the pump beam was not chopped, the Cr:forsterite laser operated at 40% reduced power, indicating the effect due to local heating.

Quasi-cw laser operation was readily obtained for pumping above the lasing threshold of 1.25 W of absorbed power. The spectrum of the free-running cw Cr:forsterite laser peaks at 1244 nm and has a bandwidth of 12 nm.

Fig. 4. Output power of the cw Cr:forsterite laser as a function of absorbed pump power.

The cw output power of the Cr:forsterite laser as a function of the absorbed pump power is displayed in Fig. 4. The measured slope efficiency is 6.8%. The experimentally obtained values of the absorbed pump power at the threshold and the slope efficiency together with known mirror reflectivities have been used to estimate a number of key laser parameters. The round-trip cavity loss is estimated to be 12.7%. The effective emission cross section is $1.1 \times 10^{-18} \text{cm}^2$, and threshold inversion density is $2 \times 10^{17} \text{cm}^{-3}$. Important laser and spectroscopic properties of Cr:forsterite are summarized in Table 1.
TABLE 1 Spectroscopic and laser properties of Cr:forsterite

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major pump bands</td>
<td>850-1200 nm, 600-850 nm, and 350-550 nm</td>
</tr>
<tr>
<td>Fluorescence band</td>
<td>680-1200 nm</td>
</tr>
<tr>
<td>Room temperature fluorescence lifetime</td>
<td>15 μs</td>
</tr>
<tr>
<td>Cr-ion concentration</td>
<td>(-7\times10^{18}) ions/cm³</td>
</tr>
<tr>
<td>Lasing wavelength (center)</td>
<td>1235 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>1244 nm (cw)</td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>- 30 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>- 12 nm (cw)</td>
</tr>
<tr>
<td>Tuning range</td>
<td>22 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>5.3 cm² (cw)</td>
</tr>
<tr>
<td>Effective emission cross section</td>
<td>1.1\times10^{-19} cm²</td>
</tr>
</tbody>
</table>

V. ACKNOWLEDGEMENTS

We would like to acknowledge K. Yamagishi, H. Anzai and Y. Yamaguchi of Mitsui Mining and Smelting Co., Japan for providing us the crystals used in these measurements. The research is supported by Army Research Office, National Aeronautics and Space Administration, and City College of New York Organized Research.

*Present Address: Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030.

REFERENCES

Chromium-Activated Forsterite Laser

V. Petricevic
Institute for Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, City College of New York, New York, New York 10031

S. K. Gayen
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, City College of New York, New York, New York 10031

Abstract

Spectroscopic, quantum electronic and laser characteristics of chromium-doped forsterite (Cr:Mg2SiO4) are presented. Spectroscopic data suggest that the lasing center in chromium-doped forsterite is tetravalent chromium ion (Cr4+), not the common trivalent chromium (Cr3+).

Introduction

Chromium-doped forsterite (Cr:Mg2SiO4) laser has emerged as an important member of the ever growing family of tunable solid state lasers based on chromium ion as the lasing center. Both pulsed and continuous-wave laser operation have been obtained for 532-nm, 629-nm, and 1064-nm pumping, and the tuning range now covers the 1167 - 1345 nm range. This wavelength range covers the region of minimum material dispersion for optical fibers. Together with the chromium-based lasers tabulated by Caird et al., and more recently developed chromium-doped crystals of Cagalogeranganate structure, lasers based on chromium ion as the active center now span the broad spectral range of 695 - 1345 nm. The most interesting and distinguishing feature of laser action in Cr:Mg2SiO4 is that the lasing ion is not trivalent chromium (Cr3+), as is the case with the rest of the chromium-based lasers. Available experimental data suggest that the active ion is tetravalent chromium (Cr4+). In this paper, we present spectroscopic results which indicate that the lasing ion is Cr4+ and review the properties of laser action in this crystal.

Spectroscopic Properties

Forsterite is a member of the olivine family of crystals and is a naturally occurring gem. Single crystals of chromium-doped forsterite have been grown successfully using the Czochralski method, as well as the laser-heated pedestal growth (LHPG) technique. The general features of the absorption and emission spectra of Cr:forsterite grown by the two methods are similar. The spectroscopic properties distinctly depend on the growth atmosphere. In this work, we present measurements performed with Czochralski-grown crystals.

Earlier spectroscopic wok on chromium-doped forsterite was based on the assumption that only trivalent chromium (Cr3+) substitutes for the octahedrally coordinated Mg2+ ions in Mg2SiO4 host. There are two inequivalent Mg2+ sites in forsterite, one with mirror symmetry (Cs) and the other with inversion symmetry (Cg). Trivalent chromium ion enters the mirror and the inversion site in a ratio of 3:2. The existence of Cr3+ ions in the two sites in the ratio given above has been verified by
EPR and ENDOR measurements as well. Our recent spectroscopic measurements indicate that, in addition to Cr$^{3+}$ ions in those sites, tetrahedrally coordinated Cr$^{4+}$ ions are also present in the Czochralski-grown forsterite. Similar conclusions have been reached for crystals grown by LHPG method as well.

The relative concentration of Cr$^{3+}$ and Cr$^{4+}$ ions in Mg$_2$SiC$_4$ depends on the growth atmosphere. By growing the crystal in a reducing atmosphere the relative concentration of Cr$^{4+}$ ions can be reduced and that of Cr$^{3+}$ increased. We will compare measurements on crystals grown under standard conditions with those grown in reducing atmosphere, and attempt to identify the contributions from different centers.

The absorption spectrum of Cr:Mg$_2$SiC$_4$ grown under standard conditions (referred to as sample 1, henceforth), for different orientation of the crystal are shown in Fig. 1.

![Absorption Spectrum](image1)

Fig. 1 Room temperature absorption spectrum of Cr:Mg$_2$SiC$_4$ grown under standard conditions for all three crystal orientations.

The spectrum is characterized by three broad absorption bands spanning the near ultraviolet to near infrared spectral regions. At liquid nitrogen temperature, the near infrared absorption band spanning the 850 - 1150 nm range shows a sharp zero-phonon line followed by an elaborately structured sideband. The absorption spectra depend strongly on the polarization of the incident radiation with respect to the crystallographic axes of the host. In particular, the peak position of the strongest band in the red-green spectral region shifts considerably with the polarization. Smaller shift has been observed in the near infrared region as well.

![Absorption Spectrum](image2)

Fig. 2 Room temperature absorption spectrum of Cr:Mg$_2$SiC$_4$ grown in a reducing atmosphere for two different crystal orientations.

Sample 2 was grown in a reducing atmosphere and contains mostly Cr$^{3+}$ ions as compared to sample 1 which has both the Cr$^{3+}$ and Cr$^{4+}$ centers. The near infrared absorption band is almost missing in the spectrum of sample 2, which implies that the band is due to transitions within the states of Cr$^{4+}$ ion. We attribute this band to absorptive transitions from the $3A_2$ ground state of the Cr$^{4+}$ ion to the $3T_2$ state.

For the visible and the near ultraviolet absorption the contributions from the two valence states cannot be distinguished so easily. The absorption due to Cr$^{3+}$ and Cr$^{4+}$ ions overlap in these spectral regions. To gain further insight, we have analyzed both the spectra in terms of Tanabe-Sugano formalism. We have taken Cr$^{3+}$ to be in octahedrally coordinated sites and Cr$^{4+}$ to be in tetrahedrally coordinated sites. Comparison of the predicted values of
Chromium-Activated Forsterite Laser

tetrahedral Cr$^{4+}$ and octahedral Cr$^{3+}$ in forsterite with the measured values are presented in Tables 1 and 2, respectively. The values of crystal field parameter D_q and Raccah parameters B and C are also listed. The transition assignments in Figs. 1 and 2 follow from this analysis.

TABLE 1: Energy Levels of Cr$^{4+}$:Mg$_2$Si$_2$O$_4$

<table>
<thead>
<tr>
<th>Transition</th>
<th>Energy (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3A_2\rightarrow 3T_2$</td>
<td>9,150 (9,150)</td>
</tr>
<tr>
<td>$3A_2\rightarrow 3T_1$</td>
<td>15,430 15,150</td>
</tr>
<tr>
<td>$3A_2\rightarrow 1E$</td>
<td>15,875 16,245</td>
</tr>
<tr>
<td>$3A_2\rightarrow 3T_1$</td>
<td>26,810 26,800</td>
</tr>
<tr>
<td>$3A_2\rightarrow 3T_2$</td>
<td>28,735 28,700</td>
</tr>
<tr>
<td>$3T_2\rightarrow 3A_2$</td>
<td>8,750 (8,750)</td>
</tr>
</tbody>
</table>

Predicted values are based on Tanabe-Sugano diagram for tetrahedral Cr$^{4+}$ with parameters: $B=970$ cm$^{-1}$, $C=3,980$ cm$^{-1}$, and $D_q=915$ cm$^{-1}$. For bands whose position vary with the polarization of the incident light, average position (the centroid of three bands marked $3T_1$ in Fig. 1, for example) is taken for this analysis.

TABLE 2: Energy Levels of Cr$^{3+}$:Mg$_2$Si$_2$O$_4$

<table>
<thead>
<tr>
<th>Transition</th>
<th>Energy (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4A_2\rightarrow 4T_2$</td>
<td>15,100 (15,100)</td>
</tr>
<tr>
<td>$4A_2\rightarrow 2E$</td>
<td>14,450 14,600</td>
</tr>
<tr>
<td>$4A_2\rightarrow 2T_1$</td>
<td>15,380 15,300</td>
</tr>
<tr>
<td>$4A_2\rightarrow 2T_2$</td>
<td>21,050 21,300</td>
</tr>
<tr>
<td>$4A_2\rightarrow 4T_{1a}$</td>
<td>21,500 21,780</td>
</tr>
<tr>
<td>$4A_2\rightarrow 4T_{1b}$</td>
<td>33,780 33,940</td>
</tr>
<tr>
<td>$4T_2\rightarrow 4A_2$</td>
<td>11,100 (11,100)</td>
</tr>
<tr>
<td>$2E \rightarrow 4A_2$</td>
<td>14,450 14,600</td>
</tr>
</tbody>
</table>

Predicted values are based on the Tanabe-Sugano diagram for octahedral Cr$^{3+}$ with parameters: $B=695$ cm$^{-1}$, $C=3,130$ cm$^{-1}$, and $D_q=1,510$ cm$^{-1}$. The polarization dependence of the absorption spectra may be explained in terms of lower site symmetry of
chromium ions invoking the polarization selection rules. A detailed analysis of polarization dependence of spectral properties will be presented in a forthcoming publication.

The fluorescence spectra of Cr:forsterite taken for the Cr⁺⁺⁺-rich sample (sample 1) are shown in Figs. 5 and 6, and that of sample 2 (mostly Cr³⁺-containing) in Fig. 7.

The room temperature spectrum taken with sample 1, excited by the 488-nm line of Ar⁺ laser, is a broad band spanning 680 - 1400 nm range. At liquid nitrogen temperature the spectrum breaks up into three structured bands. The fluorescence covering the 1100 - 1400 nm range is the Stokes-shifted counterpart of the near infrared absorption, and is attributed to ³T₂ → ³A₂ transitions in Cr⁺⁺⁺ ion. The sharp zero-phonon line corresponds to purely electronic transition between the ³T₂ and ³A₂ states and appears as a prominent feature in both absorption and emission spectra. Near infrared room temperature and liquid nitrogen temperature absorption and fluorescence spectra (fluorescence excited by 1064-nm radiation) for EII b axis are shown in Fig. 6. Features displayed in Fig. 6 are completely absent from the near infrared spectra of sample 2.

The sharp line at 692 nm observed at liquid nitrogen temperature is tentatively attributed to 2E → 4A₂ transition (R-line) in Cr³⁺ ions. This line, followed by a structured sideband that extends to 750 nm is also present in the fluorescence spectrum of sample 2. These features are shown as insets in Figs. 5 and 7.
The room temperature spectrum of sample 2 extends only to 1200 nm, and shows contribution from Cr\(^{3+}\) ions predominantly.

The emission transitions for both Cr\(^{3+}\) and Cr\(^{4+}\) ions are indicated in the Tanabe-Sugano diagrams. Detailed analysis of the emission spectra will be presented in a forthcoming paper.

We have measured fluorescence lifetime as a function of wavelength both at room and liquid nitrogen temperatures using streak camera coupled to a spectrometer. The fluorescence lifetime for Cr\(^{4+}\) emission in 1100-1400 nm range is 2.7 \(\mu s\) at room temperature, and 25 \(\mu s\) at liquid nitrogen temperature. The 15 \(\mu s\) lifetime measured at shorter wavelengths, characteristics of Cr\(^{3+}\) fluorescence, did not change significantly at liquid nitrogen temperature. Temperature dependence of the fluorescence lifetime indicates presence of strong nonradiative relaxation for Cr\(^{4+}\) ions, which is not so prominent for Cr\(^{3+}\) ions in this temperature range.

Laser Operation

I. Pulsed Laser Action

Laser experiments were conducted with samples rich in Cr\(^{4+}\) in a stable cavity. Details of the cavity arrangement have been described elsewhere.\(^1,5\) The fundamental and the second harmonic emissions from a Q-switched Nd:YAG laser operating at 10-Hz repetition rate were used for excitation of the near infrared and the visible bands, respectively. Pulsed laser action was observed for both the 1064-nm and 532-nm pumping.\(^1\) The amplitude and duration of the Cr:Mg\(_2\)SiO\(_4\) laser pulse, as well as its delay with respect to the pump pulse, varied with the pump pulse energy fluctuation. For similar level of excitation and within the time resolution of the experiment, no difference in the delay between the pump pulse and the output laser pulse for the two pump wavelengths was observed. The spectra of the free-running laser radiation for both the 1064-nm and 532-nm pumping peaked at 1235 nm and had linewidth of 30 nm and 27 nm, respectively. These facts clearly indicate that the same center is responsible for laser action for both the 1064-nm and 532-nm excitations. For 532-nm pumping there is a fast transfer of excitation from the states directly pumped to the upper lasing level. In case of 1064-nm pumping the lasing level is directly populated. Similar results were obtained for pumping with the 629-nm radiation obtained by stimulated Raman scattering of the 532-nm radiation in ethanol.

To improve the laser performance sample 1 was anti-reflection coated such that reflectivity over the 1050-1250 nm range was less than 0.5 %. Attempts were made to overlap the pump beam and the cavity mode more accurately. The sample was longitudinally pumped by 1064-nm, 10-ns pulses from a Q-Switched Nd:YAG laser in a cavity similar to that used earlier. Different sets of laser mirrors were used. Summary of laser performance for three different laser cavities is presented in Table 3. Center wavelengths shown in Table 3 differ for three different output couplers since those have slightly different wavelength-dependent transmission characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Output Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing Wavelength</td>
<td>1200 nm</td>
</tr>
<tr>
<td>Free-running Bandwidth</td>
<td>-</td>
</tr>
<tr>
<td>Threshold Abs. Energy</td>
<td>0.38 mJ</td>
</tr>
<tr>
<td>Slope Efficiency</td>
<td>22.8%</td>
</tr>
<tr>
<td>Gain Cross Section (10(^{-19}) cm(^2))</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Output energy of the forsterite laser as a function of absorbed pump energy for three different output couplers is shown in Fig. 8.
Using data from Table 4 we have estimated the passive loss L of the forsterite laser and calculated the laser gain cross section. Passive (internal) loss L can be estimated by taking the ratio of the threshold pump energies for two different output mirrors or taking the ratio of slope efficiencies, assuming that

$$E_{thi} \sim L + T_i$$

and

$$\eta_i \sim T_i/(L+T_i), \; i = 1,2$$

(1)

(2)

where T_i is the output mirror transmission. Loss L is then given by

$$L = (T_2 - R_{th}T_1)/(R_{th} - 1)$$

(3)

where

$$R_{th} = E_{th2}/E_{th1}$$

(4)

or

$$L = (R_A - 1)T_1T_2/(T_2 - R_A T_1)$$

(5)

where

$$R_A = \eta_2/\eta_1$$

(6)

For various combinations of output mirrors a value of 11% for L was obtained by using both techniques.

Laser gain cross section shown in Table 4 for three different output mirrors was calculated using the expression

$$\sigma = \frac{\pi T_{p h} v_0^2 (L+T)(\alpha^2 + 1)}{4(1 - \exp(-\alpha T))(1 - \exp(-\tau_p/T))} E_{th}$$

(7)

where τ_p is the pump pulsewidth, $h v_p$ is the pump photon energy, ω_0 is the cavity mode spot size, L is laser internal loss, T is the output mirror transmission, $a = \omega_p/\omega_0$, where ω_p is the pump beam spot size, τ is the upper lasing level radiative lifetime taken to be ~ 25 μs, α is the absorption coefficient for the pump radiation, L is the length of the crystal, and E_{th} is the threshold pump energy incident on the crystal.

II. Continuous-Wave Laser Operation

To obtain cw laser action a sample of chromium-doped forsterite (sample 1) was placed at the center of a nearly concentric cavity formed by two 5-cm radius-of-curvature mirrors such that a cavity mode waist was 75 μm. The output mirror was dielectric coated to have -1% transmission for the 1175 - 1250 nm range, and to transmit most of the 1064-nm pump beam. The pump radiation from a cw Nd:YAG laser was focused by a 75-mm focal length lens to pump the sample longitudinally along the 30 mm path length. The pump beam was linearly polarized along the b axis and propagated along the a axis of the crystal. The beam was chopped at a duty factor of 9:1 to reduce heating effects. The waist of the pump beam at the center of the sample was measured to be 70 μm.

Quasi-cw laser operation was obtained for pumping above the lasing threshold of 1.25 W of absorbed power. The measured slope efficiency was 6.8%. The cw output power of the Cr:forsterite laser as a function of absorbed pump power is displayed in Fig. 9. Laser operation was possible even when the pump beam was not chopped, but at 40% reduced output indicating losses induced by local heating.

The spectrum of the free-running laser output peaks at 1244 nm and has a bandwidth of 12 nm.
Chromium-Activated Forsterite Laser

Using results obtained from CW lasing experiment several important parameters can be estimated. From an expression for the slope efficiency\(^{13}\)

\[
\eta = \frac{\lambda_P T}{\lambda_L (L+T)} \quad (8)
\]

where \(T\) is the total transmission of the cavity mirrors, \(L\) is the internal loss, and \(\lambda_P\) and \(\lambda_L\) are pump and lasing wavelengths, respectively, a value of 12.7% for \(L\) has been estimated. This value is in reasonable agreement with the value of 11% obtained from pulsed measurements.

An expression similar to Eq. (7)

\[
P_{th} = \frac{\pi \hbar \nu \omega_0 (L+T)(a^2 + 1)}{4\sigma (1 - \exp(-\alpha L))} \quad (9)
\]

where \(P_{th}\) is the incident threshold pump power, was used to calculate the gain cross section from the CW measurements. A value of 1.47 x 10\(^{-19}\) cm\(^2\) was obtained, in excellent agreement with the one obtained from pulsed laser experiments. Both values should be compared to the value of 1.98 x 10\(^{-19}\) cm\(^2\) obtained from radiative lifetime and lineshape measurements. The discrepancy can arise from another loss mechanism such as excited state absorption.

From the gain cross section and threshold pump power, the threshold population inversion density was estimated using the threshold condition:\(^{14}\)

\[
2\alpha N_{th} = L+T
\]

\(\alpha\) (10)

A value of 1.6 x 10\(^{17}\) cm\(^{-3}\) for the population inversion was calculated.

The key continuous-wave laser parameters are summarized in Table 5.

TABLE 5: Properties of cw Laser Operation of Cr:Mg\(_2\)Si\(_2\)O\(_4\) Laser

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing Wavelength</td>
<td>1244 nm</td>
</tr>
<tr>
<td>Spectral Bandwidth (FWHM)</td>
<td>12 nm</td>
</tr>
<tr>
<td>Lasing Threshold (Absorbed Power)</td>
<td>1.25 W</td>
</tr>
<tr>
<td>Slope Efficiency</td>
<td>6.8%</td>
</tr>
<tr>
<td>Threshold Inversion Density</td>
<td>1.6 x 10(^{17}) cm(^{-3})</td>
</tr>
<tr>
<td>Gain Cross Section</td>
<td>1.47 x 10(^{-19}) cm(^2)</td>
</tr>
</tbody>
</table>

III. Tunable Operation of Forsterite Laser

Tunable operation of Cr:forsterite laser has been obtained over the 1167 - 1345 nm spectral range,\(^{5}\) extending the tuning range of chromium-doped laser crystals further into near infrared.

From the gain cross section and threshold pump power, the threshold population inversion density was estimated using the threshold condition:\(^{14}\)

\[
2\alpha N_{th} = L+T
\]

\(\alpha (10)\)

A value of 1.6 x 10\(^{17}\) cm\(^{-3}\) for the population inversion was calculated.

