The Language for DENOTE
(Denotational Semantics Translation Environment)

Prepared by
J. V. COOK
Computer Science and Technology Subdivision

31 August 1990

Prepared for
SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Base
P. O. Box 92960
Los Angeles, CA 90009-2960

Engineering Group

THE AEROSPACE CORPORATION
El Segundo, California

APPROVED FOR PUBLIC RELEASE!
DISTRIBUTION UNLIMITED
This report was submitted by The Aerospace Corporation, El Segundo, CA 90245, under Contract No. F04701-88-C-00890 with the Space Systems Division, P. O. Box 92960, Los Angeles, CA 90009-2960. It was reviewed and approved for The Aerospace Corporation by C. A. Sunshine, Principal Director, Computer Science and Technology Subdivision. Mike Pentony, Lt, USAF, was the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) Program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Mike Pentony, Lt, USAF
MOIE Project Officer
SSD/SDEFS

Jonathan M. Emmes, Maj, USAF
MOIE Program Manager
PL/WCO OL-AH
1. INTRODUCTION

This report describes the language accepted by DENOTE (Denotational Semantics Translation Environment). DENOTE is a tool for writing and implementing formal denotational semantics† (Ref. 1) of computer languages. DENOTE provides a language, the DENOTE language (DL), for writing denotational semantic specifications. DENOTE can transform DL specifications into denotational semantic equations and functions represented as plain ASCII text or as formatted text acceptable to the Scribe (Ref. 2) and LaTeX (Ref. 3) text formatters. In addition, DENOTE can generate semantic implementations, by automatically transforming DL specifications into Common Lisp (Ref. 4) code that faithfully implements the specified semantics.

This introduction is followed by four sections, an appendix, and an index. Section 2 gives some background on DENOTE. Section 3 describes the notations used in defining the abstract syntax of programming languages, and presents some restrictions on the types of abstract syntax trees accepted by DENOTE. Section 4 describes the DENOTE language (DL), in which denotational semantic equations and functions are written. Section 5 summarizes the report. The appendix gives a small example that demonstrates the use of DENOTE. The index provides a cross reference to the reserved words of DL. The implementation of DENOTE, and its user interface, are not described in this report.

†A familiarity by readers of this report with the concepts of denotational semantics is assumed.
ABSTRACT

The State Delta Verification System (SDVS) is a proof checker for correctness proofs of properties expressed in the state delta logic. When one proves correctness properties of a computer program within SDVS, one must first translate the program into the language of the state delta logic. The translation semantics of a computer language can be specified formally by means of denotational semantics. In this report we describe an automated environment for specifying and implementing denotational semantics, called DENOTE (Denotational Semantics Translation Environment). The language accepted by DENOTE is called the DENOTE language (DL). DL is a language in which formal denotational semantic specifications can be written. DL specifications can be transformed by DENOTE into text suitable for input to the Scribe and LaTeX text formatters, as well as into Common Lisp code that implements the specified semantics.
CONTENTS

1. INTRODUCTION... 1
2. BACKGROUND... 3
3. ABSTRACT SYNTAX ... 5
 3.1. A Language for Abstract Syntax .. 6
 3.2. Implementation Requirements for Abstract Syntax Trees 7
4. DENOTE LANGUAGE (DL) .. 9
 4.1. Atomic Terms ... 9
 4.1.1. Constants .. 9
 4.1.2. Variables ... 9
 4.2. Built-in Infix Operators and Built-In Functions .. 11
 4.3. Semantic Equations .. 12
 4.3.1. Names and Labels ... 13
 4.3.2. Syntactic Arguments ... 13
 4.3.3. Semantic Arguments ... 14
 4.4. Auxiliary Functions ... 14
 4.5. Equation and Function Bodies .. 14
5. SUMMARY .. 17

REFERENCES .. 19

APPENDIX. THE LANGUAGE \(L \) .. 21
 1. Concrete Syntax for \(L \) ... 21
 2. Abstract Syntax for \(L \) ... 21
 3. Informal Semantics for \(L \) .. 22
 4. Formal Semantics for \(L \) in DL ... 22
 5. Scribe Formatted Denotational Semantics for \(L \) ... 23
 6. Common Lisp Implementation of Semantics for \(L \) ... 24
 7. Example Semantics for Sentences of \(L \) ... 26

INDEX .. 29
FIGURES

3-1: Parse Tree for 101+11 using Concrete Syntax... 5
3-2: Parse Tree for 101+11 using Abstract Syntax.. 6

TABLES

4-1: Constants of DL ... 10
4-2: Variables of DL ... 10
4-3: Built-in Infix Operators of DL ... 11
4-4: Built-in Functions of DL .. 12
4-5: Control Structures in DL ... 15
4-6: Binding Constructs of DL ... 16
4-7: The Syntax of Bindings Within let and where .. 16
The Language for DENOTE (Denotational Semantics Translation Environment)

The State Delta Verification System (SDVS) is a proof checker for correctness proofs of properties expressed in the state delta logic. When one proves correctness properties of a computer program within SDVS, one must first translate the program into the language of the state delta logic. The translation semantics of a computer language can be specified formally by means of denotational semantics. In this report we describe an automated environment for specifying and implementing denotational semantics, called DENOTE (Denotational Semantics Translation Environment). The language accepted by DENOTE is called the DENOTE language (DL). DL is a language in which formal denotational semantic specifications can be written. DL specifications can be transformed by DENOTE into text suitable for input to the Scribe and LaTeX formatter, as well as into Common Lisp code that implements the specified semantics.
2. BACKGROUND

The impetus for the design and construction of the DENOTE tool came from certain requirements necessary for the improvement of the State Delta Verification System (SDVS) (Ref. 5). SDVS is a proof checker for proofs of correctness of the properties of programs written in various computer languages. SDVS, when checking such proofs, first translates the computer program into SDVS’s internal language, the language of the state delta logic. The correctness of this translation is crucial to the proof process, in that the translator is directly responsible for specifying the semantics of the computer program to be translated.

The first computer language dealt with by SDVS was the hardware description language ISPS (Instruction Set Processor Specification) (Ref. 6). ISPS was used to describe the instruction set architecture of the C/30 computer (Ref. 7) and to describe the Microprogrammable Building Block (Ref. 8), whose microcode was used to emulate the C/30 instruction set. These ISPS descriptions were used in the proof of correctness of the C/30 microcode (Ref. 9), completed in 1986. The ISPS translator used in this proof was implemented in an ad hoc manner, in that no formal definition of the translation semantics was given. Only through studying the Lisp code that implements the translator could one gain assurance as to the correctness of the translator.

