RESILIENT PERFORMANCE OF CONTROLLED DENSITY FILL IN UTILITY TRENCH EXCAVATIONS

CETS 600
Graduate Research Presented for the Master of Science in Civil Engineering
Department of Civil Engineering
University of Washington

by
Darin V. Lasater

21 September 1990
RESILIENT PERFORMANCE OF CONTROLLED DENSITY FILL IN UTILITY TRENCH EXCAVATIONS

CETS 600
Graduate Research Presented for the Master of Science in Civil Engineering
Department of Civil Engineering
University of Washington

by
Darin V. Lasater

21 September 1990
ABSTRACT

Controlled Density Fill (CDF) is a ready-made mix of sand, fly ash, cement, and water that, when used as backfill, flows into excavated cavities, completely filling all voids. It can be used anywhere conventional soil or aggregate backfill is used. Its advertised advantages are numerous including speed, cost, and performance. This study concentrates on CDF’s performance in utility trenches as a flexible pavement subgrade backfill material where careful engineering consideration must be given in determining material properties for pavement design and analysis.

Since resilient modulus testing is the most accurate method of determining pavement subgrade suitability for soils, these tests were conducted on CDF cylinders. Moduli were compared with those of typical subgrade soils.

Subgrades with resilient modulus values greater than 15,000 psi are considered “excellent” materials. While subgrades under Washington highways averaged 19,300 psi, CDF with 40 lbs/CY of cement averaged 41,400 psi. CDF with 30 lbs/CY of cement averaged only 11,700 psi. No plastic deformation (settlement) problems were encountered after 612,000 equivalent single-axle loads with the 40 lbs/CY mix. When combined with other advantages including economy, CDF appears to be a viable subgrade material.
TABLE OF CONTENTS

INTRODUCTION .. I
General... 1
Conventional Trench Backfill.. 1
Controlled Density Fill and its Uses.......................... 2
CDF Advantages.. 3
Controlled Strength /Density and Quality Control........ 3
Workability.. 3
Controlled Bearing Capacity and Reduced Settlement.... 4
Environmental Benefits... 4
Economy.. 4

Purpose... 5

BACKGROUND.. 6
Conventional Pavement Subgrades............................... 6
Unified Soil Classification System............................... 6
AASHTO System... 9
Resilient Modulus.. 10
Conversion and Regression Equations for Obtaining M_r.. 14
Fine-grained... 14
Coarse-grained... 15
Controlled Density Fill... 17
Subgrade Stresses... 17
Environmental Effects... 19
Expected Resilient Moduli for Soils............................. 20

CDF Ingredients.. 21
Water... 21
Aggregates.. 21
Cement... 24
Fly Ash... 25
Air-Entraining Agent.. 26
CDF Mixes.. 26
Curing.. 28

TESTING PROGRAM... 28
Materials.. 28
Soils... 28
Subgrade Stresses... 29
CDF Mix Design.. 30

Procedures.. 31

RESULTS... 33
Data & Calculations... 33
INTRODUCTION

General.

Conventional Trench Backfill - Traditionally, when repairing or installing utility lines which are under flexible pavements, municipal specifications call for granular material compacted to 95% of standard proctor to backfill the trench. This material becomes the new subgrade; part of the pavement structure. There are obvious problems with backfilling this kind of trench. Everyone has heeded the roughness of the pavement depression left as a marker from a utility cut. Compaction requires tight quality control and inspection. Inadequate compaction can result from lifts that are too thick, insufficient compactive effort, incorrect moisture content, or improper compaction equipment. When utilities are added to the trench, compaction becomes very difficult to achieve around the pipe area without damaging it. Additionally, voids can be created at the edge of the trench under the pavement where the subgrade material falls away from the vertical cut. If the pavement isn’t cut away so that compaction equipment can compact the fill, an overbreak void is created which later settles causing pavement distresses.

Figure 1 - Inadequately Compacted Fill Leads to Damaged Pavement
“Estimates indicate that past practices involving the number and quality of [utility-cut] restorations reduced the average pavement life expectancy by 8 to 10 years.”¹ Time is money to contractors and proper subgrade compaction takes time. That is why generally the job is rushed and inadequate compaction results. Conventional fill and compaction is labor and equipment intensive which adds to the overall cost of the project above that of the fill material cost alone.

Controlled Density Fill and its Uses - Controlled Density Fill (CDF), as its currently being marketed, is a recipe fill material consisting of sand and fly ash, stabilized with cement, and mixed with water. Although seemingly a fairly recent addition to the construction industry, it has actually been around since 1974 when it was introduced by Detroit Edison and the Kuhlman Corp. as “K-Krete.”² It has since been produced under a variety of other trade names including Flowable Fill, Flowable Fly Ash, Lean Mix Backfill, Flowable Compacting Fill (FOF), Ready-Mixed Flowable Fill (RFF), Fillcrete, Tru-crete, Flo-fill, lean concrete trench backfill, and unshrinkable fill. The product being marketed locally by Pozzolanic³ (processors and distributors of fly ash) and distributed by ready-mix concrete producers such as Stoneway Concrete⁴ and Associated Sand and Gravel⁵ seems to be a viable alternative to conventional backfill. The American Concrete Institute (ACI Committee 229) will soon release a state-of-the-art report on Control Density Fill under the name Controlled Low Strength [concrete] Materials (CLSM). Other than that forthcoming report, there is little unbiased technical or informational data on the substance.

The opportunities for CDF use include:

- Sewer, electrical duct, or other utility trench backfill.
- Abandoned tank, manhole, or pipe fill
- Culvert backfilling
- Pipe bedding
- Pavement subgrade fill
- Temporary slabs for military or construction equipment laydown areas
• Foundation subbase and backfill
• Bridge abutment and retaining wall backfill
• Or anywhere else conventional backfill is used

In the course of this research, the primary interest in CDF’s use was as a utility trench backfill material and its performance as a subgrade under pavements when a cut to repair/replace utilities must be made.

Structurally, CDF is somewhere between a concrete and a soil. It’s placed at a fluid consistency and requires no compaction to achieve its density and strength. Its load capacity is advertised to be typically much stronger than compacted soil yet still excavatable by conventional means. Its makers claim “the ease of placement, high density, and greater strength of CDF makes it superior to standard backfill. It can be used wherever soil backfill is used and in most cases where granular backfill is used.”

CDF Advantages

The following potential advantages over conventional backfill have been compiled and paraphrased from promotional materials:

Controlled Strength /Density and Quality Control - You can select the desired density and compressive strength for your project, CDF ranges from 90 to 150 lbs/ft³ and 0 to 1600 psi. It is then custom mixed and delivered by ready-mix concrete companies.

Workability - Because of the relatively high water content and the “ball bearing” action of the fly ash pozzolan, the mix flows like a fluid and distributes itself around pipes and footings without vibration. It can be placed in the same manner as concrete (including pumping) but later excavated easily with a pick and shovel, backhoe, or air spade, in the same manner as compacted soil. The resulting trench can be cut without caving in or running. This is of particular importance to municipalities who must have access to underground utilities for maintenance.

Controlled Bearing Capacity and Reduced Settlement - CDF prevents cracks and depressions in pavement by reducing trench backfill settlement. Because CDF flows and
distributes itself in and around all pipes and obstructions, there are no voids commonly encountered around utilities due to the difficulty compacting in congested / tight areas. It is believed there is less settlement of CDF than with conventional compacted soil also because water escapes as placement occurs. Any minor vertical shrinkage occurs within the first few hours. CDF consolidates through the bleeding process to achieve particle to particle contact when it reaches 95-100% of optimum density. Because of the ready-mix process, there is no differential settlement because the mix and shrinkage are homogeneous. When required, CDF can have unconfined compressive strengths much higher than conventional fill materials. Reduced inspections for compaction may eliminate potential contractor blunders, resulting in better quality work with less hassle for everyone, including the contractor.

Environmental Benefits - "About 42 million tons of fly ash are produced each year from coal-fired powerplants. Seventy-five to 80% of the fly ash used in construction is in roads and highways." Because CDF’s composition includes fly ash, its use helps mitigate disposal problems of a “non-hazardous nuisance dust" by recycling the fly ash in a safe economical fashion. It requires no special sealer or containment as the particles are effectively bonded and confined within the excavation. The EPA polices section 6002 of the Resource Conservation and Recovery Act (1984) which calls for the use of waste materials by any agency receiving federal funding. To the Federal Highway Administration “that means any agency that buys more than $10,000 worth of concrete per year must remove restrictions on fly ash where technically appropriate" or face complete loss of federal funding.

Economy - Since no granular fill is required, there is no backfilling labor crew, and therefore, no protective shoring is required (except for in the immediate pipe repair area.) There is no stockpiling of fill, no compaction equipment, no placing in lifts, and no pipe damage from heavy compaction equipment. No leveling is required since in its fluid state it levels itself. It can be placed in any weather and in wet trenches where backfilling soil
would be impossible since CDF displaces the water. CDF is advertised to harden enough to support normal traffic loads in about 4 hours. This benefit alone can be of great importance in municipal or military applications by reducing road or airfield down time significantly. Because the material more completely fills the trench, preventing settlement and pavement damage, maintenance costs also decrease. "Studies and field experience have shown that sand compaction which requires 4 men and 3 days can be accomplished by using [CDF] with 2 men in 3 hours!" According to Mel Hitch, sales representative at Stoneway Concrete, CDF sells for between $27 and $35 per cubic yard depending on the mix and type of consumer (based on annual volume). "The inefficient use of manpower and equipment incidental to small, widely dispersed and sporadic excavations as well as problems caused by heavy traffic -- make conventional fill methods much more expensive. The true cost is difficult to estimate, especially if future maintenance costs are considered." Tom Howerton, of Associated Sand & Gravel, who has been supplying CDF to the City of Everett, WA for pavement cut backfill since 1987, charges the City contractors $30 per cubic yard to site deliver the appropriate mix. He claims, in a review of past bids, the City was paying $30 per cubic yard for conventional pit run backfill projects ($10-15 material cost). The same analysis shows CDF is bid at about $40 per cubic yard - a 33% first cost increase. The City of Everett pays the additional cost on major arterial street cuts to take advantage of the short duration set time so that the road can be reopened to traffic as soon as possible. In the three years of service, the City has had no problems with pavement settlement.

Purpose

The purpose of this investigation was to compare the resilient behavior (stiffness) of CDF to that of typical pavement subgrade materials. This study primarily concentrates on CDF's performance as a sub-grade backfill material in utility trenches under asphalt pavements. Since resilient modulus testing is the most widely accepted method of determining pavement subgrade suitability, these tests were conducted on several CDF
cylinders. For comparison purposes, resilient modulus data for soils was compiled from a number of sources including additional lab work and a separate study conducted by the Washington State Transportation Center (TRAC - a joint venture between the two state universities and the Washington State Department of Transportation.)

BACKGROUND

Conventional Pavement Subgrades

Like a building foundation, all pavement designs must start with a consideration of the underlying soil conditions. Specific soil properties depend on many factors including mineral composition, climate, age, and method of transportation. Soils for civil engineering applications are usually broken down into coarse-grained (gravels and sands) and fine-grained (silts and clays) major categories. Two standard classification systems further break down the particle size analysis for use in determining relative properties for civil engineering applications -- The Unified Soil Classification System (USCS) and the AASHTO (American Association of State Highway & Transportation Officials) Classification for Soils. Most engineers and contractors know from experience good subgrade soils and both classification systems give broad generalizations on soil suitability for pavement foundations.

Unified Soil Classification System - Casagrande proposed the Unified Soil Classification System adopted by the Army Corps of Engineers in 1942. Appendix B to the 1953 revision entitled "Characteristics of Soil Groups Pertaining to Roads and Airfields" summarized Casagrande's findings of subgrade of base course performance.

"The properties desired in soils for foundations under roads and airfields and for base courses under flexible pavements are: adequate strength, good compaction characteristics, adequate drainage, resistance to frost action in areas where frost is a factor, and acceptable compression and expansion characteristics." He concluded that textural classification alone was inadequate for cohesive soils. He found he could group fine-grained soils according to their liquid limit and plasticity index. The importance of plasticity in
engineering applications today is well documented. "Stiffness" was probably only considered as a secondary strength property. Table 1 summarizes Appendix B of the 1953 Corps of Engineers Unified Soil Classification System revision in a thorough graphical format.
Characteristics of Soil in Groups Permitted for Airfield Construction

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup</th>
<th>Symbol</th>
<th>Property</th>
<th>Wet Climate</th>
<th>Dry Climate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>ME</td>
<td>Well-rounded gravel or gravels of medium to coarse fraction</td>
<td>Good to excellent</td>
<td>Good to fair</td>
<td>Due to very slightly</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>ME</td>
<td>Mostly gravel or gravel and boulders, little or no fines</td>
<td>Good to excellent</td>
<td>Good to fair</td>
<td>Due to very slightly</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>ME</td>
<td>Silty gravel, gravel and clayey silt or clay</td>
<td>Good</td>
<td>Fair to poor</td>
<td>Due to poor</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>ME</td>
<td>Clayey gravel, gravel and clayey silt or clay</td>
<td>Good</td>
<td>Fair to poor</td>
<td>Due to poor</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>ME</td>
<td>Well-rounded sand or gravels of medium to coarse fraction</td>
<td>Good to excellent</td>
<td>Good to fair</td>
<td>Due to very slightly</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>ME</td>
<td>Mostly sand or gravel and boulders, little or no fines</td>
<td>Good to excellent</td>
<td>Good to fair</td>
<td>Due to very slightly</td>
</tr>
</tbody>
</table>

Notes:
1. Groups A and B are suitable for roads and airfield only. Addition of 1 or more layers of coarse gravel is required. A depth of 12 to 18 in is recommended for roads and 24 to 30 in for airfields.
2. Groups C and D are suitable for roads and airfield only. Addition of 1 or more layers of coarse gravel is required. A depth of 12 to 18 in is recommended for roads and 24 to 30 in for airfields.
3. Groups E and F are suitable for roads and airfield only. Addition of 1 or more layers of coarse gravel is required. A depth of 12 to 18 in is recommended for roads and 24 to 30 in for airfields.
4. Wet Climate - Due to the presence of water, the soil is considered to be wet. The wet climate is characterized by a higher water content and lower temperatures than the dry climate.
5. Dry Climate - Due to the absence of water, the soil is considered to be dry. The dry climate is characterized by lower water content and higher temperatures than the wet climate.

