An Electron-Beam Dose Deposition Experiment:
TIGER 1-D Simulation Code Versus Thermoluminescent Dosimetry

by Steven R. Murrill
Charles W. Tipton
Charles T. Self

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

This report is the final version of HDL-PRL-90-10 dated July 1990 and replaces HDL-TM-90-12.
REPORT DOCUMENTATION PAGE

An Electron-Beam Dose Deposition Experiment: TIGER 1-D Simulation Code Versus Thermoluminescent Dosimetry

Steven R. Murrill, Charles W. Tipton, and Charles T. Self

Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783-1197

U.S. Army Laboratory Command
2800 Powder Mill Road
Adelphi, MD 20783-1145

HDL-TM-91-3

Approved for public release; distribution unlimited.

The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the Harry Diamond Laboratories FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.
Contents

1. Introduction .. 5
2. Methodology .. 6
 2.1 Materials .. 6
 2.2 Procedures ... 7
 2.2.1 Correction Factor Simulations .. 7
 2.2.2 Correction Factor Measurements .. 9
3. Results .. 13
4. Discussion and Conclusion .. 14
5. Acknowledgements .. 15
6. Distribution .. 25

Appendices

A.—A Three-Layer TLD Model ... 17
B.—TIGER 1-D Input Specifications ... 21

Figures

1. Effect of packaging materials on dose deposited into 15 mils of Si 5
2. TIGER code simulation materials ... 8
3. “Binned” FX-45 e-beam spectrum ... 9
4. HIFX E-beam test chamber ... 11
5. Experimental arrangement ... 11
6. Thermocouple calibration arrangement .. 11
7. HDL FX-45 thermocouple dosimetry calibration 12
8. One-sigma dose correction factors: TIGER 1-D simulations versus experimental measurements ... 14

Tables

1. TIGER 1-D simulation results .. 13
2. TIGER 1-D experimental results .. 13
1. Introduction

In response to recent progress in Strategic Defense Initiative (SDI) and Defense Nuclear Agency (DNA) hardened integrated-circuit (IC) technology programs, Harry Diamond Laboratories (HDL) has developed a high-intensity ($\sim 1 \times 10^{11}$ to 1×10^{13} rads(Si)/s), narrow-pulse (~ 20 ns) dose-rate upset/survivability test facility. The facility uses an Ion Physics FX-45 flash x-ray machine operated in the electron-beam (e-beam) mode and produces electrons with a mean energy of ~ 2 MeV. In this and other relatively low-energy e-beam environments, the prompt dose absorbed by an IC die can be significantly decreased or increased by packaging materials (see fig. 1). Since it is not always possible to remove the lid or other intervening package material(s), and because IC packages can vary widely in construction, one must generally obtain a dose correction factor for each device under test.

![Figure 1. Effect of packaging materials on dose deposited into 15 mils of Si (from TIGER 1-D simulations).](image)

(DUT) packaging configuration. Correction factors allow the experimenter to use external dosimetry to accurately determine the dose delivered to the die. One widely used tool for calculating such correction factors is the TIGER one-dimensional (1-D) coupled electron/photon Monte-Carlo transport simulation code.* The Integrated TIGER Series (ITS) is an integrated collection of eight transport codes, some of which are 1-D, some 2½-D, some 3-D. The 1-D member of the ITS is the code 'TIGER.

The purpose of this experiment was to verify that the TIGER 1-D code (version 2.1) could accurately predict dose correction factors for both a moderately complex, multilayer IC package and an IC package/printed circuit board (PCB) combination, relative to data obtained experimentally using thermoluminescent dosimeters (TLD's).

The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

2. Methodology

2.1 Materials

The materials and tools used to perform this experiment were as follows:

- a Honeywell (HWL) radiation-hardened (rad-hard) 36-pin surface-mount IC package,
- the HWL IC package mounted on a 62-mil-thick epoxy-glass PCB,
- version 2.1 of the TIGER 1-D simulation code,
- Teledyne Isotopes Mn-doped calcium fluoride (CaF$_2$:Mn) TLD's (P/N SD-CaF$_2$:Mn-0.4),
- a Harshaw/Filtrol TLD reader (model No. 2000D), and
- the RDL High Intensity Flash X-Ray (HIFX) test facility (e-beam mode).

