Comment on "Effect on Surface Reconstruction on Stability and Reactivity of Si Clusters"

by

Brian L. Swift, Daniel A. Jelski, Donald E. Higgs, Tapio T. Rantala and Thomas F. George

Prepared for publication

in

Physical Review Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

April 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Comment on "Effect on Surface Reconstruction on Stability and Reactivity of Si Clusters"

For Si\textsubscript{45} we find two similar structures which possess full $T_d$ symmetry of lower energy than Kä\text{"a}iras'.
Comment on "Effect on surface reconstruction on stability and reactivity of Si clusters" by Efthimios Kaxiras, Phys. Rev. Lett. 64, 551 (1990).

Brian L. Swift, Daniel A. Jelski* and Donald E. Higgs
Department of Chemistry
State University of New York. College at Fredonia
Fredonia, New York 14063

Tapio T. Rantala* and Thomas F. George
Departments of Chemistry and Physics & Astronomy
Center for Electronic and Electro-optic Materials
239 Fronczak Hall, State University of New York at Buffalo
Buffalo, New York 14260

* Author to whom correspondence should be addressed.

Present Address: Department of Chemistry
Hobart & William Smith Colleges
Geneva, New York 14456

Present Address: Department of Physics
University of Oulu
SF-90570 Oulu, Finland

The structure and properties of medium-size clusters, few tens of atoms, has been a subject of several recent theoretical and experimental studies. In particular, the question of the transition from highly-coordinated structures, typical for small clusters, to tetra-coordinated diamond structures, which is the bulk limit, has attracted much interest and created discussions in the literature, although mainly based on theoretical arguments.

Kaxiras' contribution to this discussion provides an interesting and well-motivated model for Si$_{33}$ and Si$_{45}$ clusters with a tetra-coordinated core and a bulk silicon-like reconstructed surface structure, thus suggesting that the transition region might start already at a cluster size of about 40 atoms. While this may be the case, we want to draw attention to our recent results for Si$_{45}$ clusters, which suggest that the most stable isomers have still higher coordination numbers (from 4.0 to 4.2) than suggested by Kaxiras (about 3.1). Indeed, using classical potentials including Kaxiras', we have found two similar structures, denoted as T1 and T2, which possess full Td symmetry of lower energy than Kaxiras'.
We have used a variation of Tomanek and Schlöter's tight-binding model\textsuperscript{2} to check several possible isomers of $\text{Si}_{45}$. This was chosen because it has previously been carefully calibrated against the $\text{Si}_{10}$ cluster, with results matching both \textit{ab initio} and experimental data. We have correlated the tight-binding data with results from two classical potentials, including Kaxiras'. We find that the stability of a given isomer depends on which classical model we use, but that in general all methods qualitatively agree. In the absence of more definitive experimental data concerning $\text{Si}_{45}$ against which the classical potentials can be calibrated, we believe that the tight-binding method is the most accurate available. The different structures are motivated by various experimental data,\textsuperscript{2} and the results from these calculations are shown in Table 1.

\textbf{Table 1.} Cohesion energy per atom (in eV) for $\text{Si}_{45}$ isomers: "Kax" is from Ref. 1. "Benz" corresponds to seven stacked benzene-like rings with a three-atom cap,\textsuperscript{2} "Naph" to four stacked naphthalene-like rings and a five-atom cap,\textsuperscript{2} and T1 and T2 are the two new tetrahedral structures described in the text.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Isomer:} & \textbf{Kax} & \textbf{Benz} & \textbf{Naph} & \textbf{T1} & \textbf{T2} \\
\hline
\textbf{Method/Potential} & & & & & \\
Kaxiras\textsuperscript{5} & 3.9 & 3.8 & 4.0 & 4.1 & unstable \\
Tersoff\textsuperscript{5} & 4.0 & 4.0 & 4.3 & unstable & 4.5 \\
Tight-Binding\textsuperscript{2} & 3.4 & 3.6 & 3.6 & 3.9 & 4.0 \\
\hline
\end{tabular}

The T1 and T2 structures are closely related. Like the Kaxiras structure, both consist of a tetrahedrally-coordinated central atom, which is in a bulk-like environment. However, the outer atoms of the cluster are not similar to a reconstructed surface. The outermost atom is hexa-coordinated, and further, the clusters consist in part of six-membered rings arranged in a tetrahedral pattern around the center. One can think of the isomers as being a bulk atom surrounded by reconstructed clusters rather than a reconstructed surface.

We suggest that these structures can account for at least some of the complicated experimental data, i.e., the relative stability of the cluster compared with the bulk surface.\textsuperscript{3} Further, all computational methods are consistent in that the $T_d$ structures are of lowest energy.
Full results of our investigation and a discussion will be published elsewhere. DAJ acknowledges support from the American Chemical Society-Petroleum Research Fund, Research Corporation and SUNY Research Foundation, and TFG acknowledges support by the Office of Naval Research and the National Science Foundation under Grant CHE-9016789.

References