LASER SPECTROSCOPY CHARACTERIZATION OF MATERIALS FOR FREQUENCY AGILE SOLID STATE LASER SYSTEMS

Richard C. Powell, Ph.D.
Principal Investigator

Center for Laser Research
OKLAHOMA STATE UNIVERSITY
Stillwater, Oklahoma 74078-0444

FINAL REPORT
Contract Number DAAL03-88-K-0025
ARO Proposal Number P-25478-PH

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, North Carolina 27709-2211

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 3/15/91

3. REPORT TYPE AND DATES COVERED
 Final: 1/15/88 - 1/14/91

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS
 DAAL03-88-K-0025

6. AUTHOR(S)
 Richard C. Powell, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Center for Laser Research
 OKLAHOMA STATE UNIVERSITY
 Stillwater, Oklahoma 74078-0444

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U. S. Army Research Office
 P. O. Box 12211
 Research Triangle Park, NC 27709-2211

10. SPONSORING/MONITORING AGENCY REPORT NUMBER
 ARO 25478.14-9 PH

11. SUPPLEMENTARY NOTES
 The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

 This research involves the use of laser spectroscopy techniques to investigate materials which include laser crystals such as Cr$^{3+}$-doped alexandrite, emerald, garnets, and glass ceramics as well as Nd$^{3+}$-doped garnets and germinates and Ho$^{3+}$-doped fluorides. In addition, photorefractive processes were studied in potassium niobate crystals and in rare earth doped glasses. Some of the results of major importance from this work are: (1) The characterization of the properties of laser-induced gratings in glasses; (2) The elucidation of the effects of dopant ions on the photorefractive response of potassium niobate; (3) The observation of a new type of picosecond nonlinear optical response in potassium niobate associated with scattering from a Nb hopping mode; (4) The characterization of the properties of energy migration and radiationless relaxation processes in Cr$^{3+}$-doped laser crystals; (5) The characterization of the pumping dynamics and lasing properties of Ho$^{3+}$ in BaYb$_2$F$_8$; and (6) The characterization of the pumping dynamics and lasing properties of several Nd$^{3+}$-doped crystals.

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
 UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
 UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED

20. LIMITATION OF ABSTRACT
 UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-18
298-102
This report summarizes the research done in the Center for Laser Research at Oklahoma State University supported by the U.S. Army Research Office under Contract Number DAAL03-88-K-0025 from January 15, 1988 - January 14, 1991. The research involves the use of laser spectroscopy techniques such as four-wave mixing, high power picosecond pulse pumping, and time-resolved site-selection spectroscopy to characterize dynamical optical processes such as energy migration, multiphoton absorption, radiationless relaxation, and the photorefractive effect in materials with potential applications in optical technology. The materials investigated include laser crystals such as Cr$^{3+}$-doped alexandrite, emerald, garnets, and glass ceramics as well as Nd$^{3+}$-doped garnets and germinates and Ho$^{3+}$-doped fluorides. In addition, photorefractive processes were studied in potassium niobate crystals and in rare earth doped glasses. Some of the results of major importance from this work are: (1) The characterization of the properties of laser-induced gratings in glasses; (2) The elucidation of the effects of dopant ions on the photorefractive response of potassium niobate; (3) The observation of a new type of picosecond nonlinear optical response in potassium niobate associated with scattering from a Nb hopping mode; (4) The characterization of the properties of energy migration and radiationless relaxation processes in Cr$^{3+}$-doped laser crystals; (5) The characterization of the pumping dynamics and lasing properties of Ho$^{3+}$ in BaYb$_2$F$_8$; and (6) The characterization of the pumping dynamics and lasing properties of several Nd$^{3+}$-doped crystals.
CONTENTS

1. INTRODUCTION
 1.1 Summary of Research Accomplishments
 1.2 Publications and Personnel

11. SPECTRAL DYNAMICS OF RARE EARTH LASER CRYSTALS
 11.1 Spectral and Up-Conversion Dynamics and Their Relationship to the Laser Properties of BaYb$_2$F$_8$:Ho$^{3+}$
 11.2 Excited State Absorption of Pump Radiation as a Loss Mechanism in Solid-State Lasers
 11.3 Preparation, Structure, and Spectroscopic Properties of Nd$^{3+}$:{La$_{1-x}$Lu$_{x}$}[Lu$_{1-y}$Ga$_y$]$_2$Ga$_3$O$_{12}$ Crystals
 11.4 Site-Selection Spectroscopy, Energy Transfer, and Laser Emission in Nd$^{3+}$-Doped Ba$_2$MgGe$_2$O$_7$
 11.5 Crystallography, Spectroscopic Analysis, and Lasing Properties of Nd$^{3+}$:Ba$_2$ZnGe$_2$O$_7$

III. SPECTROSCOPIC PROPERTIES OF CHROMIUM-DOPED LASER CRYSTALS
 III.1 Laser-Induced Grating Spectroscopy of Alexandrite Crystals
 III.2 Optical Spectroscopy and Four-Wave Mixing in Emerald
 III.3 Four-Wave Mixing Spectroscopy of a Cr$^{3+}$-Doped Transparent Glass Ceramic
 III.4 Laser-Induced Grating Spectroscopy of Cr$^{3+}$-Doped Gd$_3$Ga$_5$O$_{12}$ and Gd$_3$Sc$_2$Ga$_3$O$_{12}$ Crystals
 III.5 Four-Wave Mixing Spectroscopy of Cr-Doped Garnet Crystals
IV. NONLINEAR OPTICAL PROPERTIES OF CRYSTALS AND GLASSES

IV.1 Properties of Laser-Induced Gratings in Eu-Doped Glasses

IV.2 Characteristics of Laser-Induced Gratings in Pr$^{3+}$- and Eu$^{3+}$-Doped Silicate Glasses

IV.3 Optical Applications of Laser-Induced Gratings in Eu Doped Glasses

IV.4 Refractive Index Gratings in Rare-Earth-Doped Alkaline Earth Glasses

IV.5 A Comparison of the Spectroscopic Properties of Eu$^{3+}$-Doped Fluoride and Oxide Glasses Under High-Power, Picosecond-Pulse Excitation

IV.6 Photorefractive Properties of KNO$_3$
1. INTRODUCTION

Optical technology has emerged as a vitally important area for research and development related to military applications. This technology has made important contributions to the development of "smart weapons", communications, surveillance, and display systems. The basis of this technology is optical devices such as laser sources, light modulation devices (frequency, intensity, direction, etc.), light guides (fibers, waveguides, etc.), and detectors. All-solid-state systems have the advantage of ruggedness for field operation. However, the development of these systems is currently limited by the lack of availability of materials with the optimum device operational parameters. The goal of this research project was to enhance our understanding of the fundamental physical processes in optical materials relevant to device operation. Only through an understanding of these processes will it be possible to design optical devices with predictable operational characteristics.

This research focused on laser sources and nonlinear optical materials for modulating laser beams. The physical processes of interest are those affecting the pumping dynamics of solid state lasers and those contributing to the formation of transient and permanent holographic gratings in nonlinear optical materials. The materials of interest included rare earth- and chromium-doped laser crystals, rare earth-doped glasses, and potassium niobate. Laser spectroscopy techniques were used to characterize the properties of these materials. These techniques included four-wave mixing, picosecond pulse-probe measurements, and time-
resolved site-selection spectroscopy, as well as laser-pumped-laser measurements.

The project was divided into three thrust areas according to the type of materials being investigated: rare earth-doped laser crystals; chromium-doped laser crystals; and photorefractive crystals and glasses. The important results obtained during the three years of this contract are briefly outlined in this section and presented in detail in the remainder of the report.

1.1 SUMMARY OF RESEARCH ACCOMPLISHMENTS

The first research area of this contract focused on rare earth-doped laser materials. This work involved two types of projects: characterizing Nd-doped laser materials and characterizing Ho-doped laser materials. Using a tunable alexandrite laser as an excitation source to simulate diode laser pumping, the lasing properties of Nd$^{3+}$ were studied as a function of pump wavelength. The lasing threshold and slope efficiency were measured as well as the spectral, spatial, and temporal beam properties. It was found that excited state absorption of pump photons plays a critical role in determining the lasing properties of a material excited by monochromatic pumping. In addition, the spectroscopic and lasing properties were characterized for Nd$^{3+}$ in several host crystals with potential for diode laser pumping. These included Ba$_2$MgGe$_2$O$_7$, Ba$_2$Zn$_2$Ge$_2$O$_7$, and La$_3$Lu$_2$Ga$_3$O$_{12}$. A comprehensive study was made of the spectral dynamics and lasing properties of Ho$^{3+}$ in BaYb$_2$F$_8$ crystals. Time-resolved site-selection spectroscopy measurements were used to characterize the energy transfer and upconversion processes that
lead to channel switching of the laser output.

The second research area involves vibronic laser materials based on chromium ions. The most important project in this area involved the continuation of our use of four-wave mixing (FWM) to characterize the spectral dynamics of a series of Cr3+-doped laser crystals. This has provided an understanding of the origin of FWM signal in these materials and demonstrated how the polarizability change of the optically-pumped Cr3+ ions can cause "population lensing" of laser beams passing through the sample. In addition, the dynamics of energy transfer among the Cr3+ ions was characterized for different types of laser crystals and found to depend significantly on the concentration and distribution of dopant ions as well as the intrinsic properties of the host material. Information was also obtained on the radiationless relaxation processes involved in pumping these materials. All of this information is relevant to understanding the operation of these materials as solid state lasers. FWM experiments were also performed on a Cr-doped glass ceramic and the results compared to those obtained on Cr-doped crystals.

The third research area focused on the characterization of photorefractive materials for nonlinear optical applications. Two classes of materials were studied: displacive ferroelectrics represented by KNbO\textsubscript{3} crystals and rare earth doped glasses. The studies of laser-induced holographic gratings in rare earth doped glass focused on trying to enhance our understanding of the physical mechanism responsible for this effect. A theoretical model was developed based on a two-level system associated with the structural environment of the rare earth ion. This model was
applied to interpret experimental results obtained on a series of silicate glasses with different monovalent alkali modifier ions and a series of silicate glasses with different divalent alkaline modifier ions. This work has lead to an increased understanding of this phenomena and how to alter the material composition in order to maximize the effect. In addition, applications for optical storage, frequency demultiplexing, and laser beam modulation were demonstrated. A comprehensive study was made of the nonlinear optical properties of undoped and doped KNbO$_3$ since it has the highest photorefractive figure of merit for any material of its class. Using c.w. laser techniques, the properties of photorefractive beam coupling, four-wave mixing, and the dynamics of holographic grating formation and decay were studied. In addition, picosecond pulse-probe techniques were used to investigate the fast nonlinear optical response of this material. The results of this study provide a thorough understanding of the nonlinear optical properties of this material. Of special interest is the fast conjugate signal observed on the picosecond time scale. A model was developed that attributed this fast response to stimulated scattering from a niobium hopping mode.

1.2 PUBLICATIONS AND PERSONNEL

The work performed during the three years of this contract resulted in 21 publications, three doctoral theses, two masters theses, and numerous unpublished presentations and colloquia. These are listed in Table I.

The personnel making major contributions to this research
include the principal investigator, Richard C. Powell, and several visiting scientists and graduate students. The visiting scientists were:

- Dr. Frederic M. Durville, CNRS, Lyon, France;
- Dr. Mahendra G. Jani, OSU Post-Doctoral Research Associate;
- Prof. Dhiraj K. Sardar, University of Texas, San Antonio;
- Prof. Bahaeddin Jassebnejad, Central State University, OK;
- Dr. Roger J. Reeves, University of Christ's Church, New Zealand;
- Dr. Andrzej Suchocki, Polish Academy of Sciences, Poland.

The graduate students support by this contract include G.J. Gilliland, E.G. Behrens, M.L. Kliwer, James D. Allen, Michael J. Ferry, V.A. French, F.M. Hashmi, and K.W. Ver Steeg. Gilliland, Behrens and Kliwer all three received their doctoral degrees from this research. They are now working at IBM Watson Research Laboratories, Fibercek, and Schwartz Electro-Optics, respectively. Allen and Ferry received their masters degrees from this research and are working at Texas Instruments and the Army Center for Night Vision and Electro-Optics, respectively. The other three students are continuing their graduate studies for their doctoral degrees here at Oklahoma State University.

It is a pleasure to acknowledge the collaboration with a number of colleagues. Important contributions to this research were made by:

- Prof. Georges Boulon, University of Lyon, France;
- Mr. Douglas H. Blackburn, NIST;
- Dr. David C. Cranmer, NIST;
Mr. Greg J. Mizell, Virgo Optics;
Dr. Leon Esterowitz, Naval Research Laboratory;
Dr. Toomas H. Allik, Science Applications International;
Dr. M.R. Kokta, Union Carbide Corp.;
Dr. Shui Lai, Allied Signal;
Dr. Donald F. Heller, Allied Signal;

Finally, this work benefited greatly from collaboration with U.S. Army personnel. Dr. Al Pinto and his group at CNVEO worked closely with us on several of these projects and provided an important degree of relevance to this fundamental research program.
TABLE I
THESES, PUBLICATIONS, AND PRESENTATIONS

THESSES

"Optical Spectroscopy in Li_4Ge_5O_12:Mn^{4+} and the Photorefractive Effect in Bi_{12}SiO_{20}", J.D. Allen, M.S. Thesis, Oklahoma State University, December 1989.

PUBLICATIONS

A. Suchocki and R.C. Powell, "Laser-Induced Grating Spectroscopy of Cr3+-Doped Gd\textsubscript{2}Ga\textsubscript{5}O\textsubscript{12} and Gd\textsubscript{3}Sc\textsubscript{2}Ga\textsubscript{3}O\textsubscript{12} Crystals", Chem. Phys. 128, 59 (1988).

INVITED PRESENTATIONS

CONTRIBUTED PRESENTATIONS

R.C. Powell, R.J. Reeves, M.S. Petrovic, "Nonlinear Optical Interactions in II-VI Semiconductors and Displacive Ferroelectrics, SPIE Conference, Orlando, April 1990.

II. SPECTRAL DYNAMICS OF RARE EARTH LASER CRYSTALS

The following five manuscripts present details of the results obtained on several rare earth doped laser crystals. The first involves a Ho$^{3+}$ laser in a fluoride host. Holmium lasers are becoming very important for near infrared laser applications. Because of weak absorption transitions, it is best to sensitize the holmium ions with energy transfer from other ions. This study extensively documents the details of the spectral dynamics of host-sensitized pumping in a fluoride host. It is the most extensive investigation that has been reported on a laser material of this class and the results provide a model for predicting the properties of other sensitized holmium lasers.

The next four papers document the properties of Nd$^{3+}$-doped laser crystals. The first paper focuses on problems associated with the excited state absorption of pump photons that can occur with monochromatic pumping. This is important for diode laser-pumped solid state lasers which is emerging as a very important class of lasers. The results show how important it is to select exactly the right wavelength for the diode laser pump source for maximum pumping efficiency. The other papers document the spectral and lasing properties of Nd$^{3+}$ in three different crystal hosts. This work is part of a survey we are doing to identify host materials for Nd$^{3+}$ lasers with enhanced absorption properties for diode laser pumping and with enhanced properties for Q-switching. The results demonstrate how the spectral properties change for different hosts and help provide a data base for the choice of the best host for a specific system.
Spectral and up-conversion dynamics and their relationship to the laser properties of BaYb$_2$F$_8$:Ho$^{3+}$

Guy D. Gilliland and Richard C. Powell
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444
Leon Esterowitz
Naval Research Laboratory, Washington, D.C. 20375-5000
(Received 25 September 1987; revised manuscript received 7 July 1988)

The optical spectroscopic properties, energy transfer, up-conversion transitions, and lasing dynamics of BaYb$_2$F$_8$:Ho$^{3+}$ crystals are reported here. The positions of the various Stark components of the different J manifolds of Ho$^{3+}$ are identified, and the branching ratios and radiative decay rates were calculated for the Ho$^{3+}$ levels from the Judd-Ofelt theory. The fluorescence-decay kinetics of the Ho$^{3+}$ emission originating on the $^2F_{5/2}$ and $^2S_{1/2}/F_4$ levels and of the Yb$^{3+}$ emission were measured and analyzed with two energy-transfer theories. These calculations show that the Ho$^{3+}$/Yb$^{3+}$ interaction is greater for ions initially in the $^2F_{5/2}$ level and that the diffusion of excitation energy among Yb$^{3+}$ ions is a thermally assisted incoherent hopping process with a diffusion constant of 1.1×10^{-10} cm2/sec at 300 K. The kinetics of the up-conversion processes were modeled with rate equations. It was necessary to include the effects of stimulated emission at 551.5 nm and three successive energy transfers from Yb$^{3+}$ to Ho$^{3+}$ to adequately describe the spectral dynamics of the up-conversion. The efficiencies of the different laser transitions were found to be dependent upon the pump power used. The output of the shorter-wavelength transition (0.55 μm) increases at the expense of the longer-wavelength transition (2.9 μm) as the pump power is increased. The 2.9-μm laser action was found to have a 15% energy conversion efficiency and a slope efficiency of 4.5% when pumped at 1.047 μm.

I. INTRODUCTION

The phenomenon of “frequency up-conversion,” the conversion of infrared light to visible light, has been extensively studied in systems containing rare-earth ions, and up-conversion pumping of rare-earth laser systems has been demonstrated.$^{1-18}$ This can be an important technique for switching laser channels. Important factors in the choice of a host material which affect the efficiency of emission for this type of the up-conversion process are the ability of the host material to accept a large concentration of the optically active ions, and weak electron-phonon interaction so the radiative rates for the visible emitting states of the activator ion are large in comparison to the nonradiative rates.15,19

It is well known that holmium ions can produce stimulated emission at several wavelengths in the infrared portion of the spectrum [2.4, 2.0,1,4 and 2.9 μm (Refs. 5 and 6)] and also in the green region.1 When co-doped with ytterbium, holmium can also convert infrared radiation into green emission efficiently enough for stimulated emission to occur.1,2

In this paper we report the results of an extensive investigation of the spectral, energy-transfer, up-conversion, and lasing properties of BaYb$_2$F$_8$:Ho$^{3+}$ crystals. The energy levels and some of the relevant transitions for Ho$^{3+}$ and Yb$^{3+}$ are shown in Fig. 1. The results of measurements of the absorption and emission spectra at various temperatures as well as the results of a Judd-Ofelt analysis15,20,22 are presented. The important features of two different up-conversion processes have been analyzed and related to the stimulated emission at 2.9, 2.0, and 0.55 μm.

II. EXPERIMENT

The sample used for this investigation was a single crystal of BaYb$_2$F$_8$ containing 7.0 at. % Ho$^{3+}$ ions (9.0×10^{20} cm$^{-3}$) and 93 at. % Yb$^{3+}$ ions 1.2×10^{22}

FIG. 1. Energy levels and model for up-conversion of infrared light.
cm$^{-1}$. It had a diameter of 5.0 mm and a length of 7.0 mm. The host crystal has the same structure as BaFm F, which crystallizes in the monoclinic symmetry with two molecules per unit cell. The space group is C_{2h}^4 (C_{2h}^5),23,24 with lattice parameters $a = 6.394$ Å, $b = 10.53$ Å, $c = 4.346$ Å, and $\beta = 90^\circ + 18^\circ$. The Yb$^{3+}$ ions sit in a site of eightfold coordination with F anions and form a slightly distorted Thomson cube. The Ho$^{3+}$ ions substitute for the Yb$^{3+}$ ions. The host crystal is a single-center system, and the low symmetry of this site implies that all degeneracy in the electronic energy levels is removed except Kramers's degeneracy. 24

The absorption and fluorescence spectra were obtained with standard spectroscopic equipment. For time-resolved energy-transfer studies, the excitation was provided by a nitrogen-laser-pumped dye laser with either Coumarin-540A or DCM dyes. For stimulated-emission measurements, the primary output from a passively mode-locked Nd:YAG (YAG denotes yttrium aluminum garnet) laser having a pulse width of 50 psec was used to pump the sample. The laser-performance measurements at 2.0 μm were done using the primary output of a Nd:YLF (YLF denotes yttrium lithium fluoride) laser at 1.047 μm with a 60-fsec pulse width as a pump source.

III. ABSORPTION AND EMISSION SPECTRA

Figure 2 shows the various regions of the absorption spectrum at 12 K. The spectrum is characterized by sharp lines in the visible region due to transitions within the $4f^{10}$ configuration of the Ho$^{3+}$ ions, a broadband with structure in the near-infrared due to the $^2F_{7/2} - ^2F_{5/2}$ transition of the Yb$^{3+}$ ions, and several absorption bands between 1.1 and 2.0 μm due to transitions to the lower-lying energy levels of the Ho$^{3+}$ ions. Figures 3(a)–3(h) show the spectra of the visible and infrared emission of Ho$^{3+}$ ions and the near-infrared emission of Yb$^{3+}$ ions at 12 K. Figure 3(i) shows the 2.8 μm emission of Ho$^{3+}$ at room temperature since it was too weak to detect at 12 K. The additional lines in the spectra at higher temperatures are due to absorption from the thermally populated higher Stark components of the 3I_8 ground-state multiplet of Ho$^{3+}$.

A comparison of the emission spectrum of Yb$^{3+}$ at 12 K shown in Fig. 3(j) with the absorption spectrum at 12 K shown in Fig. 2(b) demonstrates that both have the same general shape. From this we conclude that the splitting of the ground-state manifold $^2F_{7/2}$ of the Yb$^{3+}$ ions is about 760 cm$^{-1}$. In C_{2h} point-group symmetry each J manifold of Ho$^{3+}$ is split by the crystal field into $2J + 1$ non-Kramers levels, while each J manifold of Yb$^{3+}$ is split into $J + \frac{1}{2}$ Kramers doublets. The crystal-field levels of Ho$^{3+}$ have been identified from the absorption and emission spectra of BaYb$_2$F$_7$:Ho$^{3+}$ and are shown in Table I. It was impossible to identify the crystal-field levels of Yb$^{3+}$ due to the lack of resolution of the broad, overlapping levels.

The Judd-Ofelt theory was applied to the room-temperature absorption spectrum of this sample to determine the radiative decay rates and branching ratios of the transitions. The oscillator strength of a transition of average frequency ν from a level J to the level J' is expressed as

![Fig. 2. Absorption spectra of BaYb$_2$F$_7$:Ho$^{3+}$ at 12 K. (a) Transitions to the 3I_8 and higher levels of Ho$^{3+}$; (b) transitions to the $^3F_{7/2}$ levels of Yb$^{3+}$; (c) transitions to the $^1I_{6}$ levels of Ho$^{3+}$; (d) transitions to the 1I_8 levels of Ho$^{3+}$.](image-url)
FIG 3 Ho⁺⁺ and Yb⁺⁺ emission in BaYb,F. Ho⁺⁺: (a)–(d) at 12 K and (e) at 300 K. (a) F₁⁺⁻I₄ transitions; (b) F₁⁺⁻I₄ transitions; (c) G₁⁺⁻I₄ transitions; (d) S₁⁺⁻F₁⁺ transitions; (e) F₁⁺⁻I₄ transitions; (f) S₁⁺⁻F₁⁺ transitions; (g) I₄⁺⁺I₄⁺⁺ transitions; (h) F₁⁺⁻I₄ transitions; (i) I₄⁺⁺I₄⁺⁺ transitions; (j) I₄⁺⁺I₄⁺⁺ transitions.
SPECTRAL AND UP-CONVERSION DYNAMICS AND THEIR APPLICATIONS

\[f(aJ; bJ') = \frac{(8\pi^2 m_v)}{[3h(2J + 1)e^2]} \times \left[S_{\text{ED}}(aJ; bJ') + S_{\text{MD}}(aJ; bJ') \right], \quad (1) \]

where the electric-dipole and magnetic-dipole line strengths are

\[S_{\text{ED}}(aJ; bJ') = e^2 \sum_{i=2,4,6} \Omega_i \left| \langle f''| U^{(1)} | f'' \rangle \right|^2, \quad (2a) \]

\[S_{\text{MD}}(aJ; bJ') = \left[\frac{e^2}{(4\pi^2 c^2)} \right] \times \left| \langle f''| L + 2S | f'' \rangle \right|^2, \quad (2b) \]

\[\text{respectively. Here, } a \text{ and } b \text{ represent the other quantum numbers designating the states, } f'' \text{ represents the electronic configuration, } U^{(1)} \text{ is the tensor operator for electric-dipole transitions, } L + 2S \text{ is the operator for magnetic-dipole transitions, and } \Omega_i \text{ are the phenomenological parameters associated with the crystal-field environment of the ion in the host. The reduced matrix elements in Eqs. (2a) and (2b) have been calculated elsewhere}^{22,23} \text{ and are essentially invariant from host to host. The oscillator strength of a transition can be calculated from the absorption spectrum at room temperature using the equation}

\[f = \frac{(mcn^2)}{[(\pi e^2 N \chi) \int \sigma(v) dv]}, \quad (3) \]

\[\text{where } m \text{ and } e \text{ are the mass and charge of the electron, } c \text{ is the speed of light, } N \text{ is the concentration of absorbing centers, and } \int \sigma(v) dv \text{ is the integrated absorption cross section. } \chi \text{ is the correction term for the effective field in the crystal and is approximated by } \chi_{\text{ED}} = n(n^2 + 2)^2/9 \text{ for electric-dipole transitions and } \chi_{\text{MD}} = n^3 \text{ for magnetic-dipole transitions where } n \text{ is the refractive index of the host. Measurements of the dispersion curves have not been performed on the host at this time. A value of } n = 1.6 \text{ was used, which is similar to values of the index of refraction for other fluoride materials. It was found that varying } n \text{ over a reasonable range of values did not significantly alter the results of the Judd-Ofelt analysis.}

By combining Eqs. (1)–(3) and using the reduced matrix elements calculated by Weber22 for Ho3+, the phenomenological parameters \(\Omega_i \) were determined from a least-squares fit to the absorption spectrum. These were found to be 0.96 x 10-20 cm2, 2.12 x 10-20 cm2, and 3.25 x 10-20 cm2. Using these results, the spontaneous-emission probability can be obtained for each transition from

\[A(aJ; bJ') = \frac{(64\pi^4 v^3)}{[3(2J + 1)e^3]} \times (\chi_{\text{ED}} S_{\text{ED}} + \chi_{\text{MD}} S_{\text{MD}}). \quad (4) \]

The radiative lifetimes and branching ratios can be determined by

\[\tau_{RI}^{-1} = \sum_j A(i, j), \quad (5) \]

\[\beta(i, j) = \frac{A(i, j)}{\tau_{RI}}, \quad (6) \]

\[\text{where the summation is over transitions to final states } j \text{. The results of this analysis are summarized in Table II and are estimated to have an accuracy of } \pm 10\%. \]

IV. ENERGY-TRANSFER PROCESSES

Many theories have been developed to describe energy migration and transfer between ions. Each of these theories is limited to a specific range of parameters for which it is valid.28–33 The results obtained in this work are analyzed with two models which are valid for...
different circumstances. The Ho$^{3+}$-Yb$^{3+}$ energy transfer is consistent with a single-step process, while the Yb$^{3+}$-Ho$^{3+}$ energy transfer is consistent with a model in which energy transfer between sensitizer and activator ions acts as a weak perturbation on the strong diffusion among stoichiometric component of sensitizer ions while Yb$^{3+}$ ions play the role of activator ions. Justification for the assumption of no Ho$^{3+}$-Ho$^{3+}$ interaction is based on the relative concentrations of sensitizer and activator ions. Because Yb$^{3+}$ is a stoichiometric component of BaYb$_2$F$_4$ and there are approximately ten Yb$^{3+}$ ions for every Ho$^{3+}$ ion, the nearest-neighbor environment of optically active ions surrounding the Ho$^{3+}$ ions consists almost completely of Yb$^{3+}$ ions (assuming no clustering of Ho$^{3+}$ ions). The Ho$^{3+}$-Yb$^{3+}$ energy transfer can involve two sets of electronic-emission transitions, 1S$_{2,5}$$^{2}F_{4}$$^{-}$$^{1}I_{6}$ and $^{1}F_{3}$$^{-}$$^{1}I_{7}$, which are both resonant with the $^{2}F_{2}$$^{-}$$^{2}F_{5,2}$ absorption transition of Yb$^{3+}$. Therefore, the branching ratios for each of these transitions need to be considered to determine the effects of competing processes. If the Ho$^{3+}$-Ho$^{3+}$ interaction is present, it will involve resonant emission and absorption transitions between the excited state, 5S$_{2,5}$,$^{2}F_{4}$ or $^{2}F_{5}$, and the ground state, 1I, of Ho$^{3+}$. By assuming only nearest-neighbor interactions and using the branching ratios listed in Table II, we estimate that the Ho$^{3+}$-Yb$^{3+}$ interaction is 3.3 times more probable than the Ho$^{3+}$-Ho$^{3+}$ interaction for ions in the 1F$_{3}$ state of Ho$^{3+}$ (see Fig. 4), and in the case of ions in the 1S$_{2,5}$,$^{2}F_{4}$ states it is 1.1 times as probable. For randomly distributed Ho$^{3+}$ ions the Ho$^{3+}$-Ho$^{3+}$ interaction would be over distances much greater than nearest-neighbor separations and thus the interaction strength will be significantly less than the estimates given above. Therefore, the Ho$^{3+}$-Yb$^{3+}$ interaction strength is greater than the Ho$^{3+}$-Ho$^{3+}$ interaction strength, and as a first approximation, the theory of Inokuti and Hirayama can be used to characterize this case.

