REPORT NO. EVT 32-89

ENGINEERING TEST OF UNITIZATION PROCEDURES FOR 155MM M203A1 PROPELLING CHARGES

Prepared for:
U.S. Army Armament Research, Development and Engineering Center
ATTN: SMCAR-LSK
Rock Islands, IL 61299-7300

EVALUATION DIVISION
SAVANNA, ILLINOIS 61074-9639
AVAILABILITY NOTICE

A complimentary copy of this report is furnished each attendee on automatic distribution. Additional copies or authority for reprinting may be obtained by written request from Director, U.S. Army Defense Ammunition Center and School, ATTN: SMCAC-DEV, Savanna, IL 61074-9639.

DISTRIBUTION INSTRUCTIONS

Destroy this report when no longer needed. Do not return.

Citation of trade names in this report does not constitute an official endorsement.

The information contained herein will not be used for advertising purposes.
The U.S. Army Defense Ammunition Center and School (USADACS), Evaluation Division (SMCAC-DEV), has been tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC), SMCAR-ESK, Rock Island, IL, to test unitization procedures for shipping 155MM M203A1 propelling charges. The unitization procedure being tested was proposed in VECP #M8A9-029. The methods and results of MIL-STD-1660 testing of the unitization procedure proposed in the VECP are contained within this report. As a result of the MIL-STD-1660 tests, the Evaluation Division is recommending that this unitization procedure be approved for Army-wide use in storing and shipping 155MM M203A1 propelling charges.
TABLE OF CONTENTS

PART PAGE NO.
1. INTRODUCTION ..1-1
 A. Background ..1-1
 B. Authority ..1-1
 C. Objective ..1-1
2. ATTENDEES ..2-1
3. TEST PROCEDURES ..3-1
4. TEST EQUIPMENT ..4-1
5. TEST RESULTS ..5-1
6. CONCLUSIONS AND RECOMMENDATIONS ..6-1
7. PHOTOGRAPHS ..7-1
8. DRAWINGS ..8-1
PART 1

INTRODUCTION

A. BACKGROUND. The U.S. Army Defense Ammunition Center and School (USADACS), Evaluation Division, was tasked by the U.S. Army Armament Research, Development and Engineering Center (ARDEC), SMCAR-ESK, to validate VECP #M8A9-029 which proposed the elimination of an intermediate dunnage assembly in unitization procedures for 155MM M203A1 propelling charges. The testing procedures that were used for evaluating the VECP consisted of MIL-STD-1660, Design Criteria for Ammunition Unit Loads.

B. AUTHORITY. This test was conducted in accordance with mission responsibilities delegated by the U.S. Army Armament, Munitions and Chemical Command (AMCCOM), Rock Island, IL.

C. OBJECTIVE. The objective of these tests is to assess the capability of the modified unitization procedures to meet Army functional/operational requirements for MIL-STD-1660, Design Criteria for Ammunition Unit Loads.
PART 2

ATTENDEES

Quinn Hartman
Test Engineer
Director
U.S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEV
Savanna, IL 61074-9639
AV 585-8992

Laurie Fieffer
Industrial Engineer
Director
U.S. Army Defense Ammunition Center and School
ATTN: SMCAC-DEO
Savanna, IL 61074-9639
AV 585-8075
PART 3

TEST PROCEDURES

The test procedures outlined in this section were extracted from MIL-STD-1660, Design Criteria for Ammunition Unit Loads (8 April 1977). MIL-STD-1660 identifies four steps the unitized load must undergo if it is considered to be acceptable. These tests are synopsized below:

1. STACKING TESTS. The unit load shall be loaded to simulate a stack of identical unit loads stacked 16 feet high, for a period of one hour. This stacking load is simulated by subjecting the unit load to a compression of weight equal to an equivalent 16-foot stacking height. The compression load is calculated in the following manner. The unit load weight is divided by the unit load height in inches and multiplied by 192. The resulting number is the equivalent compressive load of a 16-foot-high unit stack.