*Distributed by Oak Ridge National Laboratory.
2.2 Procedures

This experiment consisted of two, essentially independent, procedures:

- determination of dose correction factors through simulations (correction factor simulations) and

- determination of dose correction factors from measurements (correction factor measurements).

Definition: In this experiment, a dose correction factor is defined as the ratio of the average dose absorbed in some thickness of material when it is shielded from a pulse of incident electrons by some other object or objects, to the average dose absorbed in that same thickness of material when it is exposed directly to an identical pulse of electrons.

2.2.1 Correction Factor Simulations

All simulated correction factors were determined through the use of the TIGER 1-D electron transport code. TIGER is a powerful and user-friendly software package that permits state-of-the-art Monte Carlo solution of linear time-integrated coupled electron/photon radiation transport problems. The code is based primarily on the ETRAN model, which combines microscopic photon transport with a macroscopic random walk for electron transport. The two basic steps required for solving radiation transport problems using TIGER are to (1) generate cross sections by running the cross-section code and (2) run the Monte Carlo code. To generate the cross sections, the user must provide a list of the materials involved along with their compositions and densities. Running the Monte Carlo code requires both an ordered list of the materials and their thicknesses along with a spectral description of the incident radiation. In this procedure, we combined these two steps through the use of batch processing files.

In order to properly match the simulation conditions to the experimental measurement conditions, particular attention had to be given to experimental dosimetry. The Harshaw TLD reader that was used in this experiment measures the dose absorbed in the thermoluminescent component (Mn-doped CaF₂) of TLD’s. For this reason, all correction factors that were derived from TIGER 1-D simulations are based on the absorbed dose in the CaF₂ component of the TLD’s. The Teledyne TLD’s consist of 5 percent (by weight) CaF₂:Mn and 95

percent Teflon (C_2F_4). The CaF_2 is homogeneously distributed within the Teflon base. Because the TIGER 1-D code is designed to work with well-defined layers of materials, simulated TLD’s were modeled as a layer of pure CaF_2 sandwiched between two equal thicknesses of C_2F_4. (This is a reasonable approximation from the standpoint of symmetry.) The thicknesses for the three layers of the TLD model were calculated from the measured thickness of an actual TLD and the relative mass/densities of the TLD components. These calculations are detailed in appendix A. Figure 2 shows the three material sets that were used in the TIGER simulations to calculate dose correction factors for the HWL IC package and IC package/PCB combination. Note that all thicknesses given for the HWL IC package materials represent nominal manufacturing values.* Figure 3 gives the “binned” spectral distribution of the FX-45 e-beam (charging voltage of ~4.1 MV) that was used in all TIGER 1-D simulation runs.

A listing of all pertinent TIGER 1-D code input parameters used in each simulation run is given in appendix B.

Figure 2. TIGER code simulation materials.

*Private communication with Mike Heinks, Honeywell Solid State Electronics Division (SSED).
Figure 3. "Binned" FX-45 e-beam spectrum (charging voltage ~4.1 MV).

Dose correction factors for the HWL IC package alone were calculated by dividing the TIGER-code-generated dose/incident fluence in the CaF$_2$ layer of the second material set (fig. 2) by the dose/incident fluence of the CaF$_2$ layer of the first material set, for each of two conditions: the Ni and Au layers at minimum thicknesses, and the Ni and Au layers at maximum thicknesses. These two conditions were selected in order to determine the worst-case simulated dose correction factor range. Dose correction factors for the IC package/PCB combination were similarly calculated, using the third and first material sets (fig. 2).

2.2.2 Correction Factor Measurements

All experimentally determined dose correction factors were obtained by irradiating TLD's at the HDL HIFX test facility.
To experimentally determine dose correction factor(s) in a manner consistent with both the *definition* and the simulation procedure(s), the following conditions needed to be met:

1. TLD's must be irradiated in *pairs* so that
 - one TLD is shielded from the e-beam by the HWL IC package or IC package/PCB combination, and
 - one TLD is not shielded, and
2. TLD's should be irradiated in a manner that allows for the measurement of absorbed dose (CaF$_2$)/incident fluence for each TLD in a pair.