![Table II. Radiative decay rates and branching ratios for Ho$^{3+}$ transitions in BaYb$_2$F$_4$:Ho$^{3+}$ crystals.](Image)

<table>
<thead>
<tr>
<th>Initial level</th>
<th>Terminal level</th>
<th>$A(i,j)$ (sec$^{-1}$)</th>
<th>$\beta(i,j)$</th>
<th>τ_{β}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1I$_{5}$</td>
<td>1I$_{5}$</td>
<td>120.44</td>
<td>1.00</td>
<td>8.3 msec</td>
</tr>
<tr>
<td>1I$_{6}$</td>
<td>1I$_{6}$</td>
<td>262.63</td>
<td>0.91</td>
<td>9.7 msec</td>
</tr>
<tr>
<td>1I$_{7}$</td>
<td>1I$_{7}$</td>
<td>38.77</td>
<td>0.044</td>
<td>190 μsec</td>
</tr>
<tr>
<td>1I$_{8}$</td>
<td>1I$_{8}$</td>
<td>0.055</td>
<td>2.43 x 10$^{-3}$</td>
<td>422 μsec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{4}$</td>
<td>110.48</td>
<td>0.049</td>
<td>9.7 msec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{5}$</td>
<td>429.39</td>
<td>0.190</td>
<td>9.7 msec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{6}$</td>
<td>1818.20</td>
<td>0.757</td>
<td>9.7 msec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{7}$</td>
<td>48.70</td>
<td>0.004</td>
<td>190 μsec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{8}$</td>
<td>146.70</td>
<td>0.028</td>
<td>190 μsec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{9}$</td>
<td>283.67</td>
<td>0.054</td>
<td>190 μsec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{10}$</td>
<td>800.35</td>
<td>0.152</td>
<td>190 μsec</td>
</tr>
<tr>
<td>1F$_{3}$</td>
<td>1I$_{11}$</td>
<td>3981.90</td>
<td>0.756</td>
<td>190 μsec</td>
</tr>
</tbody>
</table>

$^\Omega_{i} = 9.6 \times 10^{-20}$ cm2; $\Omega_{a} = 2.12 \times 10^{-20}$ cm2; $\Omega_{b} = 3.25 \times 10^{-20}$ cm2.

\[I(t) = A \exp \left[-t/\tau - \Gamma (1 - 3/\gamma C / C_0 (t/\tau)^{1/2}) \right], \]

where τ is the intrinsic lifetime of the sensitizer in the absence of activator ions, C is the concentration of activators, C_0 is called the "critical transfer concentration," Γ is the gamma function, and A is a normalization constant. The critical transfer distance R_0 can be determined from C_0 by:

\[R_0 = (3/4\pi C_0)^{1/3}. \]

A. Ho$^{3+}$-Yb$^{3+}$ energy transfer

As a first approximation, we assume that the excitation energy residing on the Ho$^{3+}$ ions does not migrate between Ho$^{3+}$ ions, but is capable of being transferred to Yb$^{3+}$ ions. Thus for this case the Ho$^{3+}$ ions play the role of sensitizer ions while Yb$^{3+}$ ions play the role of activator ions. Justification for the assumption of no Ho$^{3+}$-Ho$^{3+}$ interaction is based on the relative concentrations of sensitizer and activator ions. Because Yb$^{3+}$ is a stoichiometric component of BaYb$_2$F$_4$ and there are approximately ten Yb$^{3+}$ ions for every Ho$^{3+}$ ion, the nearest-neighbor environment of optically active ions surrounding the Ho$^{3+}$ ions consists almost completely of Yb$^{3+}$ ions (assuming no clustering of Ho$^{3+}$ ions). The Ho$^{3+}$-Yb$^{3+}$ energy transfer can involve two sets of electronic-emission transitions, 1S$_{2,5}$,$^{2}F_{4}$$^{-}$$^{1}I_{6}$ and $^{1}F_{3}$$^{-}$$^{1}I_{7}$, which are both resonant with the $^{2}F_{2}$$^{-}$$^{2}F_{5,2}$ absorption transition of Yb$^{3+}$. Therefore, the branching ratios for each of these transitions need to be considered to determine the effects of competing processes. If the Ho$^{3+}$-Ho$^{3+}$ interaction is present, it will involve resonant emission and absorption transitions between the excited state, 5S$_{2,5}$,$^{2}F_{4}$ or $^{2}F_{5}$, and the ground state, 1I, of Ho$^{3+}$. By assuming only nearest-neighbor interactions and using the branching ratios listed in Table II, we estimate that the Ho$^{3+}$-Yb$^{3+}$ interaction is 3.3 times more probable than the Ho$^{3+}$-Ho$^{3+}$ interaction for ions in the 1F$_{3}$ state of Ho$^{3+}$ (see Fig. 4), and in the case of ions in the 1S$_{2,5}$,$^{2}F_{4}$ states it is 1.1 times as probable. For randomly distributed Ho$^{3+}$ ions the Ho$^{3+}$-Ho$^{3+}$ interaction would be over distances much greater than nearest-neighbor separations and thus the interaction strength will be significantly less than the estimates given above. Therefore, the Ho$^{3+}$-Yb$^{3+}$ interaction strength is greater than the Ho$^{3+}$-Ho$^{3+}$ interaction strength, and as a first approximation, the theory of Inokuti and Hirayama can be used to characterize this case.
SPECTRAL AND UP-CONVERSION DYNAMICS AND THEIR...

To characterize the energy-transfer processes, the kinetics of the fluorescence transitions between the initially excited states and the ground state of the Ho$^{3+}$ ions was monitored. The fluorescence decay from the 5S_2, 5F_4 levels of Ho$^{3+}$ was measured by monitoring the transitions terminating on the ground state at several temperatures ranging from 12 to 300 K. Figure 5 shows the decay of the fluorescence intensity at 12 K along with least-squares fits to the data using Eq. (7) for different multipolar interactions. The best fit for all temperatures is for the dipole-dipole interaction. The decay curves are all clearly nonexponential at short times for all temperatures and tend asymptotically toward an exponential at long times. The intrinsic decay rate of the Ho$^{3+}$ ions was determined from the exponential part of the decay curves approached at long times. The theoretical curves generated from Eq. (7) were fitted to the data by treating C/C_0 as an adjustable parameter for each type of interaction ($s = 6, 8, 10$), and values for R_0 were determined using Eq. (8). The temperature dependence of R_0 for these initial conditions is plotted in Fig. 6.

The coupling between the Ho$^{3+}$ and Yb$^{3+}$ ions with the former initially in the 5F_3 state was also investigated using Eq. (7) to fit the fluorescence-decay curves. The intrinsic decay rate in this case was again determined from the exponential tail of the decay kinetics and was found to be in substantial agreement with the measured value obtained in a sample of BaY$_2$F$_6$:Ho$^{3+}$, which contains no Yb$^{3+}$. The interaction mechanism in this case was again found to be electric-dipole-dipole. However, the strength of the interaction, as well as its temperature dependence, is different. The strength of the interaction, which is reflected in the magnitude of the critical interaction distance R_0, is shown as a function of temperature in Fig. 6.

Examination of Fig. 6 shows that the interaction strength between Ho$^{3+}$ and Yb$^{3+}$ ions is slightly greater when the Ho$^{3+}$ ions are in the 5F_3 excited state than when they are in the 5S_2, 5F_4 excited state. The value of R_0 for the former case is close to the nearest neighbor distance between Ho$^{3+}$ and Yb$^{3+}$ ions, which is approximately 2.7 Å, whereas the value of R_0 is slightly smaller than this for ions in the 5S_2, 5F_4 states. If the Ho$^{3+}$ ions are directly excited, the temperature dependence of the interaction strength can affect the temperature dependence of the integrated fluorescence intensity of the Yb$^{3+}$ ions. Figure 7 shows the temperature dependence of the integrated fluorescence intensity at 1.0 μm due to Yb$^{3+}$ emission after two types of excitation. After pumping the 5F_3 state of Ho$^{3+}$, the interaction strength is independent of temperature and the Yb$^{3+}$ fluorescence decreases monotonically with temperature due to some quenching mechanism in the Yb$^{3+}$ ion, possibly energy transfer to the $^1I_{65}$ state of Ho$^{3+}$. The situation is quite different in the case of excitation into the 5S_2, 5F_4 states of Ho$^{3+}$. The temperature dependence of the Yb$^{3+}$ emission for this case increases to a maximum at approximately 50 K and then decreases. The interaction strength depicted in

FIG. 4. Comparison of the absorption spectra at 12 and 200 K for the 5F_3 level of Ho$^{3+}$.

FIG. 5. 5S_2, 5F_4 emission at 12 K (dots), along with theoretical fits from Inokuti-Hirayama theory ($s = 6$, solid line; $s = 8$, short-dashed line; $s = 10$, long-dashed line).

FIG. 6. Temperature dependence of R_0, for 5F_3 and 5S_2, 5F_4 states calculated from Inokuti-Hirayama theory.
Fig. 6 shows the same type of temperature dependence for this excitation. Thus the increase in the fluorescence intensity at 10 µm up to 50 K is due to the increase in the interaction strength between the Ho ions and Yb ions, and the decrease in the fluorescence intensity above 50 K is due to both the decrease in the interaction strength and the quenching of the Yb emission mentioned above.

B. Yb and Ho energy transfer

Because of the large concentration of Yb ions, 93 at. %, when the Yb ions play the role of sensitzers the multistep diffusion among sensitizers is dominant over the single-step direct transfer from an excited Yb ion to an unexcited Ho ion. For weak diffusion the theory of Yoko and Tanimoto describes the energy-transfer kinetics, while for strong diffusion the theory developed by Chow and Powell gives the appropriate description. Both theories were fitted to the data obtained here and it was found that the parameters describing the energy transfer are consistent with the strong-diffusion model.

The equation governing the excited sensitizer concentration \(n(r, t) \) is

\[
\frac{\partial n(r, t)}{\partial t} = -\beta n(r, t) + D \nabla^2 n(r, t) - \sum_i \psi(r - R_i, n(r, t))
\]

(9)

Here, \(\beta \) is the intrinsic decay rate of the sensitizer ions, \(D \) is the diffusion coefficient describing the energy migration among the sensitizer ions, \(R_i \) is the position vector for a given activator ion, \(r \) is the position vector for the sensitizer ions, and \(\psi(r - R_i) \) is the interaction strength for a given sensitizer-activator pair. The second term on the right-hand side of Eq. (9) describes diffusion among the sensitizers, while the third term describes the sensitizer-activator interaction. The solution of Eq. (9) was obtained by Chow and Powell for a dipole-dipole interaction, where \(\psi(r - R_i) = \alpha/|r - R_i|^7 \), which is weaker than energy transfer by diffusive migration. The solution of Eq. (9) was then averaged over a uniformly random activator distribution. Most theories, including this one, assume a uniformly distributed lattice of sensitizers, so that a single average hopping time can be used to describe the random walk of the excitation energy, "exciton." This situation should be valid for the "host-sensitized" energy transfer in this crystal.

The intensity of sensitizer fluorescence given by Chow and Powell is

\[
I_s(t) = A \exp\left(-t/\tau - \omega_d t/4D_1 \right),
\]

(10)

where the energy-transfer rate is given by

\[
\omega_d = 4\pi D a n \left[1 + \frac{\pi D}{\tau} \right] + 2\pi n_1 \alpha + 3a^3 + 2\pi n_1 a^3 \int_0^\infty d\alpha/\alpha^5 \text{erfc}\left(\frac{r - a}{\sqrt{4Dt}}\right).
\]

(11)

Here, \(a \) is the activator trapping radius, and the lower limit of the integrals do not extend to zero due to the finite nearest-neighbor distance between the sensitizer and activators. The relation between \(\alpha \) and \(R_0 \) is

\[
R_0 = (\alpha a)^{1/3},
\]

(12)

where \(\tau \) is the intrinsic decay time of the sensitizer. The integrals appearing in Eq. (11) were evaluated numerically and the sensitizer-activator interaction constant \(n \), diffusion coefficient \(D \), and trapping radius \(a \) were determined by performing a nonlinear least-squares fit to the data. The intrinsic decay time of the \(^{2}F_{5/2} \) Yb emission has been determined previously to be 1.8 msec, independent of temperature. For each set of data the validity of the Chow-Powell theory was examined. The assumptions made in deriving Eq. (10) lead to the condition \(4\pi D a^3 \alpha^{1/2} > 1 \). This restriction was found to be valid for every set of data examined, typically giving a value of 31.8 for the left-hand side of the inequality. An example of the best fit to the decay kinetics of Yb emission at 12 K is shown in Fig. 8.

The temperature dependences of the diffusion constant \(D \) and sensitizer-activator interaction strength \(\alpha \) obtained from the Chow-Powell theory are shown in Fig. 9. The diffusion constant increases with temperature and is \(1.1 \times 10^{-5} \) cm²/sec at 100 °C. The long lifetime of the \(^{2}F_{5/2} \) sensitizer ensures that there is sufficient population in this state for the resonant cross-relaxation process from Yb to Ho to occur on the time scale of the Yb emission.
V. UP-CONVERSION AND STIMULATED-EMISSION PROCESSES

Materials containing both Yb$^{3+}$ and Ho$^{3+}$ ions can efficiently convert 1.0-μm radiation into visible radiation.\(^1\) As can be seen from the energy-level diagram for Yb$^{3+}$ and Ho$^{3+}$ shown in Fig. 1, Ho$^{3+}$ has several nearly equally spaced energy levels giving rise to transitions which are coincident in energy with the $^2F_{5/2}$, 2E, Yb$^{3+}$ transition near 1.0 μm. The green emission corresponding to the $^5S_2, ^5I_4 \rightarrow ^7I_8$ transition of Ho$^{3+}$ is seen when the sample is excited with either of two longer wavelengths as discussed below, but the mechanism for the up-conversion in each case is different.

There are several multiphoton mechanisms which can be responsible for the up-conversion.\(^7\) One possible mechanism is the sequential absorption of two pump photons by a single ion. Another possible mechanism is the absorption of pump photons by more than one ion with the subsequent energy transfer to the emitting ion.\(^8\) The following results indicate that the latter mechanism is the dominant up-conversion mechanism responsible for the green emission in BaYb$_2$F$_{12}$:Ho$^{3+}$ for both types of excitation.

The kinetics of up-conversion processes can be modeled using rate equations. The emission from $^5S_2, ^5I_4 \rightarrow ^7I_8$ transition of Ho$^{3+}$ after excitation into the 5F_4 level of Ho$^{3+}$ state can be modeled as shown in Fig. 10. The first step in the up-conversion 300 K. The diffusion length can be determined from

$$L_d = (2D \tau)^{1/2}$$

and these values are listed in Table III. The accuracy of these energy-transfer parameters is estimated to be $\pm 10\%$. Figure 9 shows that the sensitizer-activator in-
interaction strength has the same temperature dependence as that calculated for the Ho$^{3+}$-Yb$^{3+}$ transfer from the theory of Inokuti and Hirayama. The major difference is that the role of the sensitizer and activator ions are reversed in these two cases. For resonant processes the interaction strength is contained in the overlap integral between the sensitizer emission and activator absorption. The magnitude of the spectral overlap changes depending on which ion acts as sensitizer and activator due to the energy shift for emission for both Ho$^{3+}$ and Yb$^{3+}$ ions. However, the variation of the spectral overlap with temperature is essentially the same for both cases.

The actual measurement was performed by pumping the $^{1}S_{2},^{3}F_{4}$ states of Ho$^{3+}$ and monitoring the Yb$^{3+}$ emission. The population of the Yb$^{3+}$ excited state is achieved by the resonant cross-relaxation process

$$\text{Ho}^{3+}(^{1}S_{2},^{3}F_{4}),\text{Yb}^{3+}(^{2}F_{7/2}) \rightarrow \text{Ho}^{3+}(^{2}F_{7/2}),\text{Yb}^{3+}(^{1}S_{2},^{3}F_{4})$$

Initially the population of $^{3}I_{6}$ is equal to that of the $^{3}F_{4}$ state of Yb$^{3+}$. Therefore the energy transfer from Yb$^{3+}$ to Ho$^{3+}$ can take place via two types of processes. The first is transfer to the $^{1}F_{5/2}$ state via a phonon-assisted energy transfer. The second is the resonant cross relaxation

$$\text{Yb}^{3+}(^{2}F_{7/2}),\text{Ho}^{3+}(^{3}I_{6}) \rightarrow \text{Yb}^{3+}(^{2}F_{7/2}),\text{Ho}^{3+}(^{1}S_{2},^{3}F_{4})$$

The temperature dependence and difference in rates between resonant and nonresonant processes, calculated below, point to the second mechanism as the dominant is the resonant cross-relaxation process

$$|\text{Ho}^{3+}(^{3}F_{5}),\text{Yb}^{3+}(^{2}F_{7/2})\rangle \rightarrow |\text{Ho}^{3+}(^{3}F_{7}),\text{Yb}^{3+}(^{2}F_{5/2})\rangle$$

The relative probability of this process is related to the branching ratio for the Ho$^{3+}$ transition, which is listed in Table II as 0.19. Therefore, this transition is one-fourth as probable as the transition originating from this excited level and terminating on the ground state. A rate equation analysis of the energy-transfer rate between sensitizers and activators, when two energy levels are taken to characterize these ions, gives a relationship between the energy-transfer rate and the risetime of the activator emission

$$t_{\text{max}} = \frac{(P'_{s} - P'_{f} - P_{Sd})^{-1} \ln[P'_{f}/(P'_{s} + P'_{f})]}{150}$$

where P'_{s} and P'_{f} are the radiative rates of the sensitizer and activator, respectively, and P_{Sd} is the energy-transfer rate. The Yb$^{3+}$ emission has a risetime of 4 μsec for this excitation which implies that the Ho$^{3+}$-Yb$^{3+}$ transfer occurs with a rate of 1.5×10^{5} sec$^{-1}$. Thus this first step in the up-conversion process also explains the observed Yb$^{3+}$ emission. The second step in the up-conversion process can proceed by one of two mechanisms. The first is a resonant cross-relaxation between two Ho$^{3+}$ ions,

$$|\text{Ho}^{3+}(^{3}F_{5}),\text{Ho}^{3+}(^{3}I_{6})\rangle \rightarrow |\text{Ho}^{3+}(^{3}I_{6}),\text{Ho}^{3+}(^{1}S_{2},^{3}F_{4})\rangle,$$

and the second is the absorption of an excitation photon by a Ho$^{3+}$ ion that has already participated in the first step and is in the $^{3}I_{6}$ level. The last step involves both weak fluorescence from the $^{3}F_{4}$ level followed by fast nonradiative decay to the $^{1}S_{2},^{3}F_{4}$ states and the green emission.

If a second cross-relaxation process is responsible for the excitation into the $^{3}F_{4}$ state, then it will originate on the $^{3}I_{6}$ level of a Ho$^{3+}$ ion which has already undergone the first cross-relaxation process. The reason for this is that the radiative lifetime of the $^{3}I_{6}$ level is 9 μsec while that of the $^{3}F_{4}$ level is 420 μsec. If a single ion were to absorb a photon, undergo cross relaxation, and then absorb another photon, it would require that the cross-relaxation process be faster than the duration of the pump pulse. This rules out the sequential two-photon mechanism because the pulse width of the laser excitation is 10 nsec, and the cross-relaxation time, reflected in the risetime of the $^{3}F_{4}$ Yb$^{3+}$ emission, is 4 μsec at 12 K.

The rate equations used to analyze the spectral dynamics are

$$\frac{ds_{1}}{dt} = \chi_{1}n_{1}(S - s_{1} - \gamma_{s}n_{1} - \beta_{s}s_{1}) \quad (15a)$$

$$\frac{dn_{3}}{dt} = \chi_{3}n_{3}(S - n_{3} - \gamma_{n}n_{3} - \gamma_{n}n_{1} - \gamma_{3}n_{1}) \quad (15b)$$

$$\quad - \beta_{s}s_{1} - \gamma_{s}n_{1} - \gamma_{n}n_{1} - \beta_{s}s_{1} - \beta_{n}n_{1} - \beta_{s}s_{1}.$$
shown the multiphonon emission rate with temperature, and the energy transfer from the theoretical model described above. The data taken at the level of each energy level will be proportional to the population of the level. The observed fluorescence intensity from each level in the region of the transfer coefficients were treated as adjustable parameters. A b-function excitation was assumed and the four-photon process. Figure 13 shows the excitation spectra for absorbing photons from the laser excitation, X_i ($i=1,2$) is the energy-transfer coefficient, γ_i ($i=1-5$) is the fluorescence-decay rate of each Ho^{3+} level as shown in the figure, and κ is the nonradiative-decay rate from 3F_3 to $^3I_{15/2}$.

These equations were solved numerically on a DEC Micro-Vax II microcomputer using a fourth-order Runge-Kutta method in order to find the transient solutions. A b-function excitation was assumed and the four transfer coefficients were treated as adjustable parameters. The observed fluorescence intensity from each level will be proportional to the population of the level. The time evolution of the fluorescence emissions from the $^3P_{1/2}$ level of Yb^{3+} and the $^5S_{1/2},^3F_4$ levels of Ho^{3+} are shown in Fig. 11. The solid and dashed lines represent the computer-generated least-squares fit to the data using the theoretical model described above. The data taken at 12 K were analyzed because the 3P_1 emission is too weak to detect at higher temperatures due to the increase in the multiphonon emission rate with temperature, and the Yb^{3+} emission is strongest at 12 K, as shown in Fig. 7. This analysis provides a fit of two sets of data with the same set of adjustable parameters. The best-fit parameters are listed in Table IV and are estimated to be accurate to ±10%. The intensity of the green emission as a function of laser-pump power is found to be almost quadratic, as shown in Fig. 12. This is expected for any two-photon process. Figure 13 shows the excitation spectra for the green up-conversion along with the absorption spectra in the region of the $^2F_{5/2}$ state of Ho^{3+}. The excitation spectra have been corrected for variations in laser power and the penetration depth into the sample. This shows a one-to-one correspondence with the positions of the peaks in the absorption spectra.

The kinetics leading to the green emission from the $^5S_{1/2},^3P_4$ levels after excitation into the inhomogeneously broadened $^2F_{5/2}$ state of the Yb^{3+} ion can be modeled as shown in Fig. 1. The first step in the up-conversion is the energy transfer from Yb^{3+} to Ho^{3+},

$$|\text{Yb}^{3+}(^2F_{5/2})\text{Ho}^{3+}(^3I_{15/2})\rangle \rightarrow |\text{Yb}^{3+}(^2F_{7/2})\text{Ho}^{3+}(^3I_{15/2})\rangle .$$

![FIG. 11. Decay kinetics of emission from $^2F_{7/2}$ level of Yb^{3+} and $^3S_{1/2},^3P_4$ level of Ho^{3+} at 12 K with rate-equation fits.](image)

![FIG. 12. Power dependence of green up-conversion, obtained by pumping 3P_1 and observing green emission from $^3S_{1/2},^3F_4$ at 12 K.](image)
This is a nonresonant process and the difference in energy is made up by the emission of phonons. As can be seen from the energy-level diagram, Fig. 1, the energy mismatch is about 1700 cm$^{-1}$. The phonons in this material have a maximum energy of approximately 450 cm$^{-1}$; therefore the phonon-assisted energy transfer takes place with the emission of at least four phonons. The back-transfer rate from Ho$^{3+}$ to Yb$^{3+}$ should be smaller than the forward-transfer rate by a factor of 3^{16} [$\exp(\Delta E/k_B T)$]4, where ΔE is the energy of the phonons absorbed. This difference in rates is approximately 3 orders of magnitude at room temperature. The next step in the total scheme is the resonant cross-relaxation

$$\text{Yb}^{3+}(2F_{5/2}), \text{Ho}^{3+}(3I_{15/2}) \rightarrow \text{Yb}^{3+}(2F_{7/2}), \text{Ho}^{3+}(3S_{7/2}, 3F_{4})$$

The third step, which is necessary in order to explain the observed dependence of the green-emission intensity on infrared pump power as discussed below, is also resonant. This process is

$$\text{Yb}^{3+}(2F_{7/2}), \text{Ho}^{3+}(3S_{7/2}, 3F_{4}) \rightarrow \text{Yb}^{3+}(2F_{7/2}), \text{Ho}^{3+}(3H_{15/2})$$

In both of these resonant processes, background cannot be neglected. The presence of back-transfer was confirmed experimentally by the observation of the emission at 1.0 μm due to Yb$^{3+}$ after pumping the $3S_{5/2}, 3F_4$ and $3H_{15/2}$ states of Ho$^{3+}$. The risetime for the Yb$^{3+}$ emission was measured to be 15 μsec at 12 K.

The rate equations for this model are

$$\frac{dn_1}{dt} = W_{p}(S - s_1) - \gamma_1 s_1 (N - n_1 - n_2 - n_3)$$

$$+ \gamma_1 n_1 (S - s_1) - \gamma_2 s_1 (N - n_1 - n_2 - n_3)$$

$$- \gamma_3 s_1 (N - n_1 - n_2 - n_3)$$

$$- \gamma_2 n_1 (S - s_1) - \gamma_3 n_1 (S - s_1) - \beta_n n_1 - \phi_p n_1 p_1$$

$$+ \gamma_3 n_1 (S - s_1) - \gamma_2 n_1 (S - s_1) - \beta_n n_1 - \phi_p n_1 p_1$$

where the definitions of the parameters are as described following Eqs. (15). Here, γ_1 and n_1 are the populations of the i^{th} energy levels of the Yb$^{3+}$ ions, $2F_{7/2}$ and $2F_{5/2}$, and Ho$^{3+}$ ions, $3I_{15/2}, 3I_{13/2}, 3S_{7/2}F_4$, and $3H_{15/2}$, respectively. Terms representing stimulated-emission transitions from levels n_1 and n_2 are included in the model. Stimulated emission from n_1 occurs at 2.9 μm, and p_1 represents the total number of photons at this wavelength in the sample. ϕ_p represents the stimulated-emission parameter which is related to the stimulated-emission threshold, and τ_e represents the total number of photons in the sample.

Figure 14 shows the power dependence of the intensity of the green fluorescent emission versus the power of the infrared pump power as discussed below, is also resonant. This process is

$$\text{Yb}^{3+}(2F_{5/2}), \text{Ho}^{3+}(3I_{15/2}) \rightarrow \text{Yb}^{3+}(2F_{7/2}), \text{Ho}^{3+}(3H_{15/2})$$

The third step, which is necessary in order to explain the observed dependence of the green-emission intensity on infrared pump power as discussed below, is also resonant. This process is

$$\text{Yb}^{3+}(2F_{5/2}), \text{Ho}^{3+}(3S_{7/2}, 3F_{4}) \rightarrow \text{Yb}^{3+}(2F_{7/2}), \text{Ho}^{3+}(3H_{15/2})$$

In both of these resonant processes, back-transfer cannot be neglected. The presence of back-transfer was confirmed experimentally by the observation of the emission at 1.0 μm due to Yb$^{3+}$ after pumping the $3S_{5/2}, 3F_4$ and $3H_{15/2}$ states of Ho$^{3+}$. The risetime for the Yb$^{3+}$ emission was measured to be 15 μsec at 12 K.

The rate equations for this model are

$$\frac{dn_1}{dt} = W_{p}(S - s_1) - \gamma_1 s_1 (N - n_1 - n_2 - n_3)$$

$$+ \gamma_1 n_1 (S - s_1) - \gamma_2 s_1 (N - n_1 - n_2 - n_3)$$

$$- \gamma_3 s_1 (N - n_1 - n_2 - n_3)$$

$$- \gamma_2 n_1 (S - s_1) - \gamma_3 n_1 (S - s_1) - \beta_n n_1 - \phi_p n_1 p_1$$

$$+ \gamma_3 n_1 (S - s_1) - \gamma_2 n_1 (S - s_1) - \beta_n n_1 - \phi_p n_1 p_1$$

$$+ \gamma_3 n_1 (S - s_1) - \gamma_2 n_1 (S - s_1) - \beta_n n_1 - \phi_p n_1 p_1$$

where the definitions of the parameters are as described following Eqs. (15). Here, γ_1 and n_1 are the populations of the i^{th} energy levels of the Yb$^{3+}$ ions, $2F_{7/2}$ and $2F_{5/2}$, and Ho$^{3+}$ ions, $3I_{15/2}, 3I_{13/2}, 3S_{7/2}F_4$, and $3H_{15/2}$, respectively. Terms representing stimulated-emission transitions from levels n_1 and n_2 are included in the model. Stimulated emission from n_1 occurs at 2.9 μm, and p_1 represents the total number of photons at this wavelength in the sample. ϕ_p represents the stimulated-emission parameter which is related to the stimulated-emission threshold, and τ_e represents the total number of photons in the sample at this wavelength. Stimulated emission from n_2 occurs at 551.5 nm, and p_2, ϕ_2, and τ_2 represent the same parameters for this transition. As shown below, it is necessary to include stimulated emission at 551.5 nm in order to explain the observed power dependence of the green up-conversion and the observed lifetime shortening. The stimulated emission from n_1 must be included because we have determined the threshold for laser action at 2.9 μm to be 80 mJ corresponding to a pumping rate of 4.3×10^{24} photons/sec. This threshold occurs at a considerably lower pumping rate than that used in our spectroscopic measurements ($10^{24} - 10^{25}$ photons/sec). Omission of this term will lead to nonphysical values for the energy-transfer coefficients, tending to overestimate the forward-transfer coefficients γ.

The data show the presence of saturation effects since the slope is much less than quadratic, as is usually expected for a two-photon process. At a pumping rate of 4.0×10^{25} photons/sec the slope of the curve shows a significant increase which is due to stimulated emission. The change in slope corresponds to the threshold for this process and is consistent with the onset of the observed lifetime shortening discussed below. This power dependence was modeled using the rate equations given in Eqs. (16). These equations were solved numerically using the same computer procedure described above. A δ-function excitation was assumed and the transfer coefficients γ_2, γ_1, γ_3, and the stimulated-emission parameter ϕ_2 were treated as adjustable parameters. γ_1 can be estimated from the risetime of the 1.2-μm emission and γ_1 was chosen to be approximately 3 orders of magnitude smaller, as discussed earlier. γ_1 was chosen to be 7.0×10^{-18} cm3/sec, agreeing with earlier estimates. γ_3 and γ_2 were chosen to be 1.0×10^{-21} cm3/sec. γ_2 can be measured by exciting Ho$^{3+}$ in the $3S_{7/2}, 3F_4$ levels and measuring the risetime of the $2F_{5/2}$ Yb$^{3+}$ emission.
From these measurements γ_2 was calculated to be 1.4×10^{-17} cm3/sec. The measured fluorescence-decay rates were used for the transition rates. τ_1 and τ_2 were chosen to be 10 psec, the time it takes light to pass through the sample. ϕ_1 was chosen to agree with the threshold for the 2.9-μm laser action using the equation

$$n_1 = \frac{1}{\tau_1 \phi_1} \beta_1^{-1}.$$

(17)

This is obtained by defining the threshold as when the gain terms equals the loss term in Eq. (16e). The resulting best fit to the data is shown as a solid line in Fig. 14. The values for the adjustable parameters obtained from this fit are listed in Table IV and estimated to have an accuracy of $\pm 10\%$.