2. REPEETITIVE SHOCK TEST. The repetitive shock test shall be conducted in accordance with Method 5019, Federal Standard 101. The test procedure is as follows: The test specimen shall be placed on, but not fastened to, the platform. With the specimen in one position, vibrate the platform at 1/2-inch amplitude (1-inch double amplitude) starting at a frequency of about 3 cycles-per-second. Steadily increase the frequency until the package leaves the platform. The resonant frequency is achieved when a 1/16-inch-thick feeler may be momentarily slid freely between every point on
the specimen in contact with the platform at some instance during the cycle or a
platform acceleration achieves a magnitude of ±1 G. Midway into the testing period
the specimen shall be rotated 90 degrees and the test continued for the duration.
Unless failure occurs, the total time of vibration shall be two hours if the specimen is
tested in one position; and, if tested in more than one position, the total time shall be
three hours.

3. **EDGEWISE DROP TEST.** This test shall be conducted by using the procedures of
Method 5008, Federal Standard 101. The procedure for the Edgewise Drop (Rotational)
Test is as follows: The specimen shall be placed on its bottom with one end of the
base of the container supported on a sill nominally 6 inches high. The height of the
sill shall be increased, if necessary, to ensure that there will be no support for the base
between the ends of the container when dropping takes place, but should not be high
enough to cause the container to slide on the supports when the dropped end is raised.
The unsupported end of the container shall then be raised and allowed to fall freely to
the concrete, pavement, or similar underlying surface from a prescribed height. Unless
otherwise specified, the height of drop for level A protection shall conform to the
following tabulation:

<table>
<thead>
<tr>
<th>GROSS WEIGHT NOT EXCEEDING</th>
<th>DIMENSIONS ON ANY EDGE NOT EXCEEDING</th>
<th>HEIGHT OF DROP LEVEL A PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 lbs.</td>
<td>72 inches</td>
<td>36 inches</td>
</tr>
<tr>
<td>3,000 lbs.</td>
<td>no limit</td>
<td>24 inches</td>
</tr>
<tr>
<td>no limit</td>
<td>no limit</td>
<td>12 inches</td>
</tr>
</tbody>
</table>
4. **IMPACT TEST.** This test shall be conducted by using the procedure of Method 5023, Incline-Impact Test of Federal Standard 101. The procedure for the Incline-Impact Test is as follows: The specimen shall be placed on the carriage with the surface or edge which is to be impacted projecting at least 2 inches beyond the front end of the carriage. The carriage shall be brought to a predetermined position on the incline and released. If it is desired to concentrate the impact on any particular position on the container, a 4 by 4-inch timber may be attached to the bumper in the desired position before the test. No part of the timber shall be struck by the carriage. The position of the container on the carriage and the sequence in which surfaces and edges are subjected to impacts may be at the option of the testing activity and will depend upon the objective of the tests. When the test is to determine satisfactory requirements for a container or pack, and, unless otherwise specified, the specimen shall be subjected to one impact on each surface that has each dimension less than 9.5 feet. Unless otherwise specified, the velocity at time of impact shall be 7 feet-per-second.
PART 4

TEST EQUIPMENT

1. TEST SPECIMEN.
 a. Drawing Number: 19-48-4042A/22
 b. Width: 47-3/4 inches
 c. Length: 38-1/8 inches
 d. Height: 36 inches
 e. Weight: 1396 pounds

2. COMPRESSION TESTER.
 a. Manufacturer: Ormond Manufacturing
 b. Platform: 60 inches by 60 inches
 c. Compression Limit: 50,000 pounds
 d. Tension Limit: 50,000 pounds

3. TRANSPORTATION SIMULATOR.
 a. Manufacturer: Gaynes Laboratory
 b. Capacity: 6,000-pound pallet
 c. Displacement: 1/2-inch Amplitude
 d. Speed: 50 to 400 rpm
 e. Platform: 5 foot by 8 foot

4. INCLINED RAMP.
 a. Manufacturer: Conbur Incline
 b. Type: Impact Tester
 c. Grade: 10-percent Incline
 d. Length: 12-foot Incline
PART 5

TEST RESULTS

1. **STACKING TEST.** The test pallet was loaded to 7,600 pounds compression for a period of one hour. At the end of the one hour period, the compression load had decreased to 7,100 pounds, but the load had not compressed.