Table 116 - The Unified Soil Classification System, Appendix B: Characteristics of Soil Groups Permitted for Airfield Construction, Corps of Engineers, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
AASHTO System - The American Association of State Highway and Transportation Officials (AASHTO) system of soil classification was developed in 1928 with the 1945 revision forming the basis of today's version. This system was also based on field performance of soils as highway subgrades and is widely used. Soils with approximately equivalent load carrying capacity are grouped together into seven basic categories A-1 through A-7. In general, the best highway subgrades are rated A-1 with higher numbers designating progressively poorer performing soils. Subdivisions within the seven categories further represent relative performance as a subgrade. Table 2 summarizes the AASHTO system including each soil's general rating as a subgrade.

<table>
<thead>
<tr>
<th>Group Classification</th>
<th>A-1</th>
<th>A-2</th>
<th>A-3</th>
<th>A-4</th>
<th>A-5</th>
<th>A-6</th>
<th>A-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granular Materials (35% or less passing 0.375 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt-Clay Materials (More than 35% passing 0.075 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve Analysis, Percent Passing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 mm (No. 10)</td>
<td>50 max</td>
<td>10 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
</tr>
<tr>
<td>0.85 mm (No. 40)</td>
<td>30 max</td>
<td>25 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>36 min</td>
</tr>
<tr>
<td>0.075 mm (No. 200)</td>
<td>15 max</td>
<td>25 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
<td>35 max</td>
</tr>
<tr>
<td>Characteristics of Fraction Passing 0.025 mm (No. 200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>6 max</td>
<td>N.P.</td>
<td>40 max</td>
<td>41 min</td>
<td>40 max</td>
<td>41 min</td>
<td>40 max</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>6 max</td>
<td>N.P.</td>
<td>40 max</td>
<td>41 min</td>
<td>40 max</td>
<td>41 min</td>
<td>40 max</td>
</tr>
<tr>
<td>Usual Types of Significant Constituent Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone Fragments</td>
<td>Gravel and Sand</td>
<td>Fine Sand</td>
<td>Silty or Clayey Gravel and Sand</td>
<td>Silty Soils</td>
<td>Clayey Soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Rating as Subgrade</td>
<td>Excellent to Good</td>
<td>Fair to Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plasticity Index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30 (see Figure V-2).

Table 217 - Classification of Soils and Soil-Aggregate Mixtures
Resilient Modulus

Historically, pavement subgrade suitability has been based on static strength tests such as the California Bearing Ratio (CBR) and triaxial tests. CBR is more a relevant measure of how the material will compact and behave during the unconfined construction phase. Established primarily for crushed aggregate bases, a CBR value for subgrade soils is so low that it loses its meaning except on a relative basis. In recent years, pavement designers have been leaning more towards a mechanistic approach based on elastic layer theories which better simulates the dynamic wheel loads induced by traffic on the pavement. The resilient modulus test (AASHTO T274 - 82 (1986)) introduces the cylindrical specimen to repeated dynamic loads and confining pressures representative of field conditions. "The resilient modulus test provides a means of evaluating pavement construction materials, including subgrade soils under a variety of environmental conditions and stress states that realistically simulate the conditions that exist in pavements subjected to moving wheel loads." As a result, the resilient modulus test has become the "state-of-the-art" measure of base and subgrade performance properties. "All pavement structural design procedures require a "subgrade soil" input," and mechanistic pavement and overlay design procedures specify the use of subgrade moduli.

A flexible pavement is made up of three basic layers: the asphalt concrete, the granular base course, and the subgrade soil. Since the deformation of the subgrade under a wheel load makes up a major portion of the total deformation, it is important to have a solid subgrade foundation.
Resilient modulus is defined by the following equation (For convenience, the AASHTO notation \(M_r \) is used when referring to resilient modulus):

\[
M_r = \frac{\sigma_1 - \sigma_3}{E_{\text{axial}}} = \frac{\sigma_d}{E_{\text{axial}}}
\]

where

- \(\sigma_1 \) = major principal stress (\(\sigma_3 + \sigma_d \))
- \(\sigma_3 \) = minor principal stress (due to confining pressure)
- \(\sigma_d \) = principal stress difference or deviator stress (\(\sigma_1 - \sigma_3 \) due to applied load)
- \(E_{\text{axial}} \) = recoverable or elastic axial strain
"The soil deformation is composed of a permanent (or plastic) component, and a recoverable resilient (or elastic) component" (Figure 3). It is simply a measure of the elastic stress-strain relationship (stiffness) obtained after plastic strain has been worked out with repeated loads (resilience). "During repeated load tests, it is observed that after a number of loading cycles, the modulus becomes approximately constant and the soil response can be assumed as elastic. The modulus at the steady soil response is defined as the resilient modulus, $[M_r]$, and is found to occur after about 100 to 200 cycles of loading."

Figure 3 - Elastic Stress-Strain Relationship

The modulus value is similar to elastic modulus (E) properties of other common construction materials (Figure 4) except dynamics are introduced.
The AASHTO Guide for the Design of Pavement Structures recognizes resilient modulus as the definitive property used to characterize roadbed soils for the following reasons:27

(1) It indicates a basic material property which can be used in mechanistic analysis of multi-layered systems for predicting roughness, cracking, rutting, faulting, etc.
(2) Methods for the determination of M_r are described in AASHTO Test Method T274.
(3) It has been recognized internationally as a method for characterizing materials for use in pavement design and evaluation.
(4) Techniques are available for estimating the M_r properties of various materials in-place from non-destructive tests.

A schematic diagram of the resilient modulus apparatus is shown in Figure 5.
Conversion and Regression Equations for Obtaining M_r - Although resilient moduli are recognized as the design values necessary for pavement subgrades, the process of obtaining these dimensions is relatively new and lengthy, and therefore can be an expensive undertaking. As mentioned, structural pavement design in the past has been based on static testing techniques such as the CBR for determining subgrade suitability.

Fine-grained. In the absence of more precise agency data from laboratory resilient modulus testing or non-destructive testing, AASHTO allows the following relationship to be used: M_r (psi) = 1500 X CBR. They consider this direct correlation to be valid only
for fine-grained soils with a CBR of 10 or less. Another more scientific correlation, the
regression equation where \(M_r = K_1(\sigma_d)^{K2} \) is often used, where \(\sigma_d \) is the applied axial stress
(deviator stress), and where \(K_1 \) and \(K_2 \) are property constants unique to the specific
material (or soil type) being evaluated. These constants and the resulting moduli for
fine-grained soils are sensitive to moisture content and density, but they are fairly
insensitive to confining pressures (uniform 3-dimensional principal stresses). Stresses in
the subgrade can be approximated or roughly determined using an elastic layer analysis.
The resilient moduli of cohesive clays and silts generally decrease with increasing deviator
stress (\(K_2 \) is often negative).

Coarse-grained. AASHTO uses a like correlation for granular (base) materials where
\(E_{bs} (M_r \text{ of a base}) = K_1 \bar{\sigma}^{K2} \) where \(\bar{\sigma} = \text{bulk stress} = \text{sum of the principal stresses} \) (3 * \(\sigma_i \) = 3 *
confining pressure). Unlike fine-grained soils, quality granular material generally gets
stiffer as the bulk stress (\(\bar{\sigma} \)) increases. When the regression equations of granular
materials are plotted on a log-log graph, the results typically take on the form of Figure 6.

AASHTO also allows a CBR conversion for unbound granular materials as follows:

<table>
<thead>
<tr>
<th>(\bar{\sigma}) (psi)</th>
<th>Mr (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>740 X CBR</td>
</tr>
<tr>
<td>30</td>
<td>440 X CBR</td>
</tr>
<tr>
<td>20</td>
<td>340 X CBR</td>
</tr>
<tr>
<td>10</td>
<td>250 X CBR</td>
</tr>
</tbody>
</table>
Figure 6 - Fitted Regression Line (Log Transformed) for Resilient Modulus Data
Controlled Density Fill. Since CDF is neither a fine or coarse grained soil, but a stabilized material, it is unclear which (if either) regression equation best represents resilient moduli at varying bulk and deviator stresses. An attempt was made to determine if regression equations for stabilized soils (cement, lime, lime-fly ash) have been developed by agencies designing and evaluating pavements. Representatives from AASHTO, Transportation Research Board, North Carolina DOT, FHWA, and Texas DOT were contacted. Most agencies were just getting their feet wet with resilient modulus testing and have not been at it long enough to develop correlations for their materials. In the absence of more precise laboratory determined regression equations, logarithmic equations using both bulk stress and deviator stress were used for each CDF sample to determine which best represents CDF's stress sensitive behavior. A less cemented structure that derived strength from interparticle friction would be expected to be more sensitive to confining pressures than would say a block of concrete and would therefore, be better represented by a bulk stress equation.

In a study conducted on cement and lime stabilized materials, stabilization of sand with cement significantly increased stiffness and corresponding resilient moduli values. The resilient moduli for the stabilized materials all exceeded 15,000 psi, which is considered very good for a subgrade material. Although the stiffness of the stabilized materials increased, the values were less predictable as the stress varied. The best fit equation did not correlate well with stabilized materials (The correlation coefficient - R^2 was much lower). As expected, stabilized materials were relatively insensitive to confining pressures (better curve fit against deviator stress).

Subgrade Stresses - Since stiffness is a function of the stresses acting on the material, it is important to know what pressures are working at the subgrade level. The pavement structure can be analogized to be made up of layers of plates. Suppose the upper plate is steel, the middle layer is a sheet of plywood, and they are spanning a trench of uncompacted sand. This sand will "settle" (undergo plastic deformation) when stresses
reach its load bearing capacity. The “stiff” steel layer deflects elastically under a wheel load only slightly, protecting the plywood and sand layers from excessive stresses. The stiffer or thicker the overlying material, the more spreading of the load is experienced. As with the steel plate, the thicker a layer of asphalt concrete, the more protection (less deflection and resulting stress) is provided the layers below.

Figure 7 - Stress Distribution
The protection the upper asphalt and base coarse layers provide the subgrade is returned in the form of support. The subgrade (generally the least stiff layer) will also deflect when subjected to stresses. Since the stress from the load has been distributed over a much larger area by the upper layers, this stress is much lower than those in the material above. The lower the stresses and the stiffer the subgrade material, the less the subgrade and entire pavement structure will deflect. If the subgrade is a poor material, the resulting elastic deflections can cause fatigue cracking in the asphalt and any subgrade plastic deformation will result in ruts in the pavement surface. Stresses encountered at any level in the pavement structure can be theoretically determined using computer software packages based on elastic layer theory.

Environmental Effects. - "The seasonal variations of soil moduli are primarily induced by variations in soil moisture content, which depend on precipitation, temperature, soil gradation and permeability, surface distress level, and drainage conditions." The AASHO Road Test results demonstrate the effects of moisture on the modulus.

<table>
<thead>
<tr>
<th>Moisture State</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>8000 $\Theta^{0.6}$</td>
</tr>
<tr>
<td>Damp</td>
<td>4000 $\Theta^{0.6}$</td>
</tr>
<tr>
<td>Wet</td>
<td>3200 $\Theta^{0.6}$</td>
</tr>
</tbody>
</table>

Following construction, the soil either stiffens as it dries to equilibrium or weakens as it approaches saturation. This relationship is acknowledged by the AASHO Road Test (above) as well. But again, soil classification plays a role for if we know our soil type, we can make assumptions about its in situ moisture equilibrium, permeability, and drainage characteristics. Coupled with rainfall data, we can predict the moisture state (dry, damp, or wet) of the soil in various seasons. Western Washington experiences basically a wet mild winter season and a dry summer season. Subgrades are less variable with respect to seasonal variation than the base course which is closer to the surface. In a recent WA DOT
study, at the subgrade level, seasonal variations of unbound material moduli for Western Washington during the wet season only incurred a 10% reduction.36

Expected Resilient Moduli for Soils - Mahoney37 determines roadbed soils can be broadly categorized by strength in the following manner:

<table>
<thead>
<tr>
<th>CBR</th>
<th>Mr</th>
<th>Rating as a Subgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3,000</td>
<td>Poor</td>
</tr>
<tr>
<td>5</td>
<td>7,500</td>
<td>Fair</td>
</tr>
<tr>
<td>10</td>
<td>15,000</td>
<td>Good</td>
</tr>
</tbody>
</table>

Using the AASHTO CBR scaling factors and the USCS table for typical CBR ranges, a determination of expected ranges for resilient values can be calculated.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>USCS Rating</th>
<th>CBR Range</th>
<th>Conv. Factor</th>
<th>Conv. Mr</th>
<th>Median</th>
<th>Stiffness Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>Excellent</td>
<td>40-80</td>
<td>250</td>
<td>10,000-20,000</td>
<td>15,000</td>
<td>Fair-Excell</td>
</tr>
<tr>
<td>GP</td>
<td>Good-Excell</td>
<td>30-60</td>
<td>250</td>
<td>7,500-15,000</td>
<td>11,250</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>GM</td>
<td>Good-Excell</td>
<td>20-60</td>
<td>250</td>
<td>5,000-15,000</td>
<td>10,000</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>GC</td>
<td>Good</td>
<td>20-40</td>
<td>250</td>
<td>5,000-10,000</td>
<td>7,500</td>
<td>Fair</td>
</tr>
<tr>
<td>SW</td>
<td>Good</td>
<td>20-40</td>
<td>250</td>
<td>5,000-10,000</td>
<td>7,500</td>
<td>Fair</td>
</tr>
<tr>
<td>SP</td>
<td>Fair-Good</td>
<td>10-40</td>
<td>250</td>
<td>2,500-10,000</td>
<td>6,250</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>SM</td>
<td>Fair-Good</td>
<td>10-40</td>
<td>250</td>
<td>2,500-10,000</td>
<td>6,250</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>SC</td>
<td>Poor-Fair</td>
<td>5-20</td>
<td>1500/250</td>
<td>2,500-15,000</td>
<td>8,750</td>
<td>Poor-Good</td>
</tr>
<tr>
<td>ML</td>
<td>Poor-Fair</td>
<td>0-15</td>
<td>1500</td>
<td>0-15,000</td>
<td>7,500</td>
<td>Poor-Good</td>
</tr>
<tr>
<td>CL</td>
<td>Poor-Fair</td>
<td>0-15</td>
<td>1500</td>
<td>0-15,000</td>
<td>7,500</td>
<td>Poor-Good</td>
</tr>
<tr>
<td>OL</td>
<td>Poor</td>
<td>0-5</td>
<td>1500</td>
<td>0-7,500</td>
<td>3,750</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>MH</td>
<td>Poor</td>
<td>0-10</td>
<td>1500</td>
<td>0-15,000</td>
<td>7,500</td>
<td>Poor-Good</td>
</tr>
<tr>
<td>CH</td>
<td>Poor-Fair</td>
<td>0-15</td>
<td>1500</td>
<td>0-15,000</td>
<td>7,500</td>
<td>Poor-Good</td>
</tr>
<tr>
<td>OH</td>
<td>Poor</td>
<td>0-5</td>
<td>1500</td>
<td>0-7,500</td>
<td>3,750</td>
<td>Poor-Fair</td>
</tr>
</tbody>
</table>

Table 3 - TYPICAL CBR RANGES39 & **EXPECTED RESILIENT MODULUS**

Since Mahoney's strength ratings and USCS subgrade ratings are somewhat consistent, the guidelines of 3,000, 7,500, and 15,000 psi equating to subgrades of "poor", "fair", and "good", respectively, based on stiffness characteristics alone can be used. Ratings of "excellent" will be applied to Mr values of much greater than 15,000 psi. This established criteria will be referred to as the "stiffness criteria rating".
CDF Ingredients.