The peak intensities of green emission, plotted in Fig. 14 and in the theoretical fit were chosen at the peak of the rise in the number of photons, p_2, in the sample. This time was about 1.5 μsec for pump powers below the threshold for stimulated emission in the green transition and became shorter above the threshold, eventually becoming limited by experimental resolution. The time evolution of the green emission below this threshold was also calculated from the rate equations and is shown along with the experimentally measured data in Fig. 15.

Under the condition of low-power infrared excitation the lifetime of the green transition is measured to be approximately 47 μsec. When the excitation power is increased to the threshold value of 4.0×10^{26} photons/sec and above, the shape of the decay curve abruptly changes. The short-time emission decays much faster than at low excitation powers, and the long-time decay is the same as for the low-power excitation. The $1/e$ value of the decay curve is plotted as a function of pump power in Fig. 16. The general shape of these data is similar to that reported in Refs. 42 and 43 and shows a definite excitation threshold. The fact that the intensity of the green emission increases instead of decreases above this threshold value confirms that we are observing a gain and not a loss mechanism. The increase in intensity is a result of the stimulated emission which causes the emission of photons at earlier times (lifetime shortening), thereby inhibiting the third energy-transfer step.

The model presented here has one more energy-transfer step than is necessary to explain the population of the $^5S_2, ^5F_4$ states by the up-conversion mechanism. The additional energy-transfer process to the 3H_6 level must be included in order to explain the observed power dependence shown in Fig. 14. This level acts as a "sink" for the excitation since population can accumulate in this level or decay into levels other than n_1 or n_2 without being recycled into these metastable levels on the time scale of the green emission. Without this additional energy level the green-emission intensity dependence on pump power cannot become sublinear. In this case the model is essentially a closed system, on the time scale of the experiment, because the decay times are much longer than the observed risetimes at which the data were taken. The saturation behavior of the population of n_2 would, at

FIG. 14. Power dependence of green up-conversion, obtained by pumping $^2F_{7/2}$ level of Yb$^{3+}$ at room temperature.

FIG. 15. $^5S_2, ^5F_4$ decay kinetics with rate-equation fit.

FIG. 16. Decay time of $^5S_2, ^5F_4$ at room temperature as a function of excitation power showing lifetime shortening.
best, decrease from a quadratic to a linear dependence on pump power, and the slope could not become any smaller without this additional level.

Figure 17 shows the laser output energy at 2.9 \(\mu \text{m} \) as a function of the energy input into the crystal at room temperature. Laser action was achieved by end-pumping the laser rod with a Nd:YLF laser constructed in-house. The pump laser had a wavelength of 1.047 \(\mu \text{m} \) and a pulse width of 60 \(\mu \text{sec} \). The YLF laser was operated in the long-pulse regime with no mode-selective elements and a 30% output coupler. Output energies up to 750 mJ are obtainable from the pump laser. The 2.9-\(\mu \text{m} \) laser cavity consisted of a flat high reflector (greater than 99% reflecting at 2.9 \(\mu \text{m} \)) and a flat output coupler (approximately 90% reflecting at 2.9 \(\mu \text{m} \)), separated by 5 cm. An energy-conversion efficiency of 15% is obtained with a slope efficiency of 4.5% and a fractional pump light absorption in the rod of 0.33 times the incident energy on the laser rod. The threshold for 2.9-\(\mu \text{m} \) lasing action was found to be 80 mJ of incident pump energy. Antipenko et al.\(^{9}\) have reported a conversion efficiency of 7.5% using the 1.061-\(\mu \text{m} \) emission from a Nd:GSGG (GSGG denotes gadolinium scandium gallium garnet) laser as a pumping source. The increased efficiency obtained here is a result of the larger \(\text{Yb}^{3+} \) absorption coefficient at 1.047 \(\mu \text{m} \). Similar results were obtained using an 80% reflecting output coupler, suggesting that the threshold and extraction efficiency are dominated by scattering losses in the rod.

The saturation of the \(^{3}I_{6} \) population mentioned earlier in connection with the rate equations is not evident in these results. This is because the pumping power is not large enough for the second energy-transfer process in Fig. 1 to become dominant over the first energy-transfer process.

VI. DISCUSSION

To interpret the data presented above, a theoretical estimate must be obtained for the magnitude and temperature dependence of \(D \), and relationships between the various energy-transfer parameters must be established. The physical meaning of the stimulated-emission parameter must also be determined. A theoretical calculation of the magnitude of the diffusion constant is difficult since the details of the exciton band shape are not known. A rough theoretical estimate for \(D \) can be obtained by considering the rate of energy transfer between \(\text{Yb}^{3+} \) ions. Assuming that the interaction mechanism between \(\text{Yb}^{3+} \) ions is dipole-dipole in nature, the energy-transfer rate between two ions separated by a distance \(R \) is\(^{28,31}\)

\[
P(\Delta R) = \frac{1}{\tau} R(\text{e}^{-\Delta R} / R) \text{exp}(-4\pi N_{s} R^{3} / 3) .
\]

where \(R_{0} \) is again the critical interaction distance. For multistep energy migration, the diffusion coefficient can be expressed in terms of the interaction rate between ions as\(^{45}\)

\[
D = \frac{1}{6} \int_{0}^{\infty} R^{2} P(R) \rho(R) dR,
\]

where \(\rho(R) \) is the probability of finding an ion at a distance \(R \) from the ion at the origin, and for a random distribution is given by\(^{45}\)

\[
\rho(R) = 4\pi N_{s} R^{2} \text{exp}(-4\pi N_{s} R^{3} / 3) .
\]

With these expressions the diffusion constant becomes

\[
D = \frac{1}{6} \int_{0}^{\infty} R^{2} \rho(R) dR,
\]

Note that the lower limit of the integral is taken to be the smallest distance between \(\text{Yb}^{3+} \) ions. Using the value of \(d = 2.7 \) \(\AA \) along with the concentration and intrinsic decay rate of \(\text{Yb}^{3+} \) ions, \(N_{s} = 1.2 \times 10^{22} \text{ cm}^{-3} \) and \(\tau \) = 555 sec\(^{-1} \), the integral in Eq. (21) can be evaluated numerically to give a value of \(1.23 	imes 10^{6} \), yielding the result

\[
D = 1.7 \times 10^{11} R_{0}^{6} .
\]

Using the values of \(D \) calculated from the Chow-Powell theory, the value of \(R_{0} \) can be calculated. At 12 K, \(R_{0} \) equals to 10.3 \(\AA \), while at 250 K, \(R_{0} \) equals 13.8 \(\AA \). These values are listed in Table III.

The temperature dependence of \(D \), shown in Fig. 9, can give some qualitative information about the exciton motion in the \(\text{Yb}^{3+} \) system. Figure 9 shows that \(D \) increases with temperature, which implies that the exciton motion is a thermally assisted incoherent process. This can be represented by

\[
D(T) = D(0) + B \exp(-\Delta E / k_{B} T) ,
\]

where \(D(0) \) is the diffusion constant at zero temperature, \(\Delta E \) is the activation energy of the thermally assisted process, and \(k_{B} \) is Boltzmann's constant. \(D(0) \) is the resonant contribution to the diffusion, and \(B \) is the parameter describing the nonresonant contribution to the diffusion. The best-fit parameters obtained from a least-squares-fitting procedure are listed in Table III.

As shown previously, the results of the Inokuti-Hirayama analysis of the \(\text{Ho}^{3+} - \text{Yb}^{3+} \) energy transfer and the Chow-Powell analysis of the \(\text{Yb}^{3+} - \text{Ho}^{3+} \) energy transfer are related in terms of transfer and back-transfer processes. The differences in the magnitudes of the energy-transfer rates are associated with the changes in the role of the sensitizer and activator ions, which change the spectral overlap due to the energy shift between absorption and emission transitions. Because most of the
energy-transfer processes take place with the activator ion initially in an excited state, it is not possible to calculate the overlap integral since there is no excited-state absorption information available on this material. For this reason it is not possible to correlate the transfer rates with the spectral data.

The computer models used to explain the two different types of up-conversion also provide values for the energy-transfer rates. In order to correlate the transfer coefficients with the transfer rate obtained from the two energy-transfer theories, it is necessary to multiply the transfer coefficients by the concentration of the initial activator energy level. The appropriate levels for each transfer coefficient are listed in Table IV. Because the pumping rates used in these experiments do not deplete the ground states to any appreciable extent, the excited-state populations of Ho$^{3+}$ are quite low compared to the ground-state populations. Therefore, in order for the forward- and back-transfer rates to be equal for the resonant transitions, the transfer coefficients must be several orders of magnitude different. In addition, the transfer rates for two different resonant transitions may be equal, but the corresponding transfer coefficients may not be equal. Previous studies using similar rate-equation models have assumed that the resonant transfer coefficients are equal, instead of the resonant transfer rates, as done here.

The risetimes of Yb$^{3+}$ emission after pumping the $^4I_{5/2}$ and $^4P_{3/2}$ states of Ho$^{3+}$ are 4 and 15 μs at 12 K, respectively, in agreement with the difference in the interaction strengths. The risetime of the $^4D_{2}, ^4F_{4}$ emission after pumping the $^4F_{5}$ level of Ho$^{3+}$ is 48 μs. From these results and Eq. (14) the rate of the second transfer process in Fig. 10 can be calculated to be approximately 2.0×10^{4} sec$^{-1}$. This is in good agreement with our rate-equation results listed in Table IV (5.0×10^{3} sec$^{-1}$). The nearest-neighbor energy-transfer rates predicted from the Inokuti-Hirayama theory are smaller than the rates predicted from the rate-equation models. This is a result of the neglect of back-transfer. The energy-transfer rate predicted for the Yb$^{3+}$-Ho$^{3+}$ interaction from the Chow-Powell theory is also smaller than the rate predicted from just the V_{2} term in Eqs. (16). Both energy-transfer models suffer as a result of neglecting the back-transfer of excitation energy, whereas the rate-equation approach properly takes back-transfer into account at the expense of using time-independent transfer rates. Neglecting back-transfer causes the sensitizer-activator strength to be underestimated.

The rate-equation models were used to fit the time dependence of the up-conversion emission. The results are shown as solid and dashed lines in Figs. 11 and 15. The theoretical calculations agree well with the risetime and asymptotic ($t \rightarrow \infty$) behaviors of the data, but the fits are poor in the time region just after the maximum population of the level has been reached. The reason for this is that the transfer coefficients used in the rate equations were time independent, and hence the only time dependence in the transfer rate was contained in the concentration of acceptor ions in the specific level involved. The decay kinetics shown in Figs. 5 and 8 can be interpreted accurately by models with time-dependent transfer rates, such as those of Inokuti-Hirayama and Chow-Powell. These time-dependent transfer rates manifest themselves predominantly in the early portions of the decay, where the constant transfer coefficients give a poor fit, leading to nonexponential decays. The parameters obtained from these models should be taken as approximate average values of the real time-dependent values of the energy-transfer rates.

The stimulated-emission parameters used in this model of the infrared up-conversion are related to the threshold for stimulated emission. The spontaneous-emission term in Eq. (16), $\alpha_{2}n_{2}$, acts as a feeding mechanism for the total number of photons of a particular wavelength in the sample. The other two terms in this equation are competitive in nature. When the gain term $\beta_{2}n_{2}P_{2}$ equals the loss term p_{2}/τ_{2}, then threshold has been reached. Substitution of the values from Table IV into Eq. (17) gives a value for n_{2} of 2.0×10^{12} cm$^{-3}$. This implies a threshold of 1.5×10^{4} W/cm2 for direct pumping of this level, and consequently a higher value for the threshold for infrared excitation of Yb$^{3+}$. For a pure two-photon process without losses, the threshold would be 3.0×10^{5} W/cm2. However, losses in this system are not negligible, as discussed earlier in connection with the saturation behavior and inclusion of a third energy-transfer process. As a result, the actual threshold for stimulated emission in the green after infrared excitation would be still higher. Experimentally the threshold was observed to be 75 MW/cm2 for infrared excitation. The simplified model used to describe the stimulated emission is largely responsible for the discrepancy in threshold values.43

At the high pumping powers used here, the efficiency of the infrared excitation of the green emission is not as high as at lower pump powers. This is reflected in the saturation of the power dependence shown in Fig. 14, and in the population of n_{2} obtained from the computer fits. This is a result of the third transfer process becoming more effective at higher pump powers.44 The saturation of the population of the $^4I_{9/2}$ level shown in Fig. 14 is also evident in the laser output at 2.9 μm when large pump powers are used.4 This is a result of the difference in transfer rates obtained from Eqs. (16), $Y_{2}(n_{2})$ and $Y_{2}(n_{1})$. Because the first transfer from Yb$^{3+}$ is nonresonant while the second one is resonant, the population of $^4I_{9/2}$ starts to level off at a specific pump power, ≈ 1 kW/cm2, as a result of the second transfer becoming more efficient at this power level. The saturation of $I_{9/2}$ has been observed at a pump energy of 0.6 J/cm2 or 2.7×10^{12} photons/sec for a crystal containing 0.5 at. % Ho$^{3+}$. This is slightly larger than the value calculated here due to the difference in concentration of Ho$^{3+}$ ions.

Another mechanism for decreasing the 2.9-μm laser output at high pump powers is population of the terminal level of the 2.9-μm emission.44 This $^2I_{9/2}$ state is metastable, having a lifetime of 9 msec, so that population of this level decreases the inversion for the 2.9-μm stimulated-emission transition. There are two effective mechanisms for populating the $^2I_{9/2}$ level after 1.0-μm pumping. The first, which is the dominant process at lower pump powers, is nonradiative decay from $^4I_{9/2}$ to $^2I_{9/2}$. The
second process, which only becomes effective at high pump powers, is a result of two cross-relaxation processes after the third transfer from Yb$^{3+}$ to Ho$^{3+}$. The third transfer populates 3H_6 and then nonradiative decay to 5G_4 occurs. The first cross-relaxation is

$$| \text{Ho}^{3+}(^5G_4), \text{Yb}^{3+}(^2F_{7/2}) \rangle
\rightarrow | \text{Ho}^{3+}(^5F_5), \text{Yb}^{3+}(^2F_{5/2}) \rangle.$$

The second cross-relaxation is

$$| \text{Ho}^{3+}(^5F_5), \text{Yb}^{3+}(^2F_{7/2}) \rangle
\rightarrow | \text{Ho}^{3+}(^1I_1), \text{Yb}^{3+}(^2F_{5/2}) \rangle.$$

Both are resonant processes. The second cross-relaxation is exactly the first step in the up-conversion of 640-nm radiation into 551.5-nm radiation, Fig. 10. This is the connection between the two up-conversion models. This process is only effective in populating 1I_1 at high pump powers, because the third transfer from Yb$^{3+}$ to Ho$^{3+}$ is only effective at high pump powers. A result of the increase in population of the 1I_1 level is an increase in the output at 2.0 μm. This mechanism should become effective in populating 3I_1 at the pump powers at which it becomes necessary to include the third transfer from Yb$^{3+}$ to Ho$^{3+}$.

VII. CONCLUSIONS

The characteristics of the interaction between the rare-earth ions in BaYb$_2$F$_4$:Ho$^{3+}$ crystals in several energy levels has been calculated and it has been shown that the interaction is electric-dipole–dipole. The coupling between Ho$^{3+}$ and Yb$^{3+}$ ions is greater for the 5F_5 state of Ho$^{3+}$ than it is for the 5S_2, 5F_4 states. The multistep migration of energy among Yb$^{3+}$ ions is much stronger than the Yb$^{3+}$-Ho$^{3+}$ interaction, having a mean free path of 85 Å at 250 K. This justifies the treatment of the Yb$^{3+}$ ions as always being able to transfer their energy to nearest-neighbor Ho$^{3+}$ ions since energy migrates from one Yb$^{3+}$ to another until a Ho$^{3+}$ ion is close enough for the transfer from Yb$^{3+}$ to Ho$^{3+}$ to take place.

Multiple energy-transfer processes were shown to lead to up-conversion, switching of lasing channels, and saturation. An important conclusion is that a model with just two transfers from Yb$^{3+}$ to Ho$^{3+}$ is insufficient to explain the observed data. Energy transfer from Yb$^{3+}$ to Ho$^{3+}$ in the 5S_2, 5F_4 states resulting in excitation of the Ho$^{3+}$ ion to the 3H_6 state must be included for the high pumping powers used here. Therefore, as the pump power is increased the efficiency of the short-wavelength stimulated emission, 0.55 μm, increases, while the efficiency of the longer-wavelength stimulated emission, 2.9 μm, decreases. At still larger pump powers the third energy transfer causes the 0.55 μm stimulated emission to be less efficient.

The laser-performance results for the 2.9-μm laser action have shown that the efficiency of the laser action can be significantly increased by pumping into a Yb$^{3+}$ spectral region with a larger absorption coefficient. Since the Yb$^{3+}$ absorption peaks at approximately 960 nm at room temperature, diode pumping should be an effective method of achieving improved efficiency in the 2.9-μm laser action. However, as we have shown in connection with the rate-equation analysis, the efficiency of this laser channel is limited by saturation effects, and therefore the very large difference in the absorption coefficient at 960 nm as opposed to 1047 nm (greater than an order of magnitude) may not be reflected in the increased efficiency of the 2.9-μm laser action.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research Office. One of us (G.D.G.) was supported in part by the Office of Naval Research, U.S. Department of Defense.

17G. F. De Sa, P. A. Santa Cruz, and F. Auzel, J. Lumin. 31, 32, 693 (1984).

Excited State Absorption of Pump Radiation as a Loss Mechanism in Solid-State Lasers

MICHAEL L. KLIJEWER AND RICHARD C. POWELL

Abstract—The characteristics of optical pumping dynamics occurring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y₅Al₃O₁₂:Nd³⁺ in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

I. INTRODUCTION

SELECTIVELY pumping rare earth-doped solid-state lasers in pump bands only slightly higher in energy than the lasing metastable state is desirable because there is less pump energy converted to heat than there is in broad-band pumping throughout the spectral region much higher in energy. The small quantum defect associated with this type of low-energy monochromatic pumping can increase the efficiency of laser operation and decrease problems arising from thermal lensing. The development of diode lasers as pump sources has led to the construction of compact, solid-state laser systems [11]-[6]. However, the powers and wavelengths presently available from diode laser pump sources are limited. Pumping with a tunable alexandrite laser can be useful in simulating diode laser pumping and extending potential laser pumping to higher power and different wavelength regions. In addition, for some high-power laser applications, an alexandrite laser may be an ideal pump source for a rare earth-doped solid-state laser.

The results of an investigation of the spectral dynamics of a Y₅Al₃O₁₂:Nd³⁺ (Nd-YAG) laser pumped by an alexandrite laser are presented here. These results show important differences between broad-band frequency pumping and monochromatic pumping, demonstrate the importance of completely characterizing the pumping dynamics of laser systems, and show the effects of excited state absorption (ESA) of pump photons from levels above the lasing transition on the slope efficiency of the laser operation.

II. ALEXANDRITE LASER PUMPING OF Nd-YAG

An alexandrite laser with an output tunable between 725 and 796 nm was used to pump an Nd-YAG crystal. The pulse width of the alexandrite was about 60 μs FWHM and the maximum power obtainable was 20 W at a repetition rate of 20 Hz. The spectral width of the laser is approximately 1 nm FWHM.

The crystal was mounted in a cavity consisting of a 100 percent reflector with a 50 cm radius of curvature and a flat 85 percent output coupler. Transverse pumping was employed with cylindrical and convex lenses used to focus the pump laser beam in a line along the length of the Nd-YAG sample. In this way, an efficient pumping configuration was achieved. The power incident on the Nd-YAG crystal and the power output from the Nd-YAG laser were measured simultaneously with two calibrated power meters. The Fresnel reflections and absorption of the material were considered when calculating the power absorbed by the crystal. The fluorescence emission from the sample was sent through a 1/4 m monochromator, detected with an RCA C31034 photomultiplier tube, analyzed by a boxcar integrator, and recorded on a chart recorder. The experimental setup shown in Fig. 1 made it possible to measure the fluorescence emission both while the sample was lasing at 1.06 μm and in the absence of lasing. The sample was 0.28 cm long and contained approximately 1 × 10¹⁸ Nd⁺⁺ ions/cm³.

Fig. 2 shows the energy levels of Nd⁺⁺ and the relevant electronic transitions when pumping with 337 nm. Fig. 4 shows the absorption spectrum of Nd⁺⁺ in YAG in the tuning region of the alexandrite laser. The structure is due to the transitions to various Stark components of the ¹S₁₂ + ⁴F₇/₂ levels. The alexandrite laser output is tuned over the absorption transitions shown in Fig. 2, after which radiationless relaxation occurs to the ¹F₁₂ metastable state. Fluorescence occurs from the ⁴F₁₂ level to the levels belonging to the ¹¹ term and, above threshold, lasing occurs in the ²F₃/₂ → ¹F₁₂ transition.

Figs. 4 and 5 show the room temperature fluorescence spectra between 300 and 900 nm of Nd:YAG pumped by an alexandrite laser at 734.0 and 748.6 nm, respectively. In recording these spectra, a filter was used to eliminate scattered laser light, and this also eliminates from the recorded spectra some of the emission transitions occurring between 600 and 770 nm. A neutral density filter rated at 4.0 O.D. was used when recording the fluorescence emiss.
Fig. 1: Experimental setup used for measuring slope efficiencies and fluorescence. The abbreviations are beam splitter (BS), cylindrical lens (L), and convex lens (C).

Fig. 2: Energy level diagram of Nd$^{3+}$ in YAG.

Fig. 3: Absorption spectrum of Nd-YAG in the spectral region of alexandrite laser pumping. The vertical lines give the spectral position of the pump wavelength needed for absorption from the $^4F_{3/2}$, $^4H_{15/2}$ level to the $^4F_{1/2}$ energy level.

Fig. 4: Fluorescence of Nd-YAG when pumped with the 744 nm emission of an alexandrite laser. Cutoff and neutral density filters were used.

Fig. 5: Fluorescence of Nd-YAG when pumped with the 748 nm emission of an alexandrite laser. Cutoff and neutral density filters were used.

In the spectral region from 770 to 900 nm, along with the normal fluorescence from the $^4F_{3/2}$ level in the near-infrared spectral region, strong emission lines appear at higher energies between about 380 and 600 nm. These transitions must be associated with multiphoton absorption processes. The specific transitions that appear in this spectral region and their relative intensities depend on the wavelength and the power of the pump pulse. Transitions between levels having energy differences matching the observed spectral lines of Fig. 4 are shown in Fig. 2. It appears that these transitions originate from the $^2P_{3/2}$, $^2D_{5/2}$, and $^2P_{1/2}$ levels and terminate on the various multiplets of the ground term. The spectrum shown in Fig. 5 is also a result of a multiphoton excitation process and the fluorescence in the green is a result of transitions originating from the $^4G_{7/2}$ level and terminating on various components of the ground term.
In order to excite the higher lying fluorescence levels producing the emission shown in Fig. 4, it is necessary for two pump photons to be absorbed. For energy to be conserved, the energy of the transition from the ground state to the final level must match the sum of the energies of the two photons minus any energy lost through radiationless decay processes. By studying the energy level diagram in Fig. 2, it is clear that the only path for the required two-photon excitation process is for the first photon to be absorbed by a transition to one of the Stark components of the $^4F_{7/2} + ^4S_{3/2}$ levels followed by radiationless relaxation to the levels of the $^2H_{9/2} + ^2F_{5/2}$ manifold. The second photon is absorbed before the ion can continue relaxing down to the $^4F_{5/2}$ metastable state. Depending on the exact energy of the pump photons, there is a good energy match to transitions terminating on the two Stark components of the $^2P_{3/2}$ level. In this level, there is a branching ratio for fluorescing and radiationless relaxation to the lower $^2D_{5/2}$ and $^2P_{1/2}$ levels from which some fluorescence also occurs.

Excitation spectra of the emission in the 420 nm spectral region was taken in an attempt to verify the above interpretation and the results are shown in Fig. 6. The peaks in the 420 nm excitation spectrum are different from the absorption peaks in Fig. 3 and correspond spectrally to the energy differences between the different Stark components of the $^4F_{7/2} + ^4S_{3/2}$ manifold and the Stark levels of the $^2P_{3/2}$ multiplet. The excitation spectrum of the 870 nm emission was also measured and found to contain the same features as the absorption spectra shown in Fig. 3.

III. EFFECT OF PUMP PHONON ESA ON SLOPE EFFICIENCIES

Fig. 7 shows the results of measuring lasing thresholds and slope efficiencies for Nd-YAG pumped at different wavelengths by an alexandrite laser. It should be noted that no attempt was made to optimize the sample or cavity parameters to obtain the best possible operational characteristics of an Nd-YAG laser. The purpose of this work is to demonstrate how these characteristics vary as a function of pump wavelength. The results show only small changes in the lasing threshold as a function of pump wavelength, whereas the slope efficiency varies significantly as the pump laser is tuned across the absorption band of Nd-YAG shown in Fig. 3.

The vertical lines in Fig. 3 identify the spectral positions of the pump wavelengths resulting in excited state absorption from the $^4F_{5/2} + ^4S_{3/2}$ levels to the $^2P_{1/2}$ energy levels. For 753 6 nm excitation, no ESA of pump photons occurs and a slope efficiency of 10 percent is obtained, while for 737 0 nm excitation, ESA of pump photons reduces the slope efficiency to only 6 percent. For the pumping conditions resulting in high values of the slope efficiency, there is no change in the slope of the measured power output versus power absorbed curve over the entire range of pumping powers. However, for the pumping conditions resulting in low values of the slope efficiency, the slope of the curve of measured power output versus power absorbed decreases at high pump powers. This is associated with the pump power dependence of the ESA loss mechanism.

The slope efficiency η_s is defined as [9], [10]

$$\eta_s = \frac{\lambda_e \cdot \eta_e}{\lambda_o \cdot C + 1}$$

where λ_o and λ_e are the pump and output wavelengths, η_e is the output coupler transmission, η_p is the pumping efficiency and is defined as the number of ions excited to the origin of the lasing transition produced per photon absorbed.
The ESA of pump photons found to occur in levels above the upper level of the lasing transition can be taken into account by redefining the pumping efficiency as

$$\eta_p = \eta_e (1 - \eta_{ESA}).$$

Equation (2) is valid when the excited state absorption cross section is much greater than the ground state absorption cross section and the rate of nonradiative relaxation downward is much greater than the rate upward due to excited state absorption. The slope efficiency can be expanded as

$$\eta_s = \eta_s (1 - \eta_{ESA})$$

where η_s is given in (1) with η_p replaced by η_e and η_{ESA} is the excited state absorption efficiency defined as

$$\eta_{ESA} = N_e \sigma_{ESA} d.$$

N_e and σ_{ESA} are the excited state density and excited state absorption cross section, respectively, of the levels above the upper level of the lasing transition from which the ESA processes occur. d is the depth of absorption of the pump light in the sample.

The effects ESA of pump photons present at various pump wavelengths can be described by (3). For 753.6 nm excitation, there is no blue emission detected and the maximum slope efficiency is obtained. Thus, it is assumed that there is no ESA of pump photons from levels above the upper level of the lasing transition and the value of 10 percent obtained for the slope efficiency under these pumping conditions is taken as the maximum value for η_s. η_s is assumed to be one in the absence of ESA of pump photons, but will vary with pump wavelength. The ESA efficiency and the excited state absorption cross section can be determined by fitting (3) to the slope efficiency curves shown in Fig. 7. An example of this type of fitting is shown as a solid line in the figure for 737.0 nm pumping. In thermal equilibrium, a Boltzmann distribution predicts that about 2.5 percent of the population of the excited state will be in the specific Stark component of the E_a + E_b levels from which ESA occurs. Fitting (3) to the results obtained for 737.0 nm excitation yields a value for η_{ESA} of 0.018 at the pumping threshold. η_{ESA} increases linearly with the power absorbed by the material because of N_e's linear dependence on power absorbed. Using the value for η_{ESA} with (4) gives an excited state absorption cross section of 4.6×10^{-19} cm2. This is consistent with results found from two-photon absorption studies of Nd$^{3+}$ ions in solids [11]. The reason for this relatively large value is probably due to strong admixture of the d wavefunctions in the high lying $2P_{1/2}$ level.

IV Discussion and Conclusions

The results discussed above show that alexandrite laser pumped Nd-YAG lasers can have a pump wavelength-dependent loss mechanism associated with the excited state absorption of pump photons. This loss mechanism is negligible for some pump wavelengths, while for other wavelengths, this loss mechanism dominates the pumping dynamics to the extent that the slope efficiency is greatly decreased. This is the first observation of a loss mechanism in lasers due to excited state absorption of pump photons taking place during relaxation from the pump band to the metastable state. This will not be as significant a loss mechanism for broad-band pumping because the pump photons are spread over a wide range of the energies. However, for monochromatic pumping by laser sources with all the pump photons having the same energy, this can be the dominant loss mechanism. Since multiphoton absorption is power-dependent process, this loss mechanism will be most important for high-power pumping situations. However, even for low-power diode laser pumping, the loss via this mechanism may not be negligible.

Other types of excited state absorption processes are well known as loss mechanisms in laser systems. These include up-conversion energy transfer through ion-ion interactions [8] and the excited state absorption of photons that are part of the laser emission [10]. It is not surprising that excited state absorption of pump photons can become important under the conditions of high-power laser pumping. However, it is surprising that the second step in the two-photon absorption process occurs before the ion has completely relaxed to the lowest lying metastable state. This allows many different transitions to take place in the excited state absorption process, and therefore enhances the effect of this loss mechanism. The effectiveness of this loss mechanism depends on the relative rate of the non-radiative relaxation of the ions in the initial state of the transition compared to the rate of excited state absorption. The exponential energy gap law [12] predicts a multiphoton decay rate for the $|F_{33}\rangle$ term on the order of 10^6 s$^{-1}$, whereas the ESA pump rate is threshold

$$\left(W_{\text{ESA}} \right)_0 = \sigma_{\text{ESA}} \left(\frac{1}{\hbar \omega} \right)$$

is on the order of 10^5 s$^{-1}$.