The key continuous-wave laser parameters are summarized in Table 5.

TABLE 5: Properties of cw Laser Operation of Cr:Mg\(_2\)Si\(_2\)O\(_4\) Laser

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing Wavelength</td>
<td>1244 nm</td>
</tr>
<tr>
<td>Spectral Bandwidth (FWHM)</td>
<td>12 nm</td>
</tr>
<tr>
<td>Lasing Threshold (Absorbed Power)</td>
<td>1.25 W</td>
</tr>
<tr>
<td>Slope Efficiency</td>
<td>6.8%</td>
</tr>
<tr>
<td>Threshold Inversion Density</td>
<td>1.6 x 10(^{17}) cm(^{-3})</td>
</tr>
<tr>
<td>Gain Cross Section</td>
<td>1.47 x 10(^{-19}) cm(^2)</td>
</tr>
</tbody>
</table>

III. Tunable Operation of Forsterite Laser

Tunable operation of Cr:forsterite laser has been obtained over the 1167 - 1345 nm spectral range,\(^{5}\) extending the tuning range of chromium-doped laser crystals further into near infrared.
Brewster's angle as the intracavity dispersive element were used to obtain smooth continuous tuning. The ratio of the Cr:forsterite laser output to the absorbed pump energy as a function of wavelength is shown in Fig. 10. The laser output peaks at 1200 nm with an energy per pulse of 125 \mu J for an input absorbed energy of 1.9 mJ. The scale changes for the three curves arise from the differences in transmissions of the output coupling mirrors used in the three cavities.

Conclusion

Measurements of absorption and emission spectra, as well as the wavelength dependence of fluorescence lifetime provides convincing evidence that chromium ion may enter forsterite (Mg$_2$SiO$_4$) host in more than one valence states. Trivalent chromium (Cr$^{3+}$) enters substitutionally for divalent magnesium (Mg$^{2+}$) in two inequivalent octahedrally-coordinated sites, while tetravalent chromium (Cr$^{4+}$) substitutes presumably for Si$^{4+}$ at tetrahedrally coordinated sites. Of the two Cr$^{3+}$ centers, the one with mirror symmetry (C$_3$) is optically active and accounts for a number of features in absorption and emission spectra. The absorption and emission due to transitions within the states of Cr$^{4+}$ ion overlap with those within the states of Cr$^{3+}$ ion. The absorption and emission in the near infrared spectral region between 850 and 1150 nm is primarily due to transitions between the 3A$_2$ ground state and the first excited state 3T$_2$ of the Cr$^{4+}$ ion. The four-level, vibronic mode of laser operation in Cr-doped forsterite feeds on 3T$_2$-3A$_2$ transition.

Chromium-doped forsterite is an important laser in the near-infrared spectral region. It can be operated both in the pulsed and cw mode of operation and is tunable over 1167 - 1345 nm range. The large fluorescence bandwidth promises ultrashort pulse generation through mode-locked operation. Since large single crystals can be easily grown, the crystal has potential for being used as an amplifier medium in the near infrared spectral region.

Acknowledgments

We thank K. Yamagishi of Mitsui Mining and Smelting Co. of Japan for growing the Cr:Mg$_2$SiO$_4$ crystals used in this study, and A. Seas, Y. Takiguchi, and Y. Budansky for technical help. The research is supported by the Army Research Office, National Aeronautics and Space Administration, and City College of New York Organized Research.

References

Abstract

Spectroscopic, quantum electronic, and laser properties of chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) are reviewed. Spectroscopic data suggest that the lasing center in chromium-doped forsterite is tetravalent chromium ion (Cr$^{4+}$), not the common trivalent chromium (Cr$^{3+}$). Pulsed, continuous-wave, and tunable operation in the 1167-1345nm region are presented.

Introduction

During the last 10 years tunable solid state lasers have emerged as an alternative to dye lasers. Dye lasers have the advantage of high gain, low cost, and there are many dyes spanning the visible and near infrared region. Many disadvantages of dye lasers such as toxicity, poor long term reliability, narrow wavelength range, make dye lasers unsuitable for mobile or spaceborne use. Tunable solid state lasers are expensive to build and have lower gain coefficient. On the other hand, tunable solid state lasers offer broad tunability range, higher reliability, compactness and long term stability.

Chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) laser is an important member of the ever growing family of tunable solid state lasers based on chromium ion as the lasing center. Pulsed and continuous-wave laser operation have been achieved for 532-nm and 1064-nm. The tuning range now covers the 1167 - 1345 nm range. The most interesting and distinguishing feature of laser action in Cr:Mg$_2$SiO$_4$ is that the lasing ion is not trivalent chromium (Cr$^{3+}$), as is the case with the rest of the chromium-based lasers, the active ion is tetravalent chromium (Cr$^{4+}$).

In this presentation, we review the spectroscopic and laser properties of chromium doped forsterite.

Spectroscopic Properties

The spectroscopic properties of forsterite distinctly depend on the growth atmosphere since the relative concentration of Cr$^{3+}$ and Cr$^{4+}$ ions in Mg$_2$SiO$_4$ depends on the growth atmosphere. Growing the crystal in a reducing atmosphere the relative concentration of Cr$^{4+}$ ions can be reduced and that of Cr$^{3+}$ increased. We will compare measurements on crystals grown by Czochralski method under standard conditions with those grown in reducing atmosphere, and attempt to identify the contributions from different centers.

Earlier spectroscopic work on chromium-doped forsterite was based on the assumption that only trivalent chromium (Cr$^{3+}$) substitutes for the octahedrally coordinated Mg$^{2+}$ ions in Mg$_2$SiO$_4$ host. There are two inequivalent Mg$^{2+}$ sites in forsterite, one with mirror symmetry (C$_i$) and the other with inversion symmetry (C$_{3v}$). Trivalent chromium ion enters the inversion and the mirror site in a ratio of 3:2. The existence of Cr$^{3+}$ ions in the two sites in the ratio given above has been verified by EPR and ENDOR measurements. Our recent spectroscopic measurements indicate that, in addition to Cr$^{3+}$ ions in those sites, tetrahedrally coordinated Cr$^{4+}$ ions are also present in the Czochralski-grown forsterite. Similar conclusions have been reached for crystals grown by LHPG method as well.

The absorption spectrum of Cr:Mg$_2$SiO$_4$ grown under standard conditions (referred to as sample 1, hereafter), for different orientation of the crystal are shown in Fig. 1. The spectra are characterized by three broad absorption bands spanning the near ultraviolet to near infrared spectral regions. The absorption spectra depend strongly on the polarization of the incident radiation with respect to the crystallographic axes of the host. In particular, the peak position of the strongest band in the red-green spectral region shifts considerably with the polarization. Smaller shift has been observed in the near infrared region as well. The polarization dependence of the absorption spectra may be explained in terms of lower site symmetry of chromium ions invoking the polarization selection rules.

To distinguish between the contributions from Cr$^{3+}$ and Cr$^{4+}$ ions to the absorption spectra, we have complemented the absorption spectrum in Fig. 1 by the spectrum of sample 2 which was grown in a reducing atmosphere, shown in Fig. 2. Sample 2 contains mostly Cr$^{3+}$ ions as compared to sample 1 which has both the Cr$^{3+}$ and Cr$^{4+}$ centers. The near infrared absorption band is almost missing in the spectrum of sample 2, which implies that the band is due to transitions within the states of Cr$^{4+}$ ion.

For the visible and the near ultraviolet absorption regions the contributions from the two valence states cannot be distinguished so easily since the absorptions due to Cr$^{3+}$ and Cr$^{4+}$ ions overlap in these spectral regions. To gain further insight, we have analyzed both the spectra in terms of Tanabe-Sugano formalism.
We have taken Cr$^{3+}$ to be in octahedrally coordinated sites and Cr$^{4+}$ to be in tetrahedrally coordinated sites. Comparison of the predicted values of tetrahedral Cr$^{4+}$ and octahedral Cr$^{3+}$ in forsterite with the measured values are presented in Tables 1 and 2, respectively. The transition assignments in Figs. 1 and 2 follow from this analysis.

TABLE 1: Energy Levels of Cr$^{4+}$:Mg$_2$SiO$_4$

<table>
<thead>
<tr>
<th>Transition</th>
<th>Energy (cm$^{-1}$)</th>
<th>Measured</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A_2→3T_2</td>
<td>9,150</td>
<td>(9,150)</td>
<td></td>
</tr>
<tr>
<td>3A_2→3T_1</td>
<td>15,430</td>
<td>15,150</td>
<td></td>
</tr>
<tr>
<td>3A_2→1E</td>
<td>15,875</td>
<td>16,245</td>
<td></td>
</tr>
<tr>
<td>3A_2→3T_1</td>
<td>26,810</td>
<td>26,800</td>
<td></td>
</tr>
<tr>
<td>3A_2→1T_1</td>
<td>28,735</td>
<td>28,700</td>
<td></td>
</tr>
<tr>
<td>3T_2→3A_2</td>
<td>8,750</td>
<td>(8,750)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2: Energy Levels of Cr$^{3+}$:Mg$_2$SiO$_4$

<table>
<thead>
<tr>
<th>Transition</th>
<th>Energy (cm$^{-1}$)</th>
<th>Measured</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A_2→4T_2</td>
<td>15,100</td>
<td>(15,100)</td>
<td></td>
</tr>
<tr>
<td>4A_2→2E</td>
<td>14,450</td>
<td>14,600</td>
<td></td>
</tr>
<tr>
<td>4A_2→2T_1</td>
<td>15,380</td>
<td>15,300</td>
<td></td>
</tr>
<tr>
<td>4A_2→2T_2</td>
<td>21,050</td>
<td>21,300</td>
<td></td>
</tr>
<tr>
<td>4A_2→$^4T_{1a}$</td>
<td>21,500</td>
<td>21,780</td>
<td></td>
</tr>
<tr>
<td>4A_2→$^4T_{1b}$</td>
<td>33,780</td>
<td>33,940</td>
<td></td>
</tr>
<tr>
<td>4T_2→4A_2</td>
<td>11,100</td>
<td>(11,100)</td>
<td></td>
</tr>
<tr>
<td>2E→4A_2</td>
<td>14,450</td>
<td>14,600</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 Tanabe-Sugano diagram for Cr$^{4+}$ in tetrahedral coordination.

Fig. 4 Tanabe-Sugano diagram for Cr$^{3+}$ in octahedral coordination.
Predicted values given in Table 1 are based on Tanabe-Sugano diagram for tetrahedral Cr\(^{4+}\) with parameters: \(B=970\ \text{cm}^{-1}\), \(C=3,980\ \text{cm}^{-1}\), and \(Dq=915\ \text{cm}^{-1}\). For bands whose position vary with the polarization of the incident light, average position (the centroid of three bands marked \(3T_1\) in Fig. 1, for example) is taken for this analysis. Predicted values shown in Table 2 are based on the Tanabe-Sugano diagram for octahedral \(\text{Cr}^{3+}\) with parameters: \(B=695\ \text{cm}^{-1}\), \(C=3,130\ \text{cm}^{-1}\), and \(Dq=1,510\ \text{cm}^{-1}\). The Tanabe-Sugano diagrams, with transitions indicated, are presented in Figs. 3 and 4.

The fluorescence spectra of \(\text{Cr:forsterite}\) taken for the \(\text{Cr}^{4+}\)-rich sample (sample 1) are shown in Figs. 5 and 6. The spectra for sample 2 (containing mostly \(\text{Cr}^{3+}\)) are shown in Fig. 7. The room temperature spectrum taken with sample 1, excited by the 488-nm line of Ar\(^{+}\) laser, is a broad band spanning 680 - 1400 nm range. At liquid nitrogen temperature the spectrum breaks up into three structured bands. The fluorescence covering the 1100 - 1400 nm range is the Stokes-shifted counterpart of the near infrared absorption, and is attributed to \(3T_2 \rightarrow 3A_2\) transitions in \(\text{Cr}^{4+}\) ion. The sharp zero-phonon line corresponds to purely electronic transition between the \(3T_2\) and \(3A_2\) states and appears as a prominent feature in both absorption and emission spectra. Near infrared room temperature and liquid nitrogen temperature absorption and fluorescence spectra (fluorescence excited by 1064-nm radiation) for \(E\|b\) axis are shown in Fig. 6. Features displayed in Fig. 6 are completely absent from the near infrared spectra of sample 2.

The sharp line at 692 nm observed at liquid nitrogen temperature is attributed to \(2E \rightarrow 4A_2\) transition (R-line) in \(\text{Cr}^{3+}\) ions. This line, followed by a structured sideband that extends to 750 nm is also present in the fluorescence spectrum of sample 2. These features are shown as insets in Figs. 5 and 7.

![Fig. 5 Room temperature (thicker line) and liquid nitrogen temperature (thin line) fluorescence spectrum of Cr:Mg\(_2\)SiO\(_4\) grown under standard conditions for 488-nm excitation parallel to b axis.](image1)

![Fig. 6 Room temperature (solid line) and liquid nitrogen temperature (broken line) absorption and fluorescence spectra (fluorescence excited by 488 nm radiation) of Cr:Mg\(_2\)SiO\(_4\) grown under standard conditions for E \(\parallel\) b axis.](image2)

![Fig. 7 Room temperature (thicker line) and liquid nitrogen temperature (thin line) fluorescence spectrum of Cr:Mg\(_2\)SiO\(_4\) grown in a reducing atmosphere for 488-nm excitation and E \(\parallel\) b axis. The spectra were taken with PbS detector which was not sensitive enough to detect the 692-nm zero-phonon line and its sideband shown in the inset. These features were resolved with a photomultiplier tube with S-20 response.](image3)
The room temperature spectrum of simple 2 extends only to 1200 nm, and shows contribution from Cr$^{3+}$ ions predominantly. The emission transitions for both Cr$^{3+}$ and Cr$^{4+}$ ions are indicated in the Tanabe-Sugano diagrams.

We have measured fluorescence lifetime as a function of wavelength both at room and liquid nitrogen temperatures using streak camera coupled to a spectrometer. The fluorescence lifetime for Cr$^{4+}$ emission in 1100-1400 nm range is 2.7 μs at room temperature, and 25 μs at liquid nitrogen temperature. The 15 μs lifetime measured at shorter wavelengths, characteristics of Cr$^{3+}$ fluorescence, did not change significantly at liquid nitrogen temperature. Temperature dependence of the fluorescence lifetime indicates presence of strong nonradiative relaxation for Cr$^{4+}$ ions, which is not so prominent for Cr$^{3+}$ ions in this temperature range.

Fig. 8 Temperature dependence of the fluorescence lifetime of chromium-doped forsterite for 1064-nm excitation.

Laser Operation

I. Pulsed Laser Action

Laser experiments were conducted with samples rich in Cr$^{4+}$ in a stable cavity. Details of the cavity arrangement is shown in figure 9 and have been described elsewhere.1,3

Fig. 9. Cavity arrangement for the forsterite laser

The fundamental and the second harmonic beams from a Q-switched Nd:YAG laser operating at 10-Hz repetition rate were used for excitation of the near infrared and the visible bands. Pulsed laser action was observed for both the 1064-nm and 532-nm pumping.1 The amplitude and duration of the Cr:Mg$_2$SiO$_4$ laser pulse, as well as its delay with respect to the pump pulse, varied with the pump pulse energy fluctuation. For similar level of excitation and within the time resolution of the experiment, no difference in the delay between the pump pulse and the output laser pulse for the two pump wavelengths was observed. The spectra of the free-running laser radiation for both the 1064-nm and 532-nm pumping peaked at 1235 nm and had linewidth of 30 nm and 27 nm, respectively. These facts clearly indicate that the same center is responsible for laser action for both the 1064-nm and 532-nm excitations. In case of 1064-nm pumping the lasing level is directly populated. Similar results were obtained for pumping with the 629-nm radiation obtained by stimulated Raman scattering of the 532-nm radiation in ethanol.
To improve the laser performance, sample 1 was anti-reflection coated such that reflectivity over the 1050-1250 nm range was less than 0.5%. Attempts were made to overlap the pump beam and the cavity mode more accurately. The sample was longitudinally pumped by 1064-nm, 10-ns pulses from a Q-Switched Nd:YAG laser in a cavity similar to that used earlier. Different sets of laser mirrors were used. Summary of the laser performance for three different laser cavities is presented in Table 3.

Table 3: Summary of Laser Parameters for Pulsed Laser Operation (1064-nm pumping)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>13% Absorbed</th>
<th>2% Absorbed</th>
<th>6% Absorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing Wavelength</td>
<td>1200 nm</td>
<td>1235 nm</td>
<td>1250 nm</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>-</td>
<td>30 nm</td>
<td>-</td>
</tr>
<tr>
<td>Threshold Abs. Energy Slope</td>
<td>0.38 mJ</td>
<td>0.20 mJ</td>
<td>0.27 mJ</td>
</tr>
<tr>
<td>Efficiency Gain Cross Section (10^{-19} cm²)</td>
<td>1.40</td>
<td>1.44</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Surface damage of the Cr:forsterite laser crystal was observed for pumping energies greater than 4mJ, for 5ns pulses, at 10Hz repetition rate, focused to 250μm radius spot. This corresponds to damage threshold energy density greater than 6J/cm², for 5ns pulses. Therefore, a 1cm diameter laser pumped forsterite rod can be used to generate high energy pulses in the joule range.

Output energy of the forsterite laser as a function of absorbed pump energy for three different output couplers is shown in Fig. 10.

![Fig. 10 Output energy of Cr:Mg₂SiO₄ laser as a function of absorbed pump energy for 1064-nm pumping and E || b axis for three different output couplers.](image)

Using data from Table 4 we have estimated the passive loss L of the forsterite laser to be 11%, and calculated the laser gain cross section.

Laser gain cross section shown in Table 4 for three different output mirrors was calculated using the expression

$$\sigma = \frac{\pi \tau \hbar v P \omega_L (L+T)(\alpha^2+1)}{4 \tau [1-\exp(-\alpha L)] [1-\exp(-\tau/\tau)] E_{P_{th}}},$$

where τ_P is the pump pulselwidth, $\hbar v P$ is the pump photon energy, ω_L is the cavity mode spot size, L is laser internal loss, T is the output mirror transmission, $=\alpha \rho P / \omega_L$, where ρP is the pump beam spot size, τ is the upper lasing level radiative lifetime taken to be 25μs, α is the absorption coefficient for the pump radiation, I is the length of the crystal, and $E_{P_{th}}$ is the threshold pump energy incident on the crystal.
II. Continuous-Wave Laser Operation

To obtain cw laser action a sample of chromium-doped forsterite (sample 1) was placed at the center of a nearly concentric cavity formed by two 5-cm radius-of-curvature mirrors such that a cavity mode waist was 75 μm. The output mirror was dielectric coated to have -1% transmission for the 1175 - 1250 nm range, and to transmit most of the 1064-nm pump beam. The pump radiation from a cw Nd:YAG laser was focused by a 75-mm focal length lens to pump the sample longitudinally along the 30 mm path length. The pump beam was linearly polarized along the b axis and propagated along the a axis of the crystal. The beam was chopped at a duty factor of 9:1 to reduce heating effects. The waist of the pump beam at the center of the sample was measured to be 70 nm.

Quasi-cw laser operation was obtained for pumping above the lasing threshold of 1.25 W of absorbed power. The measured slope efficiency was 6.8%. The cw output power of the Cr:forsterite laser as a function of absorbed pump power is displayed in Fig. 11. Laser operation was possible even when the pump beam was not chopped, but at 40% reduced output indicating losses induced by local heating.

The spectrum of the free-running laser output peaks at 1244 nm and has a bandwidth of 12 nm.

![Graph](image)

Fig. 11 Output power of the cw Cr:Mg2SiO4 laser as a function of absorbed pump power.

Using results obtained from CW lasing experiment, a value of 12.7% for L the internal loss has been estimated. This value is in reasonable agreement with the value of 11% obtained from pulsed measurements. The gain cross section was estimated to be $1.47 \times 10^{-19} \text{ cm}^2$, in excellent agreement with the value obtained from pulsed laser experiments. Threshold population inversion density was estimated to be $1.6 \times 10^{17} \text{ cm}^{-3}$. The key continuous-wave laser parameters are summarized in Table 4.

