The dependency of the conductivity of polyaniline (emeraldine oxidation state) on its molecular weight has been determined. Uni- and biaxially oriented films and uniaxially oriented fibers of emeraldine base have been studied and the dependency of their degree of crystallinity, tensile strength, and conductivity (after doping) on draw ratio has been determined.
"POLYANILINE: ORIENTED FILMS AND FIBERS"

by

Accepted for Publication in Synthetic Metals, In Press (1990)

University of Pennsylvania
Department of Chemistry
Philadelphia, PA 19104-6323

March 18, 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

The dependency of the conductivity of polyaniline (emeraldine oxidation state) on its molecular weight has been determined. Uni- and biaxially oriented films and uniaxially oriented fibers of emeraldine base have been studied and the dependency of their degree of crystallinity, tensile strength, and conductivity (after doping) on draw ratio has been determined.

INTRODUCTION

The base form of polyaniline in the emeraldine oxidation state is represented by the general formula: $\begin{array}{c}
\text{R}\text{R} \\
\text{R}\text{R} \\
\text{R}\text{R} \\
\text{R}\text{R}
\end{array}$ where R=H (parent emeraldine base), CH$_3$, CH$_3$O, C$_2$H$_5$O, etc. [1]. These base forms can be protonated at the imine nitrogen atoms by aqueous acids to form a polysemiquinone radical cation with a concomitant increase in conductivity of up to ~10 orders of magnitude [1].

It has been known for some time [2] that emeraldine base is readily solution processible and that it may be cast as free-standing, flexible, copper-colored films from its solutions in NMP. These films can be doped with 1M aqueous HCl to yield flexible, lustrous blue films (σ=1-4 S/cm) of emeraldine hydrochloride[2]. This processibility makes it possible to determine the intrinsic electrical and mechanical properties of polyaniline both in its undoped and doped forms as previously demonstrated in preliminary studies[1].
RESULTS

Molecular Weight

The ability to process a polymer into oriented films and fibers depends greatly on its molecular weight; hence a knowledge of the molecular weight of the polyaniline which is being processed is of considerable importance. A solution of "as synthesized" emeraldine base in NMP (containing 0.5 wt.% LiCl) gave a symmetrical monomodal molecular weight distribution curve by G.P.C. (polystyrene standard) resulting in values of M_p-38,000, M_w-78,000, M_n-26,000, M_w/M_n-3.0. It can be separated into six molecular weight fractions varying from: M_p=15,000, M_n=12,000, M_w=22,000; M_w/M_n=1.8 to M_p=320,000, M_n=264,000, M_w=380,000, M_w/M_n=1.4 using a preparative GPC column. The conductivity of the doped (1M HCl) polymer rose monotonically with increasing molecular weight from 1.2 S/cm to 17 S/cm (M_p=174,000) after which it changes relatively little as shown in Fig. 1.

![Conductivity vs Molecular Weight](image1)

Fig. 1. Dependency of conductivity of doped polyaniline (emeraldine oxidation state) on molecular weight.

Fig. 2. X-ray diffraction spectra of emeraldine base of increasing draw ratio (l/l_o; l=final length; l_o=length before stretching).

Oriented Films

Uniaxially oriented, partly crystalline emeraldine base films were obtained by simultaneous heat treatment and mechanical stretching of films of emeraldine base containing ~15 wt.% plasticizer such as NMP. Samples were observed to elongate by up to four times their original length when stretched above the glass transition temperature (>110°C) [1]. The resulting films have anisotropic x-ray diffraction and optical response, with a misorientation of only a few degrees[1].

Lustrous, copper-colored ribbons of uniaxially oriented emeraldine base film up to 1.2 meters in length and 2.5 cm in width (thickness ~20µm) of various draw
ratios can be readily fabricated by stretch-orienting an emeraldine base film cast from NMP solution by passing it between two pinch rollers and then across a heated (-140°C) Teflon coated roller and then finally between a second set of pinch rollers rotating at a higher speed than the first set. The apparent degree of crystallinity is greatly increased by processing of this type as shown in Fig. 2.

The tensile strength of the ribbons also increases significantly (up to 144.8 MPa for 1/\(lo=4\)) with increased draw ratio (and crystallinity). The conductivity of the HCl-doped uniaxially oriented ribbons increases on stretching (1/\(lo=1\), \(\sigma=-5\) S/cm; 1/\(lo=4\), \(\sigma=80\) S/cm). It should be noted that the conductivity of the oriented films is greatly dependent on their method of drying; conductivities of \(-400\) S/cm can be obtained for films which have not been dried to any great extent. As expected, biaxially oriented films exhibit significantly greater tensile strengths than uniaxially oriented films having the same draw ratio.

Oriented Fibers

Fibers (30-70\(\mu m\)) of emeraldine base can be formed by drawing a \(-20\%\) by weight "solution" of emeraldine base in NMP in a water/NMP solution. Fibers can also be spun from NMP solution. The drawn fibers (containing NMP as plasticizer) can be thermally stretch-oriented at \(-140°C\) up to 4.5 times their original length. X-ray diffraction studies show directional enhancement of the Debye-Scherrer rings. A monotonic increase in apparent crystallinity with draw ratio is observed as shown in Fig. 3. This is paralleled by a monotonic increase in conductivity (up to \(-170\) S/cm) after doping with 1M HCl. Preliminary tensile strength studies (366MPa for 1/\(lo=3-4\)) show that emeraldine base fibers both before and after doping with 1M HCl exhibit promising mechanical properties overlapping the lower tensile strength range of commercial fibers such as those of Nylon 6.

Polyethoxylaniline fibers (-24-30\(\mu m\)) can be spun from CH\(_2\)Cl\(_2\) solution and stretch-oriented at \(-140°C\) to 1/\(lo=6\). They have an average tensile strength of \(-275\) MPa and a conductivity of \(-54\) S/cm after doping in 1M HCl.
2D/3D Polyaniline

Emeraldine base can be controllably converted at 300°C under inert conditions into an "isomeric" 2D/3D electroactive polymer involving crosslinking between chains as shown in Fig. 4.

CONCLUSIONS

The improved ability to process pure polyaniline by conventional methods in the form of oriented films and fibers having greatly increased conductivities and having tensile strengths overlapping those of conventional commercial polymers is most encouraging from the point of view of its technological potential. The data obtained show that its intrinsic properties can only be approached through processing and that increases in its conductivity and mechanical properties are controlled by the same fundamental factors, principally, molecular weight and degree of crystallinity.

ACKNOWLEDGEMENTS

Work supported primarily by the Defense Advanced Research Projects Agency through a contract administered by the Office of Naval Research and in part by N.S.F. Grant No. DMR-88-19885.

REFERENCES