Initiated in 1988, an ongoing computer verification effort of the SDVS group is proving correctness properties of programs written in increasingly complex subsets of Ada† (Ref. 10). The first of these subsets was given the name Core Ada. Its denotational semantics was defined formally (Ref. 11) and was then implemented by handcoding the denotational semantic equations and functions in Common Lisp (Ref. 4). This task was time consuming, tedious, and almost automatic for the programmer, leading to the realization that the entire process could be automated. This realization led to the invention of DENOTE.

DENOTE is currently being used to define state delta semantics for the hardware description languages ISPS and VHDL (Ref. 12), and the programming language Ada.

†Ada is a registered trademark of the U. S. Government --- Ada Joint Program Office.
3. ABSTRACT SYNTAX

The denotational semantics of a computer language is typically based on an abstract syntax for the language. The concrete syntax of a computer language is the syntax used to parse sentences in the language. A parse tree based on the concrete syntax contains a complete derivation of the parsed program, with an internal node for each concrete syntax production that is reduced during parsing. In abstracting the concrete syntax, the resulting parse trees (abstract syntax trees) become smaller and more manageable. The differences between the two syntaxes are best explained via an example.

Consider the context-free language L generated by the concrete syntax productions listed below.

\[
\begin{align*}
\text{expr} & ::= \text{sum} \\
\text{sum} & ::= \text{factor} \text{addop} \text{sum} \mid \text{factor} \\
\text{factor} & ::= \text{term} \text{mulop} \text{factor} \mid \text{term} \\
\text{term} & ::= \text{bnum} \mid (\text{expr}) \\
\text{addop} & ::= + \mid - \\
\text{mulop} & ::= \ast \mid / \\
\text{bnum} & ::= \text{bdigit} \text{bnum} \mid \text{bdigit} \\
\text{bdigit} & ::= 0 \mid 1
\end{align*}
\]

Each sentence in this language represents an arbitrary arithmetic term involving the operations of addition, subtraction, multiplication, and division applied to sequences of binary digits. The concrete
parse tree for the sentence 101+11 is shown in Figure 3-1. The nonterminal symbols of these concrete syntax productions are expr, sum, factor, term, addop, mulop, bnum, and bdigit; the terminal symbols are (), +, -, *, /, 0, and 1. The notations ::= and | represent derivation and alternation, respectively. Note that no pseudoterminals are used to define \(L \) (either bnum or bdigit could be pseudoterminals).

\[
\begin{align*}
\text{plus} & \quad \text{bdigits} \quad \text{bdigits} \\
| & \quad | \\
(1 \ 0 \ 1) & \quad (1 \ 1)
\end{align*}
\]

Figure 3-2: Parse Tree for 101+11 using Abstract Syntax

Productions defining an abstract syntax for \(L \) are shown below.

\[
\begin{align*}
\text{expr} & ::= \text{binary-op} \ \text{expr}_1 \ \text{expr}_2 \ | \ \text{BDIGITS} \ \text{bdigit}^+ \\
\text{binary-op} & ::= \text{PLUS} \ | \ \text{MINUS} \ | \ \text{MULT} \ | \ \text{DIVIDE} \\
\text{bdigit} & ::= 0 \ | \ 1
\end{align*}
\]

In the abstract syntax, expressions are generalized (operator precedence explicit in the concrete syntax no longer requires representation) and production sequences are compressed. The abstract parse tree for the sentence 101+11 is shown in Figure 3-2. The nonterminal symbols of the abstract syntax productions are expr, binary-op, and bdigit; the terminal symbols are BDIGITS, PLUS, MINUS, MULT, DIVIDE, 0, and 1.

3.1. A Language for Abstract Syntax

Before formally defining the language for representing abstract syntax productions, some notation must be introduced. Itemized below are language notations for terminal symbols, sequences of (arbitrary) symbols, the empty sequence, and a syntactic method for disambiguating multiple occurrences of symbols in a production.

- \(\cdot \ \text{x} \) denotes a terminal symbol \(\text{x} \).
- \((\text{x} \ +) \) denotes a sequence of one or more \(\text{x} \).
- \((\text{x} \ \ast) \) denotes a sequence of zero or more \(\text{x} \).
- \(\text{epsilon} \) denotes the empty derivation.
- \((\text{x} \ \text{n}) \), where \(\text{n} \) is a symbol (typically a natural number), may be used to disambiguate

\(^\dagger\) A pseudoterminal denotes a class of terminal symbols, such as "identifiers" or "numerals."
multiple occurrences of the (nonterminal or pseudoterminal) symbol x in an individual production. The symbol n qualifies x, by distinguishing it from other occurrences of x in the production. In a like manner, ($x \ast n$) may be used to qualify an occurrence of ($x \ast$) and ($x + n$) to qualify an occurrence of ($x +$). DENOTE requires qualification in a production when more than one occurrence of a nonterminal or pseudoterminal symbol appears in the production.

For example, consider a syntactic phrase† of L, derived from the nonterminal expr, shown below:

```
PLUS expr1 expr2
```

The DENOTE language (DL) notation for this phrase is

```
('PLUS (expr 1) (expr 2))
```

Without the qualification of expr, DENOTE would have no natural way of distinguishing between the two when referencing them from within a semantic equation.

The formal definition of the DENOTE language for representing abstract syntax is given below.

- An abstract syntax is a list of productions.
- A production is a list whose first element is a nonterminal and whose remaining elements are the alternatives generated by (derived from) the nonterminal. The symbol ϵ denotes the empty derivation. Each list representing a production must have at least two elements, the simplest production being (nt ϵ), denoting a nonterminal nt that has only the empty derivation. If the nonterminal defining the production also appears within one of the alternatives, duplicate occurrences of the nonterminal must be qualified for disambiguation.
- An alternative is either a terminal symbol, a nonterminal symbol (or sequence thereof), a pseudoterminal symbol (or sequence thereof), or a list of the aforementioned symbols.

A DL representation of the abstract syntax for the example language L is shown below.

```
((expr (binary-op (expr 1) (expr 2)))
 ('bdigits (bdigit +)))
(binary-op 'plus 'minus 'mult 'divide)
(bdigit '0 '1))
```

If bdigit was defined to be a pseudoterminal of L, the final production would be absent.