TABLE 4: Properties of cw Laser Operation of Cr:Mg2SiO4 laser

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasing Wavelength</td>
<td>1244 nm</td>
</tr>
<tr>
<td>Spectral Bandwidth (FWHM)</td>
<td>12 nm</td>
</tr>
<tr>
<td>Lasing Threshold (Absorbed Power)</td>
<td>1.25 W</td>
</tr>
<tr>
<td>Slope Efficiency</td>
<td>6.8%</td>
</tr>
<tr>
<td>Threshold Inversion Density</td>
<td>$1.6 \times 10^{17} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>Gain Cross Section</td>
<td>$1.47 \times 10^{-19} \text{ cm}^2$</td>
</tr>
</tbody>
</table>

III. Tunable Operation of Forsterite Laser

Tunable operation of Cr:forsterite laser has been obtained over the 1167 - 1345 nm spectral range, using single crystal quartz birefringent plate, extending the tuning range of chromium-doped laser crystals further into near infrared. The ratio of the Cr:forsterite laser output to the absorbed pump energy as a function of wavelength is shown in Fig. 12.
Measurements of absorption and emission spectra, as well as the wavelength dependence of fluorescence lifetime indicate that chromium ion may enter forsterite (Mg$_2$SiO$_4$) host in more than one valence states. Trivalent chromium (Cr$^{3+}$) enters substitutionally for divalent magnesium (Mg$^{2+}$) in two inequivalent octahedrally-coordinated sites, while tetravalent chromium (Cr$^{4+}$) substitutes presumably for Si$^{4+}$ at tetrahedrally coordinated sites. Of the two Cr$^{3+}$ centers, the one with mirror symmetry (C$_h$) is optically active and accounts for a number of features in absorption and emission spectra. The absorption and emission due to transitions within the states of Cr$^{4+}$ ion overlap with those within the states of Cr$^{3+}$ ion. The absorption and emission in the near infrared spectral region between 850 and 1150 nm is primarily due to transitions between the 3A$_2$ ground state and the first excited state 3T$_2$, of the Cr$^{4+}$ ion. The four-level, vibronic mode of laser operation in Cr-doped forsterite feeds on 3T$_2$→3A$_2$ transition.

Chromium-doped forsterite is an important laser in the near-infrared spectral region. Table 5 lists the thermal and optical properties of forsterite and YAG crystals, which suggests that forsterite may be developed in a reliable tunable source of radiation for the near infrared region. Forsterite can be operated both in the pulsed and cw mode of operation and is tunable over 1167 - 1345 nm range. The large fluorescence bandwidth promises ultrashort pulse generation through mode-locked operation. Since large single crystals can be easily grown, the crystal has potential for being used as an amplifier medium in the near infrared spectral region and to produce joule energy pulses.

Table 5: Physical, Thermal and Optical Properties of Forsterite and YAG Crystals

<table>
<thead>
<tr>
<th></th>
<th>Forsterite</th>
<th>YAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Formula</td>
<td>Cr:Mg$_2$SiO$_4$</td>
<td>Nd:Y$_3$Al5O${12}$</td>
</tr>
<tr>
<td>Concentration (cm$^{-3}$)</td>
<td>-3.6×10^{18}</td>
<td>1.38×10^{20}</td>
</tr>
<tr>
<td>Melting Point (°C)</td>
<td>1890</td>
<td>1970</td>
</tr>
<tr>
<td>Density (g/cm3)</td>
<td>3.22</td>
<td>4.56</td>
</tr>
<tr>
<td>Moh's Hardness</td>
<td>7</td>
<td>8.5</td>
</tr>
<tr>
<td>Thermal Expansion Coeff.</td>
<td>9.5 x 10$^{-6}$</td>
<td>8.0 x 10$^{-6}$</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.08 (@ 300°K)</td>
<td>0.13 (@ 300°K)</td>
</tr>
<tr>
<td>$\Delta n/\Delta T$ (°K$^{-1}$)</td>
<td>Not Measured</td>
<td>7.3 x 10$^{-6}$</td>
</tr>
<tr>
<td>Emission Bandwidth</td>
<td>1350 cm$^{-1}$</td>
<td>6 cm$^{-1}$</td>
</tr>
<tr>
<td>Stimulated emission</td>
<td>1.44×10^{-19}</td>
<td>6.5×10^{-19}</td>
</tr>
<tr>
<td>Cross Section (cm$^{-2}$)</td>
<td>Not Measured</td>
<td>7.3 x 10$^{-6}$</td>
</tr>
<tr>
<td>Relaxation time of Terminal Lasing Level</td>
<td><10ps (Estimated)</td>
<td>30ns</td>
</tr>
<tr>
<td>Radiative Lifetime</td>
<td>25 µs</td>
<td>550 µs</td>
</tr>
<tr>
<td>Spontaneous Fluorescence</td>
<td>2.7 µs</td>
<td>230 µs</td>
</tr>
<tr>
<td>Loss Coefficient</td>
<td>0.02 cm$^{-1}$</td>
<td>0.002 cm$^{-1}$</td>
</tr>
<tr>
<td>Index of Refraction</td>
<td>1.635</td>
<td>1.82 (@1.0 µm)</td>
</tr>
</tbody>
</table>
Presented the plenary talk

References

Forsterite laser tunes in near-IR

New laser crystal uses Cr\(^{4+}\) as active medium, operates pulsed or CW, and tunes over the 1167- to 1345-nm range.

By V. Petricevic, A. Seas, and R. R. Alfano

Research in tunable solid-state lasers has been extensive in the 1980s, prompted by the successful laser operation of alexandrite (Cr\(^{3+}\)-doped BeAl\(_2\)O\(_3\)) in 1979. The thrust of these endeavors has been twofold: first to look for new host materials for the trivalent chromium ion (Cr\(^{3+}\)), and second to search for new ions that will exhibit laser action in common host crystals. [See LF World, June 1990, p. 69, for a review of commercial tunable solid-state lasers.—Ed.]

These efforts have been rewarded by the successful wavelength-tunable laser operation of Cr\(^{3+}\) in a number of hosts, by the discovery of a new lasing ion, trivalent titanium (Ti\(^{3+}\)), as well as by "rediscovery" of tunable phonon-terminated lasers based on the divalent ions Ni\(^{2+}\), Co\(^{2+}\), and V\(^{2+}\).-12

As a consequence of these research efforts of the past ten years, tunable solid-state lasers have emerged as an alternative to dye lasers. Dye lasers have advantages, such as high gain and low cost. But compared to solid-state lasers, dye lasers are often unsuitable for hospital, airborne, mobile, or spaceborne use because of their toxicity, long-term unreliability, and narrow tuning range.

The relative importance of tunable solid-state lasers—despite their being more expensive to build and characterized by lower gain coefficients—stems from their advantages compared to dye lasers. Among these advantages are broad tuning range, high reliability, compactness (particularly if they could be pumped by semiconductor diode lasers), and longer operational lifetimes. These properties make them suitable for spaceborne remote sensing, ranging, lidar, and optical communications. Tunable solid-state lasers also have potential for various medical, industrial, and basic scientific-research applications.

Several tunable solid-state laser materials and their corresponding tuning ranges are shown in Fig. 1. This article describes the laser and optical properties of Cr-doped forsterite (Cr: Mg, SiO\(_4\))—a new tunable laser material that fills the spectral void in the near-IR (see photo).

Properties of Cr:Mg, SiO\(_4\)

Cr-doped forsterite has become an important member of the ever-growing family of tunable solid-state lasers based on the chromium ion as the lasing center. Both pulsed and continuous-wave (CW) laser operation have been obtained for Cr-doped forsterite with 532-, 578-, 629-, and 1064-nm pumping. The tuning range covers the spectral range from 1167 to 1345 nm, thus filling the void in the near-IR spectral region. This wavelength range is of technological importance because it covers the region of minimal dispersion in optical fibers. Lasers based on the chromium ion as the active center—these include the chromium-based lasers tabulated by Payne and others, the more recently developed lasers based on Cr-doped crystals of.
Introducing the HC220. A complete photodetector assembly for optical lab research.

The Hamamatsu HC220 is an economical tool ready to go to work on the bench or in the field. It can be used with light meters, oscilloscopes and PCs with an A-D card. A rugged housing contains the silicon photodiode and a built-in amplifier. The HC220 operates on ±15V for output of 0–10V using a standard nine-pin D-subminiature connector.

<table>
<thead>
<tr>
<th>Spectral range</th>
<th>190-1000 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active area</td>
<td>2.4 X 2.4 mm</td>
</tr>
<tr>
<td>Response at peak</td>
<td>.8V/mW</td>
</tr>
<tr>
<td>Electrical band width</td>
<td>10Hz</td>
</tr>
<tr>
<td>Noise R.M.S. input current</td>
<td>10fa</td>
</tr>
<tr>
<td>Baseline drift</td>
<td>(20°-40°C) 3fa/°C</td>
</tr>
<tr>
<td>Sensitivity Coefficient</td>
<td>0.1%/°C</td>
</tr>
<tr>
<td>Standard 1/4" threaded mount</td>
<td></td>
</tr>
</tbody>
</table>

* $395 complete when using Visa or check with order. For information or to order by phone call 908-231-0960.

TUNABLE SOLID-STATE LASERS

FIGURE 1. Tuning ranges for common tunable solid-state laser materials cover a broad spectrum.

- Cr:ZnS is the first laser crystal in which the laser-active center is identified as Cr$^{4+}$.
- Cr:MgSiO$_3$ is the first laser medium in which tetravalent chromium is the ion responsible for laser action.

Single crystals of Cr-doped forsterite used in our spectroscopic and laser experiments have been grown by the Czochralski method. The trivalent chromium ion enters as a substitute for Mg$^{2+}$ in two inequivalent sites: one with inversion (C$_i$) and the other (C$_a$).
with mirror (C₃) symmetry. In addition to Cr³⁺ ions in those sites, tetrahedrally coordinated Cr⁴⁺ ions are also present in Czochralski-grown forsterite. The relative concentration of Cr³⁺ and Cr⁴⁺ ions in Mg₂SiO₄ depends on the growing atmosphere. Growing the crystal in a reducing atmosphere allows the relative concentration of Cr⁴⁺ ions to be reduced and that of Cr³⁺ to be increased.

Spectroscopic measurements performed on Cr:Mg₂SiO₄ crystals grown under standard conditions (in an oxidizing atmosphere) and those grown in a reducing atmosphere include measurements of absorption spectra, fluorescence and excitation spectra, and lifetime measurements as a function of temperature. The results of these measurements provide convincing evidence that there are at least three inequivalent optically active centers in Cr-doped forsterite: trivalent chromium (Cr³⁺) occupies two octahedrally coordinated sites, while tetravalent chromium (Cr⁴⁺) substitutes for silicon (Si⁴⁺) in a tetrahedral site. It is the tetrahedral Cr⁴⁺ that gives Cr-doped forsterite many unique and important properties. Lack of inversion symmetry at the tetrahedral site makes transition strengths of Cr⁴⁺ stronger than those of Cr³⁺, and spectral features of Cr⁴⁺ are dominant in the spectra.

The emission is shifted considerably into the near-IR spectral region, which is important for eye-safe ranging, optical communications, and medical and scientific research applications. Tetra-
hedral Cr\(^{4+}\) has three broad spin-allowed absorption bands that can be pumped efficiently for laser operation. This property is particularly important for flashlamp-pumped operation. The Cr\(^{3+}\) ion in a tetrahedral position is chemically stable because of high covalency with the surrounding oxygen ions.

The physical properties of Cr-doped forsterite also appear to be promising. Table 1 compares physical, thermal, and optical properties of forsterite and Nd:YAG crystals. The broad emission bandwidth suggests that Cr-doped forsterite may be developed as a reliable tunable source for the near-IR spectral region.

Modes of laser operation
Pulsed laser operation was obtained with samples rich in Cr\(^{4+}\) in a stable cavity. Details of the cavity arrangement have been described elsewhere.\(^1\) Pulsed laser action was observed for both 1064- and 532-nm pumping. The spectra of the free-running laser radiation for both the 1064- and 532-nm pumping peaked at 1235 nm and had linewidths of 30 and

Table 2. Spectroscopic and other properties of Cr:Mg\(_2\)SiO\(_4\)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major pump bands</td>
<td>850–1200 nm, 600–850 nm, 350–550 nm</td>
</tr>
<tr>
<td>Fluorescence band</td>
<td>680–1400 nm</td>
</tr>
<tr>
<td>Room-temperature fluorescence lifetime</td>
<td>(\approx 3\ \mu s)</td>
</tr>
<tr>
<td>Lasing wavelength (center)</td>
<td>1235 nm (pulsed), 1244 nm (CW)</td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>30 nm (pulsed), 12 nm (CW)</td>
</tr>
<tr>
<td>Slope efficiency</td>
<td>23% (pulsed), 38% (CW)</td>
</tr>
<tr>
<td>Tuning range</td>
<td>1167–1345 nm</td>
</tr>
<tr>
<td>Gain cross section</td>
<td>(=1.45 \times 10^{-19}) cm(^2)</td>
</tr>
</tbody>
</table>

Figure 3. The ratio of the Cr:forsterite laser output \((E_L)\) to the absorbed pump energy \((E_p)\) is plotted as a function of wavelength.
Tunable operation of the Cr:forsterite laser has been demonstrated over the 1167- to 1345-nm spectral range. A birefringent single-crystal quartz plate at Brewster's angle was used as the intracavity dispersive element. Three different output mirrors with transmission in adjacent wavelength ranges were used to cover the tuning range. The ratio of the laser output energy to the absorbed pump energy as a function of wavelength is shown in Fig. 3. Some of the important spectroscopic and laser parameters of Cr:Mg$_2$SiO$_4$ are listed in Table 2.

Cr-doped forsterite is the basis of a new solid-state laser tunable in the near-IR spectral range, and other Cr$^{4+}$-doped crystals are under development. The tuning range of Cr-doped forsterite covers the void spectral region, which is not by any other tunable solid-state laser (excluding color-center lasers).

Potential medical applications are interesting because the absorption

FORSTERITE

New Crystal For Solid-State Lasers
Fills Spectral Void In Near-Infrared

Discover the special properties unique to chromium-doped Forsterite (Mg$_2$SiO$_4$), an important new crystal for tunable solid-state lasers.

- Forsterite's tuning range covers the 1167 to 1345 nm spectral range, filling a serious void that had existed in the near-infrared spectral region. The significance of this wavelength range is underscored by the fact that it covers the region of minimal dispersion in optical fibers, and is important for semiconductor characterization, eye-safe ranging, optical communications, medical, industrial and scientific research.

- Forsterite's Tetrahedral Cr$^{4+}$ characteristic, with three broad spin-allowed absorption bands spanning over visible- and near-infrared, makes for efficient pumping by many commercially available lasers.

For further information, please contact:
Mediscience Technology Corporation
Forsterite Division
14 East 60th Street, Suite 407
New York, NY 10022
Tel: (212) 980-8899
Fax: (212) 980-9552

Mediscience Technology Corporation is the sole agent in North America for the Forsterite laser crystals manufactured by Mitsui Mining & Smelting Co. Ltd. of Tokyo, Japan.
spectrum of water changes significantly within the tuning range of the Cr:forsterite laser (see Fig. 4). By changing the wavelength of the laser radiation, the penetration depth of radiation into an absorbing sample can be controlled. Because water is one of the major components of body tissue, the tunable output of the Cr:forsterite laser may find use in medical applications.

When used in conjunction with a titanium-doped sapphire laser, the Cr-doped laser may cover nearly the whole visible range (using second-harmonic generation) and the near-IR region up to 1350 nm. The large fluorescence bandwidth of Cr:forsterite has the potential for generating ultrashort pulses through mode-locked operation. Because large crystals can be easily grown, Cr-doped forsterite crystal has the potential to be used as an amplifier medium to produce joule-energy pulses.

ACKNOWLEDGMENTS
We thank Bob Guenther of the Army Research Office (ARO) for his support and Y. Terashima and K. Yamagushi of Mitsui Mining and Smelting Company and Mediscience Technology for providing us with forsterite crystals.

REFERENCES
21. V. Petricevic, A. Seas, and R. R. Alfano, to be submitted for publication.
Picosecond excite-and-probe absorption measurement of nonradiative transition dynamics in emerald

S.K. Gayen, W.B. Wang, V. Petricevic, S.G. Demos and R.R. Alfano

Institute for Ultrashort Spectroscopy and Lasers, Physics Department and Electrical Engineering Department,
The City College of New York, New York, NY 10031, USA

* Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Received 20 April 1990
Revised 22 June 1990
Accepted 23 June 1990

The nonradiative transition dynamics between the excited 4T_2 state and the metastable 2E storage state of the trivalent chromium ion in emerald is investigated using the picosecond excite-and-probe absorption technique. An intra-4T_2 state vibrational relaxation time of 23 ps, and a 4T_2 \rightarrow 2E electronic relaxation time of 20 ps are obtained. The thermal repopulation rate of the 4T_2 state from the metastable 2E level is $9.0 \times 10^9 \text{s}^{-1}$.

1. Introduction

Emerald [Cr$^{3+}$: Be$_2$Al$_2$(SiO$_3$)$_6$], a trivalent chromium-activated beryl, is one of the first room-temperature, frequency tunable laser crystals [1–4] which stimulated the recent surge in vibronic solid state laser research. Emerald, like alexandrite [1] operates in a four level, phonon terminated mode and exhibits gain over a 695–835 nm wavelength range. Its broad fluorescence bandwidth, together with a high gain cross section [2] and a 65 μs room temperature fluorescence lifetime [5] make emerald an excellent candidate for high power, Q-switched or mode-locked operation. Recently, highly efficient quasi-cw laser operation has been achieved in emerald over the 720–842 nm tuning range, with a maximum output of 1.6 W at a pump power of 3.6 W at 647.1 nm [6]. Although the spectroscopic [5–8] and laser properties [2,3] of the chromium ion in emerald are well documented, there is a lack of time-resolved experimental investigations of the nonradiative relaxation processes among the states involved in laser action in this system. Theoretical effort has involved analysis of emerald absorption, emission and thermal quenching of lifetime data using a single configuration coordinate model to investigate the temperature dependences of nonradiative transitions [9]. Knowledge about various loss mechanisms is crucial for better understanding the vibronic laser action, as well as for the fabrication of future generations of tunable laser crystals. Recently, we have investigated [10–13] by picosecond time-resolved spectroscopy the kinetics of nonradiative transitions among the excited pump states and metastable storage levels in a number of transition-metal ion-doped crystals: alexandrite, ruby and Ti$^{3+}$: Al$_2$O$_3$. In this paper, a picosecond excite-and-probe absorption study of nonradiative transition dynamics in emerald is presented.

Emerald is an intermediate field Cr$^{3+}$-based crystal characterized by broad band 4T_2 \rightarrow 4A_2 fluorescence. Its absorption spectrum consists of two broad bands at 640 and 420 nm attributed to the 4A_2 \rightarrow 4T_2 and 4A_2 \rightarrow 4T_1 transitions of the Cr$^{3+}$ ion, respectively. These broad bands serve as pump bands for optical excitation. Optically excited 4T_1 and 4T_2 states relax predominantly via nonradiative transitions to the 2E state. Since the 2E \rightarrow 4A_2 transitions are both first-order spin-
parity forbidden, the \(2^E\) level has a longer lifetime and is metastable. The \(2^E \rightarrow 4^T_2\) energy gap in emerald [5] is only 400 cm\(^{-1}\) compared to 2300 cm\(^{-1}\) in ruby and 800 cm\(^{-1}\) in alexandrite. This smaller energy gap allows significant thermal re-population of the \(^4T_2\) state from the \(^2E\) at room temperature. The metastable \(^2E\) state thus acts as a storage level for vibronic transitions from the \(^4T_2\) state to the vibrational levels of the \(^4A_2\) ground state.

The kinetics of intra-\(^4T_2\) vibrational transitions, the \(^4T_2 \rightarrow 2^E\) electronic transition, and the \(^2E \rightarrow 4^T_2\) thermal repopulation have been investigated in our study. Higher-lying vibrational levels of the \(^4T_2\)-state are excited by a picosecond pump pulse, and the subsequent nonradiative transition dynamics is investigated by monitoring the time evolution of the optical absorption of an infrared picosecond probe pulse from the excited states. In section 2, we present a brief description of the experimental scheme, followed by an overview of the experimental results. A model for induced absorption in emerald and similar crystals is outlined in section 3. The model uses a simplified energy-level diagram for Cr\(^{3+}\) ions in beryl, where the states directly involved in laser action are considered. The metastable storage level is assumed to be constituted of both the \(^2E\) and the \(^2T_1\) level, a justified assumption since the two states are strongly coupled [5]. Under this assumption, the model ascribes the induced absorption to transitions from both the pump and the storage levels, and estimates the instantaneous population in the excited states from rate equations governing the population kinetics. The key nonradiative relaxation parameters for emerald obtained from a fit of the experimental data to this model are presented. The relaxation rates and decay times for emerald are then compared to those for similar tunable laser crystals.