Water - The functions of the water in the CDF mix are 1) to bring about the cement hydration process plus 2) to ensure workability and consolidation. Since CDF is not a concrete or a soil, water-cement ratios or compacted moisture content don't necessarily apply. Like concrete however, a surplus of water will produce a weaker cemented mass causing some owners to write specifications with a water-cement ratio maximum. A higher water content improves flowability but decreases cohesiveness. Any excess "bleedwater" tries to "float" in the denser mix to the surface. Almost any natural water that does not have excessive impurities in it can be used as mixing water. Generally, drinking water sources are preferred. ASTM C94 provides guidance on acceptable water supplies for concrete which can be extended to include CDF.

Aggregate - The quality of the aggregate, the aggregate grading, and the proportion of fine to coarse, all have an effect on durability. Since aggregates make up the bulk of the mix, it follows that they play an important role in the performance of a strong durable product. As in concrete, aggregates should "be clean, hard, strong, durable particles free of absorbed chemicals, coatings of clay, and other fine materials in amounts that could affect hydration and bond of the cement paste." Aggregate is defined as either coarse (> #4 sieve) or fine (< #4 sieve).

The aggregate absorption properties and stockpile moisture contents are important in the overall mix design. Since any water additions to the mix are assumed to mix with the cement to form a paste (aggregate in saturated surface dry condition), a dry aggregate which absorbs water from the paste will greatly influence workability and strength of the mix. Conversely, stockpiles of saturated aggregate may have excess water which effectively raises the amount of water in the mix. Therefore, mix water must be adjusted to reflect the actual moisture content of aggregate when it varies from saturated surface dry.

The role of the shape and texture of aggregates in CDF is not quite clear. It plays an important role in both concrete and granular material performance. With concrete,
smooth, round particles require less paste to coat leaving more paste for workability. Crushed angular, rough particles have a larger surface area needing more paste and therefore, more water (higher w/c ratio) to achieve equivalent slump and workability. Angular particles also have more of a tendency to trap bleedwater in the transition zone, negating any cohesion advantages from the rough surface texture. The final reason rounded gravels may be preferred to crushed rock is due to the localized stress concentrations that may develop at the tip of the angular rock. The round particle will provide a broader more uniform load distribution at high stresses. On the other hand, for granular base course material, the rounded surfaces of gravel tend to shear under a load more easily. Crushed angular particles give the base course its strength through resistance to shear. Due to its relatively small cement contents, CDF’s aggregate probably interacts more like a granular fill (or asphalt concrete) than a portland cement concrete. At higher cement contents (> 50 lbs/CY) the rounded particles may provide a higher compressive strength. In either case, however, the angular particles may counter the most prominent benefit of CDF, its flowability.

The maximum size of an aggregate is defined as the smallest initial sieve that 95% or more of the material passes. If CDF behaves more like a fill than a PCC, the gradation of the aggregate determines its structural capacity, and its vulnerability to frost heave and drainage problems. A well-graded aggregate base has a good particle size distribution which packs densely when compacted providing a firm (strong) surface. When particle sizes are relatively the same size (uniform) or the base composition is missing a specific range of particle sizes (gap-graded), then voids will exist after compaction which leads to a weak, shifting surface.

In areas of the country where ground water exists and the ground may freeze, frost heave (swell) can occur in soils with a high percentage of fine particles (passing the #200 sieve). This swelling combined with the subsequent loss of bearing capacity during the spring thaw, can cause serious damage to a pavement structure. As with moisture, frost
susceptibility was not studied in depth, although we know that fine-grained subgrades (silts & clays) will be more likely to wreak havoc on pavements in colder climates. In general, soils with $P_{200} > 3\%$ are at risk of frost heave.42,43 We would therefore be somewhat concerned with CDF above the frost line since fly ash particles are so very small. Reports on CDF's susceptibility to freeze-thaw action conflict. Because of its makeup, it seems reasonable to assume that it would not perform well in freeze-thaw testing. In a HUD study, a mix with 150 lbs of cement, 200 lbs of fly ash, 2,590 lbs of fine aggregate, and 497 lbs of water was tested using ASTM test D 560-57, Freezing and Thawing Tests of Compacted Soil Cement Mixtures. The mix did not contain any air-entraining agents and the result was “that lean mix backfill does not have freeze-thaw resistance in the strength ranges tested.”44 In a large part of the country, including Seattle, the importance of freeze-thaw resistance is reduced since the frost line may not extend to the subgrade level.

Gradation also directly effects the permeability of the material layer and its ability to drain the excess water without losing its fine particle composition. Proper drainage of the subgrade is necessary to prevent pore water pressure build-up and discontinuous air voids when the material reaches 85\% saturation. Under the instantaneous dynamic loads encountered under a pavement structure, the pore water pressure can lead to loss of shear strength and a pavement failure. Permeability (K) is a measure of drainage characteristics. A calibration of permeability values for a pavement structure is as follows:

\[
K = \begin{array}{c|c|c|c}
< 1 \text{ ft/day} & 1 \text{ ft/day} & 100 \text{ ft/day} & 1000 \text{ ft/day} \\
\text{very poor} & \text{poor} & \text{good} & \text{excellent}
\end{array}
\]

\textbf{Table 4.45 - Permeability}

Although a plus in some applications, a potential drawback for CDF as it applies in a pavement structure is that its permeability is 1×10^{-5} to 1×10^{-7} cm/sec (.028 to .00028 ft/day). This will prevent the pavement base course from properly draining through the CDF subgrade. If the pavement cut is transverse and proper drainage was initially considered when placing the base course, the consequences could be minimal.
The compacted **unit weight** is a measure of what kind of compacted density we could expect in the field under ideal conditions (assuming tested moisture content was optimal). It is also expected that the more well-graded aggregate material will be more responsive to compaction by arranging particles in the most ideal (dense) manner. Uniformly graded material will be unable to fill air voids between uniform size particles since fines aren't present. The well-graded material should have a higher unit weight as a result. These denser materials should exhibit stiffer properties since air voids have essentially been eliminated. On a smaller scale, the fly ash fines in CDF are to sand as sand is to gravel in a granular fill completely filling all voids except those of migrating water. This accounts for its dense, low permeable structure.

Cement - Most cement used today is called Portland Cement invented in 1824 in England. It is manufactured from limestone and other raw materials which are pulverized and heated to 2700°F in a kiln. The heating transforms the limestone into a clinker containing the following important chemical compounds:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction Rate</th>
<th>Early Strength</th>
<th>Long-term Strength</th>
<th>Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricalcium Silicate</td>
<td>C₃S</td>
<td>Medium</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Dicalcium Silicate</td>
<td>C₂S</td>
<td>Slow</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>Tricalcium Aluminate</td>
<td>C₃A</td>
<td>Fast</td>
<td>Good</td>
<td>Medium</td>
</tr>
<tr>
<td>Tetracalcium Alumino ferrite</td>
<td>C₄AF</td>
<td>Medium</td>
<td>Good</td>
<td>Medium</td>
</tr>
</tbody>
</table>

The clinker is then ground extremely fine so that its surface area is large enough so that when combined with water it can react efficiently. There are five common types of Portland Cement used in concrete depending on its application. The difference in types is achieved by varying its active chemical compound proportions to desired results (see Table 5).
Type I Normal Used in most general purpose construction.
Type II Moderate Sulfate Lower heat of hydration and moderate sulfate resistance. Used in structures of moderate size where precaution should be taken against minor sulfate attack (drainage structures, retaining walls or abutments).
Type III High Early Strength Used when need to put into service as soon as possible or to raise heat of hydration in cold weather.
Type IV Low Heat Used in huge structures where excessive heat of hydration may be a problem.
Type V Sulfate Resistant Used when concrete is exposed to seawater or soil.

<table>
<thead>
<tr>
<th>Compound Composition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
</tr>
<tr>
<td>Type I</td>
</tr>
<tr>
<td>Type II</td>
</tr>
<tr>
<td>Type III</td>
</tr>
<tr>
<td>Type IV</td>
</tr>
<tr>
<td>Type V</td>
</tr>
</tbody>
</table>

Table 5⁴⁷ - Portland Cement Chemical Compounds

Cement has a specific gravity of 3.15 (dense) and can be purchased in 94 lb sacks or in bulk.

Fly Ash⁴⁸ - When pulverized coal is burned in electric power generating plants, the mineral impurities fuse in the exhaust gas. The suspended material solidifies into tiny glass-like balls and is collected as fly ash by mechanical means at the plant. Pozzolans such as fly ash are often added to fresh concrete in structural applications when flowability and long term strength are important. When fly ash replaces a percentage of the cement in the mix design, its tiny spherical balls lubricate the mix producing a concrete that is easily placed at a reduced price. Fly ash is primarily a silicate glass with a typical particle size
under 20μm. For this reason, the fly ash in CDF makes CDF what it is - a dense "flowable fill".

An added advantage is that, by definition, a pozzolan reacts with the cement hydration by-product compounds to add strength. "A pozzolan is a siliceous or aluminosiliceous material that in itself possesses little or no cementitious value but will, in finely divided form and in the presence of water, chemically react with the calcium hydroxide released by the hydration of portland cement to form compounds possessing cementitious properties."\(^5\)

ASTM C-618 classifies fly ash into two general categories separate from other pozzolans such as clays, shales, volcanic ashes, and diatomaceous earths (Table 6).

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Calcium Content</th>
<th>Carbon Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class F</td>
<td>Fly Ash with Pozzolanic Properties</td>
<td>< 10%</td>
<td>< 10%</td>
</tr>
<tr>
<td>Class C</td>
<td>Fly Ash w/ Pozzolanic & Cementitious Properties</td>
<td>10-30%</td>
<td>< 2%</td>
</tr>
<tr>
<td>Class N</td>
<td>Other Pozzolans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 - Classes of Pozzolans

Class C fly ash has the advantage of containing higher CaO mineral content which can hydrate like cement in addition to its pozzolanic properties. Fly ash powder resembles cement in appearance. It’s color is typically tan or grey and its specific gravity ranges between 2.2 and 2.8.

Air-Entraining Agent (AEA) may be introduced to help manage the potential freeze-thaw problem that has already been discussed. Its measure must be controlled because air contents mean voids and some loss in compressive strength.

CDF Mixes - In some respects similar to concrete, CDF component materials can be varied to match the intended application. Fly ash and water can be added to increase slump and flowability. Coarse aggregate and cement can be added to increase compressive...
strength. Pozzolanic recommends the following range for each ingredient by weight (lbs) per cubic yard (SSD):

Fine Aggregate (+Coarse if used) Cement Fly Ash Water
2,000 - 3,200 30 - 100 250 - 350 350 - 800

Obviously, the more cement that is added the more CDF behaves like a concrete, stiff and strong, but difficult to excavate and with possible shrinkage cracks. The city of Everett, Stoneway Concrete, and Associated Sand & Gravel have eliminated the coarse aggregate from their CDF mix for most applications. It was determined that the more expensive coarse aggregate created CDF that was stronger than necessary - making it sometimes difficult to excavate. The following summary was constructed to display the variety of mixes possible:

<table>
<thead>
<tr>
<th>Project/Spec</th>
<th>Comp Strength</th>
<th>Course Agg</th>
<th>Fine Agg</th>
<th>Cement</th>
<th>Fly Ash</th>
<th>Water</th>
<th>Slump</th>
</tr>
</thead>
<tbody>
<tr>
<td>51Delmarva Power Co. Cooling Tower Facility</td>
<td>100 psi</td>
<td>-</td>
<td>-</td>
<td>5%</td>
<td>95%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saved $614,000 12,800 CY Pipe bed & Backfill</td>
<td>200 psi</td>
<td>-</td>
<td>-</td>
<td>10%</td>
<td>90%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>300 psi</td>
<td>-</td>
<td>-</td>
<td>15%</td>
<td>85%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52Unpublished 1981 U.S. HUD Spec Backfill, Pipe Bedding, Pavement Subbase, Foundation Stabilization</td>
<td>50-200 psi</td>
<td>2,200 to 3,000 lbs/CY if blend, max size = 1"</td>
<td>125 - 200 Type I or ASTM C-33 lbs/CY</td>
<td>50 to 400 lbs/CY</td>
<td>350 to 800 lbs/CY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53Seattle - Metro Bus tunnel stations, 25,000 CY</td>
<td>80-100 psi</td>
<td>2,450 lbs/CY</td>
<td>30 lbs/CY</td>
<td>300 lbs/CY</td>
<td>300 lbs/CY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kenmore Sewer</td>
<td>435 psi</td>
<td>-</td>
<td>-</td>
<td>100 lbs</td>
<td>300 lbs</td>
<td>260 lbs</td>
<td>8.5"</td>
</tr>
<tr>
<td>54Interceptor trial mixes 1985</td>
<td>485 psi</td>
<td>-</td>
<td>-</td>
<td>125 lbs</td>
<td>250 lbs</td>
<td>270 lbs</td>
<td>9.5"</td>
</tr>
<tr>
<td></td>
<td>585 psi</td>
<td>-</td>
<td>-</td>
<td>150 lbs</td>
<td>350 lbs</td>
<td>250 lbs</td>
<td>9.5"</td>
</tr>
<tr>
<td>55Fairmont, WV stabilize subsidence of mine 1983</td>
<td>200 psi</td>
<td>15,000 tons</td>
<td>125,000 tons</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>56Ohio Ready Mixed Concrete Assoc. recommendation</td>
<td>blend</td>
<td>2,910 lbs</td>
<td>50 lbs</td>
<td>250 lbs</td>
<td>500 lbs max</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57Ohio State Route 7 Sewer Trench backfill</td>
<td>-</td>
<td>2,700 lbs</td>
<td>100 lbs</td>
<td>250 lbs</td>
<td>500 lbs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Table 7 - Possible CDF Mixes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curing[^64] - After mixing and placing, the CDF should be adequately cured to prevent the loss of moisture and to control the temperature in the same manner as concrete. Both parameters are essential for hydration and strength gain. It is desirable to keep a uniform temperature throughout the concrete or CDF mass and to protect the structure from early loads, impact, or vibration during the initial curing period. The cement needs a high humidity environment to continue hydration, so the potential for evaporation must be eliminated as much as possible.