2. **REPEETITIVE SHOCK TEST.** The test pallet successfully passed both the longitudinal and lateral transportation simulation. Duration of the test was 90 minutes for each orientation of the pallet. In order to achieve the required 1/16-inch clearance between the pallet and the Transportation Simulator bed, the equipment was operated at 190 rpm for the longitudinal orientation and 185 rpm for the lateral orientation. There was no damage sustained by the pallet during the test.

3. **EDGewise DROP TEST.** Each side of the pallet base was placed on a beam displacing it 6 inches above the floor. The opposite side was raised to a height of 24 inches above the floor and then dropped. This process was repeated in a clockwise direction until all four sides of the pallet had been tested. No damage was sustained during the edgewise test. The cans did shift during the initial impact, but returned to a vertical position during rebound.

4. **IMPACT TEST.** The incline impact tester was set to allow the pallet to travel .8 feet before impacting the bumper of the impact tester. In between impacts, the pallet was rotated in a clockwise direction until all four sides of the pallet had been impacted.
No damage was sustained from the impact testing; however, a cross-member on the top frame opposite the bell ends was broken during slinging.
CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS. The test pallet successfully passed all phases of the MIL-STD-1660 criteria for ammunition unit loads. The only damage to the pallet was sustained during the slinging operation required to complete the impact test. This damage did not affect the stability or stackability of the unit load and was not considered a basis for failure.

2. RECOMMENDATIONS. Since the pallet successfully passed all phases of the MIL-STD-1660 test, it is hereby recommended that the unitization procedures for 155MM M203A1 propelling charges as proposed in VECP #M8A9-029 be approved for Army-wide use.
PART 7

PHOTOGRAPHS
DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

Photo 1: Side view of the test pallet.
For, -1, 4 e

DEFENSE AMMUNITION CENTER AND SCHOOL - SAVANNA, IL

Photo 1: This photo shows the cracked cross member in the top frame assembly.
PART 8

DRAWINGS
APPENDIX 22
UNITIZING PROCEDURES FOR PROPELLING CHARGES Pack ed IN CYLINDRICAL METAL CONTAINERS ON 4-WAY ENTRY PALLETS PAI03 SERIES CONTAINER.

INDEX

ITEM PAGE(S)
GENERAL NOTES ... 2
UNIT DETAIL .. 4
DAMAGE DETAILS ... 5
FILLERS AND INSTALLATION PROCEDURES FOR OMITTED CONTAINERS ... 6, 7

PALLE T UNIT DATA

<table>
<thead>
<tr>
<th>ITEMS INCLUDED</th>
<th>HAZARD CLASSIFICATION</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSN 1320-01-202-8938</td>
<td>D532 8 TI A 1.3 C</td>
<td>1,370</td>
</tr>
</tbody>
</table>

HAZARD CLASSIFICATION DATA CONTAINED IN THE ABOVE CHART IS FOR GUIDANCE AND INFORMATIONAL PURPOSES ONLY. VERIFICATION OF THE SPECIFIED DATA SHOULD BE MADE BY CONSULTING THE MOST RECENT JOINT HAZARD CLASSIFICATION SYSTEM LISTING OR OTHER APPROVED LISTING(S) 5.)
GENERAL NOTES

A. THIS APPENDIX CANNOT STAND ALONE BUT MUST BE USED IN CONJUNCTION WITH THE BASIC UNITIZING PROCEDURES DRAWING 19-48-0043-20PM1001. TO PRODUCE AN APPROVED UNIT LOAD, ALL PERTINENT PROCEDURES, SPECIFICATIONS AND CRITERIA SET FORTH WITHIN THE BASIC DRAWING WILL APPLY TO THE PROCEDURES Delineated IN THIS APPENDIX. ANY EXCEPTIONS TO THE BASIC PROCEDURES ARE SPECIFIED IN THIS APPENDIX.