2. Experimental arrangement and result

The experimental arrangement uses a frequency doubled 5 ps 527 nm pump pulse derived from a passively mode-locked Nd:glass laser to excite the higher-lying vibrational (HLV) levels of the \(^4T_2\) state. Nonradiative relaxation of HLV levels results in a growth of the population in the zero vibrational level (ZVL) and lower-lying vibrational (LLV) levels of the \(^4T_2\) state, as well as in the metastable \(^2E\) state. This time evolution of the population is monitored by an infrared picosecond probe pulse which may be wavelength tuned from 2 to 5 \(\mu\)m. The probe pulse is generated by parametric amplification in a pair of LiNbO\(_3\) crystals using a fraction of the same 1054 nm pulse that generates the pump pulse. Infrared transmission measurements are used to select the probe wavelength in such a way that the host and ground-state probe absorption is a minimum.

The experimentally measured quantity is the change in the optical density (OD) of the probe pulse, which for a given pump–probe delay time \(\tau\), is given by

\[
\Delta \text{OD}(\tau) = \log\left[\frac{(I_p/I_o)p}{(I_p/I_o)u}\right],
\]

where \(I_p/I_o\) is the transmitted probe-pulse intensity normalized with respect to the intensity of the probe pulse, and \(u\) and \(p\) stand for the unpumped and pumped conditions of the sample, respectively. The normalization of the probe-pulse intensity \((I_o)\) with respect to the probe-pulse intensity before the sample \((I_p)\), measured by picking up a fraction of the probe pulse with a beam-splitter–detector combination, is necessary to account for the pulse-to-pulse energy fluctuation. To improve the signal-to-noise ratio, the normalized probe intensity is averaged over ten laser pulses for each value of the delay time. The kinetics of excited state transitions is studied by measuring \(\Delta \text{OD}(\tau)\) as a function of pump–probe delay time. Details of the experimental arrangement, detection scheme, signal averaging and processing technique have been reported elsewhere [10].

The hydrothermally grown emerald crystal used in this experiment was obtained from Vacuum Ventures, Inc. It contains 0.29 wt% Cr\(^{3+}\) which is equivalent [7] to a chromium-ion concentration of \(8.9 \times 10^{19} \text{ cm}^{-3}\). The value for the Cr\(^{3+}\) ion concentration is comparable to the value of \(9.2 \times 10^{19} \text{ cm}^{-3}\) in emerald samples used in flashlamp-pumped laser experiments [2]. The sample is a rectangular parallelepiped, 9mm \(\times\) 8mm \(\times\) 5.5mm in dimension. Induced absorption measurements
were taken along the 5.5 mm path length of the sample.

The result of the present picosecond excite-and-probe absorption measurements in emerald at room temperature showing the time evolution of induced absorption at a probe wavelength of 3.9 µm is displayed in fig. 1(a). The probe wavelength of 3.9 µm was chosen carefully so that transitions from the 2E state to the vibrational levels of the 4T2 state are energetically possible, but the probability of transition from any HLV level of the 4T2 state to the 4T1 state or any other higher-lying state is vanishingly small. There is considerable ground state and host absorption at this probe wavelength which is accounted for using the scheme detailed in section 3. The positions and widths of the excited energy levels involved in the probe-pulse absorption are determined from the detailed excited-state absorption (ESA) spectra of emerald investigated by Fairbank, Klauminzer and Schawlow [8]. This accounts for the fact that the ion may relax in the excited state, and so the positions and widths determined from the ground state absorption spectrum may be different from those determined from the excited state absorption spectrum.

The terminal levels for probe transition which originates in the 4T2-state zero or lower-lying vibrational levels have been taken to be the higher-lying 4T2-vibrational levels. The probability for such multiphonon transitions within the vibrational levels of the same electronic state is expected to be low. However, the 4T2-state (in general, the excited states of Cr3+ ion) contains perturbative admixtures of other states due to crystal-field, spin-orbit and vibronic interactions. Because of this mixing of wave functions the strict selection rules are relaxed making transitions more probable. In emerald, the static odd-parity crystal-field T2uX0 and T1u odd vibrations are effective in the mixing of states. The role of these two interactions has been elucidated in the analysis of emerald excited state absorption spectra by Fairbank et al. [8]. These authors also calculated the contribution of the spin–orbit interaction to the 2E→2A2 transition oscillator strength in ruby, found it to be substantial, and predicted similar contributions in emerald as well. The admixtures between participating excited states in our study due to the interaction is mentioned above, are expected to be substantially higher, since, the energy denominators which appear in perturbation calculations are smaller than those in the ESA study of Fairbank et al. [8]. This is due to the fact that in our study, the participating excited states are within energy separations of a few hundred to a few thousand wave numbers (cm⁻¹), whereas ESA transitions studied by Fairbank et al. are in the visible, hence, the energy separations are more than ten thousand wave numbers. Odd-parity crystal field and odd vibrations relaxed the parity selection rule, and the spin–orbit interaction relaxed the spin selection rule enabling transitions between excited states involved in this case. In any reference to an
The AOD versus pump-probe time delay curve is characterized by a 25 ± 5 ps rise time (time for the OD to grow from 10% to 90%) followed by a multicomponent decay. The faster component has a decay time (time for the OD to fall from 90% to 10% of the peak value above the flat region) of 65 ± 10 ps, whereas the longer lifetime component exhibits no appreciable change within the time scale of this measurement.

The longer lifetime component of the decay curve indicates that a "quasithermal equilibrium" has been reached between the E and 4T2 states. Further depopulation of the excited state is expected to be predominantly due to radiative transition. Since, the room temperature fluorescence lifetime of emerald is ~ 65 μs, no appreciable change in the population is expected within a few hundred picoseconds, consistent with the experimental observation. The rise time and the decay time for the faster component are dictated by the intra-4T2-state vibrational relaxation time, the 4T2 → 2E electronic relaxation time, and the 2E → 4T2 thermal repopulation rate.

Supporting evidence for our assignment of the risetime primarily to the intra-4T2-state vibrational relaxation has been obtained by extending the measurement to a probe wavelength of 2.16 μm. The use of a second probe wavelength was guided by the following considerations. First, a 2.16 μm photon is energetic enough to initiate a transition from the pumped HLV levels of the 4T2 state to the 2T1 state, which was not energetically possible for a 3.9 μm photon. Second, the Franck-Condon factor (FCF) for transition between the ZVL of the 2E-state and HLV levels of the 4T2-state attainable by this probe photon is expected to be vanishingly small. This follows from the fact that the Franck-Condon factor, \(|\langle 0 | n \rangle|^2\), between the ZVL of one state and the nth vibrational level of the other state has its maximum value near \(n = \Delta^2/2\), where Δ is the horizontal separation (in units of \((\hbar/Mω)^{1/2}\) between the potential energy curves of the two states, and falls off rapidly as \(n\) changes from that value [14]. An examination of the energy level structure and spectra of emerald reveals that the maxima of the excited state probe absorption will be expected at around 3.9 μm, and that the absorption will be negligible at a probe wavelength of 2.16 μm. Similar considerations apply for transitions from the ZVL and LLV levels of the 4T2 state. Also, there is no significant ground state or host absorption at 2.16 μm. All these factors lead to the expectation that any change in optical density at this probe wavelength will be attributable primarily to transitions from the populated HLV levels of the 4T2 state to the levels of the 2T1 state.

The room temperature time evolution of induced absorption at 2.16 μm is shown in fig. 1(b). The salient features of the curve are a resolution limited sharp rise time followed by a 35 ± 10 ps decay. The resolution limited rise time indicates the increase of population in the pumped HLV levels as long as the pump pulse is on. The 35 ± 10 ps decay time reflects the vibrational relaxation time of the pumped HLV levels. This relaxation leads to the growth of the population in the ZVL and LLV levels of the 2T1 state, and subsequently to the 2E state. The decay time of 35 ± 10 ps agrees with the 25 ± 6 ps rise time of OD at 3.9 μm, and lends qualitative support to the assignment of rise time to the vibrational relaxation of pumped HLV levels.

3. Induced absorption model

In order to obtain a more detailed understanding of experimental results, as well as to extract key nonradiative relaxation rates we introduce a rate-equation model for excited state transition dynamics. A simplified energy level structure for the chromium ion in emerald is used. The state that is optically excited is the 4T2 state with possible perturbative admixtures of other states as mentioned earlier. The metastable storage level, referred to as the 2E state, consists in fact of the coupled 2E and 2T1 states [5]. The time evolution of the optical absorption from the excited metastable and 4T2 states following the excitation of some HLV levels of the 4T2 state is described by the excited state absorption coefficient:

\[
\alpha_c(t) = N_1(t) \sigma_1 + N_2(t) \sigma_2, \tag{2}
\]
Fig. 2. Schematic diagram showing relevant transitions and transition rates for 3.9 μm probe absorption. The metastable level is the coupled 2E and 4T_2 state. The rates and populations are explained in the text.

where N_1 and N_2 are instantaneous population densities (ions/cm3) and σ_1 and σ_2 are cross sections for probe absorption in the metastable state and the 4T_2 state, respectively. The transitions and transition rates are shown schematically in fig. 2. The population kinetics of the 4T_2 and the 2E states are governed by the following rate equations

$$\frac{dN_1}{dt} = -kN_1 + \beta P(t),$$

$$\frac{dN_2}{dt} = k_{21}N_1 - k_{12}N_1 - k_{10}N_1,$$

and

$$\frac{dN_2}{dt} = kN_2 + k_{12}N_1 - k_{21}N_2 - k_{20}N_2,$$

where $N(t)$ is the instantaneous population density in the 4T_2-state HLV levels which are directly excited by the pump pulse, $P(t)$ is the pump photon flux density (photons/cm3s), k is the intra-4T_2 vibrational relaxation rate, k_{21} is the $^4T_2 \rightarrow ^2E$ electronic relaxation rate, k_{12} is the thermal refilling rate of 4T_2 from 2E, k_{10} and k_{20} are radiative transition rates from the 2E and 4T_2 states, respectively, $\beta = 1 - \exp(-\alpha L)$ is the fraction of the pump photons absorbed by the pump volume of the sample, α is the ground-state absorption coefficient for pump pulse, and L is the length of the sample.

Because the radiative lifetimes are of the order of milliseconds to microseconds, the radiative transition rates k_{10} and k_{20} are extremely small compared to nonradiative rates, and may be neglected in the kinetics study of the first few hundred picoseconds. The rate equations were solved numerically using the fourth-order Runge-Kutta method [15]. The temporal profile of the pump pulse was taken as a Gaussian [16] of 5 ps FWHM. The arbitrary constants in the solution of the differential equations were determined from the condition that initially populations in the excited states are zero, and the final condition that at sufficiently large times the populations in the 2E and 4T_2 states obey the Boltzmann distribution law:

$$\frac{N_2}{g_2} = \frac{N_1}{g_1} \exp(-\Delta E/k_BT),$$

where g_1 and g_2 are the degeneracies of the metastable and 4T_2 states, respectively. ΔE is the metastable level $\rightarrow ^4T_2$-state energy gap and k_B is the Boltzmann constant. As pointed out earlier in this work, we have assumed after ref. [5] that the 2E and 4T_1 states are strongly coupled and that they form the metastable storage level. Accordingly, the degeneracy of the pump state, g_2 is taken to be 12 and that of the metastable level, g_1 to be $(4 + 6) = 10$. The energy gap between the pump band and the storage level is taken to be 400 cm$^{-1}$ [5].

Experimentally, the change in the optical absorption of the probe pulse between the pumped and unpumped conditions of the sample is measured as a function of delay time. This change for delay time t_d is given by,

$$\Delta OD(t_d) = OD_p(t_d) - OD_u(t_d),$$

where the subscripts p and u stand for pumped and unpumped conditions of the sample. In terms of a population in different states,

$$\Delta OD(t_d) = \left[\alpha N_1(t_d) + \alpha_2 N_2(t_d) + \alpha g N_6(t_d)\right] L - N_0 \alpha g L,$$

where N_6 is the instantaneous chromium ion density in the ground state, αg is the ground state absorption cross section at probe wavelength by a chromium ion, and N_0 is the total density of Cr$^{3+}$ ions in the sample. Now,

$$N_6(t_d) = N_0 - \alpha \int_{-\infty}^{t_d} P(t) \, dt.$$
Substituting (8) in (7) gives:
\[
\Delta \text{OD}(t_d) = \sigma_1 N_1(t_d) L + \sigma_2 N_2(t_d) L
\]
\[-a_1 \int_{-\infty}^{t} P(t) \, dt. \tag{9}
\]
Equation (9) would be the exact expression for \(\Delta \text{OD}\), if the probe pulse were a delta function. However, the duration of the probe pulse is comparable to that of the pump pulse and is of the same order of magnitude as the relaxation times under consideration. Hence, the expression in eq. (9) has to be replaced by a corresponding expression involving the convolution of the probe pulse with the system response, and will be of the form:
\[
\Delta \text{OD}(t_d) = A_1(t_d) + A_2(t_d) + B(t_d). \tag{10}
\]
where
\[
A_i(t_d) = -\log \left[\frac{\int_{-\infty}^{\infty} I(t-t_d) \exp(-N_i L) \, dt}{\int_{-\infty}^{\infty} I(t) \, dt} \right]. \tag{11}
\]
\[
B(t_d) = -\log \left[\frac{\int_{-\infty}^{\infty} I(t-t_d) \exp \left[\beta_i L \int_{-\infty}^{t} P(t) \, dt \right] \, dt}{\int_{-\infty}^{\infty} I(t) \, dt} \right]. \tag{12}
\]
and \(I(t)\) is the intensity of the probe pulse. The background absorption due to the host alone, is the same for both the pumped and unpumped cases. Since, experimentally the change in optical absorption is obtained from the ratio of transmitted intensities for the pumped and unpumped conditions of the sample, this contribution cancels out. However, this will be true only if, the probe absorption due to the host is not bleached by the pump pulse. Measurements of the probe transmission as a function of the pump pulse intensity indicate no bleaching at the intensity levels used in this experiment.

A fit to the experimental data to eqs. (10)–(12) assuming a Gaussian probe pulse \(17\) of estimated \(3.5 \pm 0.5\) ps FWHM, and using the transition rates \(k_1, k_{21}\), and \(k_{12}\) as well as the ratio \(\sigma_2/\sigma_1\) as variable parameters is displayed by the solid line in fig. 1(a). The transition rates \(k_1, k_{21}\) are not independently variable, but are related by the Boltzmann condition:
\[
k_{12} = \left(\frac{R_2}{R_1} \right) k_{21} \exp \left[-\frac{\Delta E}{k_B T} \right].
\]
The values of the parameters obtained from the fit are: \(k = 4.4 \times 10^{10} \text{ s}^{-1}\), \(k_{21} = 5.1 \times 10^{10} \text{ s}^{-1}\), \(k_{12} = 9.0 \times 10^{9} \text{ s}^{-1}\), and \(\sigma_2/\sigma_1 = 95\). It was observed that the fit is more sensitive to the sum \(k_{12} + k_{21}\) than to \(k_{12}\) and \(k_{21}\) independently. The individual rates are estimated from the thermal equilibrium Boltzmann condition.

4. Discussion

The present picosecond excite-and-probe absorption measurement together with the model fit yields a number of key relaxation times. The vibrational relaxation rate \(k\) is estimated to be \(4.4 \times 10^{10} \text{ s}^{-1}\), which implies a vibrational relaxation time of \(-23\) ps for the transition from the pumped HLV levels to the bottom of the \(4T_2\) adiabatic potential energy parabola. The value of \(5.1 \times 10^{10} \text{ s}^{-1}\) for the nonradiative relaxation rate \(k_{21}\) for the electronic transition between the \(4T_2\)-state and the metastable level leads to a relaxation time of \(-20\) ps. The metastable state \(\rightarrow 4T_2\)-state thermal repopulation rate is found to be \(9.0 \times 10^9 \text{ s}^{-1}\). The uncertainty in the values of these parameters may stem from group dispersion effects, fluctuations in the duration of the pump and the probe pulses, and the sensitivity of the fit to the experimental data with respect to variations in the values of parameters used. We estimate an overall uncertainty of 20% in the values of relaxation times quoted above from those factors. The intra-\(4T_1\) vibrational relaxation rate in emerald turns out to be comparable to the \(4T_2 \rightarrow 2E\) electronic nonradiative relaxation rate. This is unusual but not surprising, since a larger energy degradation (\(-4750 \text{ cm}^{-1}\), difference in energy between the HLV levels reached by the pump pulse and the ZVL) is involved in vibrational relaxation than in electronic relaxation (400 \text{ cm}^{-1}) for the 527 nm excitation of the \(4T_2\) band.
The ratio of σ_2/σ_1 obtained from the fit was used with the experimentally measured value of the optical density, and experimental parameters such as pump pulse energy, spot sizes of the pump and probe pulses, and chromium ion density in the sample to estimate the absorption cross section at 3.9 μm from the excited states. The excited state absorption (ESA) cross section at 3.9 μm from the 2E state is estimated to be 2×10^{-20} cm2, and from the 4T_2 state to be 1.9×10^{-18} cm2. In view of the size of the error bars in the induced absorption data and the uncertainties in determining the various experimental parameters that enter the estimation of these cross sections, we assign an uncertainty of a factor of five in the absolute values for ESA cross sections. The excited state absorption from the 4T_2 state is estimated to be 2×10^{-20} cm2, and from the 4T_2 state to be 1.9×10^{-18} cm2. In view of the size of the error bars in the induced absorption data and the uncertainties in determining the various experimental parameters that enter the estimation of these cross sections, we assign an uncertainty of a factor of five in the absolute values for ESA cross sections. The excited state absorption from the 4T_2 state is estimated to be 2×10^{-20} cm2, and from the 4T_2 state to be 1.9×10^{-18} cm2. In view of the size of the error bars in the induced absorption data and the uncertainties in determining the various experimental parameters that enter the estimation of these cross sections, we assign an uncertainty of a factor of five in the absolute values for ESA cross sections. The excited state absorption from the 4T_2 state is estimated to be 2×10^{-20} cm2, and from the 4T_2 state to be 1.9×10^{-18} cm2. In view of the size of the error bars in the induced absorption data and the uncertainties in determining the various experimental parameters that enter the estimation of these cross sections, we assign an uncertainty of a factor of five in the absolute values for ESA cross sections.

The nonradiative relaxation rates for intra-4T_2 vibrational transitions, 4T_2 \rightarrow metastable level electronic transitions, and the metastable level \rightarrow 4T_2, thermal repopulation rate of the chromium ion in emerald are comparable to the corresponding transition rates in alexandrite [12]. In ruby the relaxation times were shorter than the resolution limit of the experiment, which led to an upper limit of 5 ps for the 4T_2-state nonradiative lifetime [10]. The intra-4T_2 state vibrational relaxation time of the chromium ion in ruby is expected to be considerably smaller than the 5 ps upper limit, which includes the 4T_2 \rightarrow 2E electronic relaxation time as well. The vibrational relaxation time of 17 ps in alexandrite is smaller than the 23 ps obtained in emerald. These values suggest a relationship between the intra-4T_2 vibrational relaxation rate and the strength of the crystal field surrounding the chromium ion. The crystal field parameters Dq for ruby, alexandrite and emerald are 1820 cm$^{-1}$, 1680 cm$^{-1}$ and 1620 cm$^{-1}$, respectively. So.

the intra-4T_2 vibrational relaxation rate appears to decrease as the crystal field strength decreases. However, to establish the exact nature of this dependence a theoretical study with more experimental data for chromium ions in different crystal fields is necessary.

In summary, the picosecond excite-and-probe absorption measurement, together with the simple model for induced absorption, provide first time-resolved estimates of some key excited state nonradiative relaxation parameters. A detailed theoretical model, that takes into consideration the complex nature of lasing-ion excited states and all relevant interactions, is necessary for a more quantitative understanding of the nonradiative transition dynamics between excited states of vibronic laser crystals.

Acknowledgements

We would like to acknowledge Dr. Richard Mandle of Vacuum Ventures, Inc. for providing us with a piece of undoped beryl. The research is supported by Army Research Office, National Aeronautics and Space Administration, and City University Faculty Award program.

References

Effective Gain Measurements in Chromium-Doped Forsterite

V. Petričević, A. Seas, and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers
Departments of Physics and Electrical Engineering
City College of New York, New York, NY10031

ABSTRACT

Effective gain cross-section in tetravalent chromium-doped forsterite laser crystal was measured over the 1180-1330 nm spectral range. The experiment was performed using two collinear laser beams in a pump-and-probe arrangement. The peak gain cross section from this measurement is estimated to be $1.9 \times 10^{-19} \text{cm}^2$ at 1215 nm which is comparable to the value of $2 \times 10^{-19} \text{cm}^2$ predicted by fluorescence linewidth and lifetime measurements. These results indicate that excited-state absorption is not a major loss mechanism in tetravalent chromium-doped forsterite.

