Title
New Synthetic Receptor Derived from Bridged Anthracenes. unclassified

Author
Dennis A. Dougherty

Type of Report
Final Technical

Time Covered
3/1/88 to 12/31/91

Date of Report
May 29

Page Count
4

Abstract
(Continue on reverse if necessary and identify by block number)

Distribution/Availability of Report
unlimited

Monitoring Organization Report Number(s)
Office of Naval Research

Name of Monitoring Organization
Office of Naval Research

Name of Funding/Sponsoring Organization
Office of Naval Research

Address (City, State, and ZIP Code)
800 N. Quincy Street, Arlington, VA 22217-5000

Telephone
202-696-4409

Source of Funding Numbers
ONR N00014-88-K-0259

Source of Funding Numbers Program
6153 N

Source of Funding Numbers Project
113p006

Source of Funding Numbers Task

Source of Funding Numbers Work Unit

Cosati Codes

Subject Terms
(Continue on reverse if necessary and identify by block number)

Distribution/Availability of Abstract
unclassified/unlimited

Abstract Security Classification
unclassified

Name of Responsible Individual
Harold Guard

Telephone
202-696-4409
New Synthetic Receptor Derived from Bridged Anthracenes

by

Dennis A. Dougherty

Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

May 31, 1991

Reproduction in whole, or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
The major goal of the present contract was to develop new insights into the forces responsible for the association of organic molecules so often seen in biological systems (e.g., enzyme-substrate, antibody-antigen, neuroreceptor-neurotransmitter interactions). To this end, a series of water-soluble organic molecules with well-defined hydrophobic binding sites was prepared, and the binding characteristics of several structures were evaluated.

![Diagram of a typical receptor of the type developed in the present work.]

The most significant discovery of the investigations was the demonstration of the importance of the "cation-\(\pi \)" (or, alternatively, "ion-dipole") interaction in producing tight, oriented binding of a wide variety of "onium" type guests. High
field NMR was the primary tool used to establish the cation-π interaction as a potent force for binding in both aqueous (technical report number 1) and organic media (technical report number 2). In addition, detailed studies revealed the primarily enthalpic nature of the phenomenon and the dangers of overly simplified analyses of binding data (technical report number 3). It seems quite likely that similar binding forces are of critical importance in a variety of biological receptors, especially many that are involved in several aspects of neurochemistry, and future efforts will seek to strengthen this connection.

In addition, the cation-π interaction has been exploited to develop a novel catalytic system (technical report number 4). It was demonstrated that a certain type of alkylation chemistry, in which a partial positive charge is developed in the transition state, is substantially accelerated by our synthetic receptors. The system is truly catalytic, exhibiting turnover and appropriate competitive inhibition behaviors. This is a novel example of taking a binding force that was discovered in "ground state" systems and using it to preferentially bind transition states. Future work will seek to expand upon and exploit this concept to produce powerful catalysts for useful organic transformation.

PUBLICATIONS PRODUCED

TECHNICAL REPORTS

Technical Report No. 4 - "Biomimetic Catalysis of an SN_2 Reaction Resulting from a Novel Form of Transition-State Stabilization." D.A. Stauffer, R.E. Barran, Jr., and D.A. Dougherty.