B. DIMENSIONS, CUBE AND WEIGHT OF A PALLET UNIT WILL VARY SLIGHTLY DEPENDING UPON THE ACTUAL DIMENSIONS OF THE CONTAINER, WEIGHT OF THE SPECIFIC ITEM, AND METHOD OF UNITIZATION.

C. FOR OUTLOADING AND STORAGE OF THE ITEMS COVERED BY THIS APPENDIX, SEE DARCOM DRAWING 19-48-0043-1-3-5-11-10PM1001, REV NO. 1 (WILL BE SUPERSEDED BY ANOTHER 19-48 SERIES DARCOM DRAWING SPECIFICALLY FOR THE PALLET SERIES CONTAINER).

D. FOR METHOD OF SECURING A STRAP CUTTER TO THE PALLET UNIT, SEE AMC DARCOM DRAWING 19-46-4127-20110.

E. IF ITEMS COVERED HEREIN ARE UNITIZED PRIOR TO ISSUANCE OF THIS APPENDIX, THE CONTAINERS NEED NOT BE REUNITIZED SOLELY TO CONFORM TO THIS APPENDIX.

F. THE UNITIZATION PROCEDURES DEPICTED HEREIN MAY ALSO BE USED FOR UNITIZING PROPELLING CHARGES WHEN IDENTIFIED BY DIFFERENT NATIONAL STOCK NUMBERS (NSN) THAN THOSE SHOWN ON THE COVER PAGE, PROVIDED THE ITEM IS PACKED IN THE PALLET SERIES CONTAINER. THE EXPLOSIVE CLASSIFICATION OF OTHER ITEMS MAY BE DIFFERENT THAN THOSE SHOWN.

CONTAINER DIMENSIONS ———— 38" LONG BY 7-1/2" WIDE BY 7-1/2" HIGH.
CONTAINER CUBE ———— 1.24 CUBIC FEET.
CONTAINER WEIGHT (WITH CHARGE) ———— 54 LBS (APPROX).

H. IF DEEMED MORE ECONOMICAL FOR SHIPPING AND STORAGE BY THE RESPONSIBLE COMMAND, THE UNIT DEPICTED ON THE FOLLOWING PAGES MAY BE INCREASED BY ONE OR TWO COMPLETE LAYERS OF CONTAINERS. FOR FURTHER UNITIZATION GUIDANCE, SEE SPECIAL NOTE 3 ON PAGE 4.

J. THE STYLE 1A PALLET DELINEATED IN THE VIEW ON PAGE 4 NEED NOT HAVE CHAMFERS OR STRAP SLOTS AS SPECIFIED WITHIN MILITARY SPECIFICATION MIL-F-13011 WHEN USED FOR THE UNITIZATION OF THE ITEMS COVERED BY THIS APPENDIX.

REVISIONS

REVISION NO. 1, DATED OCTOBER 1989, CONSISTS OF:

1. ADDING ITEM BY NATIONAL STOCK NUMBER TO PALLET UNIT DATA CHART.

2. CHANGING UNIT WEIGHT.

REVISION NO. 2, DATED OCTOBER 1987, CONSISTS OF:

1. ADDING ITEM BY NATIONAL STOCK NUMBER TO PALLET UNIT DATA CHART.

2. ADDING DATA TO PALLET UNIT DATA CHART.

REVISION NO. 3, DATED SEPTEMBER 1990, CONSISTS OF:

1. DECREASING PALLET UNIT BY TWO LAYERS OF CONTAINERS.

2. DELETING ITEM BY NATIONAL STOCK NUMBER FROM PALLET UNIT DATA CHART.

3. CHANGING WEIGHT FOR NSN IN PALLET UNIT DATA CHART.

4. CHANGING SPECIAL NOTE 3 AND DELETING SPECIAL NOTE 4.
LOAD STRAP, 1-1/8" X .031" OR .039" X 14'-2" LONG STEEL STRAPPING (2 EOD). THREAD THROUGH PALLET STRAP SLOT.