3.2. Implementation Requirements for Abstract Syntax Trees

DENOTE requires a particular physical representation of abstract syntax trees. These trees must conform to the following rules:

- An abstract syntax tree contains no nonterminal symbols, only terminal and pseudoterminal symbols and lists thereof. DENOTE is case-insensitive.
- Terminal symbols appear verbatim.
- A pseudoterminal is represented by the appearance of the particular symbol parsed.
- A sequence of symbols (defined by either the $+$ or \ast notation) is represented by a list containing each symbol's representation, or by the empty list if the sequence is empty.

†By "syntactic phrase" we mean some derivation of a nonterminal from the abstract syntax.
An alternative that is defined in the abstract syntax by a list of symbols must be represented by a list that contains the ordered representation of each symbol, the first symbol of which must be a unique terminal symbol. This requirement permits DENOTE to disambiguate different syntactic phrases derived from a single nonterminal.

A few examples of abstract syntax trees for L should clarify these implementation requirements. The terminal symbol PLUS is represented by the atom PLUS. The binary digit 0 is represented by the atom 0. The binary number 101 is represented by the list (bdigits (1 0 1)). The syntactic phrase 1001 + 11 is represented by the list (plus (bdigits (1 0 0 1)) (bdigits (1 1))).
4. DENOTE LANGUAGE (DL)

This section describes in detail the syntax of the DENOTE language (DL) for defining denotational semantic equations and auxiliary functions. This preliminary version of DL is syntactically similar to Lisp (Ref. 13), consisting of atomic terms and s-expressions (parenthesized lists). The following groups of language constructs are defined:

- the atomic terms (constants and variables)
- the built-in operators and functions
- a construct for defining denotational semantic equations (defsemeq), and additional constructs for specifying the syntactic arguments of semantic functions (synclause) and for preventing the currying of arguments (args)
- a construct for defining auxiliary functions (defsemfn)
- the control structure constructs if, elseif, and notations for applying semantic functions, auxiliary functions, and continuations (applycont) to arguments
- the binding constructs let, where, whererec, and lambda
- the grouping constructs lst, tuple, and synclause for binding new variables

A full list of the reserved words of DL is shown in the index at the back of this report.

In the sections to follow, tables are used to show groups of syntactic objects. Each table has three columns, labeled Denotations, DL, and Common Lisp, respectively. The middle column shows the DL syntax of a reserved word or construct. The first column shows its denotational representation as displayed by the Scribe text formatter. The third column shows the fragment of Common Lisp code that implements the object. The reserved words of DL are displayed in a bold, fixed-width font, as are all Common Lisp constructs. DL is case-insensitive.

4.1. Atomic Terms

Constants and variables comprise the atomic terms of DL.

4.1.1. Constants

Table 4-1 shows the syntax for the constants of DL. These constants include the empty derivation epsilon, the empty set emptyset, the Booleans tt and ff, the numerals, atomic identifier constants, and strings.

4.1.2. Variables

Table 4-2 shows the syntax for variables of DL. All identifiers that are not reserved words of DL can be used as variables, except for t, which for historical reasons is reserved to denote a variable named TSE.†

†TSE is an acronym for Tree Structured Environment.
Table 4-1: Constants of DL

<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>epsilon</td>
<td>nil</td>
</tr>
<tr>
<td>∅</td>
<td>emptyset</td>
<td>nil</td>
</tr>
<tr>
<td>tt</td>
<td>tt</td>
<td>t</td>
</tr>
<tr>
<td>ff</td>
<td>ff</td>
<td>nil</td>
</tr>
<tr>
<td>...,1,0,1,...</td>
<td>...,1,0,1,...</td>
<td></td>
</tr>
<tr>
<td>bold-id</td>
<td>'bold-id</td>
<td>'bold-id</td>
</tr>
<tr>
<td>bold-id</td>
<td>(quote bold-id)</td>
<td>'bold-id</td>
</tr>
<tr>
<td>bold-id</td>
<td>(bold bold-id)</td>
<td>'bold-id</td>
</tr>
<tr>
<td>BOLD-ID</td>
<td>(ubold bold-id)</td>
<td>'bold-id</td>
</tr>
<tr>
<td>"xxxxxx"</td>
<td>(string "xxxxx")</td>
<td>"xxxxx"</td>
</tr>
</tbody>
</table>

Table 4-2: Variables of DL

<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>tse</td>
</tr>
<tr>
<td>identifier</td>
<td>identifier</td>
<td>identifier</td>
</tr>
<tr>
<td>x₁</td>
<td>(scriptarg (x 1))</td>
<td>x₁</td>
</tr>
<tr>
<td>x⁺</td>
<td>(scriptarg (x +))</td>
<td>x⁺</td>
</tr>
<tr>
<td>x*</td>
<td>(scriptarg (x *))</td>
<td>x*</td>
</tr>
<tr>
<td>x₂</td>
<td>(scriptarg (x 2))</td>
<td>x₂</td>
</tr>
<tr>
<td>x₃</td>
<td>(scriptarg (x 3))</td>
<td>x₃</td>
</tr>
<tr>
<td>[[s₄]]</td>
<td>(synarg (s 4))</td>
<td>s₄</td>
</tr>
<tr>
<td>[[s*]]</td>
<td>(synarg (s *))</td>
<td>s*</td>
</tr>
<tr>
<td>[[s⁺]]</td>
<td>(synarg (s +))</td>
<td>s⁺</td>
</tr>
<tr>
<td>[[s*₅]]</td>
<td>(synarg (s * 5))</td>
<td>s*₅</td>
</tr>
<tr>
<td>[[s*₆]]</td>
<td>(synarg (s + 6))</td>
<td>s*₆</td>
</tr>
<tr>
<td>[[s]]</td>
<td>(synarg s)</td>
<td>s</td>
</tr>
<tr>
<td>[[id]]</td>
<td>(synarg 'id)</td>
<td>'id</td>
</tr>
<tr>
<td>[[ID]]</td>
<td>(synarg (quote id))</td>
<td>'id</td>
</tr>
</tbody>
</table>

In addition, DL has two notations for introducing subscripted variable names into denotational semantic descriptions. These notations are headed by the identifiers scriptarg and synarg. The scriptarg notation can be applied to any variable, whereas only syntactic variables can be contained within...
When a semantic function is applied to arguments (the first of which must be syntactic), the first argument must be enclosed in the synarg form, to distinguish it from the remainder of the (nonsyntactic) arguments. This first argument may be the empty sequence epsilon, a (quoted) terminal symbol, a pseudo-terminal symbol (or sequence thereof), or a nonterminal symbol (or sequence thereof).