The testing facility has several pertinent limitations:

- the e-beam fluence varies from shot to shot,
- the e-beam fluence cannot be directly measured, and
- the test chamber has an ~600-mil-diameter exposure aperture.

Figures 4 and 5 illustrate the procedure used for this experiment, which accommodates the above needs and limitations. Note that, in this setup (fig. 5), each TLD pair is "effectively" irradiated using a single pulse of electrons. This is accomplished by replacing one TLD (of each pair) with two subminiature type-E (Chromel-Constantan) thermocouples which have been calibrated to dose (CaF$_2$) using Teledyne Isotopes Sd-CaF$_2$:Mn-0.4 TLD's and the Harshaw TLD reader (see fig. 5 and 6). Figure 7 shows both the measured and calculated thermocouple response/dose (CaF$_2$) relationships.

All experimentally determined dose correction factors were calculated by dividing the absorbed dose (CaF$_2$) from each TLD (fig. 5) by the average of the associated dose (CaF$_2$) thermocouple readings.

Although the physical presence of the two thermocouples represents a slight deviation from the simulation conditions (review fig. 2), two factors combine to significantly reduce any associated error:

- the cross-sectional area of the two thermocouples is small (~9 percent of the cross-sectional area of a TLD), and
- because the thermocouples were also necessarily present during the thermocouple/dose (CaF$_2$) calibration, the shielding effects tend to cancel in the calculation of dose correction factors.
Figure 4. HIFα e-beam test chamber.

Figure 5. Experimental arrangement.

Figure 6. Thermocouple calibration arrangement.
Figure 7. HDL FX-45 thermocouple dosimetry calibration.

![Graph showing TLD dose (krad[CaF₂]) against thermocouple voltage (μV).]

Dose (krad[CaF₂]) = 0.359 • Δ μV (TC1)
Dose (krad[CaF₂]) = 0.387 • Δ μV (TC2)
Dose (krad[CaF₂]) = 0.396 • Δ μV (calc: TIGER 1-D sim)

Note that the Harshaw TLD reader is calibrated to provide measurements of equilibrium dose in silicon (Si) from the absorbed dose in the CaF₂ component of a TLD. The absorbed TLD dose (CaF₂) is related to the Harshaw dose (Si) reading by the following equations:

\[
\text{Dose (Al)} = \left(\frac{\mu_{en}\rho}{\mu_{en}\rho} \right)_{\text{Al}} \times \text{dose (Si)} = 0.967 \text{ dose (Si)} \tag{1}
\]

\[
\text{Dose (CaF₂)} = \left(\frac{S_{\text{CaF₂}}}{S_{\text{Al}}\text{keV}} \right)_{\text{keV}} \times \text{dose (Al)} = 1.013 \text{ dose (Al)} \tag{2}
\]

where \(\mu_{en}/\rho\) is the mass energy absorption coefficient of the material of interest, and \(S\) is the electron mass stopping power \((S = (dE/dx)/\rho)\).

Substituting equation (1) into equation (2) yields

\[
\text{Dose (CaF₂)} = 1.013 \times 0.967 \text{ dose (Si)} = 0.979 \text{ dose (Si)} \tag{3}
\]

3. Results

Table 1 shows the calculated dose correction factors for the HWL rad-hard 36-pin surface-mount IC package and IC package/PCB combination. Note that these correction factors are based on the average absorbed dose in the CaF$_2$ component of the TLD model (see fig. 2).

Table 2 shows the experimentally determined dose correction factors for the HWL IC package and IC package/PCB combination. These correction factors are based on the average absorbed dose in the CaF$_2$ component of actual TLD’s.

Figure 8 shows the correlation between the dose correction factors that were derived from the TIGER 1-D simulations and those that were determined experimentally. Note that the two simulation ranges given for each of the two material arrangements reflect the minimum and maximum thicknesses of the Ni and Au layers in the HWL IC package (see fig. 2).