It should also be pointed out that we have observed this new type of loss mechanism when pumping into the $|E_{15}\rangle$ energy levels [13], in a large number of Nd-doped laser materials and in laser materials based on other rare earth ions such as Er$^{3+}$. Thus, it appears that this is a general loss mechanism that may be in all laser-pumped solid-state laser systems based on rare earth ions.

REFERENCES

Michael L. Kliever, photograph and biography not available at the time of publication.

Richard C. Powell, photograph and biography not available at the time of publication.
Preparation, structure, and spectroscopic properties of Nd$^{3+}$: [La$_{1-x}$Lu$_x$]$_3$[Lu$_{1-y}$Ga$_y$]$_2$Ga$_5$O$_{12}$ crystals

Toomas H. Allik and Susan A. Stewart
Science Applications International Corporation, 1710 Goodridge Drive, P.O. Box 1303, McLean, Virginia 22102

Dhiraj K. Sardar, Gregory J. Quarles, and Richard C. Powell
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444

Clyde A. Morrison and Gregory A. Turner
Harry Diamond Laboratories, U.S. Army Laboratory Command (LABCOM), Adelphi, Maryland 20783-1197

Milan R. Kokta
Union Carbide Corporation, 750 South 32nd Street, P.O. Box 6381, Washougal, Washington 98671

Wayne W. Hovis and Albert A. Pinto
Center for Night Vision & Electro-Optics, U.S. Army Electronics Research and Development Command (ERDCOM), Fort Belvoir, Virginia 22060-5567

(Received 30 November 1987; revised manuscript received 29 January 1988)

Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by the Czochralski pulling technique. X-ray diffraction and elemental analysis performed on these samples indicate that these garnets do not form with simple stoichiometry described as [La$_x$][Lu$_y$]$^{2+}$Ga$^+$O$_{12}$ but with increased Lu concentration in the dodecahedral site and Ga occupancy in the octahedral site. Optical absorption and fluorescence spectra confirm these results, showing inhomogeneous broadening of the spectral lines of Nd$^{3+}$. Various laser gain measurements were performed on [La$_{1-x}$Lu$_x$][Lu$_{1-y}$Ga$_y$]Ga$_5$O$_{12}$ crystals containing 4.3 and 1.3 at. % Nd$^{3+}$ to determine the usefulness of this material as a laser. No optical gain was observed. Time-resolved, site-selection spectroscopy measurements were performed to determine the effects of ion-ion interaction, and show the presence of very weak energy transfer between ions in nonequivalent crystal-field sites. Two-photon excitation spectroscopy measurements demonstrate the presence of very strong two-photon-absorption transitions, which prevents lasing in this garnet.

I. INTRODUCTION

Although Nd-doped Y$_3$Al$_5$(AlO$_4$)$_3$ (YAG) has become a standard laser material, there is still significant interest in characterizing the properties of other types of Nd-doped materials that can be pumped with Ga$_2$As laser diodes emitting radiation at 800±20 nm. The spectral emission of laser diodes at 800 nm is resonant with the $F_{49/2}$ and $E_{49/2}$ Nd$^{3+}$ absorption bands. The advantage derived from the spectral match leads to a reduction in the amount of heat which is deposited in the medium, thus reducing the thermomechanical requirements of the laser host. With the commercial availability of single laser diodes with powers exceeding 1 W and two-dimensional arrays producing 4.0 kW/cm2, it is useful to determine if other materials can be found with spectral and thermo-optic properties leading to improved laser characteristics. Desirable properties of new laser-diode-pumped solid-state lasers include a longer fluorescence lifetime, a broader absorption band, and a higher absorption coefficient as compared to Nd:YAG. We report here the results of X-ray diffraction, elemental and spectroscopic analysis, and gain measurements obtained on Nd$^{3+}$-doped [La$_{1-x}$Lu$_x$][Lu$_{1-y}$Ga$_y$]Ga$_5$O$_{12}$ (LaLuGaG) crystals.

Y$_3$Al$_5$(AlO$_4$)$_3$ is not the ideal garnet structure for doping with Nd$^{3+}$ ions. The ionic radius of Nd$^{3+}$ is too large to give polyhedra sides that match the sides of Al$^{3+}$ polyhedra. This mismatch imposes difficulties in forming a solid solution of Nd$_3$Al$_5$(AlO$_4$)$_3$ with Y$_3$Al$_5$(AlO$_4$)$_3$ that would limit the amount of Nd$^{3+}$ that can be incorporated into the YAG lattice to only a few atomic percent. In addition, the distances between cation lattice positions for the aluminum garnets are small enough to allow for strong enough ion-ion interaction to produce concentration quenching of the Nd$^{3+}$ fluorescence. On the other hand, neodymium may be substituted completely into gallium-based garnet systems. The largest lattice parameters in the gallium garnet group may be realized in garnets formed with lanthanum occupying the dodecahedral positions. For such garnets to be synthesized, the structure must be expanded by substitution of ions larger than gallium into the dodecahedral sites. When such substitutions were made, it was found that compounds do not form with simple stoichiometry described as [La$_x$][Lu$_y$]Ga$_5$O$_{12}$, but that the octahedral and tetrahedral substituents are distributed between two crystallographic sites, with the distribution corresponding to...
the formula $[\text{La}_{1-x}\text{Lu}_x][\text{Lu}_{1-x}\text{Ga}_x]\text{Ga}_3\text{O}_{12}$.

The study of mixed garnet crystals began in the late 1960s. Mixed garnets are those in which additional additives have been introduced into the $[A_1B_2C_3]_4\text{O}_{12}$ garnet crystal, causing multiple ions to occupy crystallographic sites. Numerous laboratories have studied the optical spectroscopy of mixed garnets, in particular Lu-compensated Nd:Y$_3$Al$_2$(AlO$_4$)$_3$. Holton et al. showed inhomogeneous broadening of the spectral lines of Nd$^{3+}$, attributed to a distribution of Nd ions among sites with different crystalline fields. The resulting broadening is attributed to Nd ions residing in Lu-rich and Y-rich sites with slightly different crystal fields. Voron'ko and Sobol, in a more comprehensive study of this mixed garnet system, investigated the dependence of the width and intensity of the spectral lines with respect to varying concentrations of Y and Lu in the dodecahedral sites. A slight broadening, by 2-10 times, was seen in these garnets, with no change of the intensities.

Doped with Nd, these mixed garnets are intermediate-gain laser materials, exhibiting gain higher than Nd:glass but lower than Nd:YAG. These materials would exhibit higher energy storage and lower amplified spontaneous emission at high pump powers.8

II. EXPERIMENTAL RESULTS

A. Crystal growth

The lanthanum lutetium gallium garnets of the above composition were grown by the standard Czochralski pulling technique. The raw materials were dried at 200°C, and La$_2$O$_3$ and Lu$_2$O$_3$ were fired at 1100°C for 12 h so that they would be free of absorbed water and carbon dioxide. The oxide was then mixed in the desired ratio, pressed in an isostatic press, and loaded into a 5×5 cm graphite crucible. If power at a 9.8-kHz frequency was applied via copper coil to the crucible, heating the crucible and melting the charge. The crucible was insulated with a stabilized zirconia sleeve, and the entire assembly (crucible, insulation, and crucible) was enclosed in a water-cooled bell jar equipped with nitrogen and oxygen supply lines, providing a growth atmosphere of N$_2$ with 1 vol. % of O$_2$. The pulling rates employed were 1 mm/h. The fluid flow in the melt was aided by rotating the crystal at the rate of 15 rpm. The crystal diameter was controlled at a programmed rate by regulating the weight of the growing crystal. The crystal grown in the [111] direction displayed typical garnet morphology, that is, faceting and core formation due to growth with a convex interface. The crystals were 1 in. in diameter and between 2 and 4 in. long. Numerous growth runs of these LaLuGaG garnets were performed with either or both Cr$^{3+}$ and Nd$^{3+}$. The samples studied were two Nd-doped boules with 3.3 and 1.0 at. % added to the melt and one sample with 0.4 at. % Cr$^{3+}$. Spectroscopic samples of high optical quality were cut and polished from these boules.

B. X-ray diffraction

The spectroscopic characteristics of optically active ions in garnet crystals are closely related to the properties of the crystal structure. Originally determined by Merser for naturally occurring minerals such as grossularite, spessartine, or pyrope, the garnet structure is cubic and belongs to space group $Ia3d$. All the cations are in special positions with no degree of freedom, while the oxygen atoms are in general positions. Each oxygen atom is at a shared corner of four polyhedra: one tetrahedron surrounding a "d" ion; one octahedron surrounding an "a" ion; two dodecahedra surrounding "c" ions.

The positions of the oxygen ions in the structure are defined by three general parameters: x, y, and z. The values of these parameters change with the chemical composition of the garnets and depend mainly on the radii of the cations. When oxygen ions are shifted from their ideal positions, distortions of polyhedra result. These distortions change the length of the edges of the polyhedron, while the distances between the center and the corners of the polyhedron are given by cation-oxygen ionic radii. Thus, freedom in substitution of various cations in the garnet structure is greatly restricted by the requirement of matching the length of the shared edges among the three polyhedron types. On the other hand, expanding one polyhedron by proper selection of substituting cations may allow extending the selection of other cations for substituting into the garnet structure. This approach has been successful in doped lanthanum garnets.7

The crystal structure analysis was performed on an automated Nicolet R3m/m diffractometer equipped with an incident-beam graphite monochromator and Mo Kα radiation ($\lambda = 0.7107$ Å). Lattice parameters were determined for 20 centered reflections with $3.0^\circ < 2\theta < 60.0^\circ$. Data were corrected for Lorentz-polarization effects and absorption correction. The structure of $[\text{La}_{1-x}\text{Lu}_x][\text{Lu}_{1-x}\text{Ga}_x]\text{Ga}_3\text{O}_{12}$ was solved by direct methods by varying x and y until the R factors (or residuals) were minimized.7 Low R factors indicate that the structure is correct and that the structure model based on atomic positions agrees well with the experimentally measured intensities. Table I shows the essential details of the structure; detailed structure information can be found in Ref. 8.

C. X-ray fluorescence

Elemental analysis was performed on three samples of LaLuGaG doped with impurities. These included two spectroscopic samples doped with Nd$^{3+}$ and Cr$^{3+}$. The third sample was a 10-cm-long by 3-cm-diameter Nd$^{3+}$-doped LaLuGaG boule. The analysis was performed with a Keivex 770/8000 x-ray fluorescence spectrophotometer. This instrument uses the energy dispersive technique, where radiation from a primary x-ray tube is directed upon a secondary target, generating monochromatic x-ray fluorescent radiation at the characteristic $K\alpha$ and $K\beta$ energy levels of the target material. This secondary radiation is then directed upon the sample to be analyzed. The subsequent x-ray fluorescence from the sample is
secondary targets can be chosen whose secondary x-ray fluorescence will most efficiently excite the analytes in question. Such efficient monochromatic excitation results in a high signal to background ratio and provides the ideal conditions for accurate quantification routines.

Film standards of known concentration and mass thickness were obtained from Micromatter Co. to obtain a known intensity-concentration ratio. This known ratio is compared with the sample fluorescence intensities and matrix effects to calculate analyte concentrations and the elemental composition of the sample.

In our analysis of these samples, we selected secondary targets which would most efficiently excite the analytes of interest with minimum peak overlapping. Other parameters such as tube voltage and current, counting time, and atmosphere were selected to provide a statistically valid number of counts and reduce atmospheric effects. The composition of three LaLuGaG single crystals is shown in Table II. The results in Table II clearly indicate the added presence of lutetium in positions other than that of the octahedral site. Based on size constraints, Lu undoubtedly occupies the dodecahedral site. These results were confirmed by x-ray diffraction. In addition, the Ga concentration was found to be slightly larger than three for all LaLuGaG single crystals. This known ratio is compared with the sample fluorescence intensities and matrix effects to calculate analyte concentrations and the elemental composition of the sample.

In our analysis of these samples, we selected secondary targets which would most efficiently excite the analytes of interest with minimum peak overlapping. Other parameters such as tube voltage and current, counting time, and atmosphere were selected to provide a statistically valid number of counts and reduce atmospheric effects. The composition of three LaLuGaG single crystals is shown in Table II. The results in Table II clearly indicate the added presence of lutetium in positions other than that of the octahedral site. Based on size constraints, Lu undoubtedly occupies the dodecahedral site. These results were confirmed by x-ray diffraction. In addition, the Ga concentration was found to be slightly larger than three for all LaLuGaG single crystals.

The segregation constant, \(k \), for Nd\(^{3+}\):LaLuGaG can be determined from the data in Table II. At equilibrium, the concentration in the solid is given by

\[
c_i = k c_0 (1 - g)^{k - 1},
\]

where \(c_0 \) is the initial concentration of the dopant ion and \(g \) is the fraction of melt that has been crystallized. For Nd\(^{3+}\) in LaLuGaG, \(k \) is 1.3.

D. Index of refraction

The refractive indices of Nd:LaLuGaG were measured using the method of minimum deviation, in which a polished prism of Nd\(^{3+}\):LaLuGaG was fabricated and mounted on a goniometer, and monochromatic light (in this case, from multiline argon ion and helium neon lasers) was passed through it. The point of least deflection is recorded as the angle of minimum deviation, and the index of refraction is calculated according to the formula

\[
n = \sin\left(\frac{\lambda}{2}(\alpha + \eta_m)\right) / \sin\left(\frac{\lambda}{2}\alpha\right),
\]

where \(\alpha \) is the prism angle and \(\eta_m \) is the angle of minimum deviation. The results appear in Table III.

The accuracy of the refractive index calculated from the data was limited by the accuracy with which the angle of minimum deviation was measured, in this case 5" of arc. Thus there existed an inherent error of ±0.0025. The actual average error was ±0.0035.

These experimental data were subsequently fit to Sellmeier's dispersion equation

\[
n^2(\lambda) = 1 + S \lambda^2 / (\lambda^2 - \lambda_0^2^2).
\]

Table II. LaLuGaG crystal composition in formula units.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Chemical analysis</th>
<th>Crystal composition (at. %)</th>
<th>Melt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd:LaLuGaG boule (top)</td>
<td>(\text{Nd}{0.94}\text{La}{0.06}\text{Lu}{0.06}\text{Ga}{0.97}\text{O}_{12.00})</td>
<td>1.37±0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Nd:LaLuGaG boule (bottom)</td>
<td>(\text{Nd}{0.94}\text{La}{0.06}\text{Lu}{0.06}\text{Ga}{0.97}\text{O}_{12.00})</td>
<td>1.30±0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Spectroscopic sample</td>
<td>(\text{Nd}{1.13}\text{La}{1.13}\text{Lu}{1.13}\text{Ga}{0.97}\text{O}_{12.00})</td>
<td>4.31±0.17</td>
<td>3.3</td>
</tr>
<tr>
<td>Spectroscopic sample</td>
<td>(\text{Cr}{0.04}\text{La}{0.27}\text{Lu}{0.41}\text{Ga}{0.97}\text{O}_{12.00})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent isotropic \(U \) defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor. Parenthetical values are estimated standard deviations.
TABLE III. Indices of refraction of Nd3+:LaLuGaG.
Sellmeier coefficients: \(n^2(\lambda) = 1 + S\lambda^2/(\lambda^2 - \lambda_0^2) \); \(S = 2.3891 \); \(\lambda_0 = 194.46 \) nm.

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>(n) experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.8</td>
<td>1.9070</td>
</tr>
<tr>
<td>611.9</td>
<td>1.9174</td>
</tr>
<tr>
<td>594.1</td>
<td>1.9221</td>
</tr>
<tr>
<td>543.0</td>
<td>1.9304</td>
</tr>
<tr>
<td>514.5</td>
<td>1.9376</td>
</tr>
<tr>
<td>496.5</td>
<td>1.9537</td>
</tr>
<tr>
<td>488.0</td>
<td>1.9632</td>
</tr>
<tr>
<td>476.5</td>
<td>1.9665</td>
</tr>
</tbody>
</table>

Appropriate values of \(S \) and \(\lambda_0 \), given in Table III, were calculated from this formula by averaging all the possible values extracted from the data. The index of refraction of maximum fluorescence in the \(^{4}F_{3/2} - ^{4}I_{5/2} \) transition, 1059 nm, was found to be 1.8634.

E. Nd3+ absorption spectra

The absorption spectrum of neodymium-doped LaLuGaG was investigated in the range of 200–6000 nm at room temperature and 10 K. These data were recorded.
in the ultraviolet, visible, and near infrared on a Perkin-
Elmer Lambda 9 spectrophotometer with a maximum
resolution of 0.01 nm. A Perkin-Elmer 983G infrared
spectrophotometer having an accuracy of 0.1 cm\(^{-1}\)
was used to obtain spectra beyond 3200 nm.

A closed-cycle refrigerator, CTI-Cryogenics Model 21,
was used to obtain spectra at 10 K. Sample temperatures
were measured with a silicon diode calibrated to <1 K
below 50 K. Typical cooldown times were 1 h.

Figure 1 shows the absorption spectrum at room tem-
perature of Nd\(^{3+}\):LaLuGaG between 300 and 1000 nm
for a 0.661-cm-thick sample with a Nd\(^{3+}\) concentration
of \(1.45 \times 10^{20}\) ions/cm\(^3\). This spectrum is very typical of
Nd\(^{3+}\) in other crystalline hosts, showing strong transi-
tions from the \(^4S_{3/2}\) ground-state multiplet to the \(^2H_{9/2}\)
and \(^4F_{7/2}\) (800 nm), \(^4F_{5/2}\) and \(^4S_{3/2}\) (750 nm), and \(^4G_{5/2}\)
and \(^2G_{7/2}\) (590 nm) states. The experimentally deter-
mined Stark levels of the Nd\(^{3+}\) ions in the dodecahe-
dral sites are listed in Table IV.

The peak absorption (emission) cross section for the
\(^4F_{3/2}-^4I_{1/2}\) \((Y_3 \rightarrow R_2)\) transition was measured. The
peak absorption cross section, given in Eq. (4), is equal
to the absorption coefficient divided by the lower-level pop-
ulation

\[
\sigma_\rho(Y_3 \rightarrow R_2) = \alpha_\rho(Y_3 \rightarrow R_2)/N(Y_3), \tag{4}
\]

The absorption coefficient for the 10.13-cm-long
Nd:LaLuGaG boule was measured to be \(6.34 \times 10^{-4}\)
cm\(^{-1}\). With the Nd\(^{3+}\) concentration of the
Nd:LaLuGaG boule equal to \(1.45 \times 10^{20}\) Nd\(^{3+}\) ions/cm\(^3\)
determined by x-ray fluorescence, and the partition
function equal to 2.488 (data taken from Table IV),
the population in the \(Y_3\) Stark level at 2977 cm\(^{-1}\)
is \(2.32 \times 10^{15}\) Nd\(^{3+}\)/cm\(^3\) at 298 K. Substitution of these
values into Eq. (4) yields a cross section of 2.73 \(\times 10^{-19}\)
cm\(^2\). This value is 2.4 and 0.9 times smaller than the
values for Nd:YAG and Nd:GSGG, respectively.\(^{12}\)

F. Branching ratios and radiative lifetimes
of Nd\(^{3+}\):LaLuGaG

The branching ratios and the radiative lifetimes of the
\(^4F_{3/2}-^4I_{1/2}\) \((J = \frac{5}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2})\) were determined in two in-
dependent ways. The first method is a direct application
of the Judd-Ofelt theory\(^{13,14}\) and has been used by many
authors\(^{15-17}\). Data analysis was performed similar to
that of Krupke\(^{17}\) and is briefly described below.

The integrated absorption coefficient, \(\int k(\lambda)d\lambda\)
emanating from the ground state \(|(SL)J \rangle \langle 4F_{3/2}|\) manifold to excited \(|(S'L')J'\rangle\) manifolds was measured for 11 ab-
sorption bands in Fig. 1. The integrated absorption
coefficient in turn is related to the line strength \(S\) by Eq.
(5):

\[
\int k(\lambda)d\lambda = \frac{8\pi^2 N_o \lambda e^2}{3 \sqrt{h \chi (2J + 1)}} \left(\frac{(n^2 + 2)^2}{9n} \right)^1 \tag{5}
\]

where \(J\) is the total angular momentum quantum number
of the initial level, \(\lambda\) is the mean wavelength that corre-
sponds to the \(J\rightarrow J'\) transition, \(n\) is the index of refraction,
and \(N_o\) is the Nd\(^{3+}\) concentration. Values for \(n\) were
taken from Sellmeier's dispersion equation, Eq. (3), and
\(N_o\) was \(1.45 \times 10^{20}\) ions/cm\(^3\). The Judd-Ofelt theory
predicts that the line strength \(S\) may be written in the form

\[
S([SL]J,[S'L']J') = \sum_{i=2,4,6} \Omega_i \langle 4f^i[SL]J]|U^{(i)}|4f^i[S'L']J' \rangle^2, \tag{6}
\]

where \(\langle 4f^i[SL]J]|U^{(i)}|4f^i[S'L']J' \rangle\) is a reduced-
matrix element of the irreducible tensor operator of rank
\(i\), and \(\Omega_i\) are the Judd-Ofelt parameters. The numerical
values of the squares of the reduced-matrix elements for
Nd\(^{3+}\) (aqto) ions for transitions from the ground state
were taken from Carnall, Fields, and Rajnak.\(^{18}\) When
the absorption band was a superposition of lines assigned
to several intermultiplet transitions, the matrix element
was taken to be the sum of the corresponding squared
matrix elements.\(^1\) A least-squares fitting of \(S_{\text{calc}}\) to \(S_{\text{mess}}\)
yields values for \(\Omega_{2,4,6}\). Table V shows the measured and
calculated line strengths for 11 absorption bands. The
Judd-Ofelt parameters and the branching ratios are given
in Table VI.

| Table V: Measured and calculated line strengths of Nd\(^{3+}\) in LaLuGaG. |
|----------------------------------|-------|----------------|----------------|
| Russell-Saunders state \([S'L']J'\) | Wavelength (nm) | Index of refraction \(n\) | Line strengths (10\(^{-20}\) cm\(^2\)) |
| \(4F_{3/2}\) | 882 | 1.8738 | 0.424 | 0.749 |
| \(4F_{5/2} + 1/2\) | 807 | 1.8805 | 2.137 | 1.984 |
| \(4F_{7/2} + 3/2\) | 748 | 1.8874 | 1.741 | 1.842 |
| \(4F_{9/2}\) | 683 | 1.8973 | 0.144 | 0.133 |
| \(^3H_{11/2}\) | 625 | 1.9092 | 0.014 | 0.014 |
| \(^4G_{9/2} + 1\) \(^2G_{11/2}\) | 587 | 1.9193 | 0.594 | 1.594 |
| \(^4K_{11/2} + 1/2\) \(^4G_{13/2} + 1\) \(^4G_{15/2} + 1\) | 526 | 1.9410 | 0.886 | 0.898 |
| \(^4K_{13/2} + 1/2\) \(^4G_{13/2} + 1\) \(^4G_{15/2} + 1\) \(^4D_{15/2} + 1\) | 479 | 1.9648 | 0.130 | 0.176 |
| \(^4G_{15/2} + 1\) \(^4G_{15/2} + 1\) | 459 | 1.9778 | 0.084 | 0.016 |
| \(^4I_{15/2} + 1\) \(^4D_{15/2} + 1\) | 433 | 1.9982 | 0.041 | 0.103 |
| \(^4I_{13/2} + 1/2\) \(^4D_{15/2} + 1\) \(^4D_{15/2} + 1\) \(^4D_{15/2} + 1\) | 356 | 2.0988 | 0.020 | 0.729 |
The second method of determining the branching ratios and radiative lifetimes uses the point-charge model. In these calculations, the Stark-level positions of Nd$^{3+}$ given in Table IV were used along with the free-ion Russell-Saunders [SLJ] states with the free-ion Hamiltonian containing the Coulomb, spin-orbit, L^2, $G(G^2)$, and $G(R^2)$ interactions.\(^8\) The free-ion parameters chosen, from Carnall, Fields, and Rajnak,\(^1\) are $E^{(1)}=4739.3$, $E^{(2)}=23.999$, $E^{(3)}=485.96$, $\alpha=0.5611$, $\beta=-117.15$, and $\gamma=1321.3$ (all in cm$^{-1}$). In the crystal-field analysis we assume a crystal electric field (CEF) of D_2 symmetry of the form

$$H_{CEF} = \sum_{i,k} B_{ik} C_{ik}(\hat{r}_i) ,$$ \hspace{1cm} (7)

where the B_{ik} are the crystal-field parameters and the $C_{ik}(\hat{r}_i)$ are spherical tensors related to the spherical harmonics by

$$C_{ik}(\hat{r}_i) = \sqrt{4\pi/(2k+1)} Y_{k}^{0}(\hat{r}_i) .$$ \hspace{1cm} (8)

The sum on i in Eq. (7) runs over the three electrons in the $4f^1$ configuration of Nd$^{3+}$, and the sum on k (k even) covers the range 2-6 with q even and in the range $-k \leq q \leq k$. Since we assume that the Nd$^{3+}$ ions occupy the dodecahedral site with D_2 symmetry, the crystal-field parameters can be chosen real; thus there is a total of nine even- k B_{ik}. The procedure we use in the analysis of the experimental data is to obtain the free-ion wave functions using the free-ion parameters. We then use these free-ion wave functions to evaluate the energy levels in a crystal using the Hamiltonian given in Eq. (7). The crystal-field parameters B_{ik} are then determined by minimizing the squared difference of the calculated energies from the experimental energies. The centroids of each [SLJ] multiplet are allowed to vary freely during this fitting and are considered experimental data in the final analysis.

To obtain starting values of B_{ik} for our fitting of the experimental energy levels, we use point-charge lattice sum A_{ik}. The A_{ik} are related to the B_{ik} by\(^10\)

$$B_{ik} = \rho_k A_{ik} ,$$ \hspace{1cm} (9)

where

$$\rho_k = \tau^{-k} \langle \tau^k \rangle_{HF}(1-\sigma_k) .$$ \hspace{1cm} (10)

τ is an ion-dependent radial expansion parameter,\(^2\) $\langle \tau^k \rangle_{HF}$ are Hartree-Fock expectation values,\(^1\) and σ_k are shielding factors.\(^2\) Values of ρ_k for Ce$^{3+}$ through Yb$^{3+}$ are given by Morrison and Leavitt.\(^2\) The values of A_{ik} were calculated by a point-charge lattice sum using the x-ray data of Table I. In performing the lattice sum, the material is assumed to be La$_3$Lu$_5$Ga$_5$O$_{12}$, and for the starting parameters the charges on the individual ions are assumed to be the valence charges $q_{La}=3$, $q_{Lu}=3$, $q_{Ga}=3$, and $q_0=-2$ (in units of the electron charge). Later A_{ik} were calculated using an effective charge on the oxygen site q_0 such that $q_{Ga}=-5-4q_0$ and varying q_0 to obtain the best fit of calculated B_{ik} to experimental B_{ik}. The resulting A_{ik} for even k were obtained from the lattice sums; the B_{ik} obtained by using Eq. (9) are given in column 3 of Table VII. These values of B_{ik} were used in the least-squares fitting as starting parameters.

The crystal-field parameters that gave the best fit to the experimental data are given in Table VII, as well as the point-charge B_{ik} computed using $q_0=-1.64$ (the value of the oxygen charge that gave the best agreement to the experimental B_{ik}). In this fitting a number of experimental levels were discarded because attempts to fit these levels were unsuccessful. The odd-k A_{ik} (cm$^{-1}$/Åk) using $q_0=-1.64$ were calculated and are $A_{13}=1520$, $A_{15}=-1500$, $A_{14}=867$, $A_{17}=54.2$, $A_{18}=88.0$, and $A_{16}=-129$. (All odd-k A_{ik} are imaginary.)

The B_{ik} of Table VII along with the odd-k A_{ik} values were used to calculate the intensity of electric and magnetic dipole transitions for the rare-earth series. A detailed discussion of this calculation is given by Leavitt.
TABLE VII. Experimental and calculated crystal-field parameters, B_{4v}. Note: Odd-k A_{4v} (cm$^{-1}$/\AA^2) for $q_0 = -1.64$ are $A_{12} = 1520$, $A_{13} = -1500$, $A_{14} = 867$, $A_{15} = 54.2$, $A_{16} = 88.0$, and $A_{17} = -129$.

<table>
<thead>
<tr>
<th>Ion</th>
<th>B_{4v} (cm$^{-1}$)</th>
<th>B_{4v} (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce</td>
<td>0.5872</td>
<td>3.734</td>
</tr>
<tr>
<td>Pr</td>
<td>0.3286</td>
<td>1.884</td>
</tr>
<tr>
<td>Nd</td>
<td>0.3167</td>
<td>1.206</td>
</tr>
<tr>
<td>Sm</td>
<td>0.1833</td>
<td>0.9318</td>
</tr>
<tr>
<td>Eu</td>
<td>0.1599</td>
<td>0.7902</td>
</tr>
<tr>
<td>Gd</td>
<td>0.1265</td>
<td>0.6060</td>
</tr>
<tr>
<td>Tb</td>
<td>0.0990</td>
<td>0.4588</td>
</tr>
<tr>
<td>Dy</td>
<td>0.1279</td>
<td>0.8314</td>
</tr>
<tr>
<td>Ho</td>
<td>0.1038</td>
<td>0.5830</td>
</tr>
<tr>
<td>Er</td>
<td>0.0995</td>
<td>0.4588</td>
</tr>
<tr>
<td>Tm</td>
<td>0.0968</td>
<td>0.4190</td>
</tr>
<tr>
<td>Yb</td>
<td>0.0817</td>
<td>0.3417</td>
</tr>
</tbody>
</table>

*Best-fit experimental B_{4v} for all data; rms = 5.658 cm$^{-1}$.

Point charge B_{4v} using $q_0 = -1.64$; rms = 50.38 cm$^{-1}$.

and Morrison. The resulting Judd-Ofelt intensity parameters are given in Table VI for Nd$^{3+}$ and the other rare earths in Table VIII.