INTERMEDIATE DUNNAGE ASSEMBLY (1 EOD). SEE THE "INTERMEDIATE DUNNAGE ASSEMBLY" DETAIL ON PAGE 5.

SEAL FOR 1-1/8" STRAP (2 EOD, 1 PER STRAP). CRIMP EACH SEAL WITH TWO PAIR OF NIPPLES.

INDICATES THE PALLET SERIES CONTAINER.

PLYWOOD PALLET DUNNAGE (3 EOD). SEE THE "PLYWOOD DUNNAGE LOCATION" DETAIL ON PAGE 5.

STAPLE, 1-17/32" WIDE BY 3/4" LEG LENGTH (12 EOD, 6 PER STRAP).

35" X 45-1/2" PALLET.

35" X 45-1/2"

ISOMETRIC VIEW

PALLE D DUNNAGE ASSEMBLY (1 EOD). SEE THE "PALLE D DUNNAGE ASSEMBLY" DETAIL AND THE "PALLE D DUNNAGE LOCATION" DETAIL ON PAGE 5.

SPECIAL NOTES:

1. DIMENSIONS GIVEN FOR DUNNAGE PIECES OR DUNNAGE ASSEMBLIES WILL BE FIELD CHECKED PRIOR TO THEIR ASSEMBLY TO THE PALLET UNIT. CONTAINERS MUST FIT SIAMESE IN THE DUNNAGE ASSEMBLY, ALSO, DUE TO THE VARIATION OF CONTAINER DIMENSIONS, ADJUSTMENTS MAY BE REQUIRED AS TO THE LOCATION OF CERTAIN PIECES OF DUNNAGE IN A DUNNAGE ASSEMBLY.

2. ALTHOUGH THE PREPULLED CHARGE CONTAINERS Deployed IN THE UNIT LOAD ABOVE ARE CONSTRUCTED WITH INTERLOCKING DEVICES, THE INTERLOCKS WILL NOT FUNCTION PROPERLY UNLESS THE CONTAINERS ARE POSITIONED SO THAT THE "PIN" OF THE INTERLOCKS ARE IN AN UPRIGHT ORIENTATION. THIS ORIENTATION WILL PRECLUDE INTERFERENCE OF THE "PIN" AND THE PLYWOOD PALLET DUNNAGE AND WILL AID IN THE PREVENTION OF CONTAINER MOVEMENT, BOTH LATERALLY AND LONGITUDINALLY, DURING SHIPMENT OF THE UNIT LOAD.

3. THE UNIT LOAD DEPICTED ABOVE MAY BE INCORPORATED BY ONE OR TWO LAYERS WHEN DEEMED ADVANTAGEOUS FOR A CERTAIN MODE OF TRANSPORTATION. IN THIS EVENT, A SECOND "INTERMEDIATE DUNNAGE ASSEMBLY" MUST BE ADDED AND THE LOAD STRAP LENGTH MUST BE INCREASED. THE DECISION TO INCREASE THE LOAD BY ONE OR TWO LAYERS WILL BE MADE BY THE RESPONSIBLE COMMAND AND WILL BE BASED ON THE ECONOMICS OF TRANSPORTATION AND HANDLING.

INDICATES PLYWOOD PALLET DUNNAGE.

INDICATES THE PALLET SERIES CONTAINER.

INDICATES PALLET.

PARTIAL VIEW A

UNIT DETAIL
STOP PIECE, 2" x 2" x 38" (2 pc's)

CROSS PIECE, 1" x 4" x 47-3/4" (2 pc's). NAIL TO THE STOP PIECES W/3-4d NAILS AT EACH END.

PALLETT DUMMYAGE ASSEMBLY

(1 pc)

PALLETT DUMMYAGE LOCATION

PLYWOOD PALLET DUMMYAGE, 3/4" x 1-3/4" x 46-1/2" (3 pc's). NAIL TO THE PALLET DECK W/3-4d NAILS.