<table>
<thead>
<tr>
<th>Simulation conditionsa</th>
<th>Ni, Au layer thicknesses</th>
<th>Dose correction factor</th>
<th>Errorb</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>IC package</td>
<td>Min</td>
<td>0.501</td>
<td>2</td>
</tr>
<tr>
<td>IC package</td>
<td>Max</td>
<td>0.432</td>
<td>3</td>
</tr>
<tr>
<td>IC package/PCB combination</td>
<td>Min</td>
<td>0.0728</td>
<td>4</td>
</tr>
<tr>
<td>IC package/PCB combination</td>
<td>Max</td>
<td>0.0623</td>
<td>5</td>
</tr>
</tbody>
</table>

aSee figure 2.
bPercentage estimate of 1σ statistical uncertainty.

Table 2. TIGER 1-D experimental results

<table>
<thead>
<tr>
<th>Experimental arrangementa</th>
<th>Dose correction factorb</th>
<th>Errorc</th>
</tr>
</thead>
<tbody>
<tr>
<td>No IC package or PCB</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>IC package</td>
<td>0.52</td>
<td>0.067</td>
</tr>
<tr>
<td>IC package/PCB combination</td>
<td>0.065</td>
<td>0.013</td>
</tr>
</tbody>
</table>

aSee figure 5.

bRepresents the mean of 10 irradiations/arrangement.

cRepresents one standard deviation of uncertainty.

Note: IC packages are manufactured by Honeywell.
4. Discussion and Conclusion

The dose correction factors obtained from the TIGER 1-D simulations agree, within one standard deviation, with those obtained experimentally for each of the two packaging configurations used in this experiment. Given that the simulations were done using the minimum and maximum thicknesses for the Ni and Au material layers of the HWL IC package, and that there may have been some differences in thickness between other layers of the simulation model and the actual HWL IC package, the agreement is quite good.

The packaging configurations chosen for this experiment were selected for two reasons: (1) they represented realistic test configurations, both in materials and exposure orientation, and (2) they approximated worst-case situations from the standpoint of the number, type, and thicknesses of intervening materials that would be expected in typical HDL FX-45 e-beam test setups. The underlying assumption was, and is, that the greater the number of materials (layers), and/or the greater their thicknesses, the more difficult it would be to accurately determine dose correction factors using the TIGER simulation code.
It should be noted that, in this experiment, dose correction factors are based on the absorbed dose in the CaF₂ component of TLD's. In order to determine (simulate) dose correction factors which are based on, and can be used to determine, the dose deposited into some region (thickness) of a packaged IC die (usually Si) relative to external dosimetry, the terminal TLD (model) materials (see fig. 2) would have to be replaced by a representative thickness of the material of interest. Such a change in material arrangement is not expected to alter the accuracy of the associated TIGER 1-D simulation.

The complexity of the test configuration used in this experiment, taken along with the closeness of the experimental conditions to typical test configurations and the excellent results of this experiment, leads us to conclude that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.

5. Acknowledgements

The authors thank Klaus Kerris and Harvey Eisen for their expert dosimetric advice and for manuscript review, and Steve Gorbics for his modeling advice.
Appendix A.—Three-Layer TLD Model
Appendix A

The Teledyne Isotopes thermoluminescent dosimeters (TLD's) used in this experiment are essentially composed of 5 percent CaF\(_2\) and 95 percent Teflon (C\(_2\)F\(_4\))\(^1\) (by weight). The TLD's are shaped as slightly concave discs with the following dimensions:

- diameter = ~236 mils,
- thickness = ~15 mils.

The CaF\(_2\) is homogeneously distributed within the Teflon base.

A simple, symmetric, three-layer model of the Teledyne Isotopes TLD can be derived as follows:

- assume that the TLD is shaped as a perfect disc (cylinder),
- let the center layer of the model be composed of pure CaF\(_2\),
- let the two outer layers be composed of equal thicknesses of C\(_2\)F\(_4\), and
- calculate the thicknesses of the three layers from the relative mass/densities of the two components.