G. Nd$^{3+}$:LaLuGaG fluorescence and lifetime measurements

The fluorescence spectrum of Nd$^{3+}$:LaLuGaG was recorded with a Spex F222 spectrometer. Figures 2 and 3 show the fluorescence spectrum in the region of the $^4F_{3/2}$-$^4I_{15/2}$ and $^4F_{3/2}$-$^4I_{13/2}$ transitions. The fluorescence lifetime and time-resolved, site-selection spectroscopy measurements were made using a nitrogen laser-pumped tunable dye laser with rhodamine 6G for the excitation source. This provided pulses of about 10 ns in duration and less than 0.04 nm half-width. The 4.3 at. % Nd$^{3+}$ sample was mounted in a cryogenic refrigerator with temperature variable between 10 and 300 K. The fluorescence was analyzed by a 1-m monochromator, detected in a cryogenic spectrometer with the laser-pumped single-pass gain measurements for the LaLuGaG laser as the pump source were performed at the University. This provided a 25-ps excitation pulse with a few millijoules of energy at 532 nm.

FIG. 2. Fluorescence of Nd$^{3+}$:LaLuGaG at room temperature in the region of the $^4F_{3/2}$-$^4I_{15/2}$.

lower power dye laser excitation varies from 290 ± 11 K to 205 ± 12 K at room temperature, as shown in Fig. 4. The solid line in Fig. 4 represents the best fit to the data using an expression of the form

$$\tau^{-1} = \tau_f^{-1} + C \exp[\Delta E/(k_BT)]^{-1},$$

where τ_f and τ_r are the fluorescence and radiative lifetimes, respectively. The last term describes the quenching of the lifetime due to radiationless processes involving the absorption of phonons of energy ΔE. C is a constant containing the matrix element for these transitions. The values obtained from fitting Eq. (11) to the experimental data are listed in Table IX. Several types of processes can lead to this type of lifetime quenching and will be discussed in Sec. III.

H. Laser gain measurements

The laser-pumped, single-pass gain measurements using the frequency-doubled output of a mode-locked Nd:YAG laser as the pump source were performed at the University. This provided a 25-ps excitation pulse with a few millijoules of energy at 532 nm.

FIG. 3. Fluorescence of Nd$^{3+}$:LaLuGaG at room temperature in the region of the $^4F_{3/2}$-$^4I_{15/2}$.
The probe beam was the collimated output of a xenon lamp passed through a 0.5-m monochromator. The change in the probe beam transmission through the sample under pumped conditions was monitored using a 0.25-m monochromator and photomultiplier tube with the output photographed on a storage scope. Multiphoton excitation studies were made using the same laser for excitation, and the fluorescence emission was monitored with a 0.25-m monochromator with an EGG-PAR silicon array detector and optical multichannel analyzer (OMA) combination. Fluorescence lifetimes under these excitation conditions were again measured with the boxcar integrator.

The attempt to observe single-pass gain was made with the probe beam tuned to the emission peak at 1059 nm while the pump beam at 532 nm was in resonance with one of the strong absorption transitions. Although these experimental conditions resulted in easily observable gain for several different types of Nd-doped crystal and glass materials, no gain was observed for the 4.3 at.% Na$^{3+}$:LaLuGaG sample at room temperature. Since the optical quality (and thus the scattering losses per pass) was approximately the same for each of the samples investigated, the lack of optical gain indicates the presence of some type of loss process occurring for Nd$^{3+}$ in the LaLuGaG host.

Direct lasing of two Nd:LaLuGaG samples was attempted at the Center for Night Vision and Electro-Optics. Two experiments were performed with different wavelengths of excitation and different pumping geometries. A laser diode array capable of producing 80 mJ per pulse at 20 Hz was used as a pump at 808 nm in a side-pump geometry. Typical outputs for Nd:YAG using this scheme are 25 mJ. When a Nd:LaLuGaG sample was inserted in the resonator, no lasing was detected at 1059 nm. End-pumping of the same crystal was also attempted with a Coherent 699-29 ring dye laser producing 1.3 W with rhodamine 6G. Lasing was again not detected at 1059 nm. A focused dye laser beam at 595 nm produced an intense purple fluorescence at the focal point. This is indicative of two-photon absorption to higher lying levels, which prevents lasing in this material. This is consistent with the experimental results shown in Sec. II I.

I. Multiphoton excitation measurements

For low excitation powers, the fluorescence emission originates from the $4F_{3/2}$ metastable state at wavelengths longer than 850 nm. After high-power picosecond pulse pumping, fluorescence emission extends throughout the visible region of the spectrum to about 800 nm, as shown in Fig. 5. This demonstrates the presence of multiphoton excitation processes and subsequent emission from higher energy metastable states. The spectral dynamics occurring under these pumping conditions have been studied for Nd$^{3+}$ in YAG, Y$_3$Ga$_4$O$_9$ (YGG), and lithium silicate glass. The transitions have been shown to originate on the $2P_{1/2}$ and $2F_{3,2}$ metastable states with lifetimes of about 0.3 and 3.0 μs, respectively. The fluorescence lines shown in Fig. 5 can be divided into one set having a lifetime of 0.3 μs and another set having a lifetime of 2.5 μs. In comparison to the previous results, we assign these transitions to lines originating on the $4P_{1/2}$ and $F_{23/2}$, respectively.

One important difference between the results obtained on Nd$^{3+}$:LaLuGaG and those obtained on other hosts is that strong emission from the $4F_{3/2}$ level was observed for the other samples under these pumping conditions but not for LaLuGaG. This implies that multiphoton excitation transitions lead to relaxation channels that bypass the $4F_{3/2}$ metastable state and thus act as a loss mechanism for pumping the $4F_{3/2}$ $4I_{11/2}$ laser transition. The multiphoton processes in the other hosts have been shown to be sequential two-photon excitation processes (STEP's) involving a real intermediate state, and we assume that the same mechanism is active in LaLuGaG. The effects of the STEP mechanism appear to be stronger in the LaLuGaG sample than in the other hosts. One important spectral difference that may account for this is

![FIG. 4. Temperature dependence of the fluorescence lifetime of the $4F_{3/2}$ metastable state of Nd$^{3+}$:LaLuGaG. (See text for explanation of the theoretical line.)](image-url)
Microscopic strains produce slightly different crystal fields at the site of each Nd\(^{3+}\) ion in the lattice, resulting in inhomogeneous broadening of the spectral lines. In addition, Nd\(^{3+}\) ions occupying sites having significantly different crystal-field environments produce transitions that are easily resolvable in the optical spectra. Ions in a specific type of site can be selectively excited by tuning the dye laser into resonance with one of the absorption transitions associated with these ions. The results of doing this are shown in Fig. 7. As the excitation wavelength is tuned over 0.41 nm, the maximum emission of this transition shifts from peak a to peak b, indicating a change in the type of ion being excited. Note that the energy separation of the transitions originating from the ions in these two types of sites is \(\Delta E_t = 29 \text{ cm}^{-1}\).

In order to study the energy transfer between Nd\(^{3+}\) ions in these two major types of sites, the time evolution of the relative fluorescence intensities of peaks a and b was monitored as a function of time after the excitation pulse for both excitation wavelengths. These time-resolved measurements were carried out at several temperatures between 11 and 100 K, above which the thermal broadening of the lines prevented the spectral resolution necessary for accurate measurements. In this temperature range, no variation was observed in the ratios of the intensities of peaks a and b as a function of time. This indicates that energy transfer between Nd\(^{3+}\) ions in these two different types of sites is a very weak

\[
T = 11 \text{ K} \\
\lambda_{\text{ex}} = 589.23 \text{ nm} \\
V = 1/8 \\
\lambda_{\text{ex}} = 589.23 \text{ nm} \\
\text{Intensity (Arb. Units)} \\
\text{Wavelength (nm)}
\]

\[
T = 296 \text{ K} \\
\text{Intensity (Arb. Units)} \\
\text{Wavelength (nm)}
\]

\[
\begin{align*}
&\lambda_{\text{ex}} = 589.23 \text{ nm} \\
&T = 11 \text{ K}
\end{align*}
\]

\[
\begin{align*}
&\lambda_{\text{ex}} = 589.64 \text{ nm} \\
&T = 296 \text{ K}
\end{align*}
\]
FIG. 8. Fluorescence of Nd$^{3+}$:LaLuGaG at 100 K in the 875 nm spectral region at two different times after the excitation pulse.

process. However, the similarity of the activation energy for thermal quenching of the fluorescence lifetime and the energy difference between peaks a and b may indicate that at higher temperatures energy transfer between ions in these two major types of sites does occur and results in the quenching of the decay time.

Even though energy transfer between ions in the two major types of sites is negligible at low temperatures, time-resolved spectroscopy measurements do reveal spectral energy transfer across an inhomogeneously broadened line. An example of this is shown in Fig. 8 where the shape of fluorescence transition a is shown for two times after the laser pulse at 100 K. A distinct high-energy shoulder appears on this line at short times and disappears at long times. This can be attributed to the presence of energy transfer between Nd$^{3+}$ ions in type a sites with differences in transition energies due to local perturbations of their surrounding crystal fields. This type of energy transfer can be treated quantitatively in the formalism developed for analyzing spectral energy transfer in doped glasses.28 In this model, the time evolution of the fluorescence intensity at frequency ω is expressed as

$$I(\omega,t) = a(t)I(\omega,0) + [1 - a(t)]I(\omega, \infty),$$

where $a(t)$ is the function describing the energy transfer. This can be integrated to give

$$a(t) = \frac{\int_{\omega_1}^{\omega_2} [I(\omega,t) - I(\omega, \infty)]d\omega \times \left[\int_{\omega_1}^{\omega_2} [I(\omega,0) - I(\omega, \infty)]d\omega\right]^{-1}}{\int_{\omega_1}^{\omega_2} [I(\omega,0) - I(\omega, \infty)]d\omega}.$$

The results of this analysis at 100 K are plotted in Fig. 9. The energy transfer function decreases exponentially with time, having a characteristic time constant of $\alpha = 392 \mu$s. The energy transfer parameters are summarized in Table IX.

III. SUMMARY AND CONCLUSIONS

The lifetime results summarized in Table IX indicate that Nd$^{3+}$ ions in LaLuGaG have a quantum efficiency near 98%, which is significantly higher than that for Nd:YAG crystals with this doping concentration.1 In addition, the rate of energy transfer between ions in the two major types of nonequivalent crystal-field sites is much smaller than in the YAG host.29 Since the quantum efficiency of $^4F_{3/2}$ fluorescence in Nd$^{3+}$-doped materials is generally attributed to cross-relaxation processes between neighboring Nd$^{3+}$ ions which can be enhanced by energy migration among the Nd$^{3+}$ ions, these results are indicative of weak ion-ion interaction processes in the LaLuGaG host. This observation is consistent with the increased ion-ion separation in the LaLuGaG crystal.

The origin of the two major types of nonequivalent crystal-field sites in LaLuGaG has not been identified. However, in comparison with the results of previous site-selection spectroscopy investigations of mixed garnet crystals,3,29 it is reasonable to assume that the different sites are associated with different lutetium environments around the Nd$^{3+}$ ions. In the YAG host, the energy transfer between ions in the different types of sites has been attributed to a two-phonon assisted process with a real intermediate state.26,27 This leads to an activation energy associated with the energy level splitting of the lowest two ground-state Stark components which is
significantly greater than the measured activation energy in the Nd$^{3+}$:LaLuGaG crystal. This implies the presence of different types of energy transfer mechanisms in the two types of hosts.

The point-charge calculation of the odd-fold crystal fields ($k=\text{odd}\ A_{k}$) was used to calculate the Judd-Ofelt intensity parameters, Ω_{4}, for all the rare-earth experimental values. For Nd$^{3+}$:LaLuGaG the radiative lifetime of the $^{4}F_{3/2}$ level was calculated and compared favorably with experiment. The branching ratios from a line-to-line intensity calculation for the $^{4}F_{3/2}$ to $^{4}I_{15/2}$ manifold were determined. The agreement of the crystal-field calculations with the experimental data was excellent for the $^{4}I_{1}$ and $^{4}F_{2}$ multiplets as well as the $^{1}S_{1/2}$ and $^{4}G_{7/2}$ energy levels.

The ability to incorporate high concentrations of Nd$^{3+}$ in the lattice without degrading the optical quality and maintaining a high level of quantum efficiency would make LaLuGaG an attractive host for a Nd$^{3+}$ laser material. However, the inability to observe lasing under pumping conditions producing gain in other Nd-doped materials, due to the presence of strong multiphoton transitions in this host, reduces the potential of Nd$^{3+}$:LaLuGaG as a replacement for Nd$^{3+}$:YAG or Nd$^{3+}$:Cr$^{3+}$:GSGG as an efficient 1-\textmu m laser.

ACKNOWLEDGMENTS

The OSU part of this research was sponsored by the U.S. Army Research Office. The SAIC and HIDI work was sponsored by the Center for Night Vision and Electro-Optics. We thank Charles F. Campana for the crystal structure determination. One of the authors (D.K.S.) gratefully acknowledges financial support from the University of Texas at San Antonio for this work.

1Permanent address: Division of Earth and Physical Sciences, The University of Texas at San Antonio, San Antonio, TX 78285.

7G. Menser, Z. Kristallogr. 63, 157 (1926).

10Micronatter Co., Rt. 1, Eastsound, WA 98245.

19W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968); 49, 4424 (1968); 49, 4434 (1968); 49, 4444 (1968); 49, 4450 (1968).

20B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).

26D. Caffey (private communication).

II.4

Site-selection spectroscopy, energy transfer, and laser emission in Nd$^{3+}$-doped Ba$_2$MgGe$_2$O$_7$

Michael J. Ferry, Michael L. Kliwer, Roger J. Reeves, and Richard C. Powell
Center for Laser Research, Oklahoma State University, Stillwater, Oklahoma 74078-0444
Toomas H. Allik
Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102

(Received 12 April 1990; accepted for publication 14 August 1990)

A detailed spectroscopic and pump wavelength dependent laser study has been performed on Nd$^{3+}$ ions in Ba$_2$MgGe$_2$O$_7$. Site-selection spectroscopy experiments reveal fifteen distinct crystal field sites for the Nd$^{3+}$ ions. At room temperature, excitation of ions in any one of these sites is followed by efficient, thermally activated energy transfer to ions in a site having a laser emission transition at 1054 nm. Laser-pumped laser experiments were performed to determine the pumping threshold and slope efficiency of laser action in this material for different monochromatic pump wavelengths. The measured slope efficiencies were found to be pump wavelength dependent and ranged from 6% to 22%. Excited-state absorption of pump photons was shown to be responsible for this variation in the slope efficiency.

I. INTRODUCTION

The development of high power GaAlAs laser diodes has renewed the interest in rare-earth doped solid-state hosts. For Nd$^{3+}$ doped materials, diode excitation at 800 nm has been shown to be more efficient than flashlamp pumping in generating 0.9, 1.0, and 1.3 µm lasers. In addition, monochromatic pumping in the near-infrared has produced visible (upconversion) emission and new laser wavelengths. Therefore, it is worthwhile reinvestigating materials that do not possess superior flashlamp-pump characteristics but can be reconsidered as materials for diode pumping. We have chosen to study one such material Ba$_2$MgGe$_2$O$_7$:Nd$^{3+}$ which has many attractive features.

Ba$_2$MgGe$_2$O$_7$:Nd$^{3+}$ (Nd:BMAG) was first studied in the late 1960's and early 1970's as a flashlamp-pumped laser material. The host crystal possesses the Akermanite crystal structure with space group $P4_{2}1m$ (tetragonal) and is a subset of the melilite series of minerals. The Nd$^{3+}$ ions are believed to occupy the Ba$^{2+}$ site (C_{1} symmetry) and charge compensation is provided by interstitial anions, cation vacancies and monovalent ions, such as K$^{+}$ or Na$^{+}$. When doped with Nd$^{3+}$ this crystal exhibits inhomogeneously broadened absorption and fluorescence spectra. The room-temperature fluorescence lifetime of 450 µs for the $^{4}F_{9/2}$ metastable state and the high thermal conductivity of the crystal compared to a glass make Nd:BMAG an attractive material for a diode-array pumped laser system. Spectroscopic measurements have recently been reported on a similar material Ba$_2$ZnGe$_2$O$_7$:Nd$^{3+}$. We present here the results of time-resolved, site-selection spectroscopy experiments on Ba$_2$MgGe$_2$O$_7$:Nd$^{3+}$. The results provide information on the electronic transition wavelengths of Nd$^{3+}$ ions in different crystal field sites and on the energy transfer between ions in these sites. In addition, the characteristics of laser-pumped laser operation of this material are reported. All of these results are relevant to understanding the dynamics involved in monochromatic pumping of this material.

II. ABSORPTION AND SITE-SELECTION SPECTROSCOPY

The crystal used in this study was grown by Linz using the top-seeded-solution growth technique. The sample was obtained from the same growth runs as those used for the previous studies of this material. The size of the sample was 0.56 × 0.83 × 1.02 cm3 with the long dimension parallel to the c-axis of the crystal. The absorption spectra were recorded with a Perkin-Elmer Lambda 9 spectrophotometer equipped with a polarizing attachment. Figure 1 shows the polarized absorption spectrum of Nd:BMAG between 300 and 1000 nm at room temperature with the Fresnel losses removed. The two salient features of the spectra are that at most wavelengths the absorption coefficient for $E \parallel c$, and the sample exhibits broad absorption features for the manifold-to-manifold transitions. The large inhomogeneous broadening is primarily caused by the variation of the crystal field around the rare-earth ions due to the mismatch in electronic charges between Nd$^{3+}$ and Ba$^{2+}$. In addition to known Nd$^{3+}$ absorption transitions, a broad absorption band from 320 to 420 nm has been detected and could be attributable to a germinate complex.

Fluorescence, excitation, and site-selection spectroscopy measurements were performed using a 400 watt nitrogen laser-pumped dye laser that provided excitation pulses of 10 ns duration, 0.5 Å bandwidth, and energy of 100 mJ/pulse. The dyes used were Coumarin 440 with output tunable from 420 to 465 nm for excitation into the $^2P_{3/2}$ manifold, and Rhodamine 590 with output tunable from 560 to 630 nm for excitation into the $^4G_{7/2}$ and $^2G_{7/2}$ manifolds. The sample was mounted in a cryogenic refrigerator capable of.
of reaching temperatures as low as 10 K and oriented such that the laser pump pulses propagated along the c-axis. The unpolarized fluorescence was monitored perpendicular to the pump beam and focused on the entrance slit of a Spex 1 meter monochromator. A filter was used to attenuate the scattered pump laser light. It is well known that strong fluorescence from Nd\(^{3+}\) ions in solids occurs in the near-infrared region and corresponds to transitions from the \(^{4}F_{3/2}\) manifold to the lower energy \(^{4}I\) manifolds. This fluorescence signal was detected with a liquid nitrogen cooled RCA 7102 photomultiplier tube and processed by a boxcar integrator. The output of the boxcar was recorded on a strip chart recorder.

The room-temperature energy levels of Nd\(^{3+}\) in BMAG were determined from absorption and fluorescence spectra and are listed in Table I. The full width at half maximum (FWHM) was estimated from constructed Gaussian fits to the absorption and fluorescence bands. Reported absorption coefficients, \(\alpha\), are those measured at the band maxima. No attempt was made to separate hot band transitions or to deconvolute the multisite contributions when determining the energy levels.

Figure 2 shows the excitation spectrum of the near-infrared emission of Nd:BMAG from 429 to 437 nm at 10 K. The spectrum has been corrected for the filter response but not for the dye laser intensity. The peaks observed in this

Table I. Room-temperature energy levels of Nd\(^{3+}\) BMAG

<table>
<thead>
<tr>
<th>Stark manifold</th>
<th>Peak ((\text{cm}^{-1}))</th>
<th>(\sigma) ((\text{cm}^{-1}))</th>
<th>FWHM ((\text{cm}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{4}D_{5/2})</td>
<td>30,377</td>
<td>0.543</td>
<td>737</td>
</tr>
<tr>
<td>(^{4}F_{9/2})</td>
<td>28,514</td>
<td>0.790</td>
<td>342</td>
</tr>
<tr>
<td>(^{4}D_{7/2})</td>
<td>27,964</td>
<td>0.884</td>
<td>422</td>
</tr>
<tr>
<td>(^{4}F_{7/2})</td>
<td>27,405</td>
<td>0.477</td>
<td>286</td>
</tr>
<tr>
<td>(^{4}F_{3/2})</td>
<td>26,788</td>
<td>0.424</td>
<td>108</td>
</tr>
<tr>
<td>(^{4}D_{3/2})</td>
<td>26,504</td>
<td>0.411</td>
<td>112</td>
</tr>
<tr>
<td>(^{4}F_{1/2})</td>
<td>26,110</td>
<td>0.411</td>
<td>212</td>
</tr>
<tr>
<td>(^{4}F_{5/2})</td>
<td>25,826</td>
<td>0.399</td>
<td>147</td>
</tr>
<tr>
<td>(^{4}D_{5/2})</td>
<td>23,776</td>
<td>0.337</td>
<td>266</td>
</tr>
<tr>
<td>(^{4}F_{3/2})</td>
<td>23,218</td>
<td>0.354</td>
<td>129</td>
</tr>
<tr>
<td>(^{4}D_{1/2})</td>
<td>23,010</td>
<td>0.366</td>
<td>243</td>
</tr>
<tr>
<td>(^{4}G_{9/2})</td>
<td>22,026</td>
<td>0.333</td>
<td>141</td>
</tr>
<tr>
<td>(^{4}D_{1/2})</td>
<td>21,763</td>
<td>0.358</td>
<td>142</td>
</tr>
<tr>
<td>(^{4}F_{3/2})</td>
<td>21,622</td>
<td>0.358</td>
<td>164</td>
</tr>
<tr>
<td>(^{4}D_{1/2})</td>
<td>21,182</td>
<td>0.382</td>
<td>216</td>
</tr>
<tr>
<td>(^{4}G_{9/2})</td>
<td>20,995</td>
<td>0.395</td>
<td>185</td>
</tr>
<tr>
<td>(^{4}G_{5/2})</td>
<td>19,569</td>
<td>0.613</td>
<td>84</td>
</tr>
<tr>
<td>(^{4}G_{1/2})</td>
<td>19,478</td>
<td>0.691</td>
<td>83</td>
</tr>
<tr>
<td>(^{4}F_{1/2})</td>
<td>19,353</td>
<td>0.625</td>
<td>86</td>
</tr>
<tr>
<td>(^{4}G_{9/2})</td>
<td>19,030</td>
<td>1.020</td>
<td>145</td>
</tr>
<tr>
<td>(^{4}G_{3/2})</td>
<td>18,868</td>
<td>0.687</td>
<td>78</td>
</tr>
<tr>
<td>(^{4}G_{5/2})</td>
<td>18,761</td>
<td>0.629</td>
<td>92</td>
</tr>
<tr>
<td>(^{4}G_{3/2})</td>
<td>17,501</td>
<td>1.200</td>
<td>75</td>
</tr>
<tr>
<td>(^{4}G_{5/2})</td>
<td>17,483</td>
<td>0.851</td>
<td>83</td>
</tr>
<tr>
<td>(^{4}G_{1/2})</td>
<td>17,209</td>
<td>1.300</td>
<td>92</td>
</tr>
<tr>
<td>(^{4}G_{5/2})</td>
<td>17,103</td>
<td>1.440</td>
<td>73</td>
</tr>
<tr>
<td>(^{4}G_{3/2})</td>
<td>17,030</td>
<td>1.68</td>
<td>58</td>
</tr>
<tr>
<td>(^{4}G_{1/2})</td>
<td>16,972</td>
<td>1.52</td>
<td>55</td>
</tr>
<tr>
<td>(^{4}G_{3/2})</td>
<td>16,846</td>
<td>1.09</td>
<td>105</td>
</tr>
<tr>
<td>(^{4}G_{5/2})</td>
<td>16,711</td>
<td>0.80</td>
<td>87</td>
</tr>
<tr>
<td>(^{1}H_{15/2})</td>
<td>16,271</td>
<td>0.321</td>
<td>50</td>
</tr>
<tr>
<td>(^{1}H_{13/2})</td>
<td>16,171</td>
<td>0.329</td>
<td>78</td>
</tr>
<tr>
<td>(^{1}G_{15/2})</td>
<td>16,067</td>
<td>0.321</td>
<td>57</td>
</tr>
<tr>
<td>(^{1}F_{11/2})</td>
<td>15,946</td>
<td>0.313</td>
<td>84</td>
</tr>
<tr>
<td>(^{1}S_{11/2})</td>
<td>15,450</td>
<td>0.387</td>
<td>188</td>
</tr>
<tr>
<td>(^{1}F_{9/2})</td>
<td>14,409</td>
<td>0.370</td>
<td>73</td>
</tr>
<tr>
<td>(^{1}F_{7/2})</td>
<td>14,296</td>
<td>0.366</td>
<td>135</td>
</tr>
<tr>
<td>(^{1}S_{9/2})</td>
<td>13,567</td>
<td>1.380</td>
<td>50</td>
</tr>
<tr>
<td>(^{1}F_{5/2})</td>
<td>13,460</td>
<td>1.200</td>
<td>73</td>
</tr>
<tr>
<td>(^{1}G_{13/2})</td>
<td>13,382</td>
<td>1.470</td>
<td>59</td>
</tr>
<tr>
<td>(^{1}G_{11/2})</td>
<td>13,289</td>
<td>1.130</td>
<td>62</td>
</tr>
<tr>
<td>(^{1}H_{15/2})</td>
<td>13,154</td>
<td>0.559</td>
<td>73</td>
</tr>
<tr>
<td>(^{1}F_{9/2})</td>
<td>12,750</td>
<td>0.382</td>
<td>44</td>
</tr>
<tr>
<td>(^{1}H_{13/2})</td>
<td>12,679</td>
<td>0.485</td>
<td>40</td>
</tr>
<tr>
<td>(^{1}S_{11/2})</td>
<td>12,553</td>
<td>0.929</td>
<td>35</td>
</tr>
<tr>
<td>(^{1}F_{11/2})</td>
<td>12,355</td>
<td>0.477</td>
<td>83</td>
</tr>
<tr>
<td>(^{1}H_{13/2})</td>
<td>12,429</td>
<td>2.040</td>
<td>42</td>
</tr>
<tr>
<td>(^{1}F_{9/2})</td>
<td>12,334</td>
<td>0.880</td>
<td>52</td>
</tr>
<tr>
<td>(^{1}G_{13/2})</td>
<td>12,252</td>
<td>0.621</td>
<td>50</td>
</tr>
<tr>
<td>(^{1}F_{11/2})</td>
<td>11,533</td>
<td>0.572</td>
<td>52</td>
</tr>
<tr>
<td>(^{1}F_{11/2})</td>
<td>11,399</td>
<td>1.070</td>
<td>49</td>
</tr>
<tr>
<td>(^{1}G_{11/2})</td>
<td>11,307</td>
<td>0.588</td>
<td>47</td>
</tr>
<tr>
<td>(^{1}F_{9/2})</td>
<td>11,162</td>
<td>0.428</td>
<td>84</td>
</tr>
<tr>
<td>(^{1}F_{11/2})</td>
<td>11,046</td>
<td>0.325</td>
<td>68</td>
</tr>
<tr>
<td>(^{1}H_{13/2})</td>
<td>6,242</td>
<td>0.169</td>
<td>4</td>
</tr>
<tr>
<td>(^{1}H_{15/2})</td>
<td>6,156</td>
<td>0.154</td>
<td>47</td>
</tr>
<tr>
<td>(^{1}F_{9/2})</td>
<td>6,062</td>
<td>0.156</td>
<td>69</td>
</tr>
<tr>
<td>(^{1}H_{11/2})</td>
<td>5,961</td>
<td>0.154</td>
<td>48</td>
</tr>
<tr>
<td>(^{1}G_{13/2})</td>
<td>4,359</td>
<td>0.160</td>
<td>35</td>
</tr>
<tr>
<td>(^{1}G_{11/2})</td>
<td>4,278</td>
<td>0.177</td>
<td>51</td>
</tr>
<tr>
<td>(^{1}G_{13/2})</td>
<td>4,225</td>
<td>0.193</td>
<td>34</td>
</tr>
<tr>
<td>(^{1}G_{11/2})</td>
<td>4,170</td>
<td>0.284</td>
<td>77</td>
</tr>
<tr>
<td>(^{1}G_{13/2})</td>
<td>4,102</td>
<td>0.251</td>
<td>27</td>
</tr>
</tbody>
</table>
excitation range correspond to absorption transitions to the $^2P_{1/2}$ manifold of Nd$^{3+}$. Since this energy level consists of a single Stark component, each peak observed in Fig. 2 is associated with a transition to the $^2P_{1/2}$ level for Nd$^{3+}$ ions in different crystal field sites of BMAG. The excitation spectrum was observed to be comprised of four groups of lines that were well separated in wavelength. These major site categories, labeled with a letter in Fig. 2, were composed of “subsites” which were numbered with ascending integers indicating descending energy. In total, fifteen individual sites were identified. While a direct correlation is not possible with the available data, the major sites appear to be different crystal field centers associated with the different types of charge compensation for the Nd$^{3+}$ in Ba$^2^+$. The subsites having the same letter designation (i.e., A1, A2, A3, ...) are thought to be distinguished by perturbations in the local crystal field due to lattice defects. The intensity of an excitation peak depends on the absorption coefficient at the excitation wavelength, the emission cross sections for the transitions of the ions in that particular site, and the dye response at the pump wavelength. In the excitation region covered in Fig. 2, the dye laser response is essentially flat and site A2 is the strongest emitter, followed closely by sites D5 and C4.

With the transitions for the sites identified in the $^2P_{1/2}$ excitation spectrum, it was possible to selectively excite ions in individual sites and observe the fluorescence emitted. Figure 3 shows the $^4F_{3/2} \rightarrow ^2I_{11/2}$ fluorescence spectra at 10 K associated with pumping the $^2P_{1/2}$ level of sites A2, C4, and D5. Time-resolved studies showed that energy transfer between sites was negligible at 10 K and the fluorescence observed is solely due to ions in the site pumped. The shortest wavelength peaks of the different sites are the highest intensity transitions and are the common laser transitions for Nd$^{3+}$ ions. These transitions appear at distinctly different wavelengths for ions in the different major sites. A rough rule of thumb is 1050, 1060, 1070, and 1080 nm for sites A, B, C, and D, respectively.