<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬x</td>
<td>(not x)</td>
<td>(not x)</td>
</tr>
<tr>
<td>x ∨ y</td>
<td>(or x y)</td>
<td>(or x y)</td>
</tr>
<tr>
<td>x ∧ y</td>
<td>(and x y)</td>
<td>(and x y)</td>
</tr>
<tr>
<td>x = y</td>
<td>(eq x y)</td>
<td>(= x y) (equal x y)</td>
</tr>
<tr>
<td>x ≠ y</td>
<td>(neq x y)</td>
<td>(≡ x y) (not (equal x y))</td>
</tr>
<tr>
<td>x < y</td>
<td>(lt x y)</td>
<td>(< x y)</td>
</tr>
<tr>
<td>x ≤ y</td>
<td>(le x y)</td>
<td>(≤ x y)</td>
</tr>
<tr>
<td>x > y</td>
<td>(gt x y)</td>
<td>(≥ x y)</td>
</tr>
<tr>
<td>x ≥ y</td>
<td>(ge x y)</td>
<td>(≥ x y)</td>
</tr>
<tr>
<td>¬x</td>
<td>(minus x)</td>
<td>(- x)</td>
</tr>
<tr>
<td>x + y</td>
<td>(plus x y)</td>
<td>(+ x y)</td>
</tr>
<tr>
<td>x − y</td>
<td>(minus x y)</td>
<td>(− x y)</td>
</tr>
<tr>
<td>x^y</td>
<td>(mult x y)</td>
<td>(* x y)</td>
</tr>
<tr>
<td>x/y</td>
<td>(divide x y)</td>
<td>(/ x y) (quotient x y)</td>
</tr>
<tr>
<td>x^y</td>
<td>(expt x y)</td>
<td>(^ x y) (expt x y)</td>
</tr>
<tr>
<td>x ∈ y</td>
<td>(member x y)</td>
<td>(member x y :test 'equal)</td>
</tr>
<tr>
<td>x ∪ y</td>
<td>(union x y)</td>
<td>(union x y :test 'equal)</td>
</tr>
<tr>
<td>x ∩ y</td>
<td>(intersection x y)</td>
<td>(intersection x y :test 'equal)</td>
</tr>
</tbody>
</table>

Table 4-3: Built-in Infix Operators of DL

4.2. Built-in Infix Operators and Built-in Functions

Table 4-3 shows the syntax for the built-in operators of DL that have infix denotations. The built-in operators consist of the Boolean relations negation (not), conjunction (or), and disjunction (and); the logical relations equality (eq, =) and disequality (neq, ≠); the integer inequalities less than (lt, <), less than or equal (le, ≤), greater than (gt, >), and greater than or equal (ge, ≥); the integer operators unary negation (minus, -), addition (plus, +), subtraction (minus, -), multiplication (mult, *), division (divide, /), and exponentiation (expt, ^); and the set operators membership (member), union (union), and intersection (intersection).

Table 4-4 shows the syntax for the built-in functions of DL, i.e., those built-in operators that have no infix denotations. These built-in functions are list head (hd), list tail (tl), list length (length), dotted-list construction (cons), list type identification (consp), list append (append), conventional list construction (list), identifier concatenation (catenate), integer maximum (max), integer minimum (min), integer

A syntactic argument s is distinguished by the denotation [[s]].
remainder (rem), integer modulus (mod), and integer absolute value (abs). Adding new built-in operators and functions to DL, as the need arises, is not difficult.

<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd(x)</td>
<td>(hd x)</td>
<td>(car x)</td>
</tr>
<tr>
<td>tl(x)</td>
<td>(tl x)</td>
<td>(cdr x)</td>
</tr>
<tr>
<td>length(x)</td>
<td>(length x)</td>
<td>(length x)</td>
</tr>
<tr>
<td>cons(x,y)</td>
<td>(cons x y)</td>
<td>(cons x y)</td>
</tr>
<tr>
<td>consp(x)</td>
<td>(consp x)</td>
<td>(consp x)</td>
</tr>
<tr>
<td>append(x,y)</td>
<td>(append x y)</td>
<td>(list x y)</td>
</tr>
<tr>
<td>list(x1,x2,...)</td>
<td>(list x1 x2 ...)</td>
<td>(list x1 x2 ...)</td>
</tr>
<tr>
<td>catenate(x,y)</td>
<td>(catenate x y)</td>
<td>(pack* x y)</td>
</tr>
<tr>
<td>max(x,y)</td>
<td>(max x y)</td>
<td>(max x y)</td>
</tr>
<tr>
<td>min(x,y)</td>
<td>(min x y)</td>
<td>(min x y)</td>
</tr>
<tr>
<td>rem(x,y)</td>
<td>(rem x y)</td>
<td>(rem x y)</td>
</tr>
<tr>
<td>mod(x,y)</td>
<td>(mod x y)</td>
<td>(mod x y)</td>
</tr>
<tr>
<td>abs(x)</td>
<td>(abs x)</td>
<td>(abs x)</td>
</tr>
</tbody>
</table>

Table 4-4: Built-in Functions of DL

4.3. Semantic Equations

The DL expression that defines a single denotational semantic equation is a six-element list headed by the identifier defsemeq, whose remaining five fields contain the following:

2. the atomic name of the semantic function,
3. a unique atomic label for the semantic equation,
4. the syntactic argument of the equation,
5. a list of the arguments to the function, and
6. the body of the equation.

For example, consider the following defsemeq form:

```lisp
(defsemeq
  E E4 (synclause expr (’divide (expr 1) (expr 2))) (c)
  (where (((scriptarg (c 1))
    (lambda (x)
      (where (((scriptarg (c 2))
        (lambda (y)
          (if (= x 0)
            (division-error)
            (applycont c (/ y x)))))
      (E (synarg (expr 1)) (scriptarg (c 2)))))
    (E (synarg (expr 2)) (scriptarg (c 1))))))
```

This form defines a semantic function named E and labeled E4, with the syntactic argument...
DIVIDE expr1 expr2]], the semantic arguments (c), and a body that is best explained by the remainder of this report. The interior constituents of the defsemeq form are the topic of the remainder of this section. Semantic equation E4 is also presented in the Appendix.