To calculate the layer thicknesses, assume the following:

\[
\text{Density (}\rho\text{) of CaF}_2 = 3.18 \text{ g/cm}^3 \text{ (Weast)}^2, \quad (A-1) \\
\text{Density (}\rho\text{) of C}_2\text{F}_4 = 2.20 \text{ g/cm}^3 \text{ (Weast)}^3 \text{, and} \quad (A-2) \\
\text{Thickness (}\text{T}\text{) of the TLD} = 15 \text{ mils (measured)} \quad (A-3)
\]

The ratio of the masses of the two TLD components is

\[
\frac{\text{mass}_{\text{CaF}_2}}{\text{mass}_{\text{C}_2\text{F}_4}} = \frac{5\%}{95\%} = 0.0526. \quad (A-4)
\]

Given that

\[
\text{mass (}\text{m}\text{)} = \text{density (}\rho\text{)} \times \text{volume (}\text{V}\text{)}, \quad (A-5)
\]

and

\[
\text{volume (}\text{V}\text{) of a cylinder} = \text{thickness (}\text{T}\text{)} \times \text{cross-sectional area (}\text{A}\text{)}, \quad (A-6)
\]

\(^1\)Teledyne Isotopes, Brochure, Teledyne Isotopes (New Jersey).
Appendix A

substituting equations (5) and (6) into equation (4) yields

\[
\frac{\rho \text{CaF}_2 \times T \text{CaF}_2 \times A \text{CaF}_2}{\rho \text{C}_2\text{F}_4 \times T \text{C}_2\text{F}_4 \times A \text{C}_2\text{F}_4} = 0.0526 .
\] (A-7)

Rearranging terms and noting that \(A \text{CaF}_2 = A \text{C}_2\text{F}_4 \) yields

\[
\frac{T \text{CaF}_2}{T \text{C}_2\text{F}_4} = \frac{\rho \text{C}_2\text{F}_4}{\rho \text{CaF}_2} \times 0.0526 .
\] (A-8)

Substituting equations (1) and (2) into equation (8) yields

\[
\frac{T \text{CaF}_2}{T \text{C}_2\text{F}_4} = \frac{2.20 \times 0.0526}{3.18} = 0.0364 .
\] (A-9)

Since there are only two component thicknesses in this model,

\[
T \text{CaF}_2 + T \text{C}_2\text{F}_4 \text{ must equal the total thickness of the TLD = 15 mils .}
\] (A-10)

Substituting equation (9) into equation (10) yields

\[
T \text{C}_2\text{F}_4 = \frac{15 \text{ mils}}{1 + 0.0364} = 14.473 \text{ mils .}
\] (A-11)

From equation (10),

\[
T \text{CaF}_2 = 15 - T \text{C}_2\text{F}_4 = 0.527 \text{ mils .}
\] (A-12)

Because the model calls for two equal layers of \(\text{C}_2\text{F}_4 \),

\[
\text{each } \text{C}_2\text{F}_4 \text{ layer } \frac{14.473 \text{ mils}}{2} = 7.237 \text{ mils .}
\] (A-13)

Figure A-1 shows the complete TLD model.

<table>
<thead>
<tr>
<th>(\text{C}_2\text{F}_4)</th>
<th>(\text{CaF}_2)</th>
<th>(\text{C}_2\text{F}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.24 mils</td>
<td>0.52 mils</td>
<td>7.24 mils</td>
</tr>
</tbody>
</table>
Appendix B.—TIGER 1-D Input Specifications
The following listing shows all the pertinent TIGER 1-D simulation code input parameters used to calculate FX-45 2-beam dose correction factors for the Honeywell radiation-hardened 36-pin surface mount integrated-circuit (IC) package and printed circuit board/IC package combination.

********** SOURCE **********
ELECTRONS
SPECTRUM 11
1.0 0.98968 0.96906 0.91752 0.54639
0.29897 0.15464 0.07217 0.03093 0.01031
0.0
3.0 2.0 2.6 2.4 2.2 2.0
1.8 1.6 1.4 1.2 1.0
CUTOFFS 0.05 0.01

______ CROSS-SECTIONS _______
ENERGY 3.0
MATERIAL C 0.382 H 0.039 O 0.346 SI 0.233 DENSITY 1.8
MATERIAL AL 0.529 O 0.471 DENSITY 3.69
MATERIAL AL
MATERIAL SI
MATERIAL NI
MATERIAL W
MATERIAL AU
MATERIAL SI 0.467 O 0.533 DENSITY 2.32
MATERIAL C 0.24 F 0.76 DENSITY 2.20
MATERIAL CA 0.51 F 0.49 DENSITY 3.18