Optically pumping the different excitation peaks in the $^2P_{1/2}$ spectral region leads to the identification of many of the Stark levels of the $^4F_{3/2}$, $^4I_{11/2}$, and $^4I_{9/2}$ manifolds for the fifteen sites of Nd:BMAG. Similar measurements were made pumping into the $^4G_{5/2} + ^2G_{7/2}$ manifold. The results of the spectroscopic energy level identification for the sites of Nd:BMAG at 10 K are presented in Fig. 4. Only those energy levels that could be unambiguously identified are shown in the figure. The energies of the levels generally decrease from sites A to D.

III. ENERGY TRANSFER

Energy transfer between the different crystal field sites in Nd:BMAG was predicted from the appearance of the room-temperature fluorescence spectrum. It was found that excitation of any one of the crystal field sites at room temperature produced the same fluorescence spectrum which is shown in Fig. 5. The fluorescence bands observed in this

TABLE I.

<table>
<thead>
<tr>
<th>Stark manifold</th>
<th>Peak (cm$^{-1}$)</th>
<th>α_γ (cm$^{-1}$)</th>
<th>FWHM (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4I_{13/2}$</td>
<td>4057</td>
<td>0.280</td>
<td>35</td>
</tr>
<tr>
<td>$^4I_{11/2}$</td>
<td>4017</td>
<td>0.226</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2176</td>
<td>0.188</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>2093</td>
<td>0.168</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>2029</td>
<td>0.118</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>1933</td>
<td>0.080</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>683</td>
<td>0.020</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3e4</td>
<td>0.010</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>0.002</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>0.001</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.000</td>
<td>70</td>
</tr>
</tbody>
</table>

FIG. 2. Excitation spectrum of the near-infrared emission for Nd:BMAG at 10 K, for transitions terminating on the $^2P_{1/2}$ energy level.

FIG. 3. Fluorescence from the $^4F_{3/2}$ level to $^2I_{11/2}$ level for ions in different sites at 10 K.
Spectra are indicative of transitions from ions in the A type sites, implying that energy is completely transferred to these ions at room temperature. The energy transfer was investigated by selectively exciting the \(^{2}P_{3/2}\) level of Nd\(^{3+}\) ions in a particular site and monitoring the fluorescence in the \(^{4}F_{3/2} \rightarrow {^{4}I_{15/2}}\) transition region from all other sites.

Sites D5 and C4 were selectively excited at various temperatures and the fluorescence spectra recorded are shown in Figs. 6(a) and 6(b). The peak at 1078 nm in Fig. 6(a) is associated with emission from ions in site D5 while the peak at 1054 nm is associated with site A2. These peaks correspond to the transition between the lowest crystal field levels of the \(^{4}F_{3/2}\) and \(^{4}I_{15/2}\) multiplets. The results show the intensity of the line from site A2 growing at the expense of the line from site D5 as the temperature is increased. Thus, energy is being transferred from sensitizer ions in D5 to activator ions in A2 sites and the transfer process is thermally activated.

Fluorescence spectra were recorded at delay times ranging from 10 \(\mu\)s to 1 ms after the excitation pulse but no time dependence of the relative line strengths could be observed at
any temperature. This leads to the conclusion that the transfer is completed prior to the $^{4}F_{9/2}$ emission.

Similar results were obtained for excitation of the C4 crystal field sites. The intensity of the emission peak at 1070 nm for site C4 decreased as the temperature was increased [Fig. 6(b)]. The energy was transferred to the same activator site A2 and again there was no time dependence of the relative line strengths. Note that the transfer from site C4 is thermally activated at a lower temperature than the transfer from site D5.

The temperature dependence of the energy transfer arises as higher lying Stark components of a metastable state become populated through a Boltzmann distribution. Energy is transferred due to the spectral overlap between the thermally activated levels of the optically pumped ions, and levels of the ions in site A2. An exact resonance of the levels is not required as some degree of mismatch can be compensated by absorption or emission of lattice phonons.

A simple rate equation model can be used to qualitatively explain the observed results. Figure 7 depicts the energy levels involved in the dynamical processes taking place. The sensitizer S_1 is the ion that is optically pumped (site C4 or D5), and the activator, A, is the ion in the site to which energy is transferred (site A2). The population of ions in the ith level of the sensitzers and activators is designated by S_i or A_i, respectively.

The population of the metastable state S_1 involves absorption of excitation laser photons from $^{4}I_{9/2}$ to $^{3}P_{1/2}$ and then rapid nonradiative relaxation from $^{3}P_{1/2}$ to S_2. Therefore, the rate of population of S_1 is effectively W_s, the optical pumping rate. W_t and W_a are the rates of population loss from the metastable levels S_2 and A_2, and B_a and B_d are nonradiative transition rates between the two Stark components of the sensitizer multiplet involved in the transfer. These Stark components are separated by an energy gap of ΔE_i. Energy transfer between ions occurs through the spectral overlap of the activator level A_2 and the sensitizer level S_1, which is thermally activated. Any energy mismatch between the levels can be compensated by lattice phonons and the transfer will still activate with the Stark splitting ΔE_i. The transfer is described by a forward rate, W_w (from sensitizer to activator), and a back transfer rate, W_a (from activator to sensitizer).

The observed ratio of the fluorescence intensities of the sensitizer and activator emission is proportional to the ratio of level populations,

$$\frac{I_s}{I_a} = \beta \left(\frac{A_s}{S_1} \right)$$

where the proportionality factor β includes parameters compensating for possible differences in the radiative decay rates of the fluorescing levels of the sensitizer and activator ions. The ratio A_s/S_1 can be obtained from the rate equation describing the population dynamics of level S_1.

$$\frac{S_3}{S_1} = B_s S_1 + W_a A_1 - B_d S_1 - W_w S_1$$

At thermal equilibrium,

$$\frac{S_3}{S_1} = \exp(\frac{-\Delta E_i}{kT}) = \frac{B_s}{B_d}$$

Since no time dependence of the energy transfer was observed, steady state conditions can be applied and $S_1 = 0$. Using this assumption Eq. (2) can be solved for the ratio A_s/S_1, obtaining

$$\frac{I_s}{I_a} = \beta \frac{W_w}{W_a} \exp(\frac{-\Delta E_i}{kT})$$

for the ratio of the fluorescence intensities.

Figure 8 shows the natural log of the ratio of the integrated fluorescence intensity of activator and sensitizer as a function of inverse temperature for C4 and D5 site pumping. The results obtained by fitting Eq. (4) to the data are shown as solid lines in Fig. 8 and the parameters obtained from these fits are given in Table II. ΔE_i is the activation energy determined by the slope of the linear fit to the data in Fig. 8 and the intercept is associated with the constant $\beta (W_w/W_a)$.

With the available data, identification of the metastable sensitizer level involved in the transfer is not conclusive but the most probable candidate is the $^{4}F_{9/2}$ level. The energy

Figure 7 Model used to explain the temperature dependent energy transfer observed in Nd BMAG

Figure 8 Temperature dependence of the fluorescence intensity ratios for A2 activators with C4 or D5 sensitizers.
TABLE II. Experimental energy transfer parameters for the sensitizers C4 and D5.

<table>
<thead>
<tr>
<th>Sensitizer</th>
<th>ΔE_i</th>
<th>$\beta W^_m W^_m$</th>
<th>ΔE_{mm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>278 ± 33 cm$^{-1}$</td>
<td>38 ± 18 cm$^{-1}$</td>
<td>151 cm$^{-1}$</td>
</tr>
<tr>
<td>D5</td>
<td>338 ± 51 cm$^{-1}$</td>
<td>9 ± 4 cm$^{-1}$</td>
<td>319 cm$^{-1}$</td>
</tr>
</tbody>
</table>

difference between the lowest Stark component of this multiplet for the activator site, A2, and the sensitizers, C4 and D5, is given in Table II as ΔE_{mm}. For the D5 \rightarrow A2 transfer there is a reasonable agreement between the activator energy required for energy transfer and the site-to-site energy difference, ΔE_{mm}, of the $^4F_3/2$ level. The difference between ΔE_i and ΔE_{mm} for the C4 \rightarrow A2 transfer indicates that phonons with energy of 120 cm$^{-1}$ would be released in this transfer process.

IV. LASER-PUMPED LASER STUDIES

Laser action was obtained at room temperature in Nd:BMAG using an alexandrite laser as the excitation source. The alexandrite laser output was tunable from 725 to 790 nm and consisted of a series of pulses of duration 300 ns within a 60 μs envelope. The maximum power at the peak of the gain curve was 20 W at a repetition rate of 20 Hz and the spectral width was approximately 1 nm.

The crystal was mounted in a 23-cm long cavity consisting of a 50 cm radius of curvature high reflector and a flat 85% reflective output coupler. Transverse pumping was employed (Elc) with cylindrical and convex lenses used to focus the pump laser beam in a line the length (0.56 cm) of the Nd:BMAG sample. An iris was positioned in the cavity to limit the number of oscillating modes. The power incident on the Nd:BMAG crystal and the power output from the Nd:BMAG laser were measured with two calibrated power meters. The Fresnel reflections and absorption within the cavity mode volume of the material were considered when calculating the power absorbed by the crystal.

Figure 9 shows the absorption spectrum in the pumping region used in these experiments. The spectral structure is associated with absorptions transitions terminating on the various Stark components of the $^4F_{3/2}$ and $^4S_{1/2}$ manifolds. For all the excitation wavelengths used, Nd:BMAG lased at a wavelength of 1054 nm. As discussed in the previous sections this wavelength corresponds to the $^4F_{3/2} (R_{1}) \rightarrow ^4I_{11/2} (Y_{1})$ transition of the A2 site in Nd:BMAG. Lasing was observed for pump wavelengths from 736.7 to 758.8 nm, which covers most of the absorption spectrum shown in Fig. 9. Lasing could not be obtained for excitation wavelengths shorter than 736.7 nm because the gain curve of the alexandrite laser limited the available pump power.

The laser power output of Nd:BMAG at 1054 nm was monitored as a function of the incident pump power for several excitation wavelengths and the results were used to determine the laser threshold and slope efficiency. Figure 10 shows the data obtained in this work. Above absorbed power levels of 150 mW the Nd:BMAG laser power output levels off due to saturation of absorption in the laser mode volume (waist diameter, $d \approx 0.069$ cm). The threshold for lasing varies only a small amount with changes in pump wavelength but there are significant changes observed in the slope efficiency. Pumping at 749.5 nm results in the highest slope efficiency (22%) and the lowest power threshold.

Blue and green fluorescence was apparent to the eye for alexandrite pumping of Nd:BMAG. As observed by eye, the intensity of this fluorescence did not significantly change when the sample was lasing. Moreover, the fluorescence showed changes with excitation wavelength suggesting excited state absorption of pump laser photons may be occurring. For excitation between 729 and 752 nm the fluorescence appeared as an intense blue and then a weaker green as the alexandrite laser was tuned to longer wavelengths. The pump wavelength yielding the highest laser slope efficiency.
(749.5 nm) also was associated with a minimal amount of upconverted emission. This suggests that the processes producing upconverted emission may be limiting the efficiency of the Nd:BMAG laser at some pump wavelengths.

Excited state absorption (ESA) of pump photons is possible when the pump wavelength is tuned to the transition energy between any populated excited level and a higher level. Additionally, the incident pump photon rate must be comparable to the decay rate of the initial excited level. Because of the high energy and short duration of the spiked alexandrite laser pulses, this condition may be satisfied for some of the intermediate levels of the Nd$^{3+}$ ion. An efficient ESA process also requires a resonance for absorption from the ground state. Excitation frequencies that exactly match both resonance conditions may not be possible but transitions involving vibronic levels will extend the range of wavelengths available for ESA.

The fluorescence in the blue-green spectral region was recorded for three alexandrite excitation wavelengths and the results are shown in Fig. 11. The spectra are corrected for both detector and filter response and each spectrum was normalized to the highest peak in the scan range. The absolute intensity for the 738.6 nm excitation is at least an order of magnitude greater than for the 743.2 and 753.6 nm excitations. Using the room-temperature energy levels for Nd:BMAG it was possible to determine the origin of the upconverted transitions observed in these spectra and this is shown in Fig. 12 with respect to the energy level diagram.

The most probable excited level for ESA is the metastable $^4F_{5/2}$ state due to its long lifetime. However, for alexandrite pumping of Nd:BMAG there are no terminating levels within the pump wavelength range and it is concluded that this level is not involved in the processes occurring. Additionally, there were no significant changes in the intensity of the upconverted emission when the crystal was lasing which would be expected if this state was involved. The transition $^4F_{5/2} \rightarrow ^4G_{9/2}$ labeled transition 2 in Fig. 12, is a close match to the wavelength of the lasing photons at 1054 nm. This ESA transition will be present for all pump laser wavelengths and is not responsible for the pump wavelength dependent effects observed here.

The excitation wavelengths 743.2 and 738.6 nm producing blue fluorescence are a good match to the ESA transitions $^4F_{5/2} \rightarrow ^2P_{1/2}$ and $^4F_{7/2} \rightarrow ^2D_{7/2}$, respectively. These processes, indicated by transitions 3 and 4 in Fig. 12, decrease the number of ions reaching the upper laser level $^4F_{9/2}$ and thus reduce the efficiency of the laser. The two levels taking part, $^4F_{5/2}$ and $^4F_{7/2}$, are known to have very fast decay rates and ESA effects may only be associated with the high energy, fast pulse excitation of alexandrite laser pumping. Also, cross-relaxation between Nd$^{3+}$ ion pairs may enhance ESA effects by changing the single-ion decay rates from these levels. Models describing ESA of pump photons have been discussed recently by Kliewer and Powell19 and Petrin et al.10 The nonlinear, coupled differential equations describing the level populations were solved numerically. The results show that excited state absorption of pump photons can decrease the slope efficiency but the model does not yet describe the full extent of the effect.

V. SUMMARY AND CONCLUSIONS

The results obtained in this work show that Nd$^{3+}$ ions occupy several different crystal field sites in BMAG crystals. This produces large inhomogeneous broadening of the spectral transitions which influences the cross sections involved
in optical pumping and laser emission. Efficient energy transfer was observed at room temperature between ions in the different types of sites. The fluorescence observed at room temperature occurs from ions in one type of site indicating that energy transfer can be used to enhance laser pumping. The mechanism for energy transfer was not determined since this depends critically on the concentration of ions in the different types of sites. The efficiency of the energy transfer suggests that the sensitizer-activator separations are less than would be expected if the ions were distributed uniformly between the sites. Thus, it is highly probable that the ions are not uniformly distributed but are preferentially distributed in pairs or larger groups.

Strong blue and green fluorescence was observed when the Nd4+ ions were excited with an alexandrite laser. This upconverted emission was pump wavelength dependent and was attributed to excited state absorption processes. The lasing thresholds and slope efficiencies were determined for Nd:BMAG at several excitation wavelengths. The lasing slope efficiency was found to be reduced at the pumping wavelengths associated with excited state absorption. A pump wavelength was identified that minimized this type of loss mechanism.

ACKNOWLEDGMENTS

This research was supported by the U. S. Army Research Office and the Center for Night Vision and Electro-Optics.

Crystallography, spectroscopic analysis, and lasing properties of Nd\(^{3+}\):Ba\(_2\)ZnGe\(_2\)O\(_7\)

Toomas H. Allik

Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102

Michael J. Ferry,* Roger J. Reeves, and Richard C. Powell

Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444

Wayne W. Hovis, David P. Caffey, Richard A. Utano, and Larry Merkle

Center for Night Vision and Electro-Optics, U.S. Army Communications-Electronics Command, Fort Belvoir, Virginia 22060-5977

Charles F. Campana

Siemens Analytical X-Ray Instruments, Inc., 6300 Enterprise Lane, Madison, Wisconsin 53719

Received November 17, 1989; accepted February 5, 1990

Nd\(^{3+}\):Ba\(_2\)ZnGe\(_2\)O\(_7\) (BZAG) is an attractive material to be pumped by laser diodes because its fluorescence lifetime is 305 \(\mu\)sec and it has a broad absorption centered at 805 nm. In addition, Nd\(^{3+}\):BZAG has a broad fluorescence spectrum and offers the potential for tunable laser output wavelengths centered at 1.05 and 1.34 \(\mu\)m. Time-resolved, site-selection spectroscopy measurements revealed ten different crystal-field sites for Nd\(^{3+}\) in BZAG, but strong energy transfer between nonequivalent ions at room temperature results in emission from only one major site. Diode-array side pumping of 8-mm-diameter rods produced optical slope efficiencies of 22.8%. Crystal structure, Judd–Ofelt analysis, and laser performance are discussed.

INTRODUCTION

For many years, Nd\(^{3+}\) doped in \(Y_2\)Al\(_3\)O\(_12\) (YAG) has been the most common solid-state flash-lamp-pumped laser owing to its high stimulated-emission cross section, thermal conductivity, and mechanical strength. In the search for improved laser materials, many materials have been studied that possess theoretically better Q-switch properties than Nd\(^{3+}\):YAG.\(^{1}\) Unfortunately, many of these materials were generally unable to tolerate the thermal stress produced by the UV radiation that is present with flash-lamp pumping.\(^{2}\) Today, with efficient and long-lived GaAlAs diodes operating at ideal pump wavelengths for Nd\(^{3+}\) (\(F_{4d}\) \(\rightarrow\) \(H_{4f}\) levels) in the near IR, it is possible to consider host materials with less stringent thermomechanical requirements than Nd\(^{3+}\):YAG has. Desirable properties for a diode-pumped Q-switched laser material include a longer fluorescence lifetime and a broader absorption band compared with Nd\(^{3+}\):YAG. A long fluorescence lifetime would increase the storage capacity of the material and reduce the number of diodes needed to produce a given output power. A broader absorption band would permit a greater wavelength tolerance for an array, thereby reducing system cost.

Flash-lamp-pumped laser action of Nd\(^{3+}\):Ba\(_2\)ZnGe\(_2\)O\(_7\) (BZAG) was demonstrated by the U.S. Army Night Vision Laboratory in 1972.\(^3\) BZAG possesses the akermanite (melilite) structure and congruently melts at 1320°C, which allows these crystals to be grown by the Czochralski method.\(^4\) The salient conclusions of the Night Vision study were that Nd\(^{3+}\):BZAG is a medium-gain laser material, with a stimulated-emission cross section, a fluorescence linewidth, and thermomechanical properties intermediate between those of YAG and most glasses.\(^3\) Nd\(^{3+}\):BZAG possesses a longer fluorescence lifetime than Nd\(^{3+}\):YAG and exhibits a broader absorption and fluorescence spectrum than those of Nd\(^{3+}\)-doped YAG, YAO\(_3\), and YLiF\(_4\).\(^1\) In this study we report the results of x-ray diffraction, detailed spectroscopic analysis, and the lasing properties of Nd-doped BZAG under diode-array, alexandrite, and dye-laser pumping.

EXPERIMENTAL RESULTS AND DISCUSSION

Crystal Growth and Elemental Analysis

The BZAG crystals used in this study were grown in the late 1960's by A. Linz (Massachusetts Institute of Technology), who used the top-seeded solution technique with a nominal 2 mol % Nd\(^{3+}\) added to the melt. These samples are the same as those used by Horowitz et al.\(^3\) in the previous study of this laser host. A spectroscopic sample was analyzed for elemental composition by Galbraith Laboratories, Knoxville, Tennessee. Analysis of the sample gave the following results (in weight percent): Nd, 0.14; Ba, 45.82; Zn, 10.74; Ge, 23.81; K, <0.010; and Na, <0.010. The corresponding Nd density was determined to be 2.9 \(\times\) \(10^{-8}\) cm\(^3\)2.
Table 1. Summary of Single-Crystal X-Ray Diffraction Results for Ba₂ZnGe₂O₇

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>0.165(1)</td>
<td>-0.3349(1)</td>
<td>0.4927(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>Zn</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>26(1)</td>
</tr>
<tr>
<td>Ge</td>
<td>0.3591(2)</td>
<td>-0.1409(2)</td>
<td>0.0383(5)</td>
<td>25(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.0826(16)</td>
<td>0.1873(14)</td>
<td>0.8105(22)</td>
<td>41(4)</td>
</tr>
<tr>
<td>O(2)</td>
<td>-0.1393(16)</td>
<td>-0.3607(16)</td>
<td>0.2717(35)</td>
<td>48(6)</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.00000</td>
<td>0.50000</td>
<td>0.8404(40)</td>
<td>26(4)</td>
</tr>
</tbody>
</table>

*All 281 reflections were considered observed on the basis that \(F_2 \geq 6 \sigma (F_2) \). A full-matrix least-squares refinement minimized \(\sum w(F^2 - |F|)^2 \), \(w = \sigma(F^2) + 0.0066F^2 \). For all reflections, refinement converged to \(R = 0.0495, wR = 0.0721, S = 1.02, \) and \((\Delta / \sigma)_{max} = 0.013 \). Atomic coordinates \((\times 10^4)\) are equivalent isotropic displacement parameters \((\AA^2 \times 10^3)\) are listed below.

*Equivalent isotropic \(U \) defined as one third of the trace of the orthogonalized \(U \) tensor. Parenthetical values are estimated standard deviations.

X-Ray Diffraction

The crystal structure analysis was performed at 22°C, on a 0.25-mm-diameter ground sphere with an automated Nicolet R3m/V diffractometer equipped with an incident-beam graphite monochromator and Mo Kα radiation \((\lambda = 0.71073 \, \text{Å})\). A least-squares refinement of 20 centered reflections within 10° ≤ 2θ ≤ 27.5° yielded the lattice parameters \(a = 8.347(2) \, \text{Å} \) and \(c = 5.554(3) \, \text{Å} \), within reasonable agreement with the published values of Sirazhiddinov et al.\(^5\) X-ray structure investigations showed that Nd: BZAG has tetragonal symmetry with a space group P4₂/m (No. 113), with \(Z = 2 \). Intensity data were collected in the 2θ mode (3.5° to 45.0°), with variable scan rates from 3.9 to 14.6° min⁻¹. The two standard reflections, measured for every 50 reflections, showed no significant change during data collection (<1%). The 2114 measured reflections had Miller indices of \(-8 \leq h \leq 6, -6 \leq k \leq 8, \) and \(-6 \leq l \leq 8 \). Equivalent reflections were averaged to give 281 unique reflections, \(R_{int} = 7.49\% \). The structure was solved and refined by direct methods with the Nicolet computer routine SHELXTL PLUS (MicroVax II). The atomic positions of the various ions in the unit cell are given in Table 1.

Figure 1 shows the BZAG unit cell. Four equivalent Ba ions occupy distorted square O antiprisms in the unit cell. Ge ions reside in distorted tetrahedra linked at one corner to form double Ge₂O₄ oriented upward and downward relative to the optic axis.\(^6\) Both the Ba\(^{2+}\) and the Ge\(^{4+}\) sites possess \(C_2 \) symmetry. Nd\(^{3+}\) ions substitute with charge compensation at the large Ba\(^{2+}\) site. Since the Zn\(^{2+}\) site \((S_4)\) lacks inversion symmetry, it may be doped with large-oscillator-strength divalent transition metals, with the potential of creating a tunable vibronic laser material.

Absorption and Refractive-Index Measurements

The absorption spectra were recorded with a Perkin-Elmer Lambda 9 spectrometer equipped with the polarizer attachment and the 7500 computer. Figures 2 and 3 are the polarized absorption spectra of Nd\(^{3+}\): BZAG between 300 and 1000 nm at room temperature. For most wavelengths, the absorption coefficient for light having its \(E \) vector normal to the \(c \) axis \((E_c)\) is greater than that for radiation with \(E \) parallel to the \(c \) axis \((E_c)\). These observations are consistent with results for an analogous material, Nd\(^{3+}\): Ba₂MgGe₂O₇.\(^7\) The absorption cross section at the peak of the \(^{4}F_{5/2} \) transition at 806 nm is five times higher for \(E_c \) than for \(E_c \). Another salient feature of the spectra is the inhomogeneous broadening occurring in Nd\(^{3+}\): BZAG, which produces absorption linewidths inter-

Fig. 1. Crystal structure and unit cell of Ba₂ZnGe₂O₇ (akermanite). The \(c \) axis is vertical.

Fig. 2. Absorption spectrum of Nd\(^{3+}\): BZAG at room temperature with \(E \) perpendicular to \(C \). The Nd concentration is \(2.9 \times 10^{17} \text{ cm}^{-3} \).

Fig. 3. Absorption spectrum of Nd\(^{3+}\): BZAG at room temperature with \(E \) parallel to \(C \).
mediate between those of YAG and glasses. This is due primarily to the distortion of the crystal field around the Nd$^{3+}$ ions caused by charge compensation. Since no monovalent ions were detected in the sample, the substitution of Nd$^{3+}$ for Ba$^{2+}$ requires the use of interstitial anions or cation vacancies for charge compensation.

The refractive indices, n_{r}, of Nd$^{3+}$:BZAG were measured by the method of minimum deviation. A polished prism was fabricated with an angle of 30°59' perpendicular to the optic axis. He–Ne, He–Cd, and Ar-ion lasers provided polarized monochromatic light from 442 to 632 nm. The measured refractive indices are tabulated in Table 2. These experimental data were least-squares fitted to Sellmeier's dispersion equations, yielding

$$n_{\text{r}}^2 = 1 + \frac{2.012\lambda^2}{\lambda^2 - 0.01662\text{ µm}^2},$$

$$n_{\text{r}}^2 = 1 + \frac{2.000\lambda^2}{\lambda^2 - 0.01168\text{ µm}^2}.$$

Table 2. Indices of Refraction of Nd$^{3+}$:BZAG

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>n_{r}</th>
<th>n_{r}</th>
</tr>
</thead>
<tbody>
<tr>
<td>632.8</td>
<td>1.760</td>
<td>1.747</td>
</tr>
<tr>
<td>611.9</td>
<td>1.767</td>
<td>1.752</td>
</tr>
<tr>
<td>594.1</td>
<td>1.764</td>
<td>1.752</td>
</tr>
<tr>
<td>543.0</td>
<td>1.764</td>
<td></td>
</tr>
<tr>
<td>514.5</td>
<td>1.776</td>
<td>1.762</td>
</tr>
<tr>
<td>501.7</td>
<td>1.772</td>
<td>1.762</td>
</tr>
<tr>
<td>496.5</td>
<td>1.775</td>
<td>1.762</td>
</tr>
<tr>
<td>488.0</td>
<td>1.773</td>
<td>1.762</td>
</tr>
<tr>
<td>476.5</td>
<td>1.781</td>
<td></td>
</tr>
<tr>
<td>457.9</td>
<td>1.790</td>
<td>1.777</td>
</tr>
<tr>
<td>441.6</td>
<td>1.796</td>
<td>1.756</td>
</tr>
<tr>
<td>430.0</td>
<td>1.800</td>
<td></td>
</tr>
<tr>
<td>420.0</td>
<td>1.805</td>
<td></td>
</tr>
</tbody>
</table>

Sellmeier Coefficients

<table>
<thead>
<tr>
<th>A</th>
<th>B (µm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.012</td>
<td>0.01662</td>
</tr>
<tr>
<td>2.000</td>
<td>0.01168</td>
</tr>
</tbody>
</table>

Nd$^{3+}$:BZAG Fluorescence

The fluorescence spectrum of the $^4F_{9/2}$ metastable state in Nd$^{3+}$:BZAG was recorded with a Spex F222 spectrometer equipped with a liquid-N$_2$-cooled Ge or room-temperature Si detector. Figures 4–6 show the polarized fluorescence spectra in the region of the $^4F_{9/2} \rightarrow ^4I_{11/2}$, $^4F_{9/2} \rightarrow ^4I_{13/2}$, and $^4F_{9/2} \rightarrow ^4I_{15/2}$ transitions and were corrected for detector response, grating efficiency, and polarization effects. The fluorescence spectra for transitions terminating to $^4I_{15/2}$ were not corrected for reabsorption. In all cases, the fluorescence intensity is stronger for E_r than for E_\perp. These spectra are different from those published, and the differences are attributed to the lack of correction factors in the previous study. The broad nature of these fluorescence curves shows the potential for continuously tunable laser output, which is not obtainable in Nd$^{3+}$:YAG.

In addition to the typical emission from Nd$^{3+}$, fluorescence was also seen at higher energies. Fluorescence and excitation spectra were recorded in this spectral region with the Perkin-Elmer MFP-66 fluorescence spectrophotometer. Figure 7 shows the room-temperature fluorescence spectrum of a band at 805 nm that is characteristic of emission from the $^4F_{9/2}, ^2H_{9/2}$ manifold to $^4I_{9/2}$. It should be noted that the fluorescence spectrum has not been corrected for the wavelength response of the R928 photomultiplier used. Detection of the fluorescence with a 750-nm blazed grating and an RCA 7102 (S-1) photomultiplier, and thus with nearly constant sensitivity between

![Fig. 4. Fluorescence spectrum at room temperature of the $^4F_{9/2} \rightarrow ^4I_{11/2}$ transition.](image)

![Fig. 5. Fluorescence spectrum at room temperature of the $^4F_{9/2} \rightarrow ^4I_{13/2}$ transition.](image)

![Fig. 6. Fluorescence spectrum at room temperature of the $^4F_{9/2} \rightarrow ^4I_{15/2}$ transition.](image)
fluorescence lifetime was observed to be shorter than 50 nsec.

Site-Selection Spectroscopy and Energy Transfer
With dye-laser excitation we were able to excite Nd ions selectively in specific crystal-field sites. Absorption and fluorescence spectra below 35 K were significantly narrow, enabling us to determine the energy-level positions of the Nd3+ ions. An excitation spectrum was generated by using Coumarin 440 dye pumping in the region of the \(\text{P}_1^\text{n} \) energy level since it is nondegenerate with respect to the electric field (it has only one Stark component) and is relatively isolated from other energy levels. The laser provided pulses of less than 10-nsec duration and less than 0.5-A FWHM. The excitation spectrum of Nd3+:BZAG appears in Fig. 9, which shows five crystal field sites (labeled A through E), with the majority of Nd3+ occupying A sites. These sites are due to dramatically different crystal-field interactions with Nd3+. Three of these sites are found to be composed of distinct subsites (A\,1, A\,2, and E\,2) for a total of ten crystal-field sites. These transitions are attributable to weaker crystal-field variations and exhibit changes in wavelengths and intensities (concentrations) resulting from Nd3+ ions residing in the Ba2+ site with different nearest neighbors.