TESTING PROGRAM

Materials.

Soils - Results of resilient modulus testing on CDF would be of no value without being able to compare the results with those of common soil materials. Since current practice recommends the use of resilient modulus tests to determine soil stiffness and resultant suitability as a pavement subgrade, it seems it would be most helpful to the civil engineer to have an expected range of resilient modulus values for various soil groups with which he could make preliminary assessments of existing conditions. After conducting extensive

[^64]: After mixing and placing, the CDF should be adequately cured to prevent the loss of moisture and to control the temperature in the same manner as concrete. Both parameters are essential for hydration and strength gain. It is desirable to keep a uniform temperature throughout the concrete or CDF mass and to protect the structure from early loads, impact, or vibration during the initial curing period. The cement needs a high humidity environment to continue hydration, so the potential for evaporation must be eliminated as much as possible.
literary searches to use as a comparison for CDF, it was determined that such published information is sparse.

To compare CDF resilient values with those of typical subgrades, it was then appropriate to look at what correlation could be made between soil groups and actual resilient modulus values obtained in laboratory testing. It was presumed that tested stiffnesses would substantiate published AASHTO and USCS suitability generalizations. A literature review and additional laboratory tests were conducted as part of the investigation. In addition, a study conducted by the Washington State Transportation Center (TRAC - a joint venture between the two state universities and the Washington State Department of Transportation.) provided local data. Using the above sources, it was possible to obtain a fairly reasonable data base of resilient moduli covering most soil index groups.

Subgrade Stresses - The typical pavement structure used for representative stress calculations was a 6" asphalt concrete ($E_{AC} = 400,000$) & 6" granular base (conservative $E_{bs} = 10,500$). Since stresses are a function of the subgrade resilient modulus, M_r (subgrade stiffness) was initially approximated at 10,000 psi. Using an elastic layer computer program (ELSYM5) and simulating a 9,000 lb wheel load (Equivalent Single-Axle Load), stresses representative of an 18,000 lb equivalent axle were computed to be:

- deviator stress = 7.01 psi
- confining pressure = 1.53 psi
- bulk stress = 11.6 psi

Even though overburden confining pressures increase at increasing depth, we would rarely expect to see ϕ or σ greater than 12 psi in the subgrade since the stresses from applied loads dissipate much more rapidly at increasing depths. At the low confining and applied pressures experienced in the subgrade, it is possible that low stiffnesses may be experienced for "excellent" rated granular materials since they show much more positive sensitivity to stresses. An attempt was made to determine regression equations for all
laboratory tested soil and CDF samples so that modulus values could be compared at equivalent stress levels.

CDF Mix Design. - The 4" X 8" CDF cylinders were prepared at Stoneway Concrete in Renton with representatives from Pozzolanic (Dennis Augustine and Jenny Flechsig). The following materials were used in laboratory test batches:

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Source</th>
<th>Specific Gravity</th>
<th>ASTM Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>II</td>
<td>Ash Grove, Montana City, MT</td>
<td>3.15</td>
<td>ASTM C-150</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>F</td>
<td>Pozzolanic, Centralia, WA</td>
<td>2.20</td>
<td>ASTM C-618</td>
</tr>
<tr>
<td>Sand</td>
<td>Building</td>
<td>Glacier Pit, Steilacom, WA</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Concrete</td>
<td>Glacier Pit, Steilacom, WA</td>
<td>2.63</td>
<td>ASTM C-33 Fine</td>
</tr>
<tr>
<td>Water</td>
<td>Tap</td>
<td>Renton, WA</td>
<td>1.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8 - Tested CDF Composition

The following mix combinations were prepared and tested:

<table>
<thead>
<tr>
<th>Mix</th>
<th>Fine Aggregate (+Coarse if used)</th>
<th>Cement</th>
<th>Fly Ash</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF 351</td>
<td>2,450</td>
<td>30</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Typical (451)</td>
<td>2,585</td>
<td>40</td>
<td>300</td>
<td>268</td>
</tr>
<tr>
<td>No Fly Ash</td>
<td>2,690</td>
<td>40</td>
<td>0</td>
<td>483</td>
</tr>
</tbody>
</table>

All mixes contained 10 oz/CY of an air entraining agent (DARAVAIR).

Stoneway's most popular seller CDF "351" is a mix using only 30 lbs of cement, 300 lbs of fly ash, and combined with a coarse sand filler. The two CDF "351" cylinders were samples previously taken from a fill project and supplied to the University. Their resulting resilient moduli were used for comparison. Due to the material's application as a pavement subgrade, a stiffer mix, using 40 lbs of cement (CDF 451), was prepared and the majority of testing was conducted on these samples. A sand meeting ASTM C-33 Fine
specifications was used for aggregate since in the small 4" diameter cylinders, large aggregate particles might have distorted the results. One cylinder containing no fly ash was tested to determine its effect on the overall stiffness. Building sand was used in the CDF 351 mix. The concrete sand used in the mix with the higher cement content was a more uniformly graded sand meeting ASTM C-33 specifications. The sands gradation curves are as follows:

CDF Sand Gradation Chart

![CDF Sand Gradation Chart](image)

Figure 8 - Sieve Analysis of CDF Sands

Procedures

ASTM procedures for the preparation of fresh concrete specimens was undertaken for the CDF. Unit weight and yield calculations were made following ASTM C 138 procedures with the exception that no rodding of the mix was conducted and weights were taken in the cylinder molds. Due to its flowable nature, slump is virtually immeasurable by ASTM C 143 procedures. Instead equivalent slumps were determined by measuring the horizontal diameter of the circle formed when the inverted slump cone is lifted from the smooth surface (mortar cone test). Specimens were prepared in 4" diameter by 8" high plastic cylinder molds and were not rodded. Initial specimens were not capped prior to testing. Instead porous stone caps were placed at either end of the cylinder. After the first
4 cylinders were tested, a hydrostone cap was placed on subsequent cylinders to help provide a more uniform loading surface since the surface of the hardened mix is somewhat frangible. Obviously, CDF specimens were not compacted as required for typical subgrade soils. All samples were cured at least thirty days prior to resilient modulus testing.

Resilient modulus testing was conducted using AASHTO T274 - Resilient Modulus of Subgrade Soils procedures with some modifications. Since the resilient modulus apparatus at the University of Washington is set up to measure load and deflection on the exterior of the triaxial cell, testing was conducted in this configuration with no attempt to modify it for cylinders that exceeded M_r values of 15,000 psi. The repeated loads were applied pneumatically with a frequency of about 0.5 Hz. Cylinders were “conditioned” and tested at deviator and confining pressures described for granular soils in AASHTO T274 except that deviator stresses larger than 10 to 12 psi were not conducted since subgrades will generally not encounter loads of this magnitude. Also, preliminary tests at zero confining and higher deviator stresses failed due to excessive straining. Using the AASHTO designated deviator loads and confining pressures, K_1 and K_2 values can be determined for each sample’s bulk or deviator stress regression equation. The stresses calculated for a “typical” pavement structure at the subgrade level (Figure 10) can then be inserted in the regression equation to compare stiffnesses of different materials or samples under the same stresses.

Because early tests showed signs of breaking down after a high repetition of loads at higher stresses, it seemed necessary to try to evaluate CDF’s susceptibility to fatigue. Plastic deformations were measured for every load sequence which were cumulatively added to represent the amount of settlement.

An approximate number of equivalent axle loads can be calculated to equate to an equivalent number of years of service life the cylinder was exposed to. To conduct a traffic analysis it is necessary to consider traffic volume, composition, and axle weights with the goal being to develop the equivalent number of 18,000 lb equivalent single axle loads.66
By using AASHTO Design of Pavement Structures (Appendix D) and assuming a structural number (SN) of 4 and terminal serviceability index of 2.5, equivalency factors can be interpolated to represent the damage done to the pavement under varying loads.

Lab tests for soils were mostly conducted at optimal moisture content (optimal for compaction to achieve maximum density) or in situ moisture content. CDF cylinders were cured and stored in a fog room until testing. Moisture content was determined at the conclusion of the resilient modulus testing.

RESULTS

Data & Calculations.

Fresh CDF. - The Absolute Volume Method for determining concrete mix proportions was used for batching the CDF. The following is an example of the calculations made for the typical mix:

Batch Size = .03 yd³ Aggregate Moisture Content = .06 above SSD

<table>
<thead>
<tr>
<th>Material</th>
<th>SSD Weights</th>
<th>SG</th>
<th>Solid Volume</th>
<th>Adj. Weights</th>
<th>Batch Weights</th>
<th>ft³ Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>40</td>
<td>3.15</td>
<td>.20</td>
<td>1.2</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Fly Ash</td>
<td>300</td>
<td>2.25</td>
<td>2.14</td>
<td>9.0</td>
<td>11.11</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>2585</td>
<td>2.63</td>
<td>15.75</td>
<td>2740</td>
<td>82.2</td>
<td>101.48</td>
</tr>
<tr>
<td>Water</td>
<td>255</td>
<td>1.0</td>
<td>4.09</td>
<td>100</td>
<td>3.0</td>
<td>3.70</td>
</tr>
<tr>
<td>Ent Air</td>
<td></td>
<td>4.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS 3180 27.04 95.4 117.77

Volume of Cylinder = πr² * h = π (2/12)² * (8/12) = .0582 ft³

Weight of Cylinder Mold = .31 lbs

Weight of Mold & Mix = 7.17 lbs

Unit Weight of Fresh Mix = (7.17-.31) / (.058) = 118.27 lbs/ft³ ~ 117.77

Yield = 3180 / 118.27 = 26.89 ft³

Slump as traditionally measured > 11”
Slump measured as diameter of circle formed on flat surface (mortar cone) = 21.5”

Cylinder Specimen Data. Data for each specimen tested was recorded on a spreadsheet similar to that recommended in AASHTO T274 except that not all the data was needed for our purposes. An example of the specimen data worksheet is as shown in Table 9.

Calibration. The resilient modulus apparatus was calibrated between each test cylinder using a 5 kip proving ring for load and a vernier micrometer for calibrating deflection readings. An example of the measurements for calibrating the external loading device and the externally mounted linear variable differential transformers (LVDT) is included in Figure 9.

Subgrade Stresses - The ELSYM5 stress computations for an 18 kip single axle load are shown in Figure 10.

Plastic Strain. The permanent deformation was measured from the time the initial load was applied. Measurements therefore include the initial seating of the apparatus and were then larger than they should be. Cylinders also showed signs of long term rebound (after testing at high stresses, plastic strain was negative while loading at lower stresses). This also caused the plastic strain summation to be overly conservative since there was no measure of rebound when the cylinder rested overnight. Only sample 1C was subjected to at least 3000 loading cycles at each loading combination with recordings taken at 200 and 3000 cycles each. The plastic strain spreadsheet shown in Table 10 was used to compute the Equivalent Single Axle Loads (ESALs) for sample 1C and to compute the total strain on the cylinder.

Resilient Modulus - After repeating the loading the prescribed number of times (at least 200), about ten readings were taken, measured, and averaged. An example of a test recording and measurements is displayed in Figure 11. Data was taken for each cylinder at every combination of confining and deviator loads on a worksheet like that in Table 11. The averaged measurements were compiled on the spreadsheet. This spreadsheet was used
<table>
<thead>
<tr>
<th>Soil Sample</th>
<th>Mix</th>
<th>Soil Specimen Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>451</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Specific Gravity</th>
<th>Initial Wt of Container + Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil (gms)</td>
</tr>
<tr>
<td>1G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen Measurements</th>
<th>Top</th>
<th>Diameter</th>
<th>Bottom</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Membrane Thickness</th>
<th>Net Diameter</th>
<th>Ht Spec. + Cap + Base</th>
<th>Ht Cap + Base</th>
<th>Length (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.00</td>
<td></td>
<td></td>
<td>7.875</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Specimen Volume</th>
<th>Area (in²)</th>
<th>Volume (in³)</th>
<th>Wet Density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.56</td>
<td>98.96</td>
<td>116.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Content (Tested)</th>
<th>Wt of Pan (gms)</th>
<th>Wt of Pan + Sample (gms)</th>
<th>Wt of Pan + Dried Sample (gms)</th>
<th>Compaction Water Content, w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>683.0</td>
<td>3563.0</td>
<td>3371.0</td>
<td>10.86%</td>
</tr>
</tbody>
</table>

Volume of Solids, Vs (in³)	#VALUE!
Volume of Water, Vw (in³)	18.07
Volume of Voids, Vv (in³)	#VALUE!
% Saturation	#VALUE!
Dry Density (pcf)	104.91
ELSYS5 ELASTIC LAYER ANALYSIS & STRESS CALCULATIONS

ELASTIC SYSTEM - 6" AC OVERBURDEN

<table>
<thead>
<tr>
<th>LAYER</th>
<th>MODULUS</th>
<th>POISSONS RATIO</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400000.</td>
<td>.350</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>2</td>
<td>10500.</td>
<td>.400</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>3</td>
<td>10000.</td>
<td>.400</td>
<td>SEMI-INFINITE</td>
</tr>
</tbody>
</table>

ONE LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD...... 43113.00 LBS
LOAD STRESS......
LOAD RADIUS...... 120.00 IN

LOADED AT

LOAD X Y
1 1000 2000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)
1 10.0

POINT(S)

NORMAL STRESSES

S1 -.6146E+00
S2 -.6146E+00
S3 -.2854E+00

SHEAR STRESSES

GXY .0000E+00
GXY .0000E+00
GXY .0000E+00

PRINCIPAL STRESSES

PS 1 -.6146E+00
PS 2 -.6146E+00
PS 3 -.2854E+00

PRINCIPAL SHEAR STRESSES

PSS 1 .1874E+00
PSS 2 .0000E+00
PSS 3 .1874E+00

DISPLACEMENTS

FIGURE 10

OVERBURDEN LOAD CALCULATIONS

Use a 20' diameter circular load to simulate AC base overburden weight.