4.3.1. Names and Labels

Each semantic equation defined via defsemeq first identifies the name of the semantic function for which an instance is being defined. Since each semantic function operates on one or more syntactic domains, several semantic equations may be required to define the actions of a particular semantic function on different syntactic phrases. Thus, DENOTE requires that a unique (atomic) label be associated with each equation. These labels may be used to refer to semantic equations in documents and are used to construct names for Common Lisp functions that implement the semantic equations. A typical methodology for constructing label names would be to append consecutive numerals to semantic function names. For example, the labels E1, E2, E3, and E4 are used to identify uniquely the four semantic equations for the semantic function E of the example language L (described in the Appendix).

4.3.2. Syntactic Arguments

Each semantic equation defined via defsemeq specifies the actions of a semantic function on a particular syntactic phrase. DENOTE requires that the syntactic argument to each semantic equation be represented by a syntactic clause, which contains both a syntactic phrase and the Nonterminal or pseudoterminal from which the phrase was derived. The DL expression defining a semantic clause is a three-element list headed by the identifier synclause, whose remaining two fields contain, respectively, a nonterminal or pseudoterminal symbol (or sequence thereof) for one of the syntactic phrases it derives. The syntax of both arguments to synclause must conform to that imposed on symbols and alternatives in abstract syntax productions.

For example, consider the following syntactic clause taken from the original defsemeq example:

(synclause expr ('DIVIDE (expr 1) (expr 2)))

This is the syntactic clause that represents a binary expression involving division, derived from the following two productions in the abstract syntax for L:

expr ::= binary-op expr1 expr2

binary-op ::= PLUS | MINUS | MULT | DIVIDE

Below are some examples of syntactic clauses involving sequences of the nonterminal bdigit. To the right of each clause is the embedded phrase as it would appear as the syntactic argument in a semantic equation.

(synclause (bdigit * 1) (bdigit (bdigit * 2))) [[bdigit bdigit* 2]]

(synclause (bdigit *) epsilon)) [[e]]

(synclause (bdigit *) (bdigit *)) [[bdigit*]]
All of the above examples conform to the DL syntax, and are appropriately qualified. Note that qualification is unnecessary if the alternative (the second argument to synclause) is identical to the first argument, as shown in the third and fourth examples above.

4.3.3. Semantic Arguments

The semantic arguments of each semantic equation are represented by a list of identifiers; each identifier in the list represents a single argument to the function. Note that since currying is the default in denotational semantics, we need additional notation for grouping arguments. The notation

\[(\text{args } a \ b \ c \ldots)\]

groups a set of arguments together, that is, it uncurries them. For example, the DL notation \((a \ (\text{args } b \ c) \ d \ e)\) denotes the following argument list: \((a)(b,c)(d)(e)\). If the \text{args} notation is used to define the arguments to a function, the notation must be used correspondingly when the function is applied to arguments.

4.4. Auxiliary Functions

Before describing the DL constituents of the bodies of equations and functions, we must describe a form used to define auxiliary functions that may be used by semantic equations. The DL expression defining an auxiliary function is a four-element list headed by the atom \text{defsemfn}, whose remaining three fields contain the following:

1. the atomic name of the function,
2. a list of the names of the function's parameters (which may be grouped using \text{args}), and
3. the body of the function.

For example, the factorial function for non-negative integers is defined in DL as follows:

\[
(\text{defsemfn factorial } (n)\newline\quad (\text{if } (= n 0) \newline\quad\quad 1\newline\quad\quad (* n (factorial (- n 1)))))\]

4.5. Equation and Function Bodies

The bodies of semantic equations and auxiliary semantic functions, of course, comprise the majority of DL. These bodies consist of terms, some of which are special denotations.
<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p → a, b)</td>
<td>(if p a b)</td>
<td>(if p a b)</td>
</tr>
<tr>
<td>(p → a, q → b, c)</td>
<td>(elseif p a q b)</td>
<td>(cond (p a) (q b) (c))</td>
</tr>
<tr>
<td>SF(s)(y)…</td>
<td>(SF (synarg s) x y …)</td>
<td>(SF s x y …)</td>
</tr>
<tr>
<td>f(x1)(x2)…</td>
<td>(f x1 x2 …)</td>
<td>(f x1 x2 …)</td>
</tr>
<tr>
<td>f(x1,x2,...)</td>
<td>(f (args x1 x2 ...))</td>
<td>(f x1 x2 ...)</td>
</tr>
<tr>
<td>f(x1)(x2)(x3,x4,...)</td>
<td>(f x1 x2 (args x3 x4 ...))</td>
<td>(f x1 x2 x3 x4 …)</td>
</tr>
<tr>
<td>k(a)(b)(c)</td>
<td>(applycont k a b c)</td>
<td>(apply-cont k (list a b c))</td>
</tr>
<tr>
<td>k(a,b,c)</td>
<td>(applycont k (args a b c))</td>
<td>(apply-cont k (list a b c))</td>
</tr>
</tbody>
</table>

Table 4-5: Control Structures in DL

Control Structures

Table 4-5 shows the DL syntax for the control structures used in the bodies of denotational equations and functions. The forms described are the two conditionals if and elseif, the form for semantic function application (note that the first argument to a semantic function must be a syntactic argument, enclosed by the synarg construct, as discussed previously), the form for general function application, and the form for applying continuation variables to arguments (applycont).

Grouping Constructs

Table 4-6 show the syntax of DL's constructs for binding variables and functions, including the where and let constructs for binding variables in various manners, the whererec form for locally binding a name to a recursive function, and the lambda forms for function definition. The let and where forms permit four distinct types of bindings: (1) binding of a variable to the empty sequence (the empty list), (2) binding of a variable to the value of an expression, (3) binding of sequences (lists and tuples) of variables to elements of lists, and (4) binding of syntactic variables in the syntactic phrase of a syntactic clause to a list of syntactic values.