********** OTHER OPTIONS **********
HISTORIES 100000

TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) NEW TLD —
********** GEOMETRY **********
GEOMETRY 3
* MAT NZONE THIK ECUT PTCZ
 9 1 0.0184
 10 1 0.00134
 9 1 0.0184
Appendix B

TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) THIN AU/NI AND NO PCB —

<table>
<thead>
<tr>
<th>*</th>
<th>MAT</th>
<th>NZONE</th>
<th>THIK</th>
<th>ECUT</th>
<th>PTCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.00134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) THICK AU/NI AND NO PCB —

<table>
<thead>
<tr>
<th>*</th>
<th>MAT</th>
<th>NZONE</th>
<th>THIK</th>
<th>ECUT</th>
<th>PTCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.00134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) THIN AU/NI AND PCB —

<table>
<thead>
<tr>
<th>*</th>
<th>MAT</th>
<th>NZONE</th>
<th>THIK</th>
<th>ECUT</th>
<th>PTCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.15748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.00134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) THICK AU/NI AND PCB —

<table>
<thead>
<tr>
<th>*</th>
<th>MAT</th>
<th>NZONE</th>
<th>THIK</th>
<th>ECUT</th>
<th>PTCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.15748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.0508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.00254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.0002032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.00134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.0184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION

Administrator
Defense Technical Information Center
Attn DTIC-DDA (2 copies)
Cameron Station, Building 5
Alexandria, VA 22304-6145

Defense Nuclear Agency
Attn RAEE, LCDR L. Cohn
6801 Telegraph Road
Alexandria, VA 22310-3398

US Army Engineering Division, Huntsville
Attn J. Loyd, EDSY
PO Box 1600
Huntsville, AL 35807-4301

US Army Strategic Defense Command
Attn C. Harper, CSSD-SD-YA
Attn D. Bradshaw, CSSD-H-SAV
Attn R. Dudney, CSSD-H-YA
PO Box 1500
Huntsville, AL 35807-3801

Commanding Officer
Naval Research Laboratory
Attn W. Jenkins, Code 6816
Attn E. Peterson
Attn H. Hughes, Code 6816
4555 Overlook Avenue
Washington DC 20375-5000

NWSC Crane
Attn V. Brunamonti
Attn D. Emily
Attn T. Turflinger
Bldg. 2087, Code 60541
Crane, IN 47522

Headquarters AFSTC/SWL
Attn C. DeRaad
Attn V. Otero
Attn J. Modl
Kirtland AFB, NM 87117-6008

Secretary of the Air Force, AQX-1
Jet Propulsion Laboratory
Attn COL W. Stackhouse, MS 79-23
4800 Oak Grove Drive
Pasadena, CA 91109-8099

Rome Air Development Center,
AF Deputy for Elec Tech
Attn W. Shedd
Hanscom Field
Bedford, MA 01731

USAF Space Systems Division
Attn K. Basany
2400 E. El Segundo Blvd; PO Box 92960
WPC M/S MBP
Los Angeles, CA 90009-2960

National Institute of Standards & Technology
Attn T. Russell
Attn N. Wilken
Building 225, Room B-310
Gaithersburg, MD 20899

SDIO-T/SK
Attn CPT P. Palmer
The Pentagon
Washington, DC 20301

AT&T Bell Laboratories
Attn R. Kohler, 1A-210
555 Union Blvd
Allentown, PA 18103

Charles Stark Draper Laboratory, Inc.
Attn N. E. Tibbetts
555 Technology Square
Cambridge, MA 02139-3539

GE Astropace
Attn G. Brucker
PO Box 800, MS 111
Princeton, NJ 08543
Harris Corporation, Government Systems Group
Attn W. E. Abare, MS 20-2604
Attn H. Veloric
PO Box 94000, MS 101/4825
Melbourne, FL 32902

Honeywell, Inc.
Solid State Electronics Center
Attn E. Berger
Attn M. Heinks
12001 State Highway 55
Plymouth, MN 55441