Overburden Area = \(\pi (20')^2 = \frac{314 \times 22}{4} \)

AC Load = \(\frac{6'' \times 145 \times 12}{12} \times 314 \times 2^2 = 22,345 \times \)

Base Course = \(\frac{6'' \times 142.3 \times 12}{12} \times 314 \times 22 = 22,348 \times \)

\[\text{Fig. 10} \]
ELASTIC SYSTEM

<table>
<thead>
<tr>
<th>LAYER</th>
<th>ELASTIC MODULUS</th>
<th>POISSON RATIO</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400000</td>
<td>.350</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>2</td>
<td>105000</td>
<td>.400</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>3</td>
<td>100000</td>
<td>.400</td>
<td>SEMI-INFINITE</td>
</tr>
</tbody>
</table>

ONE LOAD(S). EACH LOAD AS FOLLOWS

TOTAL LOAD..... 9000.00 LBS
LOAD STRESS..... 100.00 PSI
LOAD RADIUS..... 5.35 IN

LOCATED AT
LOAD X Y
1 .000 .000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)
Z = 12.10
X-Y POINT(S)
X
Y
.00
.00

Z = 12.10 LAYER NO. 3

NORMAL STRESSES
SXX -.915PE+00
SYY -.9155E+00
SZZ -.7550E+01

SHEAR STRESSES
SXY .0000E+00
SXZ .0000E+00
SYZ .0000E+00

PRINCIPAL STRESSES
PS 1 -.915PE+00
PS 2 -.9152E+00
PS 3 -.7550E+01

PRINCIPAL SHEAR STRESSES
PS 1 .331RE+01
PS 2 .0000E+00
PS 3 .331RE+01

DISPLACEMENTS
UX .0000E+00
UY .0000E+00

\[\sigma_1 = 7.55 + .92 = 8.47 \text{ psi} \]
\[\sigma_2 = .92 + .61 = 1.53 \text{ psi} \]

\[\sigma_3 = .92 + .61 = 1.53 \text{ psi} \]

\[\text{Bulk stress} = \frac{1}{3} \left(\sigma_1 + \sigma_2 + \sigma_3 \right) = 11.2 \text{ psi} \]

\[\text{Deviator stress} = \sqrt{ \frac{1}{2} \left(\sigma_1 - \sigma_2 \right)^2 + \left(\sigma_1 - \sigma_3 \right)^2 } = 7.01 \text{ psi} \]
<table>
<thead>
<tr>
<th>Deviator Confining (psi)</th>
<th>Rees (kips)</th>
<th>J/7.01*18</th>
<th>Equiv. Factor</th>
<th>ESALS</th>
<th>Δ (in)</th>
<th>Plastic Δ (in)</th>
<th>Cum Δ (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00</td>
<td>5</td>
<td>200</td>
<td>12.84</td>
<td>0.287</td>
<td>57.40</td>
<td>0.0078</td>
<td>0.0078</td>
</tr>
<tr>
<td>10.00</td>
<td>5</td>
<td>200</td>
<td>25.68</td>
<td>3.747</td>
<td>749.40</td>
<td>0.0096</td>
<td>0.0174</td>
</tr>
<tr>
<td>15.00</td>
<td>5</td>
<td>200</td>
<td>25.68</td>
<td>3.747</td>
<td>749.40</td>
<td>0.0021</td>
<td>0.0195</td>
</tr>
<tr>
<td>20.00</td>
<td>10</td>
<td>607</td>
<td>25.01</td>
<td>3.405</td>
<td>2066.84</td>
<td>0.0006</td>
<td>0.0201</td>
</tr>
<tr>
<td>25.00</td>
<td>10</td>
<td>221</td>
<td>4.29</td>
<td>0.004</td>
<td>0.83</td>
<td>0</td>
<td>0.0201</td>
</tr>
<tr>
<td>30.00</td>
<td>10</td>
<td>1016</td>
<td>7.83</td>
<td>0.003</td>
<td>3.05</td>
<td>0</td>
<td>0.0201</td>
</tr>
<tr>
<td>35.00</td>
<td>10</td>
<td>3854</td>
<td>6.95</td>
<td>0.026</td>
<td>100.20</td>
<td>-7</td>
<td>-0.0014</td>
</tr>
<tr>
<td>40.00</td>
<td>10</td>
<td>248</td>
<td>14.10</td>
<td>0.401</td>
<td>99.45</td>
<td>0</td>
<td>0.0187</td>
</tr>
<tr>
<td>45.00</td>
<td>10</td>
<td>1071</td>
<td>14.15</td>
<td>0.407</td>
<td>435.90</td>
<td>0</td>
<td>0.0187</td>
</tr>
<tr>
<td>50.00</td>
<td>10</td>
<td>3256</td>
<td>14.01</td>
<td>0.389</td>
<td>1258.80</td>
<td>0</td>
<td>0.0187</td>
</tr>
<tr>
<td>55.00</td>
<td>10</td>
<td>220</td>
<td>22.12</td>
<td>2.138</td>
<td>470.36</td>
<td>0</td>
<td>0.0187</td>
</tr>
<tr>
<td>60.00</td>
<td>10</td>
<td>1015</td>
<td>16.40</td>
<td>0.568</td>
<td>576.52</td>
<td>10</td>
<td>0.0023</td>
</tr>
<tr>
<td>65.00</td>
<td>10</td>
<td>3215</td>
<td>23.67</td>
<td>2.753</td>
<td>8666.72</td>
<td>3.5</td>
<td>0.0007</td>
</tr>
<tr>
<td>70.00</td>
<td>10</td>
<td>213</td>
<td>35.80</td>
<td>14.09</td>
<td>3001.17</td>
<td>0</td>
<td>0.0214</td>
</tr>
<tr>
<td>75.00</td>
<td>10</td>
<td>1234</td>
<td>35.69</td>
<td>13.92</td>
<td>17177.28</td>
<td>0</td>
<td>0.0241</td>
</tr>
<tr>
<td>80.00</td>
<td>10</td>
<td>3423</td>
<td>35.60</td>
<td>13.78</td>
<td>47237.84</td>
<td>4</td>
<td>0.00007</td>
</tr>
<tr>
<td>85.00</td>
<td>10</td>
<td>242</td>
<td>45.91</td>
<td>41.067</td>
<td>9938.21</td>
<td>0</td>
<td>0.0222</td>
</tr>
<tr>
<td>90.00</td>
<td>10</td>
<td>1240</td>
<td>45.95</td>
<td>41.215</td>
<td>51106.60</td>
<td>2</td>
<td>0.0004</td>
</tr>
<tr>
<td>95.00</td>
<td>10</td>
<td>4595</td>
<td>45.91</td>
<td>41.067</td>
<td>180489.47</td>
<td>4</td>
<td>0.0008</td>
</tr>
<tr>
<td>10.00</td>
<td>5</td>
<td>217</td>
<td>3.68</td>
<td>0.003</td>
<td>0.65</td>
<td>0</td>
<td>0.0234</td>
</tr>
<tr>
<td>12.00</td>
<td>5</td>
<td>1196</td>
<td>3.54</td>
<td>0.012</td>
<td>14.35</td>
<td>2.5</td>
<td>0.0050</td>
</tr>
<tr>
<td>14.00</td>
<td>5</td>
<td>3229</td>
<td>5.45</td>
<td>0.01</td>
<td>32.93</td>
<td>3</td>
<td>0.0006</td>
</tr>
<tr>
<td>16.00</td>
<td>5</td>
<td>214</td>
<td>11.28</td>
<td>0.173</td>
<td>37.02</td>
<td>0</td>
<td>0.0245</td>
</tr>
<tr>
<td>18.00</td>
<td>5</td>
<td>3494</td>
<td>10.89</td>
<td>0.151</td>
<td>527.59</td>
<td>0</td>
<td>0.0245</td>
</tr>
<tr>
<td>20.00</td>
<td>5</td>
<td>207</td>
<td>22.57</td>
<td>2.398</td>
<td>479.83</td>
<td>2</td>
<td>0.0004</td>
</tr>
<tr>
<td>22.00</td>
<td>5</td>
<td>2195</td>
<td>22.33</td>
<td>2.222</td>
<td>4877.29</td>
<td>3.5</td>
<td>0.0007</td>
</tr>
<tr>
<td>24.00</td>
<td>5</td>
<td>4672</td>
<td>22.50</td>
<td>2.29</td>
<td>10698.88</td>
<td>2</td>
<td>0.0004</td>
</tr>
<tr>
<td>26.00</td>
<td>5</td>
<td>215</td>
<td>34.24</td>
<td>11.572</td>
<td>2509.48</td>
<td>1</td>
<td>0.0002</td>
</tr>
<tr>
<td>28.00</td>
<td>5</td>
<td>2013</td>
<td>34.56</td>
<td>11.858</td>
<td>23870.15</td>
<td>3</td>
<td>0.0011</td>
</tr>
<tr>
<td>30.00</td>
<td>5</td>
<td>6352</td>
<td>34.44</td>
<td>11.982</td>
<td>82100.66</td>
<td>3.5</td>
<td>0.0007</td>
</tr>
<tr>
<td>32.00</td>
<td>5</td>
<td>208</td>
<td>45.14</td>
<td>38.218</td>
<td>7949.34</td>
<td>0</td>
<td>0.0279</td>
</tr>
<tr>
<td>34.00</td>
<td>5</td>
<td>3650</td>
<td>45.17</td>
<td>38.329</td>
<td>139900.85</td>
<td>3.5</td>
<td>0.0007</td>
</tr>
<tr>
<td>36.00</td>
<td>5</td>
<td>210</td>
<td>6.23</td>
<td>0.016</td>
<td>3.36</td>
<td>3</td>
<td>0.0006</td>
</tr>
<tr>
<td>38.00</td>
<td>5</td>
<td>2660</td>
<td>5.56</td>
<td>0.011</td>
<td>29.26</td>
<td>2.5</td>
<td>0.0005</td>
</tr>
<tr>
<td>40.00</td>
<td>5</td>
<td>213</td>
<td>11.67</td>
<td>0.195</td>
<td>41.54</td>
<td>0</td>
<td>0.0297</td>
</tr>
<tr>
<td>42.00</td>
<td>5</td>
<td>2991</td>
<td>11.49</td>
<td>0.185</td>
<td>553.34</td>
<td>0</td>
<td>0.0027</td>
</tr>
<tr>
<td>44.00</td>
<td>5</td>
<td>2766</td>
<td>13.04</td>
<td>0.304</td>
<td>83.90</td>
<td>0</td>
<td>0.0029</td>
</tr>
<tr>
<td>46.00</td>
<td>5</td>
<td>2895</td>
<td>13.04</td>
<td>0.304</td>
<td>880.08</td>
<td>2</td>
<td>0.000018</td>
</tr>
<tr>
<td>48.00</td>
<td>5</td>
<td>231</td>
<td>20.62</td>
<td>1.662</td>
<td>333.92</td>
<td>0</td>
<td>0.0298</td>
</tr>
<tr>
<td>50.00</td>
<td>5</td>
<td>3180</td>
<td>20.63</td>
<td>1.665</td>
<td>5294.70</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>52.00</td>
<td>5</td>
<td>200</td>
<td>26.17</td>
<td>4.021</td>
<td>304.20</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>54.00</td>
<td>5</td>
<td>1553</td>
<td>25.86</td>
<td>3.839</td>
<td>5961.97</td>
<td>0</td>
<td>0.0008</td>
</tr>
<tr>
<td>56.00</td>
<td>5</td>
<td>214</td>
<td>26.32</td>
<td>4.113</td>
<td>881.25</td>
<td>0</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

Total ESALS = 612,302.3
Total Δ = 0.02986
Total Strain = 0.00379

* AASHTO p. D-6 (Single Axle, SN = 4, PI = 2.5)

Table: 10
to calculate the stresses, strains, and resulting resilient moduli at each stress combination for each cylinder tested. The spreadsheet calculated K_1 and K_2 values for a bulk stress regression equation as well. Worksheets for all CDF samples are available in Appendix B.

Analysis of Results.

Plastic Strain. - From the worksheet, the total equivalent 18k loads applied to the cylinder was approximately 612,300 (Table 10). For comparison, an analysis conducted on Stevens Way on the campus of the University of Washington this fall determined that its mean annual traffic equalled 83,700 ESALs. Therefore, the laboratory simulation equated to about 7.3 years of traffic if the CDF had been placed as a subgrade for a utility cut across Steven's Way. For additional comparison, the Asphalt Institute estimates annual traffic volume by type of street or highway as follows:

<table>
<thead>
<tr>
<th>Type of Street or Highway</th>
<th>Traffic Class</th>
<th>Estimated 18 KEAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parking Lots</td>
<td>I</td>
<td>5,000</td>
</tr>
<tr>
<td>2. Light traffic residential streets and farm roads.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Residential streets</td>
<td>II</td>
<td>10,000</td>
</tr>
<tr>
<td>2. Rural farm and residential roads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Urban and rural minor collectors</td>
<td>III</td>
<td>100,000</td>
</tr>
<tr>
<td>1. Urban minor arterial and light industrial streets.</td>
<td>IV</td>
<td>1,000,000</td>
</tr>
<tr>
<td>2. Rural major collector and minor arterial highways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Urban freeways and other principal arterial highways</td>
<td>V</td>
<td>3,000,000</td>
</tr>
<tr>
<td>2. Rural interstate and other principal arterial highways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Urban interstate highways</td>
<td>VI</td>
<td>10,000,000</td>
</tr>
<tr>
<td>2. Some industrial roads.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 12 - Asphalt Institute Traffic Classifications

The deformation measured was the total plastic deformation at the time of the reading.