Grouping Operators

Table 4-7 shows the three grouping operators for the let and where control structures, which display as parenthesized lists, and angle-bracketed lists (tuples). Note that the identifier list is used instead of list for denotations of the form (x1,x2,...). This is because list is reserved for denotations of the form list(x1,x2,...), which represents the list constructor operator as applied to arguments.
Denotation	DL	Common Lisp
let \(x = e \) | \((\text{let } (x) \ldots)\) | \((\text{let } (x) \ldots)\)
let \(x = y \) | \((\text{let } ((x y)) \ldots)\) | \((\text{let } ((x y)) \ldots)\)
let \((x_1, \ldots, x_k) = y \) | \((\text{let } ((\text{list } x_1 \ldots x_k) y)) \ldots)\) | \((\text{let}_k > ((x_1 \ldots x_k) y)) \ldots)\)
let \(<x_1, \ldots, x_k> = y \) | \((\text{let } ((\text{tuple } x_1 \ldots x_k) y)) \ldots)\) | \((\text{let}_k > ((x_1 \ldots x_k) y)) \ldots)\)
let \([x_1, \ldots, x_k] = y \) | \((\text{let } ((\text{synclause } s (s_1 \ldots s_k)) e)) \ldots)\) | \((\text{let}_k > ((s_1 \ldots s_k) y)) \ldots)\)

... where \(x = e \) | \((\text{where } (x) \ldots)\) | \((\text{let } (x) \ldots)\)
... where \(x = y \) | \((\text{where } ((x y)) \ldots)\) | \((\text{let } ((x y)) \ldots)\)

and so on. The remaining where denotations follow the pattern of the let denotations:

... where rec | \((\text{where rec} \ldots)\) | \((\text{labels} \ldots)\)
\(f(a)(b) \ldots = \text{exp} \) | \((\text{labels } ((\text{f } (\text{lambda } (a b \ldots) \text{ exp})) \ldots) \ldots)\) | \((\text{labels } ((\text{f } (a b \ldots) \text{ exp})) \ldots) \ldots)\)
\(\lambda x. \lambda y. \lambda z. \text{body} \) | \((\text{function } (\text{lambda } (x y z \ldots) \text{ body}) \ldots)\) | \((\text{function } (\text{lambda } (x y z \ldots) \text{ body}) \ldots)\)
\(\lambda (x, y, z, \ldots). \text{body} \) | \((\text{function } (\text{lambda } ((\text{args } x y z \ldots)) \text{ body}) \ldots)\) | \((\text{function } (\text{lambda } ((x y z \ldots) \text{ body}) \ldots)\)

Table 4-6: Binding Constructs of DL

<table>
<thead>
<tr>
<th>Denotation</th>
<th>DL</th>
<th>Common Lisp</th>
</tr>
</thead>
</table>
\(x = e \) | \((x y \ldots)\) | bind \(x \) to NIL, \(y \) to NIL, \ldots
\(x = y \) | \((u v) \ (w x)\) | bind \(u \) to the value of \(v \), \(w \) to \(x \), etc.
\((x_1, x_2, \ldots) = y \) | \((\text{list } x_1 x_2 \ldots y)\) | binds each \(x_n \) to the \(n \)th element of \(y \)
\(<x_1, x_2, \ldots> = y \) | \((\text{tuple } x_1 x_2 \ldots y)\) | binds each \(x_n \) to the \(n \)th element of \(y \)
\([s_1, s_2, \ldots] = y \) | \((\text{synclause } s (s_1 s_2 \ldots y))\) | binds each \(s_n \) to the \(n \)th element of \(y \)

Table 4-7: The Syntax of Bindings Within let and where
5. SUMMARY

The design and implementation of the DENOTE tool was necessitated by the Computer Verification Group's problems with *ad hoc* implementations of translators for computer languages dealt with by SDVS. DENOTE now permits users to specify the formal denotational semantics of a computer language in its internal language DL, and is capable of automatically transforming a DL specification into text that may be examined for semantic correctness, as well as into a Common Lisp implementation of the specified semantics. DENOTE is currently used to define the translation semantics of Ada, VHDL, and ISPS, which permits SDVS to translate computer language constructs into the internal language of SDVS. DENOTE is not, however, restricted to defining SDVS translation semantics. It is a general-purpose tool for displaying and implementing the denotational semantics of computer languages.

The current implementation of DENOTE has been found to be adequate to the tasks presented to it, but has room for improvement. Some improvements that would extend its applicability and usability include the following:

- Improving the checking capabilities of DENOTE with respect to static semantics, e.g. type-check variables and function parameters, check that function calls have the required number of arguments.
- Implementing a friendlier user interface to DENOTE, and providing good documentation for the interface (no such documentation is provided by this report). This interface should include a facility for processing an individual semantic equation or auxiliary function, whereas the current version of DENOTE requires the processing of the entire denotational semantic definition.
- Incorporating additional denotational constructs into DL, and modifying the syntax of DL to clear up confusions or ambiguities.
- Providing an optimizer for the automatically generated Common Lisp code.
- Improving the formatting capabilities of DENOTE with respect to the Scribe and LaTeX text formatters.

A report describing DENOTE in full, including its user interface, will be forthcoming.
REFERENCES

The Denotational Description of Programming Languages: An Introduction.

LaTeX: A Document Preparation System.
Addison-Wesley, Reading, Massachusetts, 1986.

Common LISP: The Language.

SDVS 7 Users' Manual.

The ISPS Computer Description Language.
CMU-CS-79-137, Carnegie-Mellon University, Computer Science Department, August 1979.

C/30 Native Mode Firmware System, Programmer’s Reference Manual.

Flexible Processor Extends Design Options.

Final Report for the C/30 Microcode Verification Project.

Adding Ada Program Verification Capability to the State Delta Verification System (SDVS).
in _Proceedings of the 11th National Computer Security Conference._

A Formal Description of the Incremental Translation of Core Ada into State Deltas in the SDVS Proof System.

LISP 1.5 Programmer’s Manual.
APPENDIX
THE LANGUAGE \mathcal{L}

A denotational semantics for the example language \mathcal{L} (introduced in Section 3) is presented in this appendix. First the concrete and abstract syntaxes are given for \mathcal{L}. Next the semantics for \mathcal{L} is described informally, followed by its formal semantics written in DL. Two outputs produced by DENOTE, the text-formatted version of the semantics of \mathcal{L} and its Common Lisp implementation, are then presented. Finally, some examples of using the Common Lisp implementation to determine the semantics of sentences in \mathcal{L} are shown.