I. INTRODUCTION

Chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) is an important tunable solid-state laser system for the near infrared spectral range. It operates in both pulsed [1]-[3] and continuous-wave [4] mode of operation. Its output can be tuned over the 1167-1345 nm range [5]. The most interesting feature that distinguishes this laser system from other chromium-based lasers is that the lasing ion is tetravalent chromium (Cr$^{4+}$) in a tetrahedrally coordinated site [2],[3],[6]-[8]. While the spectroscopic properties of chromium-doped forsterite have been studied in some detail [6]-[9], the evaluation of the potentials of this crystal for application as a practical laser system are far from being complete. In this work, we present pump-and-probe measurements of the effective gain cross-section in chromium-doped forsterite. Results of these measurements show the effect of the excited-state absorption (ESA) on the performance of chromium-doped forsterite as a laser crystal.

The most important parameter that characterizes a laser system is the gain cross-section. The gain cross section can be estimated using the Einstein relation which gives gain as a function of the radiative lifetime and fluorescence lineshape. However, very often there is a discrepancy between the values predicted by this relation and the values observed in laser experiments. Lower values of the gain cross section measured in laser experiments are in many cases explained by the existence of loss mechanisms such as excited-state absorption. The net or effective gain cross section is then given by

$$\sigma_{\text{EFF}} = \sigma_{\text{E}} - \sigma_{\text{ESA}} - \sigma_{\text{G}}$$ (1)

where σ_{E} is the gain cross section, which can be calculated using the Einstein relation, σ_{ESA} is the excited-state absorption cross section, and σ_{G} is the ground-state absorption cross section which is negligible in most cases. ESA is a loss mechanism which impedes or, in some cases, completely inhibits laser action in tunable solid-state laser materials. It has been shown that it severely affects laser performance of V$^{2+}$-doped crystals [10],[11], prevents laser action in Mn$^{2+}$-doped crystals [12], and limits the slope efficiency of Cr$^{3+}$:Mg$_3$Ga$_2$Li$_3$F$_{12}$ laser [13]. It is also present, although without such a detrimental effect, in well developed tunable solid-state lasers such as alexandrite [14]. Absence of ESA is one of the most important advantages of Ti:Al$_2$O$_3$ laser [15].

In this paper, we present measurements of the effective gain cross-section in Cr:Mg$_2$SiO$_4$ over
the part of its tuning range. These measurements were undertaken as an attempt to estimate the effect of ESA on laser performance of chromium-doped forsterite laser.

II. EXPERIMENTAL

The Cr:Mg$_2$SiO$_4$ sample used in this study is a 38 mm long and 4 mm in diameter single-crystal laser rod with end facets anti-reflection coated for the 1.1-1.4 µm spectral range. The crystal was grown by Czochralski technique at the Electronic Materials Research Laboratory of the Mitsui Mining and Smelting Co., Ltd., Japan. The total chromium ion concentration in the crystal is 3-4 x 1018 cm$^{-3}$. The crystal contains both Cr$^{3+}$ and Cr$^{4+}$ ions with the relative concentration of Cr$^{3+}$ and Cr$^{4+}$ ions unknown. The Cr$^{4+}$ concentration was increased by growing the crystal in more oxidizing atmosphere (≈1 % oxygen partial pressure). The ground-state absorption spectrum of Cr:Mg$_2$SiO$_4$ for E II b axis is shown in Fig. 1. The spectrum shows contributions from both the active ions, Cr$^{3+}$ and Cr$^{4+}$. The transition assignments in Fig. 1 were made [6,9] using Tanabe-Sugano diagrams for Cr$^{3+}$ ions in octahedral coordination and Cr$^{4+}$ in tetrahedral coordination.

![Absorbance vs Wavelength](image)

Figure 1. Room temperature absorption spectrum of Cr:Mg$_2$SiO$_4$ for E II b axis.

The effective gain measurements were performed using standard pump-and-probe arrangement. As a pump source the fundamental 1064-nm radiation from a pulsed Nd:YAG laser was used to selectively populate only the 3T_2 state of the Cr$^{4+}$ ion, the upper lasing level of the chromium-doped forsterite laser. The choice of a probe beam source depends on the wavelength range that is being investigated. In the wavelength region where the emission is too intense, i.e. in the tuning range of the laser under investigation, tungsten or xenon lamps cannot be used, since the fluorescence from the sample overwhelms the probe beam [10,11]. Therefore, we decided to use laser as a probe source. A tunable Cr:forsterite laser appeared to be an ideal probe beam source for this measurement.

The experimental setup used to measure the effective gain cross-section is shown schematically in Fig. 2. The 3T_2 state of the Cr$^{4+}$ ion was populated by 1064-nm pump beam obtained from a Q-switched Nd:YAG laser operating at 10 Hz repetition rate. The pump beam was weakly focused to a 400-µm radius spot on the sample by a 1-m focal length lens. Typical pump beam energy incident on the sample was ≈1 mJ per pulse, of which 79 % was absorbed in the sample. The excited state was probed by a collinearly propagating probe beam. The weak probe beam (typically ~25 µJ per pulse) was obtained from a tunable Cr:forsterite laser pumped by the same Nd:YAG laser used to pump the sample. Wavelength tuning of the probe beam was accomplished by using a birefringent plate at Brewster's angle as an intracavity dispersive element and by changing the output mirror [5]. The delay between the pump pulse and the probe pulse was smaller than 100 ns. Since the room temperature lifetime of the 3T_2 state in chromium-doped forsterite is 2.7 µs, no appreciable depopulation of the excited state takes place before the arrival of the probe pulse. Probe beam was focused on the sample by 30-cm focal length lens to a 150-µm radius spot. The pump and probe beams were carefully overlapped in the sample using two 0.8-mm apertures so that the probe beam was fully concentric within the pump-beam. The overlap of the two beams was checked by scanning a razor blade mounted on a translation stage across the beam in both vertical and horizontal directions, before and behind the sample.

The effective gain cross-section was estimated from the ratio of the transmitted probe intensity for the pumped and unpumped conditions of the sample, respectively. The transmitted probe...
Figure 2. Experimental setup used to measure the effective gain cross-section in Chromium-doped forsterite.

Intensity was normalized with respect to probe intensity before the sample to account for the pulse-to-pulse energy fluctuations. The probe beam intensity before the sample was monitored with a beam splitter and a fast germanium photodiode D_1. The transmitted probe beam was analyzed by a 1/4-meter spectrometer and its intensity was monitored by an identical germanium photodiode D_2. A gated boxcar integrator was used to obtain the average ratio S_2/S_1, where S_2 is the signal proportional to the intensity of the transmitted probe beam measured by a germanium detector D_2 at the end of the spectrometer, and S_1 is proportional to the intensity of the probe beam before the sample measured by a germanium detector D_1. The average was taken over 100 laser shots to enhance the signal-to-noise ratio.

Excited-state population density (N_E) was estimated by measuring the pumped volume of the sample and the energy of the pump pulse absorbed in the crystal, assuming that each absorbed pump photon creates one excited ion. The pumped volume of the crystal was estimated by measuring the size of the pump beam at the position of the sample. Since the pump beam was weakly focused with a long focal-length lens and a 0.8 mm aperture was used in front of the sample, the transverse beam intensity distribution was measured to be approximately uniform, with the beam radius of 0.4 mm throughout the crystal.

III. RESULTS

The normalized probe transmission S_2/S_1 was used to determine the value of the effective gain cross-section in chromium-doped forsterite. It has been shown [18],[19] that the effective gain cross section σ_{EFF} can be calculated using the expression

\[\sigma_{\text{EFF}} = \frac{N_E}{1 - \ln R} \]

where \(\sigma_E \) is the gain cross section, \(\sigma_{\text{ESA}} \) is the excited-state absorption cross section, \(\sigma_G \) is the ground state absorption cross section at probe wavelength, N_E is the excited-state population density of, \(L \) is the length of the crystal and R is defined by

\[R = \frac{(S_2/S_1)_u}{(S_2/S_1)_p} \]

The subscripts u and p refer to unpumped and pumped cases, respectively.

The measured effective (net) gain cross section as a function of wavelength in the 1180-1330 nm wavelength region is presented in Fig. 3 by triangles superimposed on the fluorescence spectrum. The near-infrared portion the absorption spectrum is also displayed for comparison.
IV. DISCUSSION

In Cr-doped forsterite the laser-active ion is tetrahedrally coordinated tetravalent chromium, Cr$^{4+}$ and therefore the possible transitions that may affect laser operation occur between different states of the Cr$^{4+}$ ion.

For near-infrared pumping (e.g. 1064-nm radiation from Nd:YAG laser) only the $^3\!A_2 \to ^3\!T_2$ transition between the ground state and the first excited state of the Cr$^{4+}$ ion takes place, that is only Cr$^{4+}$ ions are being excited. The ESA transitions are then expected to originate from the relaxed $^3\!T_2$ state of the Cr$^{4+}$ ion.

From the Tanabe-Sugano diagram for tetravalent chromium in Cr:Mg$_2$Sio$_4$, shown in Fig. 4, it is possible to predict the wavelength of the peak of the ESA. Using D_q=915 cm$^{-1}$ and B=970 cm$^{-1}$ a maximum of ESA due to $^3\!T_2 \to ^3\!T_1$ transition may be expected at -1500 nm.

It has been suggested [16], [17] that the same $^3\!T_2 \to ^3\!T_1$ transition may be responsible for limited tuning range of the Cr:YAG laser, besides Cr:forsterite the only other successful Cr$^{4+}$-based laser system, to date. The same process may be the reason that laser experiments in Cr$^{4+}$-doped garnets such as GSGG, GSAG and YSGG were unsuccessful so far.

The salient features of the gain curve obtained from the pump-and-probe measurements shown in Fig. 3 are the peak value of 1.9×10^{-19} cm2 at 1215 nm and the shape of the curve. The shift of the peak of the gain curve with respect to the peak of the fluorescence curve in Fig. 3 is a consequence of the overlap of the fluorescence band with the low energy tail of the absorption band. The shape of
the gain curve, which is expected to follow the fluorescence curve, deviates slightly from it in the wavelength range beyond 1300 nm as shown by dot-dash curve. The higher than expected decrease of the gain in this range most likely arises from the onset of the ESA. This is in agreement with the predicted wavelength of ESA approaching 1500 nm. This is also in accordance with the suggested ESA in Cr:YAG and Cr:GSGG.

The results of the pump-and-probe experiment show that in the case of chromium-doped forsterite the role of ESA is not so prominent in the bigger portion of the tuning range. The measured values of the net gain cross section are in good agreement with the value of -2 x 10^-19 cm^2 for the peak gain cross section obtained from radiative lifetime and fluorescence lineshape measurements. These values are also in excellent agreement with the gain cross sections obtained from both pulsed and continuous-wave laser experiments. The gain cross sections estimated from different measurements are summarized in Table 1.

V. CONCLUSIONS

The effective gain cross-section in chromium-doped forsterite laser crystal has been measured over the 1180-1330 nm spectral range. The close agreement between the measured effective gain cross section and the peak gain cross-section predicted using radiative lifetime and fluorescence linewidth indicates that ESA cross section is considerably smaller than the gain cross section. This agreement implies that ESA is not a major loss mechanism in chromium-doped forsterite for wavelengths shorter than 1300 nm. There is a possibility of the onset of a weak ESA occurring beyond 1300 nm.

ACKNOWLEDGMENTS

We thank Mr. K. Yamagishi of the Mitsui Mining and Smelting Co., Ltd., Japan for growing the Cr:MgSiO_4 crystal used in this study and Professor S. K. Gayen for helpful discussion. The research is supported by the Army Research Office and National Aeronautics and Space Administration.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>λ (nm)</th>
<th>σ (cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linewidth and Lifetime</td>
<td>1140</td>
<td>2 x 10^-19</td>
</tr>
<tr>
<td>Lifetime Measurements</td>
<td></td>
<td>(calculated)</td>
</tr>
<tr>
<td>CW Laser Operation</td>
<td>1244</td>
<td>1.47 x 10^-19</td>
</tr>
<tr>
<td>Pulsed Laser Operation</td>
<td>1235</td>
<td>1.44 x 10^-19</td>
</tr>
<tr>
<td>Pump-and-probe Experiment</td>
<td>1200</td>
<td>1.8 x 10^-19</td>
</tr>
</tbody>
</table>
REFERENCES

18. V. Petricević, A. Seas, and R. R. Alfano, to be published.
Slope Efficiency Measurements of Chromium-Doped Forsterite Laser

V. Petričević, A. Seas and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers
and
Center for Analysis of Structures and Interfaces
Departments of Physics and Electrical Engineering
City College of New York, New York, NY 10031

Abstract

The slope efficiency of the continuous-wave chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) laser has been measured using four different output mirrors. The maximum slope efficiency of 38% was achieved using 11% output coupler. The extrapolated limiting slope efficiency in the absence of passive losses is estimated to be 65%. This value corresponds to an intrinsic quantum efficiency of 77%, which is similar to the efficiencies determined for mature tunable solid state laser systems.
Chromium-doped forsterite (Cr: Mg$_2$SiO$_4$) is an important tunable solid state laser which fills the void in the spectral region between 1100 - 1350 nm. Pulsed and continuous-wave laser action was obtained and tunability over the 1130 - 1367 nm was demonstrated. The unique property of chromium-doped forsterite is that the lasing center was identified as tetravalent chromium (Cr$^{4+}$) substituting for tetrahedrally coordinated Si$^{4+}$. Tetrahedral Si$^{4+}$ site occupied by Cr$^{4+}$ ions lacks inversion symmetry and provides odd-parity field necessary to relax the parity selection rule, making electric dipole transitions possible. This results in high transition strengths observed in the absorption spectra where Cr$^{4+}$ features are dominant, and in relatively short radiative lifetime τ_R of 25 μs, as well as in high stimulated emission cross section of the order of 2×10^{-19} cm2. Room-temperature quantum yield η was estimated from the ratio between the room-temperature fluorescence lifetime τ and the radiative lifetime ($\eta = \tau / \tau_R$) to be $\sim 10\%$. The highest slope efficiency of the Cr:forsterite laser previously reported was 23%. When the inverse slope efficiency is plotted as a function of the inverse output coupling factor, (when different output mirrors are used), the limiting slope efficiency η_0, which can be achieved in the absence of passive losses, can be determined. In this paper, we follow the approach of Caird et al. to determine the limiting slope efficiency and estimate the role of various loss mechanisms on laser performance of the Cr: forsterite laser.

The equation for the output power slope efficiency

$$\eta_s = (\alpha_P / \lambda_0)(T/L+T)$$

which gives the slope efficiency as a function of the output coupling parameter T and loss L, was originally derived by Danielmeyer, and later modified by Caird et
al.11 to make allowance for a possibility of nonunity pumping efficiency and to include a loss factor due to excited-state absorption (ESA).

The inverse output power slope efficiency $1/\eta_s$ and the inverse of the limiting slope efficiency $1/\eta_0$ are connected by a linear relationship:11

$$\eta_s^{-1} = \eta_0^{-1}(1 + LT^{-1}),$$

(2)

where

$$\eta_0 = \eta_P(\lambda_P/\lambda_L)(\sigma_{\text{EFF}}/\sigma_E).$$

(3)

In equations (2) and (3) η_P is the pumping efficiency, λ_P is the pump wavelength, λ_L is the lasing wavelength, σ_E is the gain cross section, and σ_{EFF} is given by

$$\sigma_{\text{EFF}} = \sigma_E - \sigma_{\text{ESA}}$$

(4)

where σ_{ESA} is the excited state absorption cross section.

It is obvious from the equation (3) that in order to achieve the quantum defect limited value of the slope efficiency λ_P/λ_L the excited state absorption cross section σ_{ESA} must be negligible and the pumping efficiency must be close to unity.

The value of the limiting slope efficiency η_0 can be obtained by extrapolating the inverse slope efficiency η_s^{-1} as a function of the inverse output coupling T^{-1} to $T^{-1} = 0$. η_0 can be used to estimate the excited state absorption cross section, i.e. the deviation of the effective gain cross section from the stimulated emission cross section predicted by the lineshape and the lifetime measurements.

The sample used in these laser experiments is a 4.5 mm x 9 mm x 9 mm rectangular parallelepiped with the three mutually orthogonal axes oriented along the b, c, and a crystallographic axes of the crystal. The a axis is parallel to the 4.5 mm
side of the crystal and perpendicular to the 9 mm x 9 mm face. The crystal contains 0.04 at. % of Cr ions, which is equivalent to a total chromium ion concentration of 1.1×10^{19} ions/cm3. The relative concentrations of Cr$^{3+}$ and Cr$^{4+}$ ions is not known.

The limiting slope efficiency of the Cr:Mg$_2$SiO$_4$ laser was measured using a standard 3-mirror astigmatically compensated cavity. The three-mirror cavity was chosen not because the Brewster-cut crystal was used, but rather because of its flexibility and usefulness for other applications, such as mode locked operation, when a possibility of changing the length has to be combined with small mode size and when tighter focusing is needed. The experimental setup is shown in Fig. 1. The 5-cm-radius back mirror and the 10-cm-radius folding mirror have 99.99% reflectivity over the 1200 - 1300 nm range and high transmission (>80%) for the pump 1064-nm radiation. Output coupling factor T was varied by changing the flat output mirror. Four different output couplers with transmission of 0.65%, 3.4%, 7.8 %, and 11 % over the 1200 - 1300 nm spectral range and transmission >85% for 1064-nm radiation were used. Since transmission is high for pump radiation wavelength of 1064 nm for all three mirrors of the cavity, no corrections were made to account for the second pass absorption of the portion of the pump beam that is reflected back from the output coupler.

The chromium-doped forsterite crystal was placed at the center of the short arm of the three-mirror cavity and was pumped longitudinally with 1064-nm radiation from a cw Nd:YAG laser. The pump beam was linearly polarized along the b axis and propagated along the a axis of the crystal. The position of the 7.5-cm-focal-length lens was adjusted for the best overlap of the pump beam and the cavity mode by monitoring the output power. The pump beam was chopped at a duty cycle of 15:1 to reduce thermal effects.
The experimental results are summarized in Table 1. The inverse slope efficiency as a function of output coupling is shown in Fig. 2. The inverse slope efficiency extrapolates to a limiting power slope efficiency of $\eta_0 = -65\%$. If this value is multiplied by the ratio of the laser and pump wavelengths (λ_L/λ_P), an extrapolated quantum slope efficiency or intrinsic quantum efficiency η_{iq} as defined by Chase et al.14, of 77\% is obtained. Although considerably smaller than unity, this is still one of the highest values ever measured for a tunable solid-state laser.1

The slope of the line in Fig. 2 represents the passive loss of $\sim 10\%$ which is due to a combination of effects such as reflection loss, less than perfectly parallel faces of the crystal, incomplete overlap of the pumped volume and cavity mode volume, as well as residual absorption and scattering loss. Parallelism of the sample is not known. The absorption and scattering loss is estimated from the transmission spectrum of the crystal corrected for Fresnel loss to be $<0.5\%$ for the 4.5-cm path length and therefore does not play a major role.

The deviation of the measured intrinsic quantum efficiency from unity can be explained either by the presence of the ESA or by pumping efficiency $\eta_P < 1$.

To estimate the role of ESA, the effective gain (σ_{eff}) was measured using standard pump-and-probe arrangement. The details of the experiment will be published elsewhere.10 The measured effective (net) gain cross section as a function of wavelength in the 1180-1330 nm wavelength region is presented in Fig. 3 by triangles superimposed on the fluorescence spectrum. The near-infrared portion of the absorption spectrum is also displayed for comparison.

The salient features of the gain curve obtained from the pump-and-probe measurements shown in Fig. 3 are the peak value of 1.9×10^{-19} cm2 at 1215 nm and
the shape of the curve. The shift of the peak of the gain curve with respect to the peak of the fluorescence curve in Fig. 3 is a consequence of the overlap of the fluorescence band with the low energy tail of the absorption band. The shape of the gain curve, which is expected to follow the fluorescence curve deviates slightly from it in the wavelength range beyond 1300 nm as shown by a dot-dash curve. The higher than expected decrease of the gain in this range most likely arises from the onset of the ESA. This is in agreement with the predicted wavelength of ESA approaching 1700 nm.10

The results of the pump-and-probe experiment show that in the case of chromium-doped forsterite the role of ESA is not so prominent in the larger portion of the tuning range. The measured values of the net gain cross section are in good agreement with the value of ~2.11 x 10^{-19} cm^2 for the peak gain cross section calculated using results of the lineshape and radiative lifetime measurements.10 These values are also in excellent agreement with the gain cross-sections obtained from both pulsed and continuous-wave laser experiments.5,8 The gain cross sections estimated from different measurements are summarized in Table 2.