It was observed that when a lighter applied load followed a heavier load, there was
RESILIENT MODULUS SAMPLE 10
5/6/90 [S:] 10 ps
200 loads

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18.5</td>
<td>18</td>
<td>18.5</td>
<td>18.5</td>
<td>18.5</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.5</td>
</tr>
<tr>
<td>Avg</td>
<td>18.12</td>
<td>6.04</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE II - EXAMPLE TEST RESULTS (+ MEASUREMENTS)
SAMPLE RESILIENT MODULUS WORKSHEET

RESILIENT MODULUS

- **AASHTO T274**
- **Start 7/12/90**
- **Finish 7/13/90**

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Constants</th>
<th>Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>LVDT</td>
<td>Type</td>
</tr>
<tr>
<td>7.88</td>
<td>9.33E-05</td>
<td>DF</td>
</tr>
<tr>
<td>Area</td>
<td>Load Cell</td>
<td>Normal</td>
</tr>
<tr>
<td>12.57</td>
<td>1.9139</td>
<td>#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chamber</th>
<th>Nominal Load Cell</th>
<th>Deviator Stress</th>
<th>Deviator Recovery</th>
<th>Recoverable Deformation</th>
<th>Strain</th>
<th>Bulk Stress</th>
<th>Resilient Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Cell</td>
<td>Reading</td>
<td>Reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(psi)</td>
<td>(psi)</td>
<td>(psi)</td>
<td>(psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>1.5</td>
<td>11.10</td>
<td>21.24</td>
<td>1.69</td>
<td>3.15</td>
<td>2.94E-04</td>
<td>3.73E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.69</td>
</tr>
<tr>
<td>10.00</td>
<td>3.0</td>
<td>20.50</td>
<td>39.23</td>
<td>3.12</td>
<td>5.05</td>
<td>4.71E-04</td>
<td>5.98E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.12</td>
</tr>
<tr>
<td>10.00</td>
<td>5.0</td>
<td>32.90</td>
<td>62.97</td>
<td>5.01</td>
<td>8.60</td>
<td>8.02E-04</td>
<td>1.02E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.01</td>
</tr>
<tr>
<td>10.00</td>
<td>8.0</td>
<td>47.60</td>
<td>91.10</td>
<td>7.25</td>
<td>10.50</td>
<td>9.80E-04</td>
<td>1.24E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.25</td>
</tr>
<tr>
<td>10.00</td>
<td>10.0</td>
<td>58.40</td>
<td>111.77</td>
<td>8.89</td>
<td>13.85</td>
<td>1.29E-03</td>
<td>1.64E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.89</td>
</tr>
<tr>
<td>5.00</td>
<td>1.5</td>
<td>11.40</td>
<td>21.82</td>
<td>1.74</td>
<td>3.35</td>
<td>3.13E-04</td>
<td>3.97E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.74</td>
</tr>
<tr>
<td>5.00</td>
<td>3.0</td>
<td>21.30</td>
<td>40.77</td>
<td>3.24</td>
<td>5.50</td>
<td>5.13E-04</td>
<td>6.52E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.24</td>
</tr>
<tr>
<td>5.00</td>
<td>5.0</td>
<td>30.90</td>
<td>59.14</td>
<td>4.71</td>
<td>6.65</td>
<td>6.21E-04</td>
<td>7.88E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.71</td>
</tr>
<tr>
<td>5.00</td>
<td>8.0</td>
<td>49.50</td>
<td>94.74</td>
<td>7.54</td>
<td>12.95</td>
<td>1.21E-03</td>
<td>1.53E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.54</td>
</tr>
<tr>
<td>5.00</td>
<td>10.0</td>
<td>58.05</td>
<td>111.10</td>
<td>8.84</td>
<td>13.70</td>
<td>1.28E-03</td>
<td>1.62E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.84</td>
</tr>
<tr>
<td>1.00</td>
<td>1.5</td>
<td>11.00</td>
<td>21.05</td>
<td>1.68</td>
<td>3.70</td>
<td>3.45E-04</td>
<td>4.38E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.68</td>
</tr>
<tr>
<td>1.00</td>
<td>3.0</td>
<td>20.85</td>
<td>39.90</td>
<td>3.18</td>
<td>5.10</td>
<td>4.76E-04</td>
<td>6.04E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.18</td>
</tr>
<tr>
<td>1.00</td>
<td>5.0</td>
<td>31.55</td>
<td>60.38</td>
<td>4.81</td>
<td>7.90</td>
<td>7.37E-04</td>
<td>9.36E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.81</td>
</tr>
<tr>
<td>1.00</td>
<td>8.0</td>
<td>49.20</td>
<td>94.16</td>
<td>7.49</td>
<td>10.45</td>
<td>9.75E-04</td>
<td>1.24E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.49</td>
</tr>
<tr>
<td>1.00</td>
<td>10.0</td>
<td>60.05</td>
<td>114.93</td>
<td>9.15</td>
<td>9.50</td>
<td>8.86E-04</td>
<td>1.13E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.15</td>
</tr>
</tbody>
</table>

K1 = 48,401 K2 = 0.029

TABLE 11
noticeable long-term rebound in the sample. Unfortunately, any rebound that occurred overnight was not measured, probably causing values to be much higher than in actuality since the same deformation was measured cumulatively. Regardless, the combined plastic strain totalled .00379 in/in after the 7.3 years of equivalent service life. Considering these are extremely conservative figures, the CDF appears to hold up very well under repeated loads.

Resilient Modulus of Soils

Sands & Gravels

For comparison purposes and to broaden the data base, five soils were tested in the laboratory to determine their suitability as a subgrade or base course. Those tested primarily for their properties as a base course consisted of a well-graded crushed rock (GW), a sand and gravel blend (GM), and a uniformly graded crushed rock scalped on the 1/2" sieve (GP). The two less coarse soils were a poorly graded sand (SP) and a sandy clay (SC). All were compacted at optimum moisture content using the standard proctor method. The obtained results are shown in Table 13 and Figures 12 to 16.
<table>
<thead>
<tr>
<th>Soil Type</th>
<th>AASHTO</th>
<th>Index Rating</th>
<th>USCS</th>
<th>Index Rating</th>
<th>Regression Equation</th>
<th>R^2</th>
<th># Data Pts</th>
<th>Density (lb/ft3) Wet</th>
<th>Density (lb/ft3) Dry</th>
<th>Modulus @ $\varnothing=11.6$ psi</th>
<th>Stiffness Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed Rock</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>GW</td>
<td>Excellent</td>
<td>$1.838\varnothing^{0.714}$</td>
<td>.92</td>
<td>4</td>
<td>143.7</td>
<td>134.5</td>
<td>10,577</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Sand / Gravel</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>GMd</td>
<td>Good-Excellent</td>
<td>$30.16\varnothing^{2.043}$</td>
<td>.71</td>
<td>4</td>
<td>142.2</td>
<td>132.6</td>
<td>4,509</td>
<td>Poor</td>
</tr>
<tr>
<td>Scalped Rock</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>GP</td>
<td>Good-Excellent</td>
<td>$7.612\varnothing^{0.281}$</td>
<td>.87</td>
<td>4</td>
<td>118.5</td>
<td>114.2</td>
<td>15,157</td>
<td>Good-Excellent</td>
</tr>
<tr>
<td>Sand</td>
<td>A-1-b</td>
<td>Good-Excellent</td>
<td>SP</td>
<td>Fair-Good</td>
<td>$1.831\varnothing^{0.366}$</td>
<td>.88</td>
<td>15</td>
<td>115.5</td>
<td>100.6</td>
<td>4,490</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>A-2-7</td>
<td>Fair-Good</td>
<td>SC</td>
<td>Poor-Fair</td>
<td>$4.609\varnothing^{0.208}$</td>
<td>.81</td>
<td>15</td>
<td>123.0</td>
<td>105.8</td>
<td>7,674</td>
<td>Fair</td>
</tr>
</tbody>
</table>

Table 13
All the samples demonstrated a much better correlation to bulk stress than to deviator stress as you would expect from the granular material, but not from the clay. This of course supports the position that unbound granular soils are sensitive to confining pressures. The sandy clay probably had a low enough percentage of clay to make it sensitive to confining. The sandy clay did have the flattest curve reaffirming that it was less sensitive than the other materials.

It can be concluded while "excellent" granular base course materials will perform well at high stresses, their high sensitivity to stress makes them only average subgrades where smaller principle stresses develop. This could be largely due to the lack of soil binder in the laboratory samples (AASHTO allows up to 50% > #40 sieve and 25% > #200). With
such a wide variety of materials satisfying the A-1 criteria, there is bound to be significant variability in stiffness. Our laboratory findings then did not support the AASHTO or the Unified Soil Classification System ratings of "excellent" for the unbound granular materials. The sandy clay soil performed better than might be expected in stiffness properties, but of course might be undesirable when swell and frost action are considered.

Fine-grained Soils

In an article by Boateng-Poku and Drumm (1989) supporting a hyperbolic relationship between deviator stress and resilient moduli, a source of data was found for fine-grained soils. In their study, eleven soils representing a range of plasticity and strength properties were evaluated. The results obtained are shown in Table 14. Actual data was not available to evaluate the equation correlation coefficient (R²).

In general, the fine-grained cohesive soils again performed better than would be expected based on stiffness criteria alone. On the other hand, the silty sands (SM) did not perform as well as expected. A significant in flux of water to the unstabilized silt or clay soil will drastically reduce these soil's elasticity and increase their plasticity making them unsuitable subgrades.

Local Subgrades - Washington Data

The most extensive and consistent data came from the Washington state highway system. The study, conducted jointly by the civil engineering department of the University of Washington and the Washington State Department of Transportation materials laboratory, was established to create a new state overlay design procedure. It included field sampling and laboratory tests at the test sites shown in Figure 17. Non-destructive testing with the Falling Weight Deflectometer was also conducted on the same sites and similar stiffness results were obtained adding to the level of confidence for the WA moduli. Table 15 organizes the results.

The Washington lab moduli are mostly consistent within classification groups and with index ratings as graphically demonstrated in Figures 18 &19:
COMPARISON OF LABORATORY RESILIENT MODULI TO SOIL INDEX ON TENNESSEE HIGHWAYS

<table>
<thead>
<tr>
<th>Location</th>
<th>AASHTO</th>
<th>Index Rating</th>
<th>USCS</th>
<th>Index Rating</th>
<th>Regression Equation</th>
<th>R²</th>
<th># Data Pts</th>
<th>Density (lb/ft³)</th>
<th>Density (lb/ft³)</th>
<th>Modulus @ d=7.01 psi</th>
<th>Stiffness Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haywood</td>
<td>A-4(8)</td>
<td>Fair</td>
<td>CL</td>
<td>Poor-Fair</td>
<td>(52.91 + 3.47d)</td>
<td></td>
<td>-</td>
<td>122.1</td>
<td>103.5</td>
<td>13,018</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Haywood</td>
<td>A-6(24)</td>
<td>Poor</td>
<td>CL</td>
<td>Poor-Fair</td>
<td>(36.74 + 8.57d)</td>
<td></td>
<td>-</td>
<td>123.0</td>
<td>102.0</td>
<td>13,881</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Tenderson</td>
<td>A-1b(0)</td>
<td>Excellent</td>
<td>SM</td>
<td>Fair-Good</td>
<td>(6.38 + 11.13d)</td>
<td></td>
<td>-</td>
<td>128.1</td>
<td>111.7</td>
<td>12,040</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Benton</td>
<td>A-7-6(3)</td>
<td>Poor</td>
<td>ML</td>
<td>Poor-Fair</td>
<td>(4.16 + 2.10d)</td>
<td></td>
<td>-</td>
<td>108.8</td>
<td>83.7</td>
<td>2,693</td>
<td>Poor</td>
</tr>
<tr>
<td>Smith</td>
<td>A-4(12)</td>
<td>Fair</td>
<td>ML</td>
<td>Poor-Fair</td>
<td>(60.97 + 8.64d)</td>
<td></td>
<td>-</td>
<td>116.5</td>
<td>94.6</td>
<td>17,338</td>
<td>Good</td>
</tr>
<tr>
<td>Sumner</td>
<td>A-7-6(11)</td>
<td>Poor</td>
<td>CL</td>
<td>Poor-Fair</td>
<td>(38.79 + 2.55d)</td>
<td></td>
<td>-</td>
<td>121.0</td>
<td>96.8</td>
<td>8,084</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>Wilson</td>
<td>A-4(8)</td>
<td>Fair</td>
<td>CL</td>
<td>Poor-Fair</td>
<td>(15.61 + 4.20d)</td>
<td></td>
<td>-</td>
<td>128.0</td>
<td>109.0</td>
<td>6,427</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>Cumberland</td>
<td>A-4(5)</td>
<td>Fair</td>
<td>CL</td>
<td>Poor-Fair</td>
<td>(29.55 + 4.70d)</td>
<td></td>
<td>-</td>
<td>127.6</td>
<td>110.5</td>
<td>8,915</td>
<td>Fair</td>
</tr>
<tr>
<td>Campbell</td>
<td>A-2-4(0)</td>
<td>Good</td>
<td>SM-CL</td>
<td>Poor-Good</td>
<td>(8.76 + 5.81d)</td>
<td></td>
<td>-</td>
<td>130.0</td>
<td>114.7</td>
<td>7,060</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>Knox</td>
<td>A-7-6(28)</td>
<td>Poor</td>
<td>MH</td>
<td>Poor</td>
<td>(55.41 + 3.71d)</td>
<td></td>
<td>-</td>
<td>110.3</td>
<td>80.2</td>
<td>11,613</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>Loudon</td>
<td>A-7-5(27)</td>
<td>Poor</td>
<td>MH</td>
<td>Poor</td>
<td>(63.43 + 9.01d)</td>
<td></td>
<td>-</td>
<td>116.4</td>
<td>88.3</td>
<td>18,059</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table 14
<table>
<thead>
<tr>
<th>Location</th>
<th>AASHTO</th>
<th>Index Rating</th>
<th>USCS</th>
<th>Index Rating</th>
<th>Regression Equation</th>
<th>R^2</th>
<th># Data Pts</th>
<th>Density (lb/ft³)</th>
<th>Density (lb/ft³)</th>
<th>Density (lb/ft³)</th>
<th>Modulus @ $\phi=11.6$ d=7.0 psi</th>
<th>Stiffness Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR410 MP9.6</td>
<td>A-4(8)</td>
<td>Fair</td>
<td>ML</td>
<td>Poor-Fair</td>
<td>3.194d0.358</td>
<td>.93</td>
<td>15</td>
<td>122.7</td>
<td>104.2</td>
<td></td>
<td>6,414</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.102d0.293</td>
<td>.64</td>
<td>20</td>
<td>125.0</td>
<td>106.5</td>
<td></td>
<td>6,361</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.511d0.210</td>
<td>.54</td>
<td>20</td>
<td>126.2</td>
<td>107.7</td>
<td></td>
<td>6,790</td>
<td>Fair</td>
</tr>
<tr>
<td>SR5 MP35.8</td>
<td>A-1-b(0)</td>
<td>Good-Excellent</td>
<td>SMd</td>
<td>Fair-Good</td>
<td>8.13d0.317</td>
<td>.88</td>
<td>15</td>
<td>135.0</td>
<td>122.2</td>
<td></td>
<td>17,686</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,240d0.323</td>
<td>.85</td>
<td>20</td>
<td>132.1</td>
<td>119.9</td>
<td></td>
<td>22,601</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,420d0.207</td>
<td>.64</td>
<td>20</td>
<td>129.0</td>
<td>117.5</td>
<td></td>
<td>27,272</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR500 MP3.2</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>SMd</td>
<td>Fair-Good</td>
<td>7,074d0.270</td>
<td>.90</td>
<td>15</td>
<td>144.0</td>
<td>130.3</td>
<td></td>
<td>11,968</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,428d0.242</td>
<td>.84</td>
<td>20</td>
<td>143.3</td>
<td>131.0</td>
<td></td>
<td>15,104</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,916d0.337</td>
<td>.85</td>
<td>20</td>
<td>139.5</td>
<td>130.4</td>
<td></td>
<td>22,650</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR14 MP18.2</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>GMd</td>
<td>Good-Excellent</td>
<td>13,901d0.260</td>
<td>.88</td>
<td>15</td>
<td>132.2</td>
<td>122.3</td>
<td></td>
<td>23,064</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,742d0.234</td>
<td>.74</td>
<td>20</td>
<td>131.1</td>
<td>121.2</td>
<td></td>
<td>29,709</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17,956d0.198</td>
<td>.68</td>
<td>20</td>
<td>137.1</td>
<td>126.2</td>
<td></td>
<td>29,172</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR11 MP20.8</td>
<td>A-1-b</td>
<td>Good-Excellent</td>
<td>SMd</td>
<td>Fair-Good</td>
<td>5,278d0.499</td>
<td>.83</td>
<td>15</td>
<td>135.7</td>
<td>127.9</td>
<td></td>
<td>17,932</td>
<td>Good-Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,629d0.418</td>
<td>.90</td>
<td>20</td>
<td>138.5</td>
<td>130.3</td>
<td></td>
<td>21,253</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,977d0.373</td>
<td>.88</td>
<td>20</td>
<td>140.0</td>
<td>131.2</td>
<td></td>
<td>22,396</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR20 MP53.5</td>
<td>A-1-b</td>
<td>Good-Excellent</td>
<td>SP</td>
<td>Fair-Good</td>
<td>5,278d0.531</td>
<td>.60</td>
<td>14</td>
<td>126.5</td>
<td>120.6</td>
<td></td>
<td>19,395</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,693d0.511</td>
<td>.88</td>
<td>20</td>
<td>126.8</td>
<td>121.2</td>
<td></td>
<td>23,418</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,172d0.595</td>
<td>.86</td>
<td>18</td>
<td>127.4</td>
<td>122.4</td>
<td></td>
<td>22,234</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR20 MP77.5</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>SMd</td>
<td>Fair-Good</td>
<td>6,220d0.476</td>
<td>.95</td>
<td>15</td>
<td>130.0</td>
<td>124.8</td>
<td></td>
<td>19,974</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,837d0.366</td>
<td>.88</td>
<td>20</td>
<td>132.9</td>
<td>127.2</td>
<td></td>
<td>26,577</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,306d0.403</td>
<td>.90</td>
<td>20</td>
<td>131.7</td>
<td>125.6</td>
<td></td>
<td>24,988</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Table 15
COMPARISON OF LABORATORY RESILIENT MODULUS TO SOIL INDEX ON WASHINGTON HIGHWAYS (cont)