1. Concrete Syntax for \mathcal{L}

The concrete syntax of \mathcal{L} is shown below. As mentioned previously, each sentence in \mathcal{L} represents an arbitrary arithmetic term involving the operations of addition, subtraction, multiplication, and division applied to sequences of binary digits.

\[
\begin{align*}
\text{expr} &= \text{sum} \\
\text{sum} &= \text{factor addop sum} \mid \text{factor} \\
\text{factor} &= \text{term mulop factor} \mid \text{term} \\
\text{term} &= \text{bnum} \mid (\text{expr}) \\
\text{addop} &= + \mid - \\
\text{mulop} &= \times \mid / \\
\text{bnum} &= \text{bdigit bnum} \mid \text{bdigit} \\
\text{bdigit} &= 0 \mid 1
\end{align*}
\]

2. Abstract Syntax for \mathcal{L}

The abstract syntax of \mathcal{L} is shown below. The abstract syntax productions generate the same language that concrete syntax does, while eliminating extraneous productions related to parsing, and thus is considerably more compact.

\[
\begin{align*}
\text{expr} &= \text{binary-op expr}, \text{expr} \mid \text{BDIGITS bdigit}^* \\
\text{binary-op} &= \text{PLUS} \mid \text{MINUS} \mid \text{MULT} \mid \text{DIVIDE} \\
\text{bdigit} &= 0 \mid 1
\end{align*}
\]

Shown below is the Common Lisp syntax for binding the variable *binexpr-abstract-syntax* to the DL abstract syntax of \mathcal{L}. The abstract syntax representation is case-insensitive. We follow a convention when displaying abstract syntax productions of presenting terminal symbols in upper case, and all other symbols in lower case.

\[
\text{(defvar *binexpr-abstract-syntax*}
\begin{align*}
'((\text{expr} (\text{binary-op (expr 1) (expr 2)}) \\
(\text{bdigits (bdigit +)})) \\
(\text{binary-op 'plus 'minus 'mult 'divide}) \\
(\text{bdigit '0 '1}))
\end{align*}
\]

21
3. Informal Semantics for \(\mathcal{L} \)

Informally, we choose a semantics for \(\mathcal{L} \) that assigns integers to sentences in \(\mathcal{L} \), except for those that involve division by zero, to which we assign an error string. In this semantics, sequences of binary digits represent non-negative binary numbers.

4. Formal Semantics for \(\mathcal{L} \) in DL

The DL representation of the formal semantics for \(\mathcal{L} \) is shown below. This is a continuation-style denotational semantics that maps illegal expressions (those involving division by 0) into an error string and legal expressions to their integer results. The values of three variables are defined. The variable \texttt{binexpr-semfns} is bound to an association list of semantic function names, where the tail of each sublist contains the syntactic domains (specified by the nonterminals of the abstract syntax) to which the semantic function may be applied. The variable \texttt{binexpr-fns} is bound to an association list of the auxiliary functions. Finally, the variable \texttt{binexpr-semantics} is bound to the DL semantics for \(\mathcal{L} \).

\[
\begin{align*}
\text{(defvar *binexpr-semfns*} & \quad '((A expr)
A A1 (synclause expr expr) ()
A2 A21 (synclause expr expr) () (E (synarg (expr)) (lambda (x) x)))
E1 E11 (synclause expr ('plus (expr 1) (expr 2))) c
E12 E121 (synclause expr (expr 1) (expr 2)) c
E2 E21 (synclause expr ('minus (expr 1) (expr 2))) c
E3 E31 (synclause expr ('mult (expr 1) (expr 2))) c
\text{(defsemeq) & \quad where (((scriptarg (c 1))
\text{(defsemeq)}}
\end{align*}
\]
(defsemeq
 E E4 (synclause expr ('divide (expr 1) (expr 2))) (c)
 (where (((scriptarg (c 1))
 (lambda (x)
 (where (((scriptarg (c 2))
 (lambda (y)
 (if (= x 0)
 (division-error)
 (applycont c (/ y x))))))
 (E (synarg (expr 1)) (scriptarg (c 2))))))
 (E (synarg (expr 2)) (scriptarg (c 1))))))

(defsemfn division-error () (string "division by zero"))

(defsemeq
 E E5 (synclause expr ('bdigits (bdigit +))) (c)
 (applycont c (B (synarg (bdigit +)) 0)))

(defsemeq
 B B1 (synclause (bdigit * 0) (bdigit (bdigit *))) (n)
 (B (synarg (bdigit *)) (+ (* n 2) bdigit)))

(defsemeq
 B B2 (synclause (bdigit * 0) epsilon) (n)
 n))

The DL semantics for L is explained in the next section, where the text-formatted version of the equations are displayed.

5. Scribe Formatted Denotational Semantics for L

The Scribe-formatted text displaying the abstract syntax, semantic equations, and auxiliary functions defining the denotational semantics for L are show below. This text was automatically generated by DENOTE from the semantic definition of L written in DL.

expr ::= binary-op expr, expr | BDIGITS bdigit*
binary-op ::= PLUS | MINUS | MULT | DIVIDE
bdigit ::= 0 | 1

(A1) $A \llbracket expr \rrbracket = E \llbracket expr \rrbracket (\lambda x. x)$

(E1) $E \llbracket PLUS expr, expr2 \rrbracket (c) = E \llbracket expr1 \rrbracket (\lambda x. E \llbracket expr2 \rrbracket (\lambda y. c(x+y)))$

(E2) $E \llbracket MINUS expr, expr2 \rrbracket (c) = let c1 = \lambda x. E \llbracket expr2 \rrbracket (\lambda y. c(x-y)) in E \llbracket expr1 \rrbracket (c1)$

(E3) $E \llbracket MULT expr, expr2 \rrbracket (c) = E \llbracket expr1 \rrbracket (c1)$,
 where $c1 = \lambda x. E \llbracket expr2 \rrbracket (\lambda y. c(xxy))$
The semantic function \(A\) computes the semantics of expressions, using the semantic function \(E\) to compute the semantics of subexpressions. The semantic function \(B\) computes the semantics of sequences of binary digits. \(A\) requires only one argument, the syntactic phrase (representing an arbitrary expression) whose semantics is being computed. \(E\) requires two arguments, a syntactic phrase that represents an expression and a continuation \(c\). The continuation \(c\) is a function that generally maps integers to integers, but sometimes returns an error. If an error (division by zero) occurs, the continuation mechanism is bypassed and an error string is produced by the auxiliary function \(\text{division-error}\). \(B\) takes two arguments, a (possibly empty) list of binary digits and a non-negative integer, and is used to compute the semantics of a sequence of binary digits interpreted as a non-negative binary number. Note that in this semantics we make no distinction between the denotation of a binary digit and its numeric value. Typically, one postulates the existence of a semantic function \(N\) that maps denotations of numerals to their numeric values.