IBM Corporation
Attn J. Damato
Attn N. Haddad
Attn T. Scott
Attn B. Posey
Attn R. Brown
9500 Godwin Drive
Manassas, VA 22110

Jaycor
Attn C. Rogers
2951 28th, Suite 3075
Santa Monica, CA 90405-2976

Jaycor
Attn W. A. Seidler
PO Box 85154
San Diego, CA 92138-9259

Messenger & Associates
Attn G. Messenger
3111 Bel Air Drive
Las Vegas, NV 89109

Mission Research Corp.
Attn D. R. Alexander
1720 Randolph Road, S.E.
Albuquerque, NM 87106-4245

Physicon, Inc.
Attn B. Henderson
Attn J. D. Harper
Attn J. Sheehy
3225 Triana Blvd., Suite A
Huntsville, AL 35805

Physicon, Inc.
Attn J. Azarewicz
11545 W. Bernardo Ct., Suite 205
PO Box 27627
San Diego, CA 92127

Research Triangle Institute
Attn Dr. M. Simons
PO Box 12194
Research Triangle Park, NC 27709

Rockwell International Corp.
Rockwell Autonetics Division
Attn V. H. Strahan
3370 Miraloma Avenue
Anaheim, CA 92803

Sandia National Laboratories
Attn P. Winokur, Div. 2147
PO Box 5800
Albuquerque, NM 87185

The Aerospace Corp
Attn K. Wilson, M4-989
Attn N. Sramek, M4-989
Attn A. Amraam, M/S M4-990
PO Box 92957
Los Angeles, CA 90009-2957

US Army Laboratory Command
Attn Technical Director, AMSLC-TD
Installation Support Activity
Attn Legal Office, SLCIS-CC

26
DISTRIBUTION

USAISC
Attn Admin Ser Br, AMSLC-IM-VA
Attn Tech Pub Br, AMSLC-IM-VP (2 copies)

Harry Diamond Laboratories
Attn Laboratory Directors
Attn Library, SLCHD-TL (3 copies)
Attn Library, SLCHD-TL (WRF)
Attn Chief, SLCHD-NW-CS
Attn Chief, SLCHD-NW-E
Attn Chief, SLCHD-NW-EH
Attn Chief, SLCHD-NW-EP
Attn Chief, SLCHD-NW-ES
Attn Chief, SLCHD-NW-P
Attn Chief, SLCHD-NW-R
Attn Chief, SLCHD-NW-RP
Attn Chief, SLCHD-NW-RS
Attn Chief, SLCHD-NW-TN
Attn Chief, SLCHD-NW-TS
Attn W. Vault, SLCHD-NW
Attn J. Ingram, SLCHD-NW-E
Attn W. J. Scott, SLCHD-NW-ES (2 copies)
Attn M. Abe, SLCHD-NW-P

Harry Diamond Laboratories (cont'd)
Attn H. Boesch, SLCHD-NW-RP
Attn J. Benedetto, SLCHD-NW-RP
Attn J. M. McGarrity, SLCHD-NW-RP
Attn B. McLean, SLCHD-NW-RP
Attn T. Oldham, SLCHD-NW-RP
Attn O. Benton, SLCHD-NW-RS
Attn C. Casaer, SLCHD-NW-RS
Attn D. Davis, SLCHD-NW-RS
Attn K. Kerris, SLCHD-NW-RS
Attn S. Gorbics, SLCHD-NW-RS
Attn W. Lilley, SLCHD-NW-RS
Attn M. Litz, SLCHD-NW-RS
Attn J. Blackburn, SLCHD-NW-TS
Attn M. Bumbaugh, SLCHD-NW-TS
Attn H. Eisen, SLCHD-NW-TS
Attn D. Robertson, SLCHD-NW-TS
Attn C. T. Self, SLCHD-NW-TS
Attn C. W. Tipton, SLCHD-NW-TS
Attn J. Vanderwall, SLCHD-NW-TS
Attn P. Walker, SLCHD-ST
Attn R. Goodman, SLCHD-TA-ES
Attn S. R. Murrill, SLCHD-NW-TS (20 copies)