<table>
<thead>
<tr>
<th>Location</th>
<th>AASHTO</th>
<th>Rating</th>
<th>USCS</th>
<th>Rating</th>
<th>Regression Equation</th>
<th>R^2</th>
<th># Data Pts</th>
<th>Density (lb/ft3) Wet</th>
<th>Density (lb/ft3) Dry</th>
<th>Modulus $@ \varnothing=11.6$ d=7.0 psi</th>
<th>Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR20 MP108.2</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>GM</td>
<td>Good-Excellent</td>
<td>$10.991\varnothing^{0.353}$</td>
<td>.89</td>
<td>15</td>
<td>139.0</td>
<td>132.3</td>
<td>26,109</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$11.849\varnothing^{0.361}$</td>
<td>.81</td>
<td>20</td>
<td>139.5</td>
<td>133.6</td>
<td>28,705</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10.579\varnothing^{0.375}$</td>
<td>.89</td>
<td>20</td>
<td>139.5</td>
<td>132.7</td>
<td>26,523</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR20 MP140.8</td>
<td>A-1-a</td>
<td>Excellent</td>
<td>SMd</td>
<td>Fair-Good</td>
<td>$8.548\varnothing^{0.352}$</td>
<td>.91</td>
<td>15</td>
<td>131.4</td>
<td>126.8</td>
<td>20,256</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$9.803\varnothing^{0.341}$</td>
<td>.83</td>
<td>20</td>
<td>134.7</td>
<td>129.5</td>
<td>22,612</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$9.267\varnothing^{0.355}$</td>
<td>.87</td>
<td>20</td>
<td>132.6</td>
<td>127.4</td>
<td>22,122</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR195 MP7.2</td>
<td>A-4(5)</td>
<td>Fair</td>
<td>ML</td>
<td>Poor-Fair</td>
<td>$18.049d^{-0.291}$</td>
<td>.56</td>
<td>15</td>
<td>134.8</td>
<td>118.1</td>
<td>10,241</td>
<td>Fair-Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$20.160d^{-0.247}$</td>
<td>.67</td>
<td>20</td>
<td>136.1</td>
<td>117.9</td>
<td>12,462</td>
<td>Fair-Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$16.019d^{-0.301}$</td>
<td>.89</td>
<td>20</td>
<td>136.1</td>
<td>117.9</td>
<td>8,914</td>
<td>Fair</td>
</tr>
<tr>
<td>SR195 MP20</td>
<td>A-4(8)</td>
<td>Fair</td>
<td>ML</td>
<td>Poor-Fair</td>
<td>$8.228d^{-0.179}$</td>
<td>.66</td>
<td>15</td>
<td>132.8</td>
<td>114.2</td>
<td>5,806</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$33.670d^{-0.275}$</td>
<td>.84</td>
<td>20</td>
<td>130.3</td>
<td>111.0</td>
<td>19,709</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$23.037d^{-0.228}$</td>
<td>.83</td>
<td>20</td>
<td>131.6</td>
<td>113.5</td>
<td>14,778</td>
<td>Excellent</td>
</tr>
<tr>
<td>SR195 MP63.8</td>
<td>A-2-4</td>
<td>Good</td>
<td>SMu</td>
<td>Fair</td>
<td>$4,960d^{+0.079}$</td>
<td>.30</td>
<td>15</td>
<td>140.9</td>
<td>125.2</td>
<td>5,785</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$13.079d^{-0.184}$</td>
<td>.69</td>
<td>20</td>
<td>139.3</td>
<td>124.3</td>
<td>9,140</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$7.466d^{-0.091}$</td>
<td>.39</td>
<td>20</td>
<td>144.3</td>
<td>128.6</td>
<td>6,254</td>
<td>Poor-Fair</td>
</tr>
<tr>
<td>SR90 MP208.8</td>
<td>A-1-b</td>
<td>Good-Excellent</td>
<td>GMd</td>
<td>Good-Excellent</td>
<td>$14,934d^{0.228}$</td>
<td>.84</td>
<td>15</td>
<td>148.8</td>
<td>136.6</td>
<td>23,281</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$24,899d^{0.181}$</td>
<td>.83</td>
<td>20</td>
<td>144.1</td>
<td>134.2</td>
<td>35,421</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$22,540d^{0.193}$</td>
<td>.73</td>
<td>20</td>
<td>144.8</td>
<td>133.7</td>
<td>36,174</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Table 15 (cont)
Washington is fortunate to have good quality natural A-1 soils (mostly gravels and consolidated silts) as opposed to the finer-grained subgrades of Tennessee. On average, the resilient moduli of subgrades on the 13 highway test sites equalled 19,263 psi.

Discussion - It is evident that much more data needs to be collected before definite conclusions can be drawn. However, some preliminary findings about soil moduli might be:
1. In general, soil stiffnesses are consistent with AASHTO and USCS index ratings for subgrade performance but not to the extent that a definitive range of moduli can be determined based solely on soil index (Table 16 & 17, Figures 20 & 21). The plot of moduli versus USCS classifications tends to produce a better fit than those of AASHTO. Generally all soil subgrade types fall between 2,000 and 30,000 psi.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th># Data Pts</th>
<th>Mean Mr</th>
<th>Standard Deviation</th>
<th>97% Probability Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>32</td>
<td>21,321</td>
<td>7,611</td>
<td>6,099-36,543</td>
</tr>
<tr>
<td>A-2</td>
<td>5</td>
<td>7,139</td>
<td>1,297</td>
<td>4,545-9,733</td>
</tr>
<tr>
<td>A-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Insufficient Data</td>
</tr>
<tr>
<td>A-4</td>
<td>13</td>
<td>10,552</td>
<td>4,576</td>
<td>1,400-19,704</td>
</tr>
<tr>
<td>A-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Insufficient Data</td>
</tr>
<tr>
<td>A-6</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>Insufficient Data</td>
</tr>
<tr>
<td>A-7</td>
<td>4</td>
<td>10,113</td>
<td>6,443</td>
<td>0-23,000</td>
</tr>
</tbody>
</table>

Table 16 - Compiled Subgrade Moduli by AASHTO Index

Figure 20 - Overall Subgrade Moduli by AASHTO Classification
<table>
<thead>
<tr>
<th>Soil Type</th>
<th># Data Pts</th>
<th>Mean Mr</th>
<th>Standard Deviation</th>
<th>97% Probability Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>1</td>
<td>9,504</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GP</td>
<td>1</td>
<td>14,552</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GM</td>
<td>10</td>
<td>26,148</td>
<td>9,150</td>
<td>7,848-44,448</td>
</tr>
<tr>
<td>GC</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SW</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP</td>
<td>4</td>
<td>17,324</td>
<td>8,879</td>
<td>0-35,082</td>
</tr>
<tr>
<td>SM</td>
<td>19</td>
<td>18,348</td>
<td>6,549</td>
<td>5,250-31,446</td>
</tr>
<tr>
<td>SC</td>
<td>1</td>
<td>7,456</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ML</td>
<td>11</td>
<td>10,137</td>
<td>5,342</td>
<td>0-20,820</td>
</tr>
<tr>
<td>CL</td>
<td>5</td>
<td>10,051</td>
<td>3,211</td>
<td>3,629-16,473</td>
</tr>
<tr>
<td>OL</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MH</td>
<td>2</td>
<td>14,836</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 17 - Compiled Subgrade Moduli by USCS Index

USCS Data Summary

![USCS Data Summary](image)

Figure 21 - Overall Subgrade Moduli by USCS Classification

2. The A-1 AASHTO classification covers a wide variety of material composition (with and without soil binders) which, in turn, produce a large range of resilient
moduli. The coarse granular soils without soil binder are very sensitive to confining pressures and can, therefore, sometimes be quite "soft" at the low pressures developed at subgrade depth.

3. The A-2 soils appeared to fall into a very tight stiffness group probably due to the fairly limited classification specifications and their relative insensitivity to moisture.

4. The moduli for A-4 to A-7 soils became less and less predictable which was probably related to the differing mineral content of each as well as the high sensitivity to moisture which was variable.

Although it was not possible to get a definitive range of resilient modulus values for each soil group index, a relative "feel" for the moduli you could gather from a given soil type was achieved. In a University of Illinois study, Thompson concluded that while "[(Mr) is significantly correlated with liquid limit, plasticity index, group index, silt content, clay content, specific gravity, and organic carbon content] that "classifying the soil in the AASHTO, Unified, or USDA system does not place fine-grained soils into distinctive resilient behavior groups."

Our research supports Thompson’s findings. In the absence of sample specific test results, it is apparent that moisture content and other factors must be considered when choosing resilient modulus values for design.