Since the measurements of the effective gain did not show presence of significant excited state absorption, the only remaining possibility is \(\eta_p < 1 \). One possible loss mechanism that may give rise to smaller-than-unity pumping efficiency is excited state absorption of the pump radiation, as suggested by Verdun et al.15 The possibility of a process involving absorption or inelastic scattering from the excited state is also confirmed by the presence of a faint visible radiation which was observed when the forsterite is pumped by a continuous-wave 1064-nm radiation.
In conclusion, the limiting slope efficiency and the intrinsic quantum efficiency of the chromium-doped forsterite laser has been measured. The measured intrinsic quantum efficiency is one of the highest ever reported for a tunable solid-state laser. To account for the discrepancy between the quantum defect limited efficiency and the measured limited slope efficiency (i.e. the deviation of the measured intrinsic quantum efficiency from unity), effect of ESA was investigated by measuring the effective gain cross section using pump-and-probe technique. The effective gain cross-section in chromium-doped forsterite laser crystal has been measured over the 1180-1330 nm spectral range. The close agreement between the measured effective gain cross section and the peak gain cross-section predicted using radiative lifetime and fluorescence linewidth indicates that ESA cross section is considerably smaller than the gain cross section. This agreement implies that ESA is not a major loss mechanism in chromium-doped forsterite for wavelengths shorter than 1300 nm. There is a possibility of the onset of a weak ESA occurring beyond 1300 nm. As a possible loss mechanism that may be responsible for the observed discrepancy an excited state absorption in the pump wavelength region is suggested.

This work is supported in part by Army Research Office and National Science Foundation.
References:

Figure Captions:

Figure 1 Schematic diagram of the experimental arrangement for measuring the limiting slope efficiency of Cr:forsterite laser: C, light chopper; F₁, variable neutral density filter; L, focusing lens; M₁, 5-cm radius back mirror; M₂, 10-cm radius folding mirror; M₀, output mirror; S, sample; T, birefringent tuning plate; F₂, 1064-nm cutoff filter, Cr:forsterite laser emission-transmitting filter; PM, power meter.

Figure 2 Inverse slope efficiency 1/ηₛ as a function of inverse output coupling 1/T for cw Nd:YAG-pumped continuous-wave Cr:Mg₂SiO₄ laser. 10% uncertainty in the measured slope efficiencies was assumed. Extrapolating the data limiting slope efficiency of η₀ > 65 % is obtained.

Figure 3 The Fluorescence spectrum for 1064-nm excitation and the infrared absorption spectrum of chromium-doped forsterite (solid line) and the effective gain cross-section (triangles and broken line). Dot-dash curve shows the expected gain in case there is no ESA.
<table>
<thead>
<tr>
<th>Output Mirror Transmission [%]</th>
<th>Slope Efficiency [%]</th>
<th>Threshold Absorbed Power [mW]</th>
<th>Output Wavelength [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>5.69</td>
<td>500</td>
<td>1260</td>
</tr>
<tr>
<td>3.4</td>
<td>24.65</td>
<td>1200</td>
<td>1258</td>
</tr>
<tr>
<td>7.8</td>
<td>31.76</td>
<td>1600</td>
<td>1265</td>
</tr>
<tr>
<td>11</td>
<td>37.85</td>
<td>1800</td>
<td>1242</td>
</tr>
<tr>
<td>Experiment</td>
<td>λ (nm)</td>
<td>σ (cm2)</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Linewidth and Lifetime Measurements</td>
<td>1140</td>
<td>2.11×10^{-19} (calculated)</td>
<td>10</td>
</tr>
<tr>
<td>CW Laser Operation</td>
<td>1244</td>
<td>1.47×10^{-19}</td>
<td>8</td>
</tr>
<tr>
<td>Pulsed Laser Operation</td>
<td>1235</td>
<td>1.44×10^{-19}</td>
<td>8</td>
</tr>
<tr>
<td>Pump-and-probe Experiment</td>
<td>1200</td>
<td>1.8×10^{-19}</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 2
Figure 3

WAVELENGTH (nm)

ABSORPTION AND FLUORESCENCE (a.u.)

EFFECTIVE GAIN

CROSS-SECTION (10^{-19} cm2)
Abstracts & Presentations

SESSION S10: OPTICAL PROPERTIES
IONS IN SOLIDS II
Friday afternoon, 25 March 1988
La Galerie 5 at 14:30
Y. Chen, presiding

14:30
S101 A New Third Order Contribution to Spin-Forbidden Rare Earth Optical Transition Intensities. M. C. DOWNER* and G. W. BURDICK, University of Texas at Austin; D. K. SARDAR, University of Texas at San Antonio.-- We show by quantitative calculation that numerous spin-forbidden linear optical transitions in trivalent rare earth ions acquire a major fraction of their intensity from hitherto neglected contributions involving spin-orbit linkages in excited configurations. The strong effect of analogous linkages has been demonstrated in two-photon absorption. We present a revised analysis of observed linear absorption intensities for Eu** and Nd++, which shows that the new contribution is often comparable to, and sometimes larger than, standard contributions. We thereby demonstrate an improved fit to observed intensities. In addition previously fitted phenomenological parameters must be modified substantially, suggesting that re-analysis of linear intensity data for all trivalent rare earths is warranted.

* Partially supported by an IBM Faculty Development Award
* Supported by the Robert A. Welch Foundation

14:42
S102 Laser-Induced Gratings in Eu**-Doped Glasses. E.G. BEHRENS and R.C. POWELL, Oklahoma State University.--Holographic gratings were produced in Eu**-doped phosphate and silicate glasses using crossed laser beams tuned to resonance with the absorption transition to the 5D2 level of the Eu** ion. These are stable at room temperature and are associated with local structural changes in the glass due to radiationless relaxation of the Eu** ions. The use of these gratings in demultiplexing multilayer laser beams is demonstrated. The scattering efficiencies for different glass compositions and Eu concentrations are reported. The scattering efficiency of the grating is shown to decrease as the size of the network modifier ions is increased. Measurements of the Bragg scattering angle for different wavelengths show that the wavelength of the induced refractive index gratings is twice the wavelength of the light intensity pattern used to write the gratings.

*Supported by the U.S. Army Research Office

14:54
S103 Spectroscopic Properties of Cr**: Mg2SiO4: A New Tunable Solid-State Laser Crystal. S. K. GAYEN, V. PETRICEVIC, R. R. ALF, City College of New York; KIYOSHI YAMAGISHI, KAZUO MORIYA, Mitsui Mining and Smelting Co. Ltd. -- Recently, we have observed near infrared room-temperature vibronic laser action in Cr**:Mg2SiO4. Characteristics of the absorption and fluorescence spectra, fluorescence lifetime, energy-level structure, and other spectroscopic properties relevant to laser action in this system are reported. The absorption spectrum is characterized by broadband transitions from the 4A2 state to the 4T2 and 4T1 states of the Cr** ion. The low-temperature fluorescence spectrum exhibits broadband 4T2 to 4A2 emission, as well as 2E-4A2 zero-phonon line accompanied by its vibrational sidebands.

Vol. 33, No. 3 (1988) 810
The stable laser resonator is formed by two 30-cm-radius mirrors placed 20 cm "apart. The mirrors have high transmission at the pump wavelength of 532 nm, and high reflectivity over the spectral range. The single crystal of Cr:NaSiO$_3$ placed at the center of the cavity is longitudinally pumped by the second harmonic of a Q-switched Nd:YAG laser operating at a 10-Hz repetition rate. Emission cross section, spectral width, slope efficiency, and other relevant laser parameters will be presented.

Supported by NASA, ARO and Hamamatsu Photonics KK.

15:18 S104 Photoluminescence Studies of the Alkalide Na$_2$CuO$_2$F$_2$:Probed With a Picosecond Laser—R.S. BIRNBAUM, M. SWACKER, F.W. TENTENGA, J.L. DYE, and S.A. SOLIN, *Michigan State U.*—Alkalides are novel compounds containing alkali metal anions. The counterion in these compounds is an alkali metal cation complexed by an organic cage molecule, such as cryptand C$_{22}$H$_{36}$. Time-correlated single photon counting measurements have been made in the temperature range 2K to 80K in order to study the photoluminescence and photoluminescence lifetimes of the electronic states. The light source used was a Nd:YAG-R66 dye-doped cavity-dumped synchronously pumped dye laser with a pulse width of 6 psec. An emission at 670 nm, presumably due to the band gap, was found which has a lifetime of 4.5 ± 0.2 ns. A near edge state with a lifetime of 1.5 ± 0.2 ns was also found. The dependence of the photoluminescence on excitation intensity has been studied, and evidence for intensity dependent irreversible decomposition at 4.2 K has been found. This work has been extended to additional alkalides.

* Supported by the NSF under grant DMR 84-01994 and by the MSU Center for Fundamental Materials Research.

15:30 S106 Energy Level Diagram for Mn$^2^+$ Ions in Villenite—K.C. MISRA, J.K. BERKOVITZ, B.G. DEBOER, E.A. DALE, CTE Electrical Products; and R.B. JOHNSON, **MIT.**—The electronic energy levels associated with manganese impurity in villenite have been obtained using the SCF-M-Sx cluster procedure. The calculations have been performed assuming substitutional sites for Mn in zinc orthosilicate crystals. Different oxidation states have been considered. Using the molecular orbital energies, an energy level diagram is presented for Mn$^2^+$ and is compared with experiment. Optical absorption peaks obtained on the basis of the calculated molecular orbital energies are very well with experiment for divalent manganese ions.

15:42 S107 Transmutation Induced Tritium in LiNbO$_3$: Single Crystals—R. GONZALEZ, University of Madrid, Y. CHEN and H.N. ABRAHAM, Oak Ridge National Laboratory.—Irradiation of LiNbO$_3$: single crystals with thermal neutrons has produced tritium ions by transmutation of Li atoms via the nuclear reaction

Vol. 33, No. 3 (1988) 811
In the past, it has been observed that excimer laser alignment of dimer fragments relative to the excimer laser polarization was detected using a polarized dye laser by detection of the dye laser polarization relative to the excimer laser polarization. Observing rotationally resolved fluorescence excitation spectra allowed determination of the alignment of HD in the 2S electronic ground state for rotational states $J = 1, 3/2$ using both the 2S_1 and the 2S_0 absorption branches. The results from each branch were compared.

11:30

MD 7 Laser Double-Resonance Measurements of HF (J=13) Rotational Relaxation with Rare Gases, H$_2$, and D$_2$,
CRAIG A. TAATJES and STEPHEN R. LUCNÉ, University of Colorado and Joint Institute for Laboratory Astrophysics -- The relaxation rates of HF (J=13) with rare gases (He, Ne, Ar, Kr, Xe), H_2, and D_2 have been measured by use of a two-laser double-resonance technique. The rates of relaxation by rare gas collision partners fall sharply through the series He-Ne-Ar, then rise sharply through the series He-Ne-Ar. These results point out the importance of rotation-to-rotation transfer in rotational relaxation. Because these measurements give new evidence about the intermolecular potentials at close range, they are likely to be important in theoretical modeling of the rotational to translation transfer in such systems as the HF chemical laser.

SESSION ME: NEW DEVELOPMENTS IN SOLID STATE LASERS
Monday, 3 October 1988
Trinidad/Madrid Rooms at 9:30
Clifford R. Pollock, organizer

Invited paper

9:30

ME 1 Advances in Diode Lasers for Solid State Laser Pump, DAVID F. WEILCH, Spectra Diode Labs–The advances in high power diode laser arrays have greatly impacted the application base of solid-state lasers. Highly efficient, compact, stable and highly reliable solid state lasers are a result in part to the advances in diode laser research. Diode laser arrays have been shown to emit greater than 6 W cw from a 100 um aperture and over 38 W cw from a 1 cm aperture with only 20% of the aperture active. Total efficiencies of 57% percent have been achieved. These devices have also shown to be highly reliable with lifetimes greater than 30,000 hrs at 1 W cw from a 200 um aperture source, and 75,000 hrs for a 5 W cw 1 cm aperture array.

Contributed papers

10:00

ME 2 Laser diode pumped Nd:Ho:TAG and Nd:BEL lasers, RICHARD SCHEPS, PETER FIOIRE, and JOSEPH MYERS, NAVAL OCEAN SYSTEMS CENTER, and DON HELLER, ALLIED SIGNAL CORP. -- Performance data for laser diode-pumped cw Nd:Ho:TAG and Nd:BEL lasers are presented. Two single stripe emitters are used as the pump source, each emitting up to 1 watt in the pump band. The heat sinks for the laser diode are temperature controlled to allow for wavelength tunability. The resonator is a hemispherical design. Output and pump threshold.

SESSION MF: APPLICATIONS OF LASER SURFACE INTERACTIONS

Monday afternoon, 3 October 1988
Imperial Ballroom, Salon B at 14:30
A.C. Tam, organizer
A.C. Tam and S.D. Allen, presiding

Contributed papers

11:30
ME 6 Birefringence of Solid State Laser Media: Broadband Tuning Discontinuities and Application to Laser Line Narrowing. J.S. Kremski, T.D. Band*, D.E. Heller, and P.A. Papanestor, Allied-Signal Inc. The natural birefringence of optically anisotropic broadly tunable solid-state laser media can be exploited to provide substantial spectral narrowing of the laser output. Lasers employing such media frequently tune discontinuously, due to birefringence effects. Once these effects are understood and controlled, continuously tunable, spectrally narrow laser output results. When the polarization axis of the medium is slightly misaligned with respect to irracavity polarizing elements, or when the laser operates well above threshold, the laser tunes continuously but exhibits a periodic modulation of the output power as a function of frequency. For large misalignment, or near threshold operation, the laser generates narrow bandwidth output and the laser frequency hops during tuning. Narrow bandwidth operation with continuous tunability is obtained using an intracavity birefringent compensator. Experimental results using alexandrite as the birefringent gain medium are presented.

*Permanent Address, Ben-Gurion University, Beer-Sheva, Israel

11:45
ME 7 Tunable cw laser action of Er" in double sensitized fluorolunate glass at room temperature. E. HENAIW, M. LEDIG, D. EHRMANN, and W. SEDERHOLM, Friedrich-Schiller University Jena, E.W. DUCHENSKY, H.J.W. DE HEIDE, and G. HUBER, University Hamburg—Spectroscopic measurements indicate an efficient energy transfer from Cr via Yb to Er in fluorolunate glass. As a result cw laser action was obtained for the first time in this glass at room temperature. Double step pumping with Cr and Yb with a krypton laser yields a threshold pump power of less than 100 mW for the glass laser at 1.56 μm. Using mirrors of different spectral reflection characteristic the tunability of the Er-fluorolunate glass laser is demonstrated. Efficient flashlamp pumping of this glass via Cr and Yb or pumping with LED-arrays via Yb can be expected.

SESSION MF: PLENARY II

Monday afternoon, 3 October 1988
Imperial Ballroom, Salon B at 13:30
A.C. Tam, presiding

13:00
MF 1 Spin Polarization of Atoms and Nuclei by Laser Pumping. A. Rappaport, Princeton University—The nuclear spins of noble gases can have relaxation times as long as several hours. By spin-exchange laser pumping, nuclear spin polarizations approaching 100% can be generated in mixtures of alkali vapors with noble gases at densities of several amagats. Such gases are interesting targets for nuclear scattering experiments. In the heavier noble gases the polarization transfer rates are greatly enhanced by the formation of alkali-noble gas van der Waals molecules. The long relaxation times lead to magnetic resonance linewidths on the order of 10^4 Hertz, so that it is possible to measure extremely small spin interactions, including coherent quadrupole interactions with the container walls. The nuclei of radioactive noble gases can be polarized by the same methods.

*Supported by AFOSR grant 81-0104-C.
The authors gratefully acknowledge the support of this work through NRL-N00014-86-K-2033 and NSF-DMR-88-0004.

SESSION Q17: IONS IN SOLIDS
Friday morning, 24 March 1989
Room 273 at 8:00
J. C. Thompson, presiding

8:00
Q171 Continuous-wave and Tumblie Laser Operation of Chromium-activated Forsterite Laser, V. PETRICEVIC.
R. R. ALFANO, The City College of New York;* S. K. GAYEN,

The City College of New York, and Stevens Institute of Technology. -- The continuous wave laser action in chromium-activated forsterite (Cr:4MgSiO3) at room-temperature is reported. The experimental arrangement uses longitudinal pumping by 0.63-

nm radiation from a cw Nd:YAG laser in a nearly-concentric cavity. The laser emission is centered at 1244 nm, and has a spectral bandwidth of 12 nm. Continuous tunability over the 1167-1345 nm spectral range has also been demonstrated. The pulsed mode of operation with a single-stage birefringent filter produces cavity dispersion. Relevant laser and quantum electronic properties of the Cr:Forsterite system will be presented. *

*Supported by ARO, NASA, and CCNY Organized Research.

8:12
Q172 Electron-Excited Optical Emission from H2O Adsorbed on Potassium Halides at 78K.
R. E. ARAXAWA and M. KAMADA*, Oak Ridge National Laboratory. -- Electron-excited optical emissions from H2O adsorbed on KCl and KBr crystals at 78°K have been investigated. A vibronic structure with constant energy intervals of about 0.12 eV was observed in the wavelength region of 440-740 nm, indicating that it originates from O-H and O-H adsorbed on KC1 and KBr single crystals.

8:24
Q173 + Energy Transfer in CaS:
M. D. HILL*, K. CHAKRABARTI, V. K. MATHUR, R. J. ABBUNDI. -- Naval Surface Warfare Center. -- The energy transfer is observed in both the photoemission and the optically stimulated luminescence spectrum of CaS:Bi-, Eu. The Eu excited 3+ emission was observed at 546 nm which is due to the 5d5/2 level of Eu. The Eu + excited 3+ emission was observed at 470 nm which is due to the 5d5/2 level of Eu. The Eu + excited 3+ emission was observed at 470 nm which is due to the 5d5/2 level of Eu. The Eu + excited 3+ emission was observed at 470 nm which is due to the 5d5/2 level of Eu. The Eu + excited 3+ emission was observed at 470 nm which is due to the 5d5/2 level of Eu. The Eu + excited 3+ emission was observed at 470 nm which is due to the 5d5/2 level of Eu.
The poor efficiency of most Cr lasers has previously been attributed to the overlap of the excited-state absorption (ESA) band with the emission band. Arguments were made in favor of reducing the overlap of the ESA and emission bands. The measured dependence on the laser power and the emission efficiency is estimated to be 5%. The experimental resolution in the determination of the ESA is given by the fluctuations in the laser power, and it is estimated to be 5%.

The quasioptical nature of this measurement technique can be exploited to characterize samples in other configurations, for example, in reflection. Another consequence is that by placing lenses in front of both antennas we increased the received signal strength permitting much wider applications in other configurations, for example, in reflection. A complementary technique is based on the shift of the ESA peak from the position which is independent of the crystal field theory; the other involves the interpretation of the splittings of the zero-phonon lines of the 4T_2 state (known as the Ham effect). We attempt to reconcile the two predictions.

The reduced efficiency of the ESA band at the laser wavelength is also in part due to the nature of the excited-state induced transition moment. The substitutional ions in octahedrally coordinated sites and excited-state character, and, therefore, the $^{3+}$ ion is surrounded by six fluorines. It exists, however, a small static distortion of the $^{3+}$ symmetry, which is responsible for inducing significant oscillator strength into the spectral features. It is shown that the $^{3+}$ field increases the transition moment for the π-polarized emission but not for the ESA that occurs near the emission band. This prediction is derived from the reduced influence of the ESA at the laser wavelength. (Invited paper, 25 min)

THKK2 Spectroscopic and quantum electronic properties of a chromium activated forsterite laser

Chromium-activated forsterite (Cr:MgSiO$_3$) is a newly discovered, tunable, vibronic solid-state laser in the near-infrared region. Two room-temperature pulsed and cw laser action has been obtained in this system for both 532- and 1064-nm excitation from a N$_2$ laser. However, the identity of the lasing center in Cr:MgSiO$_3$ has yet to be established with certainty. Although trivalent chromium (Cr$^{3+}$) is the active ion in this chromium-based solid-state laser material, the laser has yet to be established with certainty. Although trivalent chromium (Cr$^{3+}$) is the active ion in this chromium-based solid-state laser reported to date, indications are that this system is an exception. The lasing center in Cr:forsterite may be another vanadium state of chromium, presumably the tetrahedral state Cr$^{4+}$. We present a set of spectroscopic measurements to characterize this important laser system and attempt to shed light on the nature of the lasing center.

The polarized absorption spectra of Cr:forsterite both at room and liquid-nitrogen temperatures for different orientations of the crystallographic axes are shown in Fig. 1. The spectra are characterized by two bands centered at 6000 and 4800 nm, respectively. For a poling direction perpendicular to the Cr$^{3+}$ ions.

THKK1 Properties of Cr$^{3+}$ in new fluoride host crystals

STEPHEN A. PAYNE, L. L. CHASE, L. K. SMITH, H. W. H. LEE, Lawrence Livermore National Laboratory, P. O. Box 5508, Livermore, CA 94550.