(1 pc)

CROSS PIECE, 1" x 4" x 47-3/4" (2 pc's). NAIL TO THE STOP PIECES W/3-4d NAILS AT EACH END AND CLINCH.

2" DIAM HOLE, 4 PLACES. LOCATE AS DIMENSIONED.

TOP DUMMYAGE ASSEMBLY

(1 pc)

STOP PIECE, 2" x 2" x 38" (2 pc's)

CROSS PIECE, 1" x 4" x 47-3/4" (2 pc's). NAIL TO THE STOP PIECES W/3-4d NAILS AT EACH END AND CLINCH.

CROSS PIECE, 1" x 4" x 47-3/4" (2 pc's). NAIL TO THE STOP PIECES W/3-4d NAILS AT EACH END.

NAIL END OF ASSEMBLY.

INTERMEDIATE DUMMYAGE ASSEMBLY

(3 pc's)

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>LUMBER</th>
<th>NO. REC#</th>
<th>LINEAR FEET</th>
<th>BOARD FEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1" x 4" x 47-3/4"</td>
<td>6</td>
<td>31.83</td>
<td>10.66</td>
</tr>
<tr>
<td>1" x 8" x 47-3/4"</td>
<td>3</td>
<td>12.96</td>
<td>5.66</td>
</tr>
<tr>
<td>2" x 3" x 38"</td>
<td>6</td>
<td>28.53</td>
<td>6.62</td>
</tr>
</tbody>
</table>

NAILS

<table>
<thead>
<tr>
<th>NO. REC#</th>
<th>POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d (1½")</td>
<td>0.02</td>
</tr>
<tr>
<td>4d (2")</td>
<td>0.18</td>
</tr>
<tr>
<td>4d (2½")</td>
<td>0.46</td>
</tr>
</tbody>
</table>

PALLETT: 36" x 48-1/2" STEEL STRAPPING: 1 1/16" x .011" OR .080" THK 17 REC#= 4.05 LBS SEAL FOR 1 1/16" STRAPPING 3 REC#== N/A STAPLES: 1-17/32" x 3/4" 17 REC#== N/A PLYWOOD: 3/8" 1.00 SQ FT REC#== 1.77 LBS

UNIT DATA

CUBE: 38.1 CUBIC FEET APPROX CONTAINERS, PALS SERIES-54 EACH @ 26 LBS=1,248 LBS APPROX DUMMYAGE: 65 LBS PALLETT: 65 LBS TOTAL WEIGHT: 1,376 LBS APPROX

DUMMYAGE DETAILS

8-5 PROJECT RSA 6/22-69
1. When six containers are to be omitted from a pallet unit, a complete layer of containers must be omitted. When five containers are omitted from a pallet unit, a combination of filler assemblies depicted on Page 7 must be used. When four or less containers are to be omitted from a pallet unit, a combination or one of the filler assemblies depicted on Page 7 may be used. All filler assemblies must be installed in the middle of the top layer or layers of a pallet unit.

2. The overall height of the filler assemblies depicted on Page 7 must be reduced from 7-1/2" to 6-1/2" when installed between a top dunnage assembly and an intermediate dunnage assembly or between another filler assembly and an intermediate dunnage assembly.

DETAIL A

This detail depicts procedures to be used when a standard pallet unit minus one container is to be utilized. The filler assembly depicted must be installed in the middle of the top layer of the pallet unit.

SPECIAL NOTES:

DETAIL B

This detail depicts procedures to be used when a standard pallet unit minus three containers is to be utilized. The filler assembly must be installed in the middle of the top layer of the pallet unit.

DETAIL C

This detail depicts procedures to be used when a standard pallet unit minus five containers is to be utilized. The filler assemblies depicted must be installed in the middle of the top layers of the pallet unit.

FILLERS AND INSTALLATION PROCEDURES FOR OMITTED CONTAINERS