Low-temperature fluorescence spectra indicate that the 800 and 900 nm, showed the \(\text{F}_{\text{cr}} \) \(\text{H}_0 \) emission to be weaker than the \(\text{F}_3 \) by approximately a factor of 50 at room temperature. The room-temperature fluorescence lifetime at 800 nm when frequency-doubled Nd3+:YAG excitation is used is equal to that of the \(\text{F}_3 \) state to within experimental error. Given the rather small energy gap (~1000 cm-1) between the \(\text{F}_3 \) \(\text{H}_0 \) and \(\text{F}_4 \) manifolds, we conclude that these manifolds reach thermal equilibrium in a time scale shorter than the room-temperature fluorescence lifetime. In view of the weakness of the \(\text{F}_4 \) \(\text{H}_0 \) fluorescence relative to that from \(\text{F}_3 \), this higher-energy manifold fluorescence should have a minimal effect on laser performance.

Figure 7 also shows the excitation spectrum of the germanium oxide fluorescence, which clearly agrees with the absorption spectra except for the absence of the strong UV absorption edge near 320 nm with a tail extending into the visible region.

Figure 8 shows the room-temperature fluorescence and excitation spectra in the UV/visible region. These spectra are characteristic of the host (presumably from a germanium oxide center)10 and not of Nd3+ (4\text{f}3) states. This broad fluorescence can also be excited by the doubled Nd3+:YAG laser (532 nm). With this pump source the

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Excitation and fluorescence spectra of Nd3+:BZAG showing the emission from the \(\text{F}_3 \) manifold. For the emission spectrum the excitation wavelength was 587 nm and the resolution of the emission monochromator was 2 nm. For the excitation spectrum the emission wavelength was 804 nm, both monochromators had a 6-nm resolution, and the spectrum was corrected to 600 nm with a quantum counter.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{Excitation and fluorescence spectra at room temperature of the host. For the emission spectrum the excitation wavelength was 320 nm and the resolution of the emission monochromator was 2 nm. For the excitation spectrum the emission wavelength was 500 nm, and the spectrum has been corrected with a quantum counter.}
\end{figure}
The spatially averaged integrated absorbance for the ground manifold, and ρ is the Nd$^{3+}$ concentration (2.9×10^{15} cm$^{-3}$). Values for the index of refraction were taken from Sellmeier's dispersion equations (1) and (2) and were averaged in the same manner as the integrated absorbances. Table 3 shows the spatially averaged absorbances and line strengths for nine absorption bands. A least-squares fitting of S_{calc} to S_{meas} yields values for the Judd–Ofelt parameters of $\Omega_{2,4,6}$. The radiative lifetime and the branching ratios of the $^4F_{9/2}$ state along with $\Omega_{2,4,6}$ are given in Table 4.

It is worthwhile pointing out two prominent features from this analysis. First, the branching ratio to $^4F_{9/2}$ is significantly larger in Nd$^{3+}$: BZAG (41%) than in Nd$^{3+}$: YAG (\sim30%),1 which enhances the stimulated-emission cross section down to the ground-state manifold. This feature has been observed in another melilite crystal, Nd$^{3+}$:SrGdGa$_3$O$_7$, and is desirable for generating 0.9-μm

\[
S_{\text{meas}} = \frac{3\text{ch}(2J + 1)}{8\pi^2\lambda^2\rho} \left[\frac{9\pi}{(n^2 + 2)^2} \right] F', \quad (4)
\]

where λ is the mean wavelength of the band, $J = 9/2$ is the angular momentum of the ground $^4F_{9/2}$ manifold, and ρ is the Nd$^{3+}$ concentration (2.9×10^{15} cm$^{-3}$). Values for the index of refraction were taken from Sellmeier's dispersion equations (1) and (2) and were averaged in the same manner as the integrated absorbances. Table 3 shows the spatially averaged absorbances and line strengths for nine absorption bands. A least-squares fitting of S_{calc} to S_{meas} yields values for the Judd–Ofelt parameters of $\Omega_{2,4,6}$. The radiative lifetime and the branching ratios of the $^4F_{9/2}$ state along with $\Omega_{2,4,6}$ are given in Table 4.

It is worthwhile pointing out two prominent features from this analysis. First, the branching ratio to $^4F_{9/2}$ is significantly larger in Nd$^{3+}$: BZAG (41%) than in Nd$^{3+}$: YAG (\sim30%),1 which enhances the stimulated-emission cross section down to the ground-state manifold. This feature has been observed in another melilite crystal, Nd$^{3+}$:SrGdGa$_3$O$_7$, and is desirable for generating 0.9-μm

\[
S_{\text{meas}} = \frac{3\text{ch}(2J + 1)}{8\pi^2\lambda^2\rho} \left[\frac{9\pi}{(n^2 + 2)^2} \right] F', \quad (4)
\]

where λ is the mean wavelength of the band, $J = 9/2$ is the angular momentum of the ground $^4F_{9/2}$ manifold, and ρ is the Nd$^{3+}$ concentration (2.9×10^{15} cm$^{-3}$). Values for the index of refraction were taken from Sellmeier's dispersion equations (1) and (2) and were averaged in the same manner as the integrated absorbances. Table 3 shows the spatially averaged absorbances and line strengths for nine absorption bands. A least-squares fitting of S_{calc} to S_{meas} yields values for the Judd–Ofelt parameters of $\Omega_{2,4,6}$. The radiative lifetime and the branching ratios of the $^4F_{9/2}$ state along with $\Omega_{2,4,6}$ are given in Table 4.

It is worthwhile pointing out two prominent features from this analysis. First, the branching ratio to $^4F_{9/2}$ is significantly larger in Nd$^{3+}$: BZAG (41%) than in Nd$^{3+}$: YAG (\sim30%),1 which enhances the stimulated-emission cross section down to the ground-state manifold. This feature has been observed in another melilite crystal, Nd$^{3+}$:SrGdGa$_3$O$_7$, and is desirable for generating 0.9-μm

\[
S_{\text{meas}} = \frac{3\text{ch}(2J + 1)}{8\pi^2\lambda^2\rho} \left[\frac{9\pi}{(n^2 + 2)^2} \right] F', \quad (4)
\]

where λ is the mean wavelength of the band, $J = 9/2$ is the angular momentum of the ground $^4F_{9/2}$ manifold, and ρ is the Nd$^{3+}$ concentration (2.9×10^{15} cm$^{-3}$). Values for the index of refraction were taken from Sellmeier's dispersion equations (1) and (2) and were averaged in the same manner as the integrated absorbances. Table 3 shows the spatially averaged absorbances and line strengths for nine absorption bands. A least-squares fitting of S_{calc} to S_{meas} yields values for the Judd–Ofelt parameters of $\Omega_{2,4,6}$. The radiative lifetime and the branching ratios of the $^4F_{9/2}$ state along with $\Omega_{2,4,6}$ are given in Table 4.
Judd-Ofelt parameters

Alexandrite Diode array

Pulsed output energy was measured with Laser chopped at a long pulse (100 sec) at laser was collimated to a 5-mm diameter and operated The lower efficiency of 590 Coherent alexandrite laser end-pump sources were an Allied Technologies diode array operating at geometries with three different laser sources. In the reflective for the pump radiation. Figure 11 shows a Room-temperature laser action was achieved in Table 5 for alexandrite pumping were normalized for ab-

\[\Omega_1 = 3.22 \times 10^{-20} \text{cm}^2, \quad \Omega_2 = 3.86 \times 10^{-20} \text{cm}^2, \quad \Omega_4 = 4.31 \times 10^{-20} \text{cm}^2 \]

Radiation from Nd\(^{3+}\)-doped laser materials. Second, the radiative lifetime of the \(^1F_{3/2} \) state has been calculated to be 280 μsec and is within experimental error of the fluorescence lifetime of the majority A site. This implies that the quantum efficiency of the \(^1F_{3/2} \) state of Nd\(^{3+}\):BZAG, \(\eta_q = \tau_{r}/\tau_p \), is near unity.

Laser Measurements

Room-temperature laser action was achieved in Nd\(^{3+}\):BZAG at 1.054 μm in both the side- and end-pump geometries with three different laser sources. In the side-pump configuration the pump source was a laser-diode array operating at 806 nm that was close-coupled to the rod; it was described in a previous publication. The end-pump sources were an Allied Technologies MS600 alexandrite laser (1.6 W) operating at 755 nm and a 1-W Coherent 699-29 Rhodamine 6G dye laser operating near 590 nm. For alexandrite end pumping, the alexandrite laser was collimated to a 5-mm diameter and operated long pulse (100 μsec) at 4 Hz. The cw dye laser was focused into the rod with a 3-cm focal-length lens and chopped at a 50% duty cycle to prevent damage to the coatings. Pulsed output energy was measured with Laser Precision RJP-734(6) pyroelectric joulemeters, and the temporal output was monitored with a SI photodiode. A Lexel Model 504 power meter was used to measure the dye-laser pump power.

The laser rods were fabricated from a 5-mm-diameter × 27-mm-long sample with the c axis nearly perpendicular to the rod faces. The optical quality of the material was excellent, and the optical finishes showed no water absorption damage after more than 15 years of storage. An interferogram of this stock material produced a peak-to-valley distortion of 0.156 wave, with a rms deviation of 0.027 wave at 632 nm. Two rods were fabricated to a length of 11 mm and were broadband antireflection coated at one end (centered at 1.05 μm) and highly reflection coated on a 5-mm convex radius of curvature on the other. The barrel of the rod was polished and was antireflection coated for the 806-nm pump wavelength on 240° of the barrel for efficient side pumping. The rod was mounted in a polished Cu block and was rotated to maximize absorption and laser performance at 1.05 μm.

Table 5 summarizes the experimental results for these three pump wavelengths. The optical slope efficiencies in Table 5 for alexandrite pumping were normalized for absorbed power in the crystal since the coating was partially reflective for the pump radiation. Figure 11 shows a comparison between alexandrite end-pumped Nd\(^{3+}\)-doped BZAG and YAG made with the same cavity length and output coupler. The slope efficiencies for Nd\(^{3+}\):YAG and Nd\(^{3+}\):BZAG were 59% and 16%, respectively. The diode-array side-pumping performance for Nd\(^{3+}\):BZAG appears in Fig. 12. The slope efficiency of 22.8% is significantly less than Nd\(^{3+}\):YAG's value of 47.7% in this setup. The lower efficiency of Nd\(^{3+}\):BZAG is attributable to higher resonator losses and to a reduced upper-state efficiency compared with those of Nd\(^{3+}\):YAG. The round-trip Findlay-Clay losses for multimode operation of Nd\(^{3+}\):BZAG were measured to be 4%, which are 33% higher.

<table>
<thead>
<tr>
<th>Table 3. Spatially Averaged Absorbances and Line Strengths (Measured and Calculated) for Nd(^{3+}):BZAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excited J Manifold</td>
</tr>
<tr>
<td>(^1F_{3/2})</td>
</tr>
<tr>
<td>(^4F_{7/2}, \ ^2H_{11/2})</td>
</tr>
<tr>
<td>(^4F_{5/2}, \ ^2P_{7/2})</td>
</tr>
<tr>
<td>(^3H_{11/2})</td>
</tr>
<tr>
<td>(^4G_{11/2}, \ ^2G_{7/2})</td>
</tr>
<tr>
<td>(^4F_{5/2}, \ ^2D_{5/2})</td>
</tr>
<tr>
<td>(^1K_{13/2}, \ ^2G_{9/2}, \ ^2G_{7/2})</td>
</tr>
<tr>
<td>(^1K_{15/2}, \ ^2G_{27/2}, \ ^2D_{33/2}, \ ^2G_{11/2})</td>
</tr>
<tr>
<td>(^2P_{3/2})</td>
</tr>
</tbody>
</table>

*10^(-20) cm^2, rms line strength, 2.50 x 10^{-24} cm^2; \(\Delta S_{max} = 0.17 \times 10^{-24} \text{cm}^2; \) rms error, 6.8%.

<table>
<thead>
<tr>
<th>Table 4. Judd-Ofelt Parameters and Predicted Optical Properties of Nd(^{3+}) in BZAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judd-Ofelt parameters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(^1F_{3/2}) Radiative lifetime</td>
</tr>
<tr>
<td>Branching ratios</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 5. Laser Performance of Nd\(^{3+}\):BZAG (1054 nm) at Three Excitation Wavelengths |

<table>
<thead>
<tr>
<th>Pump Laser Wavelength (nm)</th>
<th>Pump Laser Geometry</th>
<th>Cavity Length (cm)</th>
<th>Pulse Duration</th>
<th>Outcoupler Reflectivity (Radius of Curvature)</th>
<th>Slope Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode array (806)</td>
<td>Transverse</td>
<td>10</td>
<td>300 μsec</td>
<td>0.975 (64 cm)</td>
<td>22.8</td>
</tr>
<tr>
<td>Alexandrite (755)</td>
<td>Longitudinal</td>
<td>15</td>
<td>100 μsec</td>
<td>0.975 (57 cm)</td>
<td>16.4</td>
</tr>
<tr>
<td>Rhodamine 6G (690)</td>
<td>Longitudinal</td>
<td>3</td>
<td>cw</td>
<td>0.97 (6 cm)</td>
<td>18.0</td>
</tr>
</tbody>
</table>
The diode-array-pumped slope efficiency was beneficial for high-energy storage and efficient Q-switch operation. The diode-array-pumped slope efficiency was 22.8%, which is less than the 47.7% value determined for Nd:YAG. This smaller efficiency is attributed to less efficient pump coupling owing to the smaller-diameter Nd:YAG rod and higher scattering losses. Diode-array-pump efficiency can be increased by improvement in crystal quality, along with an increase in the Nd concentration or absorption path length and more efficient pump coupling.

ACKNOWLEDGMENTS

T. H. Allik thanks the Cecom Center for Night Vision and Electro-Optics (CCNVEO) for financial support and C. W. Trussell for encouragement in this project. The part of this research conducted at Oklahoma State University was sponsored by the U.S. Army Research Office. The authors thank E. J. Sharp (CCNVEO) and M. Birnbaum (University of Southern California) for the samples and L. Thompson (CCNVEO) for fabricating and polishing the prism.

*Present address, Center for Night Vision and Electro-Optics, Fort Belvoir, Virginia 22060-5677.

REFERENCES

III. SPECTROSCOPIC PROPERTIES OF CHROMIUM-DOPED LASER CRYSTALS

The five manuscripts in this section document the results of four-wave mixing studies of Cr\(^{3+}\)-doped laser crystals. The first paper describes results obtained on alexandrite. One important aspect of this work is the theoretical development that was done to understand the properties of four-wave mixing signals of ions in solids. This has resulted in the characterization of long range energy transfer among the chromium ions which can affect the saturation properties of the material during optical pumping. In addition, this work reports the identification of the relaxation channel between the pump band and the metastable state which has not been previously investigated.

Similar properties were studied in chromium-doped emerald, several garnet crystals, and a glass ceramic host. The work on emerald and the garnet hosts focused on characterizing the energy migration and on the identification of ions in different local crystal field sites. Laser-induced color centers were also reported in the garnets. In the glass ceramic host the investigation focused on relaxation processes.

This work is a continuation of previous studies of Cr\(^{3+}\) laser materials. The data base being established from this study is providing information that can be used to predict the spectral properties Cr\(^{3+}\) ions in other laser crystals. An important observation from this work is that non-random distributions of Cr\(^{3+}\) ions are present in most materials and play an important role in determining spectral dynamics.
Laser-induced grating spectroscopy of alexandrite crystals

Guy D. Gilliland, Andrzej Suchocki,* Keith W. Ver Steeg, and Richard C. Powell
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444

Donald F. Heller
Allied-Signal, Inc., Morristown, New Jersey 07960
(Received 18 February 1988)

Four-wave-mixing techniques were used to establish and probe population gratings of Cr$^{3+}$ ions in alexandrite crystals at temperatures between 10 and 300 K. The results were interpreted in terms of the interaction of the laser radiation with a two-level atomic system. They provide information about the characteristics of four-wave-mixing signals for this physical situation as well as being useful in characterizing the properties of energy transfer and dephasing within the ensemble of Cr$^{3+}$ ions. The patterns of the transient four-wave-mixing signals are consistent with a model based on the pumping dynamics of ions in the mirror and inversion crystal-field sites. The variation of the signal intensity with laser power is strongly affected by beam depletion. The characteristics of excitation migration among Cr$^{3+}$ ions in mirror sites were determined from the results of measuring the variation of the signal decay rate with grating spacing. The temperature dependences of the ion-ion interaction rate, the exciton-phonon scattering rate, and the diffusion coefficient were determined. These are found to be essentially the same for pumping into the 4T_1 and 2E levels, but the effects of scattering from a grating of ions in inversion sites is much stronger for 4T_1 pumping. The dephasing times for the atomic system were found from analyzing the variation of the signal intensity with grating spacing. For pumping into the 4T_1 level the dephasing is dominated by radiationless decay processes. A model is presented for the decay channel that provides a theoretical explanation for the decay process which is consistent with the measured temperature and frequency dependences of the results as well as their variation with crystal-field strength. For pumping into the 2E level the dephasing is dominated by dephasing processes associated with the inhomogeneous linewidth of the transition.

I. INTRODUCTION

Four-wave mixing (FWM) can be used as a spectroscopic technique by establishing excited-state, spatial population gratings in an ensemble of atoms or molecules. We have recently applied this laser-induced-grating (LIG) spectroscopy method to the study of dynamical processes in several Cr$^{3+}$-doped laser crystals. The results have been useful in characterizing the general properties of energy transfer, radiationless relaxation, and excited-state absorption in these materials under specific pumping conditions. The work reported here extends this study on one particular material, alexandrite, in two ways: The first involves the development of theoretical models to understand the properties of the LIG signal for this specific type of physical situation: the second involves additional investigations of energy transfer and radiationless relaxation, including both the use of different pumping conditions and the development of more rigorous theoretical models, which results in a more detailed understanding of the characteristics of these processes.

Alexandrite is an important, tunable, solid-state laser material consisting of Cr$^{3+}$ ions substituted for Al$^{3+}$ ions in a chrysoberyl host crystal, BeAl$_2$O$_4$. The sample used in this investigation contained 1.14×10^{19} cm$^{-3}$ Cr$^{3+}$ ions. There are two nonequivalent crystal field sites for the aluminum ions in the chrysoberyl lattice, one having mirror symmetry and one with inversion symmetry. Approximately 78% of the Cr$^{3+}$ ions occupy mirror sites and 22% occupy inversion sites. The optical spectroscopic properties of Cr$^{3+}$ ions in each type of site have been reported previously.

Previous LIG results on alexandrite demonstrated the ability to establish gratings in either mirror or inversion-site ions by pumping into the 4T_2 levels of the ions in these two types of sites. The gratings were found to be dominated by the difference in the dispersion contribution to the refractive index when the Cr$^{3+}$ ions are in the excited state versus the ground state, with the contribution due to the difference in the ground- and excited-state absorption cross sections consistent with the results of direct excited-state absorption measurements. The presence of exciton diffusion among the Cr$^{3+}$ ions in mirror sites was observed below 150 K and the diffusion coefficient was found to increase as temperature was lowered. The dephasing times of the LIG signals were attributed to radiationless relaxation processes occurring after pumping into the 4T_2 level and the rate of these processes was found to be different with different local crystal fields for the Cr$^{3+}$ ions. Although these results demonstrated the general properties of laser-induced population gratings in alexandrite crystals, they left several unanswered questions about the observed transient and
equilibrium LIG signal characteristics and did not provide complete details of the exciton dynamics and radiationless relaxation processes in this material. Some of these questions are addressed in the following sections.

The detailed description of the LIG experimental setup was reported previously. The two excitation beams of the same frequency were provided by either an argon-ion laser or an argon-ion-laser-pumped dye laser. A He-Ne laser was used for the probe beam. The dynamical response of the LIG signal was monitored by using a mechanical chopper to interrupt the pump beams while processing the signal beam with an EG&G Princeton Applied Research (PAR) signal averager. For measurements of the steady-state LIG signal, the probe beam was chopped and an EG&G PAR lock-in amplifier was utilized to improve the signal-to-noise ratio.

II. EQUILIBRIUM POWER DEPENDENCE AND LIG SIGNAL TRANSIENTS

In order to fully understand the characteristics of signals observed in LIG spectroscopy involving population gratings, two theoretical models are required. The first involves the formalism describing the mixing of the four electromagnetic fields in the sample due to coupling through the nonlinear complex refractive index of the material. The second involves the formalism describing the pumping dynamics of the atomic system interacting with the laser beams. The laser pump beams interact with the atomic ensemble through a resonant electronic transition, thus changing the population distribution of atoms in different electronic levels. Since the complex refractive index of the system depends on the relative occupation of the various energy levels, this pumping provides the laser-induced modulation of the refractive index, which gives the coupling mechanism for the electric fields. The interference pattern of the two crossed laser pump beams results in a sine-wave spatial distribution of the excited-state population, and thus in a refractive index grating of the same shape. The model for the nonlinear interaction of the laser beams with the atomic system is essentially the same for all FWM applications. This is important in describing LIG spectroscopy results obtained under equilibrium pumping conditions such as the power dependence of the signal strength as described in this section and the dephasing time of the signal as described in Sec. IV. The additional model describing the pumping dynamics of the atomic system is required to explain the transient response of the LIG signal as described in this section and to characterize the effects of transient physical processes such as energy transfer or radiationless relaxation as described in the following two sections.

A. Equilibrium power dependence

The pump power dependence of the FWM scattering efficiency is important in understanding the observed signals in LIG spectroscopy. The standard approach in studying the dynamics of the transient grating formation is to model the system explicitly using the nonlinear wave equation which couples the electric fields through the nonlinear susceptibility of the material. This theoretical approach to the FWM scattering efficiency predicts a quadratic dependence on pump power for laser intensities below the saturation intensity, \(I < I_s \). Recently this theory was extended to apply to the geometrical situation used here. The system is modeled as an ensemble of two-level atoms, and the fields are assumed to be plane waves. This is only an approximation to the actual case of focused Gaussian beams in a multilevel system, but the results predicted from this model are useful in understanding the spectral and FWM dynamics. This model and the model of Abrams and Lind start with the same assumptions, but the theoretical development of the two models differ.

For a two-level system the polarization can be expressed as

\[
P(E_0 + \Delta E) = e^{i\omega t}X(E_0)
\]

\[
\times \left[E_0 + \Delta E - \frac{E_0^3}{I_s + |E_0|^2} \right]
\]

(1)

where

\[
X(E) = -2[a_0/k][(i + \delta)/(1 + \delta^2 + |E/E_s|^2)]
\]

(2)

\(\delta \) is the normalized detuning from line center, \(a_0 \) is the line-center small-signal attenuation coefficient, \(E \) is the saturation field, \(I_s \) is the saturation intensity, \(E_0 = E_s + E_p \), and \(\Delta E = E_p + E \). \(E_p \) and \(E_s \) represent the write beams, \(E_p \) represents the probe beam, and \(E_s \) represents the signal beam. Assuming plane waves for all of the fields and equal intensities for the write beams \((I_p = I_s) \), using the slowly varying envelope approximation, and solving the wave equation

\[
\nabla^2 E + \frac{\epsilon}{c^2} \frac{\partial^2 E}{\partial t^2} = \frac{4\pi}{c^2} \partial^2 P_{NL}/\partial t^2 \]

(3)

where

\[
P_{NL} = \chi E
\]

(4)

leads to two coupled equations for the fields. Solving these equations yields an expression for the scattering efficiency given by

\[
\eta = \frac{(1/I_s)^2(1 + 2I/I_s)^2 \exp(2\alpha_0 L/(1 + \delta^2))}{[(1 + 2I/I_s)^2 - 2(1/I_s)^2)]^2 \sec \theta - 1)}
\]

\[
\times \left[\exp(-2\xi_{NL} L) + \exp(-2\xi_{NL} L \sec \theta) \right] + 2 \exp(-\xi_{NL}(1 + \sec \theta) L)[\cos(\xi_{NL}(1 - \sec \theta)L) + 1]
\]

(5)

where

\[
\xi = \xi_{NL} + \frac{\xi_{NL}}{I_s}
\]

\[
= \frac{\epsilon_0 \chi \left[1 + 2I/I_s, -2(1/I_s)^2 \right]}{1 + \delta^2 \left[(1 + 2I/I_s)^2 - 4(1/I_s)^2 \right]^{1/2}}
\]

(6)

Equation (5) can be simplified somewhat, if \(|\xi L| \) is small and \(\theta \) is not very large, yielding
The theoretical fit to the data is quite good, showing a departure from quadratic power dependence at high powers. In both equations \(\eta \) decreases with increasing \(\theta \).

Figure 1 shows the FWM relative scattering intensity as a function of the laser power in each of the write beams for direct excitation of the \(2A \) sublevel of the split \(^2E \) state. The LIG was formed by crossing two laser beams from an argon-ion-pumped dye laser using DCM (4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran) dye tuned to 677.8 nm. Using the measured lifetime, absorption cross section, and absorption wavelength for this transition (2.3 ms, \(8.5 \times 10^{-20} \text{ cm}^2 \), and 677.8 nm, respectively) the saturation intensity is approximately 1500 W/cm\(^2\). The dashed line in Fig 1 is the best fit to the data using Eq (7) with \(I_s = 1500 \text{ W/cm}^2 \). The theoretical curve has a slope of two, while the data has a less-than-quadratic dependence on write-beam power. The solid line in the figure is the best fit to the data using the full scattering efficiency expression, Eq. (5), with the same value for \(I_s \).

The difference between the two expressions used to fit the data in Fig. 1 is a result of the simplifying assumption made in deriving Eq. (7) from Eq. (5). The assumption made is that \(|\xi L|^2 \) is small. Since the absorption line excited is quite narrow \((\approx 1 \text{ cm}^{-1}) \) and the laser linewidth is approximately of the same width \((0.7 \text{ cm}^{-1}) \), it can be assumed that the imaginary part of \(\xi \) is zero since the normalized detuning parameter is zero. \(\xi_L \) represents the laser-induced change in the absorption coefficient. The results presented above imply that the laser induced change in the absorption coefficient is not negligible for these experimental conditions. This causes additional beam depletion which is evident in the experimental results.

Experimental measurements of the power dependence of the FWM signal pumping into the \(^4T_2 \) level of the mirror sites have been done previously. A slight saturation is evident in the data. This departure from quadratic power dependence is also a result of the laser-induced change in the absorption coefficient and not a purely saturation effect since the power of the write beams was much less than the saturation intensity.

B. Transient LIG signal patterns

Transient FWM signals have many unique features that distinguish them from steady-state FWM signals. Abrams and Lind have studied steady-state FWM processes theoretically, and Silberberg and Bar-Joseph have extended their steady-state solutions to the treatment of the transient FWM response of a saturable absorber. As mentioned earlier, the FWM signal in alexandrite crystals is a result of scattering of the probe beam from a laser-induced grating that is predominantly dispersive. Although the results of Abrams and Lind apply to absorption gratings, dispersion gratings, or a mixed grating, the theoretical treatment of the time evolution of the FWM signal in the presence of all three laser beams has only been applied to pure absorption gratings. In this section the theoretical treatment of the time evolution of the FWM signal is extended to the case of a mixed grating, and the results are used to analyze the transient LIG signal from \(\text{Cr}^{3+} \) population gratings of ions in both types of crystal-field sites in alexandrite.

Assuming a three-level atomic system, where the relaxation between the level directly excited and the metastable level is fast and the lifetime of the metastable level is relatively long, the rate equation for the ground-state population density is

\[
\frac{ds_0}{dt} = -(\sigma I/\hbar \omega)s_0 + (S - s_0)/\tau .
\] (8)

In Eq. (8) \(\sigma \) is the absorption cross section, \(I \) is the laser intensity of each write beam of frequency \(\omega \), \(S \) is the total population of ions, and \(\tau \) is the lifetime of the metastable level. This model adequately describes the dynamics of \(\text{Cr}^{3+} \) ions when the \(^4T_2 \) level is pumped, followed by a fast nonradiative decay to the \(^2E \) level which has a relatively long lifetime \((2.3 \text{ ms at } 12 \text{ K}) \). The solution of Eq. (8) assuming a step function for the laser intensity with the initial condition that \(I(t = 0) = 0 \) is

\[
\frac{s_0(t)}{S} = \frac{1 + (I/I_s)\exp[-(t/\tau)(1 + I/I_s)]}{1 + I/I_s},
\] (9)

where \(I_s = (\hbar \omega / \sigma \tau) \) is the saturation intensity. It is important to note that the time development of the system...
depends upon the saturation intensity and write-beam intensity. Following the treatment of Abrams and Lind15 in which the four fields, two write beams, the probe beam, and the signal beam, are assumed to be plane waves, and the interaction between the fields takes place through the complex susceptibility X the interaction is expressed in terms of the wave equation, Eq. (3). The complex susceptibility can be expressed in terms of the complex index of refraction $n = n + i(\alpha/2k)$ as

$$X = n^2 - 1 + \alpha^2/4k^2 + i(\alpha n/k), \quad (10)$$

where k is the magnitude of the wave vector of the write beams, n is the index of refraction, and $\alpha(t) = \sigma(t)$ is the time-dependent absorption coefficient. Using the nonlinear index of refraction

$$\tilde{n}(t) = n + s_2(t)\Delta n, \quad (11)$$

where n is the normal index of refraction, and Δn is the change in the index of refraction due to the presence of an ion in the excited state, it is evident that both the real and imaginary parts of the susceptibility and hence the FWM interaction are time dependent. The expression for the FWM scattering intensity is15

$$\eta = |\kappa \sin(\Delta L) / \Delta \cos(\Delta L) + \gamma_R \sin(\Delta L)|^2 \quad (12)$$

where $\Delta = (|\kappa|^2 - \gamma^2)^{1/2}, L$ is the length of the sample, and γ_R is the real part of γ, where

$$\gamma(t) = (k/2I)(X + IP dX/dI), \quad (13)$$

and $P = 4(I/I_0)\cos^2 \theta$, θ is the angle between the two write beams. It is important to note that the FWM process is a result of the term dX/dI, so that if X is independent of I then there is no FWM signal generated. Because only the real part of γ appears in the expression for η, only the terms γ_R, κ_R, and κ_I need to be calculated. Using Eqs. (10)-(14) the absorption and coupling coefficients become

$$\gamma_R(t) = \frac{1}{2} \left[S(\Delta n)n + S[n\sigma + S(\Delta n)\sigma] \frac{1 + P \exp(-t/\tau(1 + P))}{1 + P} + SP[n\sigma + S(\Delta n)\sigma] \frac{1 - t/\tau P(1 + P) \exp(-t/\tau(1 + P)) - 1}{(1 + P)^2} - 2n^2(\Delta n) \sigma \frac{1 + P \exp(-t/\tau(1 + P))}{(1 + P)^2} - n^2(\Delta n) \sigma \frac{1 + P \exp(-t/\tau(1 + P))}{(1 + P)^2} \right], \quad (15)$$

$$\kappa_R(t) = iKP \left[S[-2S(\Delta n)^2 - 2n(\Delta n)] \frac{1 - t/\tau P(1 + P) \exp(-t/\tau(1 + P)) - 1}{(1 + P)^2} + S[(2(\Delta n)^2 - \sigma^2/2k^2)] \frac{1 + P \exp(-t/\tau(1 + P))}{(1 + P)^2} [(1 + P)(1 - t/\tau P(1 + P) \exp(-t/\tau(1 + P)) - 1)] \right], \quad (16)$$

$$\kappa_I(t) = -\frac{i}{2} P \left[S[n\sigma + S(\Delta n)\sigma] \frac{1 - t/\tau P(1 + P) \exp(-t/\tau(1 + P)) - 1}{(1 + P)^2} - 2S^2(\Delta n) \frac{1 + P \exp(-t/\tau(1 + P))}{(1 + P)^2} [(1 + P)(1 - t/\tau P(1 + P) \exp(-t/\tau(1 + P)) - 1)] \right]. \quad (17)$$

Equations (15)-(17) have contributions from an absorption grating, a dispersion grating, and a mixed grating.