6. Common Lisp Implementation of Semantics for \(L\)

A primary output of DENOTE is a Common Lisp implementation of the specified semantics. The contents of the file generated by DENOTE for the DL semantics of \(L\) is shown below. The function named \(\text{binexpr-al}\) is the entry point for the implementation of the semantics of abstract syntax trees of \(L\).

```lisp
;;; -*- Mode: LISP; package: USER; syntax: Common-Lisp; base: 10 -*-
(defmacro defrecord (name &body body)
  `(defstruct (,name (:type list))
     ,body))
(defrecord binexprs-expr-bdigits bdigits bdigit+)
(defrecord binexprs-expr-divide divide exprl expr2)
(defrecord binexprs-expr-mult mult exprl expr2)
(defrecord binexprs-expr-minus minus exprl expr2)
(defrecord binexprs-expr-plus plus exprl expr2)
(defun binexprs-e-expr (expr c)
  (case (first expr)
  ```
(plus (binexpr-e1 expr c))
(minus (binexpr-e2 expr c))
(mult (binexpr-e3 expr c))
(divide (binexpr-e4 expr c))
(bdigits (binexpr-e5 expr c))
(otherwise (error "Illegal phrase of type ~a: ~a" 'expr expr)))

(defun binexpr-e1 (expr)
 (binexpr-e-expr expr #'(lambda (x) x)))

(defun binexpr-e2 (expr c)
 (let ((expr1 (binexpras-expr-plus-expr1 expr))
 (expr2 (binexpras-expr-plus-expr2 expr))
 (binexpr-e-expr expr1
 #'(lambda (x)
 (binexpr-e-expr
 expr2 #'(lambda (y)
 (binexprtr-apply-cont c (list (+ x y))))))))
 (binexpr-e-expr expr1 c))

(defun binexpr-e3 (expr c)
 (let ((expr1 (binexpras-expr-mult-expr1 expr))
 (expr2 (binexpras-expr-mult-expr2 expr))
 (c1 (c1 #'(lambda (x)
 (binexpr-e-expr
 expr2 #'(lambda (y)
 (binexprtr-apply-cont c (list (* x y))))))))
 (binexpr-e-expr expr1 c1)))

(defun binexpr-e4 (expr c)
 (let ((expr1 (binexpras-expr-divide-expr1 expr))
 (expr2 (binexpras-expr-divide-expr2 expr))
 (c1 (c1 #'(lambda (x)
 (let ((c2 (c2 #'(lambda (y)
 (if (equal x 0)
 (binexpr-division-error)
 (binexprtr-apply-cont
 c (list (truncate (/ y x)))))
)
)
)
 (binexpr-e-expr expr1 c2))))
 (binexpr-e-expr expr2 c1))))

(defun binexpr-division-error ()
 "division by zero")
(defun binexpr-e5 (expr c)
 (let ((bdigit+ (binexpr-as-expr-bdigits-bdigit+ expr)))
 (binexprtr-apply-cont c (list (binexpr-b1 bdigit+ 0)))))

(defun binexpr-b1 (bdigit*O n)
 (let ((bdigit (car bdigit*0))
 (bdigit* (cdr bdigit*0)))
 (if bdigit*
 (binexpr-b1 bdigit* (+ (* n 2) bdigit))
 (binexpr-b2 nil (+ (* n 2) bdigit)))))

(defun binexpr-b2 (epsilon n)
 (declare (ignore epsilon))
 n)

(defun binexprtr-apply-cont (cont args)
 (apply cont args))

7. Example Semantics for Sentences of \(L\)

Compiling and loading the Common Lisp file whose contents were shown in the previous section gives
one access to the function binexpr-al, which determines the semantics of sentences of \(L\). Examples
of the semantics of abstract syntax trees generated from sentences of \(L\) are shown below.

command: (binexpr-al '(bdigits (1)))
1

command: (binexpr-al '(bdigits (1 0 1)))
5

command: (binexpr-al '(bdigits (0 0 0)))
0

command: (binexpr-al '(plus (bdigits (1 0 1)) (bdigits (1))))
6

command: (binexpr-al '(minus (bdigits (1)) (bdigits (1 0 1))))
-4

command: (binexpr-al '(mult (bdigits (0)) (bdigits (1 0 1))))
0

command: (binexpr-al '(divide (bdigits (1 0 1)) (bdigits (0))))
"division by zero"

command: (binexpr-al '(divide (bdigits (1)) (bdigits (1 0 1))))
0
command: (binexpr-al '(divide (bdigits (1 1 1)) (bdigits (1 0 1))))
1

command: (binexpr-al '(plus (minus (bdigits (1 1 1)) (bdigits (1 0 1)))
 (mult (divide (bdigits (1 1 1)) (bdigits (1 0)))
 (bdigits (1 1)))))
11

command: (binexpr-al '(plus (minus (bdigits (1 1 1)) (bdigits (1 0 1)))
 (mult (divide (bdigits (1 1 1)) (bdigits (0 0)))
 (bdigits (1 1)))))

"division by zero"
INDEX

Atomic terms
- emptyset 9
- epsilon 9
- ff 9
- t 9
- tt 9

Built-in functions
- abs 12
- append 12
- bold 9
- concatenate 12
- cons 12
- consp 12
- hd 12
- length 12
- list 12
- max 12
- min 12
- mod 12
- quote 9
- rem 12
- string 9
- tl 12
- ubold 9

Built-in infix operators
- and 11
- divide, / 11
- eq, = 11
- expt, ^ 11
- ge, >= 11
- gt, > 11
- intersection 11
- le, <= 11
- lt, < 11
- member 11
- minus, - 11
- mult, * 11
- neq, -= 11
- not 11
- or 11
- plus, + 11
- union 11

Special denotations
- applycont 9
- args 9, 14
- defsemeq 9, 12, 13
- defsemfn 9, 14
- elseif 9, 14
- if 9, 14
- lambda 9, 15
- let 9, 15
- list 9, 15