We recently discovered a new class of Cr$^{3+}$ solid-state laser based on the fluoride host materials having the covalent structure LiCaF$_4$ (LiCAF)1 and LiSrAlF$_6$ (LiSAF). We found that these materials exhibit efficient laser performance, as determined with a Kr laser-pumped experimental configuration. By taking the passive loss of the laser crystal into account, we find that the extrapolated slope efficiencies of Cr:LiCAF and Cr:LiSAF are 87 and 53%, respectively, while the quantum defect-limited efficiency is 80%. On the other hand, most other Cr lasers typically have efficiencies that are <50%. The question arises as to what favorable properties of these hosts are responsible for the efficient laser performance of Cr:LiCAF and Cr:LiSAF.

Recent papers have reported on the properties of scandium and aluminum garnets doped with trivalent chromium, thulium, and holmium for 2-µm laser operation. However, there have been no systematic investigations of the transfer efficiencies between Cr$^{3+}$ and Tm$^{3+}$ in various hosts and how these efficiencies change with activator and sensitizer concentration. The present work includes both experimental and theoretical studies of the transfer efficiencies in YAG, YSAQ, and YSGG. Preliminary results indicate that the energy transfer mechanism is due to a dipole–dipole interaction. The results provide a basis for the optimization of the Cr$^{3+}$ and Tm$^{3+}$ concentrations in flash-pumped 2-µm laser material. This requires simultaneous optimization of the energy transfer and minimization of the thermal loading associated with high Cr$^{3+}$ concentrations.

Several samples with widely varying Cr$^{3+}$ and Tm$^{3+}$ concentrations were studied experimentally. The transfer efficiencies were obtained by measuring the decay rate of the Cr$^{3+}$ ions from the mixed 5T_2 states as a function of Tm$^{3+}$ ion concentration. The 5T_2 band was excited with 10-nsec pulses at 588 nm from a YAG-pumped dye laser using rhodamine 590 dye. The Cr$^{3+}$ emission was selected by a monochromator, detected with a photomultiplier tube, signal averaged, and stored by a transient digitizer. Decay rates were monitored at several wavelengths across the 5T_2 emission band, and no differences were observed. The time resolution of the detection system was better than 1 µs. Quantum efficiencies of the Cr$^{3+}$ in scandium and aluminum garnets doped with trivalent chromium, thulium, and holmium for 2-µm laser operation.
Fig. 1. Polarized absorption spectra of Cr-forsterite for different orientations of the host crystal.

Fig. 2. Fluorescence spectra of Cr-forsterite for three different crystallographic orientations.
We have designed and assembled a longitudinally pumped multistage Ti:Al₂O₃ amplifier system intended to produce pulsed tunable single frequency radiation from 750 to 850 nm with an output energy of 1 J/pulse at 10 Hz. This system is composed of three major subsystems: (1) a cw Ti:Al₂O₃ master oscillator; (2) a Ti:Al₂O₃ amplifier; and (3) a frequency doubled Nd:YAG pump laser.

The master oscillator is a cw Ti:Al₂O₃ single frequency ring laser pumped by a cw Ar-ion laser and is tunable from ~750 to 850 nm. The output from this oscillator provides a signal of a maximum of 100 ps. A broadband isolator consisting of a Faraday rotator and a compensating polarization rotator provides 30 dB of isolation over the tuning range of the master oscillator. Pockels cells are used to gate the cw beam as well as to shape temporally the pulse intensity.

The Ti:Al₂O₃ amplifier consists of four stages: a four-pass preamplifier, a two-pass amplifier, and two single-pass amplifiers, as shown schematically in Fig. 1. Each stage consists of a Ti:Al₂O₃ crystal cut at the Brewster angle to minimize reflection losses. The signal and pump beams propagate almost collinearly (~15°) and are polarized along the C-axis of the crystal (c-polarization) to maximize the gain. The length of each crystal, ranging from 1.2 to 3.2 cm, is chosen so that essentially all the pump beam is absorbed (0.9-95%).

The Nd:YAG pump laser consists of a Q-switched mode-locked oscillator, a common three-stage amplifier chain, and four parallel two-stage power amplifier chains resulting in four output beams at 1.06 µm, as shown in Fig. 2. This pump laser provides a macropulse 100 ns in duration consisting of 100-ps mode-locked pulses spaced 10 ns apart. The macropulse repetition rate is 10 Hz. The average power of each output beam at 1.06 µm is 2 W. Frequency doubling to 532 nm is accomplished using 5-cm-long KD*P crystals with type II phase matching. Typically, we achieve 25% doubling efficiency resulting in 5 W of 532-nm radiation in each output beam.

We measured a gain of 2 X 10⁴ for the four-pass preamplifier and a gain of 1 X 10³ for the two-pass amplifier. Gain measurements for the two single-pass amplifier stages are in progress. Pump beam inhomogeneities (hot spots) give rise to amplified spontaneous emission noise in the signal. We are investigating the use of random phase plates to eliminate the hot spots by smoothing out the spatial profile of the pump beams.

MH1 Multistage Ti:Al₂O₃ amplifier system

We have designed and assembled a longitudinally pumped multistage Ti:Al₂O₃ amplifier system intended to produce pulsed tunable single frequency radiation from 750 to 850 nm with an output energy of 1 J/pulse at 10 Hz. This system is composed of three major subsystems: (1) a cw Ti:Al₂O₃ master oscillator; (2) a Ti:Al₂O₃ amplifier; and (3) a frequency doubled Nd:YAG pump laser.

The master oscillator is a cw Ti:Al₂O₃ single frequency ring laser pumped by a cw Ar-ion laser and is tunable from ~750 to 850 nm. The output from this oscillator provides a signal of a maximum of 100 ps. A broadband isolator consisting of a Faraday rotator and a compensating polarization rotator provides 30 dB of isolation over the tuning range of the master oscillator. Pockels cells are used to gate the cw beam as well as to shape temporally the pulse intensity.

The Ti:Al₂O₃ amplifier consists of four stages: a four-pass preamplifier, a two-pass amplifier, and two single-pass amplifiers, as shown schematically in Fig. 1. Each stage consists of a Ti:Al₂O₃ crystal cut at the Brewster angle to minimize reflection losses. The signal and pump beams propagate almost collinearly (~15°) and are polarized along the C-axis of the crystal (c-polarization) to maximize the gain. The length of each crystal, ranging from 1.2 to 3.2 cm, is chosen so that essentially all the pump beam is absorbed (0.9-95%).

The Nd:YAG pump laser consists of a Q-switched mode-locked oscillator, a common three-stage amplifier chain, and four parallel two-stage power amplifier chains resulting in four output beams at 1.06 µm, as shown in Fig. 2. This pump laser provides a macropulse 100 ns in duration consisting of 100-ps mode-locked pulses spaced 10 ns apart. The macropulse repetition rate is 10 Hz. The average power of each output beam at 1.06 µm is 2 W. Frequency doubling to 532 nm is accomplished using 5-cm-long KD*P crystals with type II phase matching. Typically, we achieve 25% doubling efficiency resulting in 5 W of 532-nm radiation in each output beam.

We measured a gain of 2 X 10⁴ for the four-pass preamplifier and a gain of 1 X 10³ for the two-pass amplifier. Gain measurements for the two single-pass amplifier stages are in progress. Pump beam inhomogeneities (hot spots) give rise to amplified spontaneous emission noise in the signal. We are investigating the use of random phase plates to eliminate the hot spots by smoothing out the spatial profile of the pump beams.

MH2 Alexandrite laser with high spectral resolution and high power capabilities
E. ARMANDULLY, European Space Research & Technology Center, 1 Keiperlaan, Noordwijk, The Netherlands; E. NAVA, G. MODRINI, CISE Tecnology, via Vignoli, 31, 30128, Venice, Italy; C. MALVICINI, Quantel System, 18 Via Venezia Guha, 20157 Milan, Italy.

Alexandrite is the best developed NIR tunable solid state laser crystal. Its wide tunability range and good physical properties, including the possibility of efficient flashlamp optical pumping, make it the right source for laser/DIAL measurements of important chemical and physical parameters of the atmosphere. We built and tested a Q-switched alexandrite laser designed to fulfill the requirements of single-longitudinal-mode near-diffraction-limited tunable emission in high energy pulses (0.5-1 J).

A ring regenerative slave amplifier similar to that described in Ref. 1 was injected with a low power master oscillator. The alexandrite master oscillator consists of a 1/4 X 4-in. alexandrite rod pumped in a double-elliptical chamfer and a spiral resonator (Fig. 1). For single-mode operation a multiple birefringent filter and sapphire resonant output reflector acting together as a temperature tunable frequency filter are used. An intracavity aperture controls the single-transverse-mode oscillator.

From this oscillator we obtained 600-MHz bandwidth, 5-nJ Q-switched pulses to inject the slave cavity.

The slave regenerative ring amplifier consists of a three-mirror cavity, 1/4 X 4-in. alexandrite rod in a double elliptical pump chamfer, birefringent tuner, and Brewster angle KD*P Pockels cell. The Pockels cell is triggered by the master pulse via a photodiode. From the injected amplifier we obtained narrow bandwidth (500-MHz) emission in pulses of 1-joule output energy.

Tests are in progress to define frequency jitter and stability, temporal width, and amplitude stability.

The system will be mounted in a ground-based lidar/DIAL facility for measurements of atmospheric water vapor concentration, pressure, and temperature. Preliminary results are presented.

(12 min)

MH3 Applications of new solid state lasers to the production of tunable VUV and XUV coherent radiation

We have recently demonstrated a 7.5% efficient near-diffraction-limited coherent VUV source operating at ~130 nm. The VUV wavelengths are obtained by two-photon resonant tw-wave mixing in Hg vapor. The high energy conversion efficiency results from using very high quality collimated single-mode laser beams over 1-m interaction lengths. The collimated geometry is very important because it allows tractable modeling, area scaling of the process to higher energies, and high optical quality of the output wave. Output VUV energies exceeding 125 mJ/pulse in 8-nm-diam beams have been obtained. The VUV wavelength is tunable from 120 to 140 nm by adjusting the pump wavelengths for proper index matching conditions.

The pump wavelengths for 130-nm generation are 777, 405, and 255 nm. The 405-nm wave-
Fig. 1. Schematic of the Ti:Al₂O₃ amplifier system. The master oscillator is a cw Ti:Al₂O₃ single frequency ring laser. The Ti:Al₂O₃ amplifier consists of four stages: a four-pass preamplifier, a two-pass amplifier, and two single-pass amplifiers. The pump source is a frequency doubled Nd:YAG laser.

Fig. 2. Layout of the master–slave alexandrite oscillator.

Fig. 3. Schematic of the Nd:YAG pump laser. The Nd:YAG pump laser consists of a Q-switched mode-locked oscillator, a common three-stage amplifier chain, and four parallel two-stage power amplifier chains resulting in four output beams at 1.06 μm. This pump laser provides a macropulse 180 ns in duration consisting of 100-ps mode-locked pulses spaced 10 ns apart. The macropulse repetition rate is 10 Hz.

Fig. 4. Simplified energy level diagram for neon showing frequency tripling and mixing conversion schemes for the generation of XUV coherent radiation.

Fig. 2. Schematic of all solid state Tissaphire laser-pumped XUV coherent source.

Table 1. Spectroscopic and Lasing Properties of Cr:Forsterite

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption bands</td>
<td>350–520 nm, 600–850 nm, and 870–1180 nm</td>
</tr>
<tr>
<td>Fluorescence band</td>
<td>700–1400 nm</td>
</tr>
<tr>
<td>Fluorescence lifetime</td>
<td>15 ns at 300 K</td>
</tr>
<tr>
<td>Pulsed laser action:</td>
<td></td>
</tr>
<tr>
<td>Center wavelength and bandwidth</td>
<td>1235 nm, ~25 nm</td>
</tr>
<tr>
<td>Output power slope efficiency</td>
<td>21%</td>
</tr>
<tr>
<td>Tuning range</td>
<td>1167–1268 nm</td>
</tr>
<tr>
<td>Continuous wave laser action:</td>
<td></td>
</tr>
<tr>
<td>Center wavelength and bandwidth</td>
<td>1244 nm, ~12 nm</td>
</tr>
<tr>
<td>Output power slope efficiency</td>
<td>~7%</td>
</tr>
<tr>
<td>Effective emission cross section</td>
<td>~1 X ~10⁻¹⁹ cm²</td>
</tr>
</tbody>
</table>

Fig. 1. Absorption and fluorescence spectra of Cr:Forsterite at room temperature. Both the spectra were taken for the E[100] axis and excitation along the a axis. The thickness of the sample along the a axis is 4.5 mm, and chromium ion concentration in the sample is 6.9 X 10¹⁸ ions/cm².
The absorption and emission spectra shown in Fig. 1 contain contributions from both the Cr^3+ and Cr^4+.

Pulsed laser action was obtained for both the 1064- and 532-nm excitations from a Q-switched Nd:YAG laser. The Cr:forsterite sample was longitudinally pumped at the center of a stable cavity formed by two 30-cm radius mirrors placed 20 cm apart. The free-running laser output was centered at 1235 nm and had a spectral FWHM of about 15 nm. The maximum output power slope efficiency measured to date is 21% and may be improved further. The composite tuning curve obtained with two different output couplers for 1064-nm pumped excitation is displayed in Fig. 2. With a birefringent single-crystal quartz plate at the Brewster angle as the intracavity dispersive element, continuous tuning over the 1187-1268-nm spectral range has been achieved.

Continuous-wave laser action of Cr:forsterite has also been achieved for longitudinal pumping by 1064-nm radiation from a cw Nd:YAG laser in a nearly concentric cavity formed by two 5-cm radius mirrors. The cw laser emission is centered at 1244 nm and has a spectral bandwidth of 12 nm. The effective emission cross section is estimated to be \(\sigma_{\text{eff}} \approx 1 \times 10^{-19} \text{cm}^2 \). Key spectroscopic and laser properties of Cr:forsterite are summarized in Table I.

<table>
<thead>
<tr>
<th>Table I: Key Parameters of Cr:forsterite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Absorption cross section (\sigma_{\text{abs}})</td>
</tr>
<tr>
<td>Emission cross section (\sigma_{\text{em}})</td>
</tr>
<tr>
<td>Effective absorption cross section (\sigma_{\text{eff}})</td>
</tr>
</tbody>
</table>

Monday 24 April 1989

MORNING

24 April 1989

CONVENTION CENTER ROOM 317

10:30 AM Stimulated Brillouin Scattering
Phase Conjugation

George C. Valley, Hughes Research Laboratories, President

M11 Phase conjugate fidelity of an SBS oscillator/amplifier at the 1+1 pulse level

METIN S. MANGIR, DAVID A. ROCKWELL, Hughes Research Laboratories, Physics Dept., Malibu, CA 90265

Phase conjugation (PC) via stimulated Brillouin scattering (SBS) is a widely used technique. Until now most successful PC experiments have been done with pump energies of \(\sim 100 \text{ mJ} \). For higher energies, the conjugate fidelity degrades. While the exact cause of this fidelity degradation remains to be determined, it appears to represent a fundamental limit of the SBS PC process. From basic considerations it can be concluded that good fidelity requires that the SBS gain length be several times the diffraction length, thereby promoting thorough mixing of different parts of the beam and achieving high selectivity for the phase conjugate mode. Indeed, experiments in our laboratory have shown that above \(\sim 10 \) times the SBS threshold energy, the PC fidelity is reduced. Computing nonlinearities or specifics of the geometry employed can also affect the fidelity. This fidelity degradation presents a problem in high energy laser applications which require PC at energies \(> 1 \text{ J} \).

A possible way to scale SBS phase conjugate mirrors to higher energy employs an oscillator/amplifier combination, as shown schematically in Fig. 1. The essential idea is that the oscillator employs SBS at an energy level consistent with good PC fidelity to create a Brillouin shifted seed that is the conjugate of the incident pump beam. The backward propagating seed intensity increases in the Brillouin amplifier at the expense of the incoming pump. Attenuators placed between the two cells ensure that the depleted pump beam is of sufficiently low intensity as it enters the SBS oscillator. Analysis shows that the seed intensity needs to be \(\sim 1-10 \% \) of the pump intensity to achieve high reflectivity. In this configuration the oscillator achieves the required conjugate fidelity while the amplifier produces the high reflectivity efficiency. In recent papers \(1 \). good fidelity with \(\sim 70 \% \) reflectivity was reported. The present effort addresses the conundrum that the interfering SBS wave has a gain function with a negative dispersion term, which increases over the 1187-1268-nm spectral range by 1-2 orders of magnitude. This effect was modeled using the 2-D (one longitudinal and one transverse) wave optical code which takes into account the two transverse dimensions using geometric optics. To accommodate astigmatism the code was modified by decoupling focusing along the two transverse axes. The model predicted good phase conjugation fidelity, confirming the experimental results, and changes in reflectivity and SBS threshold which were in good agreement with those observed experimentally (Fig. 3).

A Chromium-Activated Forsterite Laser

V. Petričević, S. K. Gayen,* and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering, City College of New York, New York, NY 10031.

*Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030.

Summary

The chromium-doped forsterite (Cr:Mg$_2$SiO$_4$) laser, a new member in the family of chromium-based, room-temperature, near-infrared vibronic lasers, is emerging as a practical and useful source of coherent radiation in the near-infrared spectral region. The Cr:forsterite system is unique both for its desirable laser properties, as well as for its interesting and intriguing spectroscopic properties. While successfully operated Cr-based tunable solid-state lasers like alexandrite, emerald, Cr:QSGG, together with Ti:Al$_2$O$_3$ span quite a different spectral range of 660-1090 nm, Cr:forsterite emits in the 1167-1345 nm range, centered on 1268 nm, the so-called "wavelength of zero material dispersion". The material dispersion will be minimal in this spectral range, making Cr:forsterite an extremely valuable source for optical communications. The most interesting spectroscopic feature of the Cr:forsterite crystal is that it is the first Cr-based system known to date where the 'lasing center' is other than the Cr$^{3+}$ ion, presumably the tetravalent chromium (Cr$^{4+}$). In this paper, the unique spectroscopic, and laser properties of Cr:forsterite will be described.

The room-temperature absorption and emission spectra of Cr:forsterite are shown in Fig. 1(a). The absorption spectrum is characterized by three broad absorption bands centered at 1050 nm, 750 nm, and 480 nm, respectively. The emission spectrum spans the 680-1400 nm spectral range with peak at 1100 nm. The 750-nm and 480-nm absorption bands are attributed to transitions within the states of Cr$^{3+}$ ion. A careful study reveals that the near-infrared absorption band centered at 1050 nm, and its Stokes-shifted fluorescence, presented in Fig. 1(b), are responsible for laser action in Cr:forsterite. These absorption and emission originate in transitions between the states of a center other than Cr$^{3+}$. The spectroscopic and theoretical evidences leading to this conclusion and the identification of this new lasing center will be presented.

Various laser-pumped laser experiments on Cr:forsterite system have been completed and will be reviewed:

* Pulsed laser action has been obtained for longitudinal pumping in a stable cavity by both the 1064-nm and 532-nm radiation.
* Continuous-wave operation has been demonstrated for longitudinal pumping by cw 1064-nm radiation in a nearly concentric cavity.
* Continuous tuning over the 1167-1345 nm spectral range, displayed in Fig. 2, has been obtained by using three different output couplers, and a birefringent, single-crystal quartz plate at Brewster's angle as the intra-cavity dispersive element.
Fig. 1 Absorption and fluorescence spectra of Cr:forsterite: (a) room-temperature composite spectra showing contributions from both the optically-active centers present in the crystal (fluorescence excited by 488-nm radiation); (b) near-infrared spectra (fluorescence excited by 1064-nm radiation) attributed to transitions within the states of the 'lasing center' alone, presumed to be tetravalent chromium. All the spectra were taken for Ellb axis of the crystal, and for excitation along the a axis. The dotted curves in (b) are taken at 77 K, while the solid curves are taken at 300 K.

Fig. 2 The ratio of Cr:forsterite laser output (E_L) to the absorbed pump energy (E_p) as a function of wavelength. The three curves correspond to the three output couplers used in tuning measurement.
The successful cw operation and large fluorescence bandwidth of this system promise ultrashort pulse generation through mode-locked operation. Since large crystals may be readily grown, the system has the potential to be an amplifier medium in the infrared spectral region. Key spectroscopic and laser properties of Cr:forsterite are summarized in Table 1.