Resilient Modulus of CDF

CDF 351 - The mix with only 30 lbs of cement supplied the results shown in Figures 22 and 23, and Table 18 (Samples A & B). Both cylinders tested exhibited a better regression fit with bulk stress than with deviator stress. This is not surprising since there is a minimal amount of cement in the mix. The equation correlation coefficient (R^2) was still very low, signifying that perhaps a different regression equation might better represent stabilized soils and CDF. Evaluating the moduli at a bulk stress of 11.6 psi (18k wheel load), an average value of 11,697 psi is obtained. This puts CDF 351 in the "Fair to Good" previously established "stiffness criteria rating".
CDF 351 Sample B

\[y = 4893.1845 \times x^{0.2836} \quad R = 0.69 \]

CDF 351 Sample B

\[y = 8601.1321 \times x^{0.1412} \quad R = 0.45 \]

Figure 23
CDF Laboratory Resilient Moduli Summary

<table>
<thead>
<tr>
<th>Test Date</th>
<th>CDF Sample #</th>
<th>Cement lb/CY</th>
<th>Fly Ash lb/CY</th>
<th>Aggregate lb/CY</th>
<th>Aggregate Type</th>
<th>Regression Equation</th>
<th>R^2</th>
<th># Data Pts</th>
<th>Density (lb/ft3) Tested</th>
<th>Density (lb/ft3) Dry</th>
<th>W (%)</th>
<th>Modulus @ 18k load (Ø=11.6, d=7.0)</th>
<th>Stiffness Criteria Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/18/89</td>
<td>A 3 0</td>
<td>300</td>
<td>2450</td>
<td>Bld Sand</td>
<td></td>
<td>2.15500.751</td>
<td>.59</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>13.579</td>
<td>Fair-Good</td>
<td></td>
</tr>
<tr>
<td>2/11/90</td>
<td>B 3 0</td>
<td>300</td>
<td>2450</td>
<td>Bld Sand</td>
<td></td>
<td>4.89300.284</td>
<td>.48</td>
<td>26</td>
<td>-</td>
<td>-</td>
<td>7.2</td>
<td>9,815</td>
<td>Fair-Good</td>
</tr>
<tr>
<td></td>
<td>CDF 351</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Averages 0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.2</td>
<td>11,697</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>3/26/90</td>
<td>4C 4 0</td>
<td>0</td>
<td>2690</td>
<td>Sand</td>
<td></td>
<td>1,93200.123</td>
<td>.17</td>
<td>7</td>
<td>105.6</td>
<td>95.5</td>
<td>10.6</td>
<td>2,612</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>CDF No Fly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Averages 0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.6</td>
<td>2,612</td>
<td>Poor</td>
</tr>
<tr>
<td>4/26/90</td>
<td>1D 4 0</td>
<td>300</td>
<td>2585</td>
<td>Sand</td>
<td></td>
<td>6,166d0.479</td>
<td>.86</td>
<td>16</td>
<td>116.3</td>
<td>103.4</td>
<td>12.5</td>
<td>15,671</td>
<td>Excellent</td>
</tr>
<tr>
<td>6/22/90</td>
<td>1C 4 0</td>
<td>300</td>
<td>2585</td>
<td>Sand</td>
<td></td>
<td>32,360d0.209</td>
<td>.58</td>
<td>40</td>
<td>116.1</td>
<td>108.2</td>
<td>7.3</td>
<td>48,614</td>
<td>Excellent</td>
</tr>
<tr>
<td>7/5/90</td>
<td>1E 4 0</td>
<td>300</td>
<td>2585</td>
<td>Sand</td>
<td></td>
<td>29,7100.214</td>
<td>.71</td>
<td>16</td>
<td>115.6</td>
<td>104.2</td>
<td>10.9</td>
<td>50,199</td>
<td>Excellent</td>
</tr>
<tr>
<td>7/12/90</td>
<td>1H 4 0</td>
<td>300</td>
<td>2585</td>
<td>Sand</td>
<td></td>
<td>12.2500.425</td>
<td>.86</td>
<td>16</td>
<td>117.2</td>
<td>105.0</td>
<td>11.7</td>
<td>34,716</td>
<td>Excellent</td>
</tr>
<tr>
<td>7/13/90</td>
<td>1G 4 0</td>
<td>300</td>
<td>2585</td>
<td>Sand</td>
<td></td>
<td>38,850d0.203</td>
<td>.55</td>
<td>15</td>
<td>116.3</td>
<td>104.9</td>
<td>10.9</td>
<td>57,686</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td>CDF 451</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Averages 0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.3</td>
<td>105.1</td>
<td>10.7</td>
</tr>
</tbody>
</table>

Resilient Moduli at Recomputed Stresses

<table>
<thead>
<tr>
<th>CDF Sample</th>
<th>Modulus @18k load ($\bar{\sigma}$=20.7, $d=9.2$ psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>17,851</td>
</tr>
<tr>
<td>1C</td>
<td>51,456</td>
</tr>
<tr>
<td>1E</td>
<td>56,822</td>
</tr>
<tr>
<td>1H</td>
<td>44,404</td>
</tr>
<tr>
<td>1G</td>
<td>60,959</td>
</tr>
<tr>
<td>Average</td>
<td>46,298</td>
</tr>
</tbody>
</table>

Table 18
CDF with no Fly Ash - As expected, the mix containing no fly ash was very weak obtaining an M_r of only 2,612 psi. The benefits of the fly ash filler can be seen in the lower density obtained in this mix. The absence of any pozzolanic reaction could have also contributed to its weakness. Figure 24 and Table 18 demonstrate the results (Sample 4C).

CDF 451 - The mix that the predominate amount of testing was done on proved to be an “excellent” subgrade by the “stiffness criteria rating” averaging 41,377 psi. The results for all five cylinders tested are shown in Figures 25 through 29 and Table 18. The moduli were obtained by using the 11.6 psi bulk stress and 7.0 psi deviator stress loads associated with the 18 kip equivalent single axle load in the best fit regression equation. Since these stresses were computed based on a 10,000 psi subgrade stiffness, they were somewhat inaccurate. Using the new 41k moduli and rerunning the ELSYM5 analysis produces bulk and deviator stresses of 20.7 and 9.2 psi respectively (See Figure 30 for calculations). The recomputed resilient modulus values are shown below the original values in Table 18. Sample 1D which had the lowest M_r value (15,671), also had the lowest dry density and highest tested moisture content. It is considered an outlier because it was the first sample tested from the batch and its membrane was found to be leaking, which could account for its better correlation coefficient with deviator stress. Excluding sample 1D and using the original figures, the standard deviation was 9,580 psi or 20%.

Sample 1C was tested over about a two month period in which it dried to about 7% moisture content. After a one month lapse in testing, the sample exhibited resilient modulus values averaging greater than 100,000 psi. Graphing the sample moisture content at the conclusion of testing vs. the resilient modulus values computed (Figure 31) shows that CDF is as sensitive to moisture conditions as is conventional subgrade materials.
CDF Sample 4C

$y = 2393.4611 \times x^{-0.023}$ $R = 0.09$

CDF Sample 4C

$y = 1931.5358 \times x^{0.1226}$ $R = 0.41$

Figure 24
CDF Sample 1C

$y = 3.844e+4 \times x^{0.0673}$ $R = 0.18$

Bulk Stress $\bar{\sigma}$ (psi)

CDF Sample 1C

$y = 3.236e+4 \times x^{0.2091}$ $R = 0.76$

Deviator Stress (psi)

Figure 25
CDF Sample 1D

$y = 1.227e+4 \cdot x^{0.0156}$ \hspace{1cm} R = 0.03

$y = 615.9532 \cdot x^{0.4794}$ \hspace{1cm} R = 0.93

Figure 26
Figure 27
CDF Sample 1G

Deviator Stress (psi)

[y = 4.840e+4 * x^0.0288 R = 0.11]

Bulk Stress (psi)

[y = 3.885e+4 * x^0.2026 R = 0.74]

FIG. 28
CDF Sample 1H

Bulk Stress \varnothing (psi)

$y = 1.225e+4 \times x^{0.4245} \quad R = 0.93$

CDF Sample 1H

Deviator Stress (psi)

$y = 3.880e+4 \times x^{0.0373} \quad R = 0.09$

Figure 29
ELASTIC SYSTEM - "TIRE LOAD"

<table>
<thead>
<tr>
<th>LAYER</th>
<th>ELASTIC MODULUS</th>
<th>POISSON'S RATIO</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400000.0</td>
<td>.350</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>2</td>
<td>10500.0</td>
<td>.400</td>
<td>6.000 IN</td>
</tr>
<tr>
<td>3</td>
<td>645000.0</td>
<td>.400</td>
<td>SEMI-INFINITE</td>
</tr>
</tbody>
</table>

ONE LOAD(S), EACH LOAD AS FOLLOWS

TOTAL LOAD...... 9000.00 LBS
LOAD STRESS.... 100.00 PSI
LOAD RADIUS.... 5.35 IN

LOCATED AT
LOAD X Y
1 .000 .000

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)
Z = 12.10
X-Y POINT(S)
X Y
.00 .00

Z = 12.10 LAYER NO. 3
X Y
.00 .00

NORMAL STRESSES
SXX -3.149E+01
SXY -3.149E+01
SZZ -1.204E+02

SHEAR STRESSES
SXY .0000E+00
SZZ .0000E+00
SZZ .0000E+00

PRINCIPAL STRESSES
PS 1 -3.149E+01
PS 2 -3.149E+01
PS 3 -1.204E+02

PRINCIPAL SHEAR STRESSES
PSS 1 .4444E+01
PSS 2 .0000E+00
PSS 3 .4444E+01

DISPLACEMENTS
UX .0000E+00
UY .0000E+00

\[\sigma_1 = 12.04 + .99 = 13.03 \text{ psi} \]
\[\sigma_2 = 3.15 + .70 = 3.85 \]
\[\sigma_3 = " " = 3.85 \]
\[\sigma = 20.73 \text{ psi} \]
\[\tau_d = 13.03 - 3.85 = 9.18 \text{ psi} \]

Figure 30
ELASTIC SYSTEM - SUPERIMPOSED

LAYER ELASTIC POISONS THICKNESS
 MODULUS RATIO
 1 1000000. .350 6.000 IN
 2 10500. .400 6.000 IN
 3 37377 .400 SEUM-INFINITY

ONE LOAD(S), EACH LOAD ASollowS

TOTAL LOAD..... 4513.00 LBS
LOAD STRESS..... 1.00 PSI
LOAD RADIUS..... 120.00 IN

LOCATED AT
LOAD X Y
1 0.00 0.00

RESULTS REQUESTED FOR SYSTEM LOCATION(S)

DEPTH(S)
Z = 12.10
X-Y POINT(S)
X Y
0.00 0.00

Z = 12.10 LAYER NO. 3
X Y
0.30 0.00

NORMAL STRESSES
SXX -6950E+00
SYY -6950E+00
SZZ -3897E+00

SHEAR STRESSES
SXY 0.0000E+00
SXX 0.0000E+00
SYZ 0.0000E+00

PRINCIPAL STRESSES
PS 1 -6950E+00
PS 2 -6950E+00
PS 3 -3897E+00

PRINCIPAL SHEAR STRESSES
PSS 1 .1474E+00
PSS 2 0.0000E+00
PSS 3 .1474E+00

DISPLACEMENTS
UX 0.0000E+00
UY 0.0000E+00

FIGURE 30 (cont.)
CONCLUSIONS & RECOMMENDATIONS

1. Resilient modulus for soil subgrades evaluated on Washington state highways averaged 19,300 psi. Established criteria gives Washington subgrade materials an “excellent” rating. From all indications CDF exhibits stiffnesses well in excess of typical pavement subgrades. Resilient modulus values in the 40 ksi range will provide flexible pavements with a strong foundation. The CDF mix could be adjusted to be less stiff by reducing the amount of cement slightly to be more cost efficient. It appears a cement content of about 35 lbs/CY might be sufficient, however, there appears to be a rapid transition in weakening stiffnesses using cement contents between 40 and 30 lbs/CY.

2. Fatigue and durability problems were not encountered when subjecting the specimen to 612,000 equivalent single axle loads. A conservative analysis had plastic strain at 0.38% after as many loads. Additional studies could be done to look solely at this query.

3. Moisture content plays a role in the stiffness of the CDF as well as conventional subgrades. When a cylinder was allowed to dry to 7% moisture, it stiffened significantly. Water content had a direct correlation on the resulting stiffness.
4. Before placing CDF above the frost line, it should be tested to determine its freeze-thaw susceptibility.

5. Fly ash plays an important role in achieving proper density and resilient modulus results. When a CDF sample containing no fly ash was tested, it had a very low density and produced very weak stiffness results.

6. Surprisingly, decent correlation coefficients using conventional backfill regression equations were obtained. However, regression equations representing CDF's resilience were sometimes a function of deviator stress and other times a function of bulk stress. Additional study is needed to determine a regression equation which best represents \(M_r \) as a function of stresses. Certainly, the more cement content in the mix, the better the equation will fit a deviator model.

7. As long as freeze-thaw and drainage are considered for the individual application, Controlled Density Fill is a viable alternative to conventional backfill pavement subgrades in utility trenches.

ACKNOWLEDGEMENTS

This research study was conducted with the help of Pozzolanic, Stoneway Concrete, Associated Sand and Gravel, the City of Everett, WA and the Federal Highway Administration. The assistance of Jenny Flechsig at Pozzolanic and Dr. Don Janssen at the University of Washington was especially appreciated.

REFERENCES

3Pozzolanic, Island Corporate Center, 7525 SE 24th St, Mercer Island, WA 98040, Tom Fox (Manager Technical Services), 1-800-426-5171.
4 Stoneway Concrete, 1915 Maple Valley Highway, Renton, WA 98055, Mel Hitch (Sales Representative), (206) 226-1000.

5Associated Sand & Gravel Company, Inc. Box 2037/6300 Glenwood Ave., Everett, WA 98203, Tom Howerton (Sales Manager), (206) 348-6354.

6Pozzolanic Northwest, Inc. advertisement, Mercer Island, WA.

9Jenny L. Flechsig, Technical Services Representative, Pozzolanic

11“The best thing to hit the road since the wheel!” Inland/Tilbury inform, Inland Cement/Tilbury Cement, Vol. 12, No. 2, Summer 1987, p.2.

13Mike Weitkamp, Maintenance and Operations Supervisor, City of Everett Public Works Dept. - Street Division.

14Dr. Don Janssen, CETS 564 unpublished class notes, University of Washington, Seattle, 1990.

15The Unified Soil Classification System, Appendix B, Characteristics of Soil Groups Pertaining to Roads and Airfields (Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, 1957)

16The Unified Soil Classification System, Appendix B, Characteristics of Soil Groups Pertaining to Roads and Airfields (Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, 1957) Table B1.

38 From AASHTO at 10 psi (CBR X 250 = Mr).

39 The Unified Soil Classification System, Appendix B. Characteristics of Soil Groups Pertaining to Roads and Airfields (Vicksburg, MS: U.S. Army Engineer Waterways Engineering Laboratory, 1957) Table B1.

43 David C. Esch and Robert L. McHattie, "Prediction of Roadway Strength From Soil Properties," Transportation Research Record, 918, pp. 30-34.

45 Dr. Don Janssen, Unpublished notes from CFTS 424 - Pavement Design, University of Washington, Seattle, Fall quarter 1989.

46 Dr. Don Janssen, Unpublished notes from CETS 464 - Construction Materials II, University of Washington, Seattle, Fall quarter 1989.

53 Stoneway Concrete, CDF 351 Mix, Renton, WA.

61 City of Selah, WA, Section 37 of Standard Specifications for Street Construction revision of Sep. 10, 1984 (Lean Mix Cement Concrete).

63 Pozzolanic International records.

65" AC Layer with $E_{AC} = 400,000$ psi, 6" Base Course Layer with $E_{BS} = 10,500$ psi, and Subgrade with $M_r = 10,000$ psi.