TABLE 1. Spectroscopic and laser properties of Cr-doped forsterite

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major pump bands</td>
<td>850-1200 nm, 600-850 nm, and 350-550 nm.</td>
</tr>
<tr>
<td>Fluorescence band</td>
<td>680-1400 nm</td>
</tr>
<tr>
<td>Room-temperature fluorescence lifetime</td>
<td>6 us</td>
</tr>
<tr>
<td>Cr-ion concentration</td>
<td>7×10^{18} ions/cm3</td>
</tr>
<tr>
<td>Lasing wavelength (center)</td>
<td>35 nm (pulsed)</td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>1.34 nm (cw)</td>
</tr>
<tr>
<td>Slope efficiency</td>
<td>30 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>12 nm (cw)</td>
</tr>
<tr>
<td></td>
<td>22% (pulsed)</td>
</tr>
<tr>
<td></td>
<td>6.8% (cw)</td>
</tr>
<tr>
<td>Tuning range</td>
<td>1167-1345 nm</td>
</tr>
<tr>
<td>Effective emission cross section</td>
<td>1.1 x 10^{-19} cm2</td>
</tr>
</tbody>
</table>

We would like to acknowledge K. Yamagishi, H. Anzai, and Y. hi of Mitsui Mining and Smelting Co., Japan for providing the crystals use. NASA and ARO for financial support.

References

Abstract

Chromium-activated forsterite (Cr:Mg2SiO4) laser is continuously tunable over the 1167 - 1345 nm spectral range. The characteristics of laser operation and relevant spectroscopic and quantum electronic properties of the system will be reviewed.
Tetravalent Chromium-Doped Forsterite Laser

V. Petricevic, S. K. Gayen,* and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, Departments of Physics and Electrical Engineering
City College of New York, New York, NY 10031, U. S. A.
* Department of Physics and Engineering Physics, Stevens Institute of Technology
Hoboken, New Jersey 07030, U. S. A.

Summary

Chromium-activated forsterite (Cr:Mg2SiO4) is a new vibronic laser1,2 with unique spectroscopic and laser properties. A number of chromium-based tunable solid-state lasers3, together with Ti:Al2O3 laser4 span a spectral range of 660-1240 nm. Cr:Mg2SiO4 laser extends the tuning range further into the near-infrared to 1345 nm.5 The most important feature of the tuning range of Cr:forsterite laser is that it lies in the wavelength region of zero material dispersion. This property makes Cr:forsterite very useful source for optical communications. The most interesting spectroscopic property of the Cr:forsterite crystal is that it is the first Cr-based system where the lasing center is tetravalent chromium (Cr4+).

The room-temperature absorption and emission spectra of Cr:forsterite are shown in Fig. 1(a). The absorption spectrum is characterized by three broad absorption bands centered at 1050 nm, 750 nm, and 480 nm, respectively. The emission spectrum spans the 680-1400 nm spectral range. The 750-nm and 480-nm absorption bands are attributed to transitions within the states of Cr3+ ion. A careful study reveals that the near-infrared absorption band centered at 1050 nm, and the corresponding Stokes-shifted fluorescence, presented in Fig. 1(b), are responsible for laser action in Cr:forsterite. These absorption and emission are attributed to transitions in Cr4+ ion in a tetrahedrally coordinated site. The spectroscopic and theoretical evidences leading to this conclusion and the identification of this new lasing center will be presented.

Various modes of operation of the Cr:forsterite laser have been achieved. Room temperature pulsed laser operation for 532-nm, 630-nm, and 1064-nm pumping has been obtained1,2 with maximum output slope efficiency of 22%. Continuous-wave operation has been demonstrated6 for longitudinal pumping by cw 1064-nm radiation. Continuous tuning over the 1167-1345 nm spectral range, shown in Fig. 2 has been obtained5 by using three different output couplers and a birefringent, single crystal quartz plate at Brewster's angle as the intracavity dispersive element.
Fig. 2 The ratio of Cr-forsterite laser output (E_L) to the absorbed pump energy (E_P) as a function of wavelength. The three curves correspond to the three output couplers used in tuning measurement.

The most important spectroscopic and laser properties of chromium-activated forsterite are summarized in Table 1.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major pump bands</td>
<td>850-1200 nm, 600-850 nm, and 350-550 nm</td>
</tr>
<tr>
<td>Fluorescence band</td>
<td>680-1400 nm</td>
</tr>
<tr>
<td>Room-temperature fluorescence lifetime</td>
<td>15 µs</td>
</tr>
<tr>
<td>Cr-ion concentration</td>
<td>$\approx 7 \times 10^{18}$ ions/cm3</td>
</tr>
<tr>
<td>Lasing wavelength (center)</td>
<td>1235 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>1244 nm (cw)</td>
</tr>
<tr>
<td>Spectral bandwidth</td>
<td>≈ 30 nm (pulsed)</td>
</tr>
<tr>
<td></td>
<td>≈ 12 nm (cw)</td>
</tr>
<tr>
<td>Slope efficiency</td>
<td>22% (pulsed)</td>
</tr>
<tr>
<td></td>
<td>6.8% (cw)</td>
</tr>
<tr>
<td>Tuning range</td>
<td>1167-1345 nm</td>
</tr>
<tr>
<td>Effective emission cross section</td>
<td>1.1×10^{-19} cm2</td>
</tr>
</tbody>
</table>

We would like to acknowledge K. Yamagishi, H. Anzai, and Y. Yamaguchi of Mitsui Mining and Smelting Co., Japan for providing the crystals used in this study, and NASA and ARO for financial support.

References

Chromium-activated forsterite (Cr:Mg2SiO4) is a new chromium-based vibronic laser with unique spectroscopic and laser properties. Pulsed room temperature laser operation for 532-nm, 630-nm, and 1064-nm pumping has been obtained with output slope efficiency as high as 22%. Free-running laser output is centered at 1235 nm and has spectral bandwidth of 30 nm. The large bandwidth promises generation of ultrashort pulses in the femtosecond range through mode-locked operation. With a single crystal quartz birefringent plate inserted in the laser cavity at Brewster's angle, and using different laser mirrors, smooth continuous tuning over the 1167-1345 nm spectral range has been achieved. This tuning range is of great technological importance for ranging, remote sensing and optical communications. Continuous-wave laser operation for longitudinal pumping by 1064-nm radiation from CW Nd:YAG laser has also been obtained. Spectroscopy of chromium-doped forsterite will be reviewed. These studies indicate that in Cr:forsterite a center other than Cr3+, presumably tetravalent Cr4+ in a tetrahedrally coordinated site, is responsible for laser action.

This work was performed in collaboration with V. Petricevic and S. K. Gayen. The research is supported by NASA, ARO, Hamamatsu Photonics KK, and CCNY Organized Research.

Effective Gain Measurements in Chromium-Doped Forsterite

V. Petričević, A. Seas, S. K. Gayen* and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers
Departments of Physics and Electrical Engineering
City College of New York, New York, NY10031
Telephone: (212) 690-6960, Fax: (212) 690-8185

*Department of Physics and Engineering Physics
Stevens Institute of Technology, Hoboken, New Jersey 07030

Summary

Chromium-doped forsterite is an important laser system for the near infrared spectral range. It operates in both pulsed1-3 and continuous-wave4 mode of operation. Its output can be tuned over the 1167-1345 nm range.5 The most interesting feature that distinguishes this laser system from other chromium-based lasers is that the lasing ion is tetravalent chromium (Cr4+) in a tetrahedrally coordinated site.2,3,6

In this work we present pump-and-probe measurements of the effective gain cross-section in chromium-doped forsterite. Results of these measurements show the effect of excited-state absorption (ESA) on laser performance of chromium-doped forsterite laser.

ESA is a critical process which impedes operation of tunable solid state lasers. It has been shown that it affects laser performance of V2+-doped crystals,7,8 inhibits laser action in Mn2+-doped crystals,9 and limits the slope efficiency of Cr3+:Mg\textsubscript{3}Ga\textsubscript{2}Li\textsubscript{3}F\textsubscript{12} laser.10 It is also present in alexandrite.11 Absence of ESA is one of the most important advantages of Ti:Al\textsubscript{2}O\textsubscript{3} laser.12

The experimental setup used to measure the effective gain cross section is shown in Fig. 1. The upper lasing level assigned to 3T\textsubscript{2} state of Cr4+ ion is populated by 1064-nm pump beam from the Q-switched Nd:YAG laser. The excited state is probed by a collinearly propagating probe beam. Probe beams were obtained from a tunable forsterite laser pumped by a Nd:YAG laser. Pump and probe beams were carefully overlapped and focused in the sample. The sample is a 38-mm long and 4-mm diameter rod with end faces anti-reflection coated for the 1.1-1.4 \textmu m range. A gated boxcar integrator was used to measure the average ratio \(S_2 / S_1 \), where \(S_2 \) is the signal proportional to the intensity of the transmitted probe beam and \(S_1 \) is proportional to the intensity of the probe beam before the sample.
Figure 1. Experimental setup used to measure the effective gain cross-section in Chromium-doped forsterite.

The effective gain cross section is given by

\[\sigma_{\text{EFF}} = \sigma_E - \sigma_{\text{ESA}} - \sigma_G = - \frac{1}{\ln R} \ln R, \]

where \(\sigma_E \) is the gain cross section, \(\sigma_{\text{ESA}} \) is the excited-state absorption cross section, \(\sigma_G \) is ground state absorption cross section at probe wavelength, \(N_E \) is population density of the excited state, \(l \) is length of the crystal and \(R \) is defined by

\[R = \frac{S_2/S_1}{S_2/S_1}. \]

The subscripts \(u \) and \(p \) refer to unpumped and pumped cases, respectively. Excited-state population density \(N_E \) was estimated by measuring the pumped volume of the sample and the energy of the pump pulse absorbed, assuming that each pump photon absorbed creates one excited ion.

The measured effective (net) gain cross section as a function of wavelength in the 1180-1330 nm wavelength region is presented in Fig. 2 by triangles superimposed on the fluorescence spectrum. The measured values of the net gain cross section should be compared to the value of \(\sim 2 \times 10^{-19} \) cm\(^2\) for the peak gain cross section obtained from radiative lifetime and fluorescence lineshape measurements. The close agreement between the measured effective gain cross section and the peak gain cross-section predicted using radiative lifetime and fluorescence linewidth indicates that ESA cross section is at least an order of magnitude smaller than the gain cross section.
This agreement implies that ESA is not a major loss mechanism in chromium-doped forsterite.

Figure 2. Fluorescence spectrum of chromium-doped forsterite for 1064-nm excitation (solid line) and effective gain cross-section (triangles and broken line).

Research is supported in part by ARO and NASA.

References:

11. A. Seas, V. Petričević, and R. R. Alfano, "Transient Gain Measurements of Nonradiative Dynamics in Chromium-Doped Forsterite (Cr4+:Mg\textsubscript{2}SiO\textsubscript{4})", presented at the Optical Society of America 1990 Annual Meeting, Boston, Massachusetts, November 4-9, 1990.
Summaries of papers presented
at the Annual Meeting
of the Optical Society of America

November 4–9, 1990
Boston, Massachusetts

Conference Edition
TuXX Tuesday AFTERNOON November 6, 1990 4:45pm BALLROOM B

Symposium on Instrumentation
James C. Wyant, Wyko Corporation, Invited

TuXX1 Acousto-optical spectrometers
V. I. Pustovoit
USSR State Committee for Product Quality Control and Standards, 9 Lennisky Prospect, Moscow 117049, USSR

We describe an acousto-optical spectrometer consisting of a Bragg cell made of single-crystal quartz. Spectral range of 420-780 nm and resolution of 0.2 nm is achieved. Applications in the monitoring of plasma-assisted material treatment are described.

5:15pm

TuXX2 Power-spectrum measurements using radial shearing interferometry
Ronald J. Sudol and Robert K. Jungquist
AMS Division, B-53 Research Laboratory, Eastman Kodak, Rochester, New York 14650-1813

A common-path radial shearing interferometer is examined for its ability to measure the power spectrum of an object's intensity transmittance. For an object illuminated with spatially incoherent light, it is shown that the contrast of the intensity distribution observed at the interferometer's output contains a cosine transform of the object's intensity transmittance. From a coherence theory point of view, this manifestation is shown to be the result of a direct mapping between the object's frequency spectrum and the coherence properties of the interfering beams. Alternatively, when one considers the system impulse response, each point in the object is found to produce a set of cosinusoidal fringes whose frequency is directly related to that object point. The subsequent incoherent summation over the object results in an interference pattern that contains a bias term plus the transform of the object's intensity transmittance. Experimental results obtained for standard objects such as circular apertures and Ronchi rulings compare favorably with theoretical predictions.

5:45pm

TuXX3 A Fourier-transform spectrometer for the visible and UV region based on laser-diode interferometric control
Geert Wynettes, James Engel, David Carlson, and Rick Dorval
OPTRA, 66 Cherry Hill Drive, Beverly, Massachusetts 01915

We describe the design and preliminary performance of a Fourier transform spectrometer (FTS) built to operate in both the visible and UV regions. Conventional FTS instruments have generally been restricted to use in the IR because of the difficulties in providing sufficiently precise control of the mirror velocity and alignment. We are building an FTS, which uses a laser-diode source, in which both mirror motion and alignment are dynamically controlled on the basis of interferometric signals. By using a multi-phase detection technique, we are able to make interferometric measurements with /k/ precision at a 5 MHz update rate. These data are used to servocontrol the mirror velocity and alignment to better than 0.1% and 1 radian, respectively. This degree of control, combined with optics that are good to /k/ in the visible-light spectrum, make it possible to attain spectral resolution in the visible and near-UV regions that is limited only by radiometric noise considerations.

5:15pm

TuYY Tuesday AFTERNOON November 6, 1990 5:00pm BALLROOM A

Ultrafast Spectroscopy
R. R. Alfano, City College of New York, Presider

TuYY1 Transient gain measurements of nonradiative dynamics in chromium doped forsterite (Cr^2+:MgSiO_4)
A. Seas, V. Petricevic, and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers, Department of Physics and Electrical Engineering, City College of New York, New York 10031

The gain dynamics of photoexcited chromium-doped forsterite (Cr^2+:MgSiO_4) were measured by means of a pulsed excite-and-probe technique. The nonradiative relaxation time within the 3T_2 vibronic state was determined by measuring the change in the induced gain of the probe pulse as a function of the pump-probe delay. A 30 ps, 1.064 m pulse from a mode-locked Nd:YAG laser was split into two beams. The first beam provided the pump pulse to populate the 3T_2 manifold. The other beam was focused in a calcite crystal to generate a 12 m probe pulse by means of stimulated Raman scattering. The transient gain was determined from the measured ratio of the transmitted probe intensity for unpumped and pumped cases as a function of the pump-probe delay. The rise time (time for growth of the gain from 10% to 90%) was calculated to be 50 ps. A rate-equation analysis of population in the various states was used to extract a value for the vibrational relaxation time from the experimental data under the assumption of Gaussian pump and probe pulses. The best fit to the experimental data of gain as a function of time yields a value of 30 fs for the intra-3T_2-state vibrational relaxation time.

This research is supported by the Army Research Office.

5:15pm

TuYY2 Picosecond infrared spectroscopy using a regenerative amplifier
T. M. Jeddi, I. Rothberg, and M. Roberson
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

An apparatus for doing picosecond, narrow-band infrared spectroscopy is presented. The procedure, based on a 540 Hz regenerative amplifier, uses a gated up-conversion technique. Spectral resolution of 1 cm^-1 is achieved by difference-frequency mixing the output of a narrowband, sync-pumped, grating dye laser, which is pumped by residual light from the regenerative amplifier, with 532 nm laser light in LiIO. The output is nar-
piezoelectric fields on the order of 10-14 V/cm. These fields lead to interesting nonlinear optical effects, which can depend on the density of free carriers. At low carrier density, there is an effect of the piezoelectric fields on the nonlinear susceptibilities due to parity mixing of the levels: $\chi^{(2)}$, and due to piezoelectric field-driven changes in the carrier dispersion relations: $\chi^{(3)}$. In an SL, grown on a buffer layer intermediate in concentration between the two active epilayers, we use a transfer matrix technique to obtain dispersion relations for the superlattice and an exact superlattice wavefunction. This is done within a single band model with momentum mixing of the bands due to zone-folding considered. Using these results we calculate $\chi^{(2)}$ and $\chi^{(3)}$ for a CdTe:ZnTe SL. We find $\chi^{(2)} \approx 10 \times 10 \times G aAs$. A large $\chi^{(3)}$ results because of electric field modulated band nonparabolicity in the SL. We find $\chi^{(3)} \approx 60 \times 10 \times G aAs$. The level broadening in the minibands demonstrates a strain-induced Franz-Keldysh effect in this system, whose explicit form varies with electric field. Finally, we consider the effect of screening on $\chi^{(2)}$ as a function of carrier density.

References
3. S. A. Jackson, to be published.

2:45pm

WJ6 Second-order optical susceptibilities in asymmetric quantum wells
S. J. B. Yoo, M. M. Fejer, R. L. Byer, and J. S. Harris, Jr.
Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

Recently, there have been extensive studies of intersubband transitions. The large oscillator strengths of transitions between subbands of quantum wells have led to investigations of their application to lasers, detectors, and nonlinear optical devices. In this paper, we discuss the extremely large second order optical susceptibility $\chi^{(2)}$ predicted and observed in structures with inversion symmetry broken through external electric fields or compositional asymmetry. Second order susceptibility of the quantum well system is obtained by solving effective mass Hamiltonian in the conduction bands. The large oscillator strengths and relatively narrow linewidths lead one to expect large experimental measurements of $\chi^{(2)}$ have been obtained for second harmonic generation over the tuning range of CO2 lasers in both electric field biased and compositionally asymmetric modulation doped structures, resulting in 28 nm/V and 100 nm/V near resonance, respectively. These are extremely large compared to $\chi^{(2)}$ of bulk GaAs, for example, which is 0.38 nm/V at similar wavelengths. In actual frequency conversion devices, the strong absorption at resonance adversely affects efficiency, which ultimately depends on the ratio of $\chi^{(2)}$ to absorption. We discuss the design of quantum well devices for large conversion efficiency.

References

3:00pm

WJ7 Optically induced and charge-transport-assisted electroabsorptive and electro-optic nonlinearity in cadmium telluride
Mehrdad Ziai and William H. Steier
Center for Photonic Technology, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-0483

We have observed the optically triggered formation of a high electric field region underneath the negative electrode. The optical control of the magnitude and the position of this field build-up, typically 10 to 20 times the applied field, combined with the electro-optic or the Franz-Keldysh effect, provides a novel large optical nonlinearity. The high field region (0.1-0.2 mm wide) forms in a few microseconds upon illumination by below bandgap light (860-900 nm) and persists in the dark with a latch time of 2-3 s. This effect is highly sensitive, requiring approximately 10 nJ/cm^2 absorbed fluence, and exhibits an intensity and applied voltage dependent response time. Furthermore, this high field can be erased by illuminating the region through 1 TO electrodes with near bandgap light (855-nm GaAs laser diode). This field buildup and erasure can be used in a variety of device configurations (one- or two-dimensional arrays, self-switching or two wavelength schemes) for opto-optical switching and spatial light modulation applications. These devices can benefit from the large electro-optic coefficient of CdTe (5-6 pV/m) for high contrast polarization switching, or taking advantage of the high electric fields, use the observed Franz-Keldysh electro-absorption which provides large absorption and the associated refractive index changes.

References

1:30pm

WK1 Ultrafast opto-optic switching
Susnath Mehta, Philippe Fauchet, and Kais Gzara
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544

We present a design for an ultrafast optically driven optical switch capable of subpicosecond switching and recovery times. The switch essentially consists of a phased array in which the phase of the light emitted by each element of the array is optically controlled. The distribution of the far field diffraction pattern from such an array can be varied considerably by altering the phase distribution of the array. The extremely short switching times are obtained by utilizing the optical Stark effect, which involves only virtual transitions, and there are no real carriers to restrict recovery times. The switch is also found to be extremely robust against noise as well as partial failure.

1:45pm

WK2 Nonequilibrium phonon dynamics in forsterite
S. G. Demos, J. M. Buchert, and R. R. Alfano
Institute for Ultrafast Spectroscopy and Lasers, City College of New York, Convent Avenue at 138 Street, New York, New York 10031

Phonon dynamics in photoexcited Forsterite—a new tunable solid state laser—has been studied by time resolved spontaneous Raman scattering following absorption in Forsterite electronic state. High rate of photoexcitation by 400 fs pulses is responsible for creation of nonequilibrium phonon population in the excited state. Phonons are generated by relaxation of the photoexcited electrons in the excited state. The finite relaxation time of phonons and strength of electron-phonon interactions produces the observed high nonequilibrium distribution during the short time after excitation. The short pulse measures the hot phonons while the longer pulses measure overall phonon population. These measurements give direct information on which nonradiative process and which phonons are involved in the relaxation of photoexcited ions in electronic state. For shortest pulse of 400 fs the 220-cm^{-1} mode appears to be coupled with photoexcited tetrahedral chromium Cr^2+ showing the nonequilibrium distribution.

This work is supported by the Army Research Office.