Previous theoretical work15-20 has shown that for small write-beam intensities the LIG scattering efficiency increases quadratically with pump intensity, but that it saturates at higher intensities. In the steady state, the maximum LIG signal is obtained for I approximately equal to I_s. 4 However, the transient LIG signal can be much larger than the steady-state LIG signal. When $I < I_s$, the LIG is predicted to increase monotonically to its steady-state value, but when $I \geq I_s$, the transient LIG signal peaks at short times at a value greater than the steady-state LIG signal and then decays to the steady-state value. The temporal behavior of the transient LIG signal for the case of a mixed or purely dispersive grating is similar to the case of a pure absorption grating.

Alexandrite is an ideal candidate for studying the effects of saturation on the spectral dynamics. The parameter P directly affects the time dependence of the LIG signal, and P is a function of several LIG variables and constants of the material including the lifetime of the excited state. The lifetime of the mirror-site ions ranges from 2.3 ms to 290 μs at temperatures of 12 to 300 K, whereas the lifetime of the inversion sites ranges from 63 to 44 ms over the same temperature range.11,12 Another method of varying P is by changing the period of the
grating or the angle between the write beams. For these reasons it is possible to vary the saturation intensity, and hence the parameter \(P \) which appears in the expressions for the absorption coefficient and coupling constants.

The transient LIG signal for the inversion-site ions shows a transient peak which is dependent on several parameters. Figure 2 shows the normalized transient LIG signal at 30 K for various powers of the write beams. The data was normalized because it is very difficult to determine the absolute scattering efficiency, and the shape of the FWM transient is the only thing needed for the theoretical fits. The solid line is the theoretical fit to the data using Eqs. (12) and (15)-(17) and treating \(\sigma \) and \(\Delta n \) as adjustable parameters. Figure 3 shows the transient FWM signal for several temperatures and write beam crossing angles at constant write beam laser power, along with the theoretical fits. The theoretical fits accurately model the transient LIG signal as a function of temperature, crossing angle, and laser power. The temperature dependence is a result of the temperature dependence of the excited-state lifetime. The values obtained for \(\sigma \) and \(\Delta n \) from these fits are \(0.5 \pm 0.1 \times 10^{-20} \text{ cm}^4 \) and \(2.0 \times 10^{-23} \text{ cm}^3 \), respectively. Using these values, the saturation intensity is 900 W/cm².

This value for the absorption cross section for the inversion site ions at 488 nm is consistent with the upper limit of \(1.0 \times 10^{-20} \text{ cm}^2 \) obtained from absorption measurements.\(^{11-13} \) It is difficult to distinguish the inversion-site absorption contribution from the mirror-site absorption since the emission and absorption properties of alexandrite are dominated by the mirror-site ions.\(^9 \)

In order to compare the laser-induced change in the index of refraction obtained here with the results of other measurements,\(^5,6\) it is necessary to calculate the steady-state value of \(\Delta n \), denoted by \(\Delta n_{ss} \), and given by

\[
\Delta n_{ss} = \Delta n \left(\frac{S(I/I_s)}{S(1+I/I_s)} \right). \tag{18}
\]

For \(I = 100 \text{ W/cm}^2 \), \(\Delta n_{ss} \) equals \(5.0 \times 10^{-6} \). This is an order of magnitude smaller than the value obtained from other measurements\(^5,6\) of \(\Delta n_{ss} \), but all of the data are consistent with the statement given earlier that the gratings formed are dispersion gratings. It should be noted that the steady-state value of the theoretical signal intensity is smaller than the experimental value at large excitation intensities. This contributes to the discrepancy in the values of \(\Delta n \).

The same type of measurements were repeated for the mirror-site ions. The \(^{4}T_2 \) level of the mirror site ions was pumped by an argon-ion pumped dye laser with Rhodamine 6G as a dye. The results of the measurements are similar to the low-power measurements for the inversion site ions. There is no transient peak formed, and the signal increases monotonically to its steady state value. This can be understood, in contrast to the inversion site results, as a result of two things. First, the laser output from the ring dye laser was less than the maximum power output of the argon-ion laser at 488 nm by a factor of 3. Second, the saturation intensity for the mirror-site ions is greater than the saturation intensity of the inversion-site ions. This is a result of the difference in lifetimes and absorption cross sections. The saturation intensity for the mirror-site ions is estimated to be approximately 1200 W/cm² at 12 K and increases with temperature due to the decrease in the lifetime with temperature. Therefore, it is not surprising that no transient peak was observed in the mirror-state LIG signal.

III. ENERGY TRANSFER

Laser-induced grating spectroscopy has been used to characterize the properties of long-range energy migration among Cr\(^{3+} \) ions in mirror and inversion sites in alexandrite.\(^6,8 \) The previous measurements were performed using either an argon-ion laser or argon-ion-pumped ring dye laser with Rhodamine 6G dye for the pump beams. Both of these are resonant with the \(^{4}T_2 \) absorption band of the mirror or inversion-site ions. These LIG measurements were extended in the work described

![Figure 2](https://example.com/figure2.png)

FIG 2. Normalized transient LIG signal for Cr\(^{3+} \) ions in inversion sites as a function of time at 30 K for various write-beam powers: (a) 714 W/cm², (b) 281 W/cm², (c) 45 W/cm². The dashed lines represent the data and solid lines represent the theoretical fits using Eq. (12).
here to the case of direct excitation into the 2Δ sublevel of the 1E state of the mirror-site ions. The population grating in the 1E state was established by crossing two laser beams from an argon-ion-pumped jet dye laser using DCM dye tuned to 677.8 nm. In addition experiments were performed using crossed laser beams from both the argon-ion laser and argon-ion-pumped ring dye laser to simultaneously establish gratings in both mirror and inversion site ions in order to determine the effects of the dual gratings on the LIG signals.

It was reported earlier that the FWM signal decay kinetics were nonexponential for excitation into the 4T_2 level of the mirror-site ions. The long-time portion of the decay curves was found to approach the decay time expected for an inversion-site grating and was attributed to an inversion-site grating formed as a result of weak inversion-site absorption. In the data presented below for direct excitation of the 4E level of the mirror-site ions no long-time tail is evident.

In order to use LIG spectroscopy to study energy migration among Cr^{3+} ions the grating decay rate is measured as a function of the grating spacing. The grating spacing is related to the total crossing angle of the write beams by

$$\Lambda = \frac{\lambda}{2 \sin(\theta/2)},$$

where θ is the total crossing angle between the write beams and λ is the write-beam wavelength. As the grating spacing decreases energy migration from the peak to the valley of the grating becomes more efficient in destroying the LIG. For the initial conditions relevant to this experimental case, the time dependence of the normalized transient-grating signal in the presence of energy migration processes is given by

$$I_i(t) = \exp(-2t/\tau) \left[J_0(bt) \exp(-\alpha t) + \alpha \int_0^\infty du \exp[-\alpha(t-u)] \times J_0(b(t^2-u^2)^{1/2}) \right]^2,$$

where τ is the fluorescence lifetime, α is the exciton scattering rate, J_0 is the Bessel function of order zero, and b is given by

$$b = 4V \sin[(2\pi a/\lambda) \sin(\theta/2)],$$

where V is the nearest-neighbor ion-ion interaction rate, a is the average distance between active ions, λ is the excitation wavelength and θ is the crossing angle between the write beams (both in air). The exciton dynamics can be characterized by these parameters in terms of the diffusion coefficient, the mean free path, the diffusion length, the coherence parameter, and the number of sites visited between scattering events given by

$$D = 2V^2a^2/\alpha,$$
$$L_m = \sqrt{2Va}/\alpha,$$
$$L_d = (2D\tau)^{1/2},$$
$$\zeta = b/\alpha,$$
$$N_i = L_m/a,$$

respectively.
A. Results for 4T_2 excitation

For the grating formed by excitation into the 4T_2 level of the mirror-site ions the decay of the signal is nonexponential. The initial part of the decay is consistent with the predicted decay of a mirror-site grating and the long-time part of the decay is consistent with the predicted decay of an inversion site grating. The angular dependence of the grating decay pattern shows that at large crossing angles the long-time decay is very weak or no longer present. This is shown in Fig. 4.

The concentration of inversion-site Cr$^{3+}$ ions in the sample is 2.5×10^{18} cm$^{-3}$. Assuming a uniformly random distribution of ions, this implies an average separation of 457 nm between inversion-site Cr$^{3+}$ ions. The angles used in the measurements ranged from 2° to approximately 28°. This gives grating spacings ranging from 1.2 to 16 μm. The spatial dependence of the grating is given by

$$ n(x,0) = [\cos(k_x x) + 1], \quad (27) $$

where $k_x = 2\pi / \Lambda$ is the grating k vector, and $n(x,0)$ is the exciton concentration at $t=0$. The characteristic width of a grating peak is Λ. For a grating spacing of 16 μm this implies a linear density of 35 inversion-site Cr$^{3+}$ ions per grating peak. For a grating spacing of 1.2 μm the linear density of inversion-site Cr$^{3+}$ ions is 2.6 per grating peak. This clearly shows, under the above assumptions, that the number of inversion-site ions per peak of the grating decreases with increasing crossing angle (decreasing grating spacing), and as a result, the inversion-site grating signal decreases in intensity with increasing crossing angle.

In order to conclusively establish that the observed long-time part of the decay patterns is a result of the simultaneous formation of an inversion-site grating along with the mirror site grating, the following experiment was performed. A mirror site grating and an inversion site grating were formed simultaneously in the same region in the sample by using two different sets of pump laser beams as described earlier. A single He-Ne beam was used to probe the dual grating. Because the fringe spacings of the two gratings are not exactly the same due to the different laser frequencies used to write the gratings, it was necessary to keep the crossing angle between the two sets of overlapping write beams very small so that a single probe beam can approximately match the Bragg condition for both gratings simultaneously. The decay kinetics of the resulting dual grating were measured by chopping both sets of pump beams and recording the dual LIG signal. The results are shown in Fig. 5. The decay pattern is similar to the small-angle decay pattern for 4T_2 pumping, shown in Fig. 4. This confirms that the long-time part of the decay for 4T_2 pumping is due to the presence of an inversion-site grating.

B. Results for 2E excitation

The FWM signal decay kinetics of the mirror-site grating formed by direct excitation of the 2E level were also found to be dependent on the grating spacing and temperature. Several approaches have been used to theoretically analyze the transient grating kinetics in the presence of energy transfer. Kenkre has treated the case for the effects of partially coherent exciton migration, with the initial conditions relevant to the experiments described here. His results are derived from the generalized master equations using the assumption that the initial density matrix for the system is diagonal. This is the situation encountered in systems with localized exciton states or systems containing complete randomness between the phases of the exciton wave functions. The

FIG. 4. The LIG signal decay for excitation of the mirror-site Cr$^{3+}$ ions into the 4T_2 level at 30 K at two different write-beam crossing angles. The dashed line is $\theta = 3.5^\circ$; the solid line is $\theta = 23^\circ$.

FIG. 5. Dual-grating decay kinetics at 30 K and a write-beam crossing angle of 1.39°.
For any dephasing mechanism, such as nonradiative processes, different grating spacings were used to characterize the scattering rate and the intrinsic decay rate of the $2E$ level. This can be expressed as

$$V = C_1 \tau^{-1} / \Delta \nu,$$ \hspace{1cm} (29)

where $\Delta \nu$ is the FWHM of the zero-phonon line, and it was assumed that the zero-phonon lineshape was Gaussian. The temperature dependencies of τ^{-1} and $\Delta \nu$ have been measured for the R_1 mirror site zero-phonon line in alexandrite. The solid line in Fig. 6 is the best fit to the measured ion-ion interaction rate using Eq. (29) and the measured values of τ^{-1} and $\Delta \nu$.

Figure 6 also shows the temperature dependence of the ion-ion interaction rate. For resonant energy migration in the R_1 zero-phonon line originating on $2E$, the ion-ion interaction rate is proportional to the spectral overlap integral of the R_1 absorption and emission transitions, and the intrinsic decay rate of the $2E$ level. This can be expressed as

$$V = C_1 \tau^{-1} / \Delta \nu,$$ \hspace{1cm} (29)

TABLE I. Energy migration parameters at 25 K.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (sec$^{-1}$)</td>
<td>1.22×10^6</td>
</tr>
<tr>
<td>α (sec$^{-1}$)</td>
<td>0.2×10^6</td>
</tr>
<tr>
<td>D (cm2 sec$^{-1}$)</td>
<td>3.02×10^{-8}</td>
</tr>
<tr>
<td>L_m (cm)</td>
<td>3.88×10^{-7}</td>
</tr>
<tr>
<td>L_d (cm)</td>
<td>1.18×10^{-5}</td>
</tr>
<tr>
<td>N_c</td>
<td>8.63</td>
</tr>
<tr>
<td>$\xi (\theta = 5^\circ)$</td>
<td>3.7×10^{-1}</td>
</tr>
</tbody>
</table>

later case is exactly the situation encountered here. At low temperatures the population of excited Cr$^{3+}$ ions is predominantly in the E sublevel of the $2E$ state, whereas the excitation is into the $2A$ sublevel. A correlation exists between different Cr$^{3+}$ sites in the $2A$ sublevel immediately after the pump photons are absorbed, since the excitation wavelength spans many Cr$^{3+}$ sites. However, any dephasing mechanism, such as nonradiative processes between the E and $2A$ sublevels or phonon scattering processes, will result in a loss of this correlation between sites. Therefore, the theory of Kenkre is ideally suited to this system. The dephasing issue will be discussed later in this paper.

For $2E$ excitation there is no inversion-site contribution to the LIG signal, and therefore the decay kinetics of the signal can unambiguously be analyzed in terms of energy migration only among mirror site Cr$^{3+}$ ions. Equation (20) was used to fit the slightly nonexponential LIG decay kinetics treating b and a as adjustable parameters. The LIG decay kinetics at each temperature and several different grating spacings were used to characterize the exciton migration at that specific temperature. The pertinent parameters are listed in Table I.

Figure 6 shows the temperature dependence obtained for the scattering rate α. The solid line is the best fit to the data using the expression

$$\alpha = C_1 T^{-C_2},$$ \hspace{1cm} (28)

with $C_1 = 0.02 \times 10^6$ sec$^{-1}$ and $C_2 = 0.75 \pm 0.08$.

![Figure 6](image-url)

FIG 6. The temperature dependence obtained for the scattering rate and the ion-ion interaction rate for direct excitation of the $2E$ level of the Cr$^{3+}$ ions in mirror sites. The solid line is the theoretical fit to the ion-ion interaction rate using Eq. (28), and the dashed line is the theoretical fit to the scattering rate using Eq. (29).
The phase memory of the exciton does not depend upon the remaining ensemble of excitons. Transient grating measurements have three different characteristic distances. These are the lattice constant \(a\), the mean free path \(L_m\), and the scattering length \(A\). The transport properties of the exciton are discernible using the LIG technique only if the diffusion length is comparable to half of the distance between the laser beams, and therefore \(L_d\) and \(A\) are on the same length scale. If \(L_m\) is less than or equal to \(A\) then the exciton motion is completely coherent and a scattering event occurs on every “hop” of the exciton to another site, leading to a complete loss of phase memory. If \(a < L_m < A/2\) then the exciton motion is coherent over a few lattice spacings, but is incoherent on the scale of the experiment. \(N_f\) is a measure of the degree of coherence on this length scale. If \(L_m = A/2\) then the exciton motion is coherent over many lattice spacings and on a distance scale which is directly discernible from the transient grating signal shapes. \(\xi\) is a measure of the degree of coherence on this length scale. Table I shows that the mirror-site \(\text{Cr}^{3+}\) ions in alexandrite have energy transport characteristics consistent with the second type of coherence mentioned above \((a < L_m < A/2)\). The exciton motion is coherent over a few lattice spacings, but is incoherent on the distance scale of the grating, and is thus termed quasicoherent.

The coherence parameter is an important quantity in verifying the assumption mentioned earlier regarding the initial conditions of the experiment. Kenkre has shown that for \(\xi\) greater than 2.0 significant differences in the transient grating decay kinetics are possible depending on the initial state of the density matrix. Table I shows that \(\xi = 3.7 \times 10^{-3}\). Therefore even if the initial density matrix were not diagonal, as assumed here, there would be no difference in the transient grating decay kinetics. The LIG signal in this system is insensitive to the initial conditions of the density matrix.

IV. DEPHASING MEASUREMENTS

In a previous paper\(^4\), it was shown that measurements of the FWM signal intensity as a function of the crossing angle between the write beams can be used to determine the dephasing time of the atomic system with respect to the laser beams. The model used to analyze the data was the model discussed in Sec. II describing the interaction between crossed laser beams and a two-level atomic system. The electric fields of the four laser beams interact with each other via the nonlinear polarization induced in the two-level system. Solving the wave equation for this situation leads to a set of coupled differential equations for the complex amplitudes of the fields. Using this approach it was found that the normalized FWM scattering efficiency could accurately be modeled by solving these equations numerically, treating the real and imaginary components of the coupling parameters, \(D^*\), \(D'_1\), \(D'_2\), and \(D'_3\) as adjustable parameters. The values of the coupling parameters obtained by these computer fits to the data yielded information on the laser-induced modulation of the real and imaginary parts of the refractive index through the relationships

\[
\Delta \alpha_{ss} = -2\alpha D'_2 / D'_1, \tag{30}
\]

\[
\Delta n_{ss} = (\alpha c / \omega) D'_3 / D'_1. \tag{31}
\]

From these quantities the dephasing time of the atomic system, \(T_2\), can be calculated using

\[
T_2 = (2\omega / c)(\Delta n_{ss} / \Delta \alpha_{ss})(\omega - \omega_{21})^{-1} \tag{32}
\]

where \(\alpha\) is the absorption coefficient at the write-beam wavelength, \(c\) is the speed of light, \(\omega\) is the circular frequency of the write beams, and \(\omega_{21}\) is the resonant frequency of the atomic transition.

There are several mechanisms that could be responsible for the dephasing of the system. The measured dephasing time is related to population relaxation \(T_1\) and phase disrupting processes among the ions of the ensemble, \(T_2^{PD}\), by the relation\(^{30}\)

\[
T_2^{-1} = \frac{1}{2} T_1^{-1} + (T_2^{PD})^{-1}. \tag{33}
\]

Population relaxation processes contribute to the total dephasing rate since they are incoherent spontaneous processes. \(T_2^{PD}\) can be separated into two parts:

\[
(T_2^{PD})^{-1} = (T_2^*)^{-1} + (T_1')^{-1}, \tag{34}
\]

where \(T_2^*\) is the inhomogeneous dephasing time and \(T_1'\) is the homogeneous dephasing time. These dephasing times are related to their respective contribution to the total linewidth through the relations

\[
T_2^* = (\pi \nu \Delta \nu^*)^{-1}, \tag{35}
\]

and

\[
T_1' = (\pi \nu \Delta \nu')^{-1}. \tag{36}
\]

\[\text{FIG. 7. Temperature dependence of the exciton diffusion coefficient for Cr}^{3+}\text{ ions in the mirror sites in alexandrite obtained from values of } V \text{ and } a. \text{ The solid line shows a } T^{-1/2} \text{ dependence.}\]
T_2^* represents the time for the loss of phase coherence between the ions of the ensemble due to small mismatches in the transition energies of the ions. T_2^* represents the time for the loss of coherence between the ions of the ensemble due to phonon scattering processes.\(^{22}\)

A. Results for 2E excitation

Figure 8 shows the angular dependence of the normalized FWM scattering efficiency for excitation of the $2A$ sublevel of the 2E state at 50 K. The solid line in the figure is the computer fit to the data using the procedure discussed above. The parameters calculated from this fit using Eqs. (30)-(32) are listed in Table II.

For this excitation the total population relaxation is the sum of two processes:

$$T_1^{-1} = T_1^{-1}(2A-E) + T_1^{-1}(^2E,A_2)$$ \hspace{1cm} (37)

where $T_1^{-1}(2A-E)$ is the nonradiative decay rate from the upper crystal field sublevel of the 2E state to the lower sublevel, and $T_1^{-1}(^2E,A_2)$ is the total decay rate from the $2A$ and E sublevels of 2E to the ground state.\(^{4}A_2$, $T_1(^2E,A_2)$ is measured\(^{11}\) to be 2.3 ms at 50 K, and therefore this term in Eq. (37) can be neglected since it is much smaller than the measured dephasing rate of 55 ps. The nonradiative decay time from $2A$ to E, $T_1(2A-E)$, has been measured by Meltzer et al.\(^{31}\) at 1.5 K to be 400 ps. This decay time will decrease as temperature is raised, and can be extrapolated to its value at 50 K using the relation

$$T_1^{-1}(50 K) = T_1^{-1}(0 K) (\bar{n} + 1)$$ \hspace{1cm} (38)

where n is the phonon occupation number given by

$$\bar{n} = (\exp(\Delta E/k_BT) - 1)^{-1}$$ \hspace{1cm} (39)

k_B is Boltzmann's constant and ΔE is the phonon energy. This gives a value of 260 ps for $T_1(2A-E)$ at 50 K. This is a factor of 5 slower than the dephasing time measured here. At 50 K the homogeneous linewidth is less than the inhomogeneous linewidth, which is approximately 2 cm\(^{-1}\).\(^{11}\) Therefore T_2^* is less than T_2, and the dephasing rate is dominated by the inhomogeneous dephasing. Using Eq. (41) and the measured inhomogeneous linewidth, the inhomogeneous dephasing time is found to be 52 ps. This is in good agreement with the measured result; thus the dephasing mechanism in this case is attributed to dephasing associated with the inhomogeneous linewidth and not population relaxation.

B. Results for 4T_2 excitation

For excitation into the 4T_2 level, T_2 was found previously\(^5\) to be 80 and 2.2 ps for the inversion sites and mirror sites, respectively and the dephasing time was attributed to the nonradiative decay from the 4T_2 level to the 2E metastable level. These measurements have been extended to temperatures ranging from 30 to 300 K and several different excitation wavelengths. The dephasing time was found to be constant over this temperature range, while the frequency dependence of the dephasing time was found to vary approximately as ω on the high-energy side of the transition peak.

The dynamics of nonradiative decay processes are important in gaining a full understanding of dephasing and the role that phonons play in the dephasing process. In this section a model is presented to describe the second type of dephasing, and it is related to the dephasing results obtained for 4T_2 excitation of the mirror-site ions.

Figure 9 shows the model used to analyze the dynamics of the mirror-site Cr$^{3+}$ ions. The 2E curve actually represents four potential energy curves, and the 4T_2 curve represents twelve potential energy curves.\(^{32}\) This is a result of the splittings of the sublevels of each state. The 3T_2 level has been omitted since it does not play a significant role in the nonradiative decay processes.\(^{33}-35\) Optical absorption occurs from the ground state, 4A_2, to an excited vibrational level of the 4T_2 level, represented by the vertical line in the figure. The ion is excited into an excited vibrational level of the 4T_2 state. Following absorption, the ion relaxes very quickly to the metastable 2E level. This process can occur in two ways: The first mechanism is one in which the ion remains in the 4T_2 level and emits phonons, termed internal conversion (IC), until its energy coincides with the crossing of the two excited-state adiabatic potential-energy curves, the 2E and 4T_2 levels. At this energy, the relaxation process crosses over to the 2E level, called intersystem crossing (ISC), and the ion continues to emit phonons until the

Table II. Dephasing parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{rec} (nm)</td>
<td>677.8</td>
</tr>
<tr>
<td>T (K)</td>
<td>50</td>
</tr>
<tr>
<td>D_1</td>
<td>0.25</td>
</tr>
<tr>
<td>D_1</td>
<td>0.65</td>
</tr>
<tr>
<td>D_2</td>
<td>0.35</td>
</tr>
<tr>
<td>D_2</td>
<td>0.0015</td>
</tr>
<tr>
<td>Δn</td>
<td>6.68×10^{-4}</td>
</tr>
<tr>
<td>$\Delta \sigma$ (cm(^{-1}))</td>
<td>4.00×10^{-1}</td>
</tr>
<tr>
<td>T_2 (ps)</td>
<td>55.3</td>
</tr>
</tbody>
</table>

Figure 8. Normalized FWM scattering efficiency vs the write-beam crossing angle at 50 K for Cr$^{3+}$ ions in the mirror sites directly excited in the $2A$ sublevel of the 2E state. The solid line is the computer-generated fit obtained for a two-level atomic system model for FWM (Refs. 5 and 15).
bottom of the \(^2E\) potential energy curve is reached. This is represented by the path \(A\rightarrow B\rightarrow C\) in Fig. 9. The second mechanism differs from the first in the point at which the ISC process occurs. In this mechanism the ISC process occurs on the very first step of the relaxation and is followed by the emission of phonons until the bottom of the \(^2E\) potential energy curve is reached. The relaxation predominantly occurs in the \(^2E\) electronic state, and is represented by the \(A\rightarrow B'\rightarrow C\) path in Fig. 9. These two mechanisms will be designated as IC and ISC, respectively, corresponding to the first steps in the relaxation mechanism.

Nonradiative decay processes occur between nonstationary states of the system.\(^\text{32}\) The initial state of the system, as well as the others, is not a pure \(^4T_2\) electronic state.\(^\text{33}\) It is actually a mixed state of several electronic vibrational states including the \(^4T_2\) and \(^2E\) electronic-vibrational states. This is a result of the electron-phonon coupling, the spin-orbit interaction, and the anharmonic potential energy of the excited states of the Cr\(^{3+}\) ions. The various electronic states admixed by these interactions are shown in Fig. 10. Englman \textit{et al.}\(^\text{16}\) have shown in the harmonic approximation that the amount of admixture between the \(^2E\) and \(^4T_2\) states, which form the initial vibronic eigenstate of the system, can increase significantly as the vibrational quantum number of the upper state increases. Including anharmonic effects can increase the amount of admixture between states even more.

In the model used here to analyze the nonradiative decay pathways from the \(^4T_2\) state to the \(^2E\) state, only single-phonon processes are considered. The initial level of the system after optical excitation is an excited vibrational level of the \(^4T_2\) electronic state. The interactions shown in Fig. 10 admix this state with various intermediate states. From these admixed states relaxation can occur to the vibrational level of the \(^4T_2\) state lying just below the initially excited level or to an excited vibrational level of the \(^2E\) state which is at or below the energy of the initial level. The amount of admixture between states which causes the radiationless relaxation processes decreases as the vibrational quantum number of the initial state of the \(^4T_2\) electronic state decreases.\(^\text{36}\) The first step of the relaxation process is very important in determining the relaxation pathway because the amount of admixture between states which results in a specific relaxation pathway decreases after each step in the nonradiative decay process. Therefore, once the first step occurs, the pathway is determined until points are reached where there is a significant change in the admixture between states, such as at the potential-energy curve crossing points.

The nonradiative decay rate is given by the golden rule:

\[
K_{sr} = (2\pi/\hbar) |\langle \Psi_f' | \Delta H | \Psi_i \rangle|^2 \rho(E_f),
\]

where \(e\) denotes the electronic part and \(v\) denotes the vibrational part of the wave function \(\Psi\), primes denote the initial state of the system, \(\Delta H\) is the perturbation connecting the two levels, and \(\rho(E_f)\) is the density of final states. The admixture between states is accounted for in the terms retained in \(\Delta H\), where

\[
\Delta H = V' q + H_{s.o}.
\]

Here \(q\) is the configuration coordinate representing the symmetry adapted normal mode of the system, \(V'\) is the electron-phonon coupling term, and \(H_{s.o}\) is the spinorbit interaction. Phonons of different symmetry are active in coupling the different levels shown in Fig. 10. These phonon symmetries are given in parentheses after the \(V'\). The first step in the IC mechanism is the transi-
tion from $\Psi(4T_2, v')$ to $\Psi(4T_2, v)$ where $v' > v$. First-order perturbation theory is not sufficient to cause this transition, and it will be necessary to use second-order Born-Oppenheimer states, perturbation theory to describe this mechanism. The first step in the ISC mechanism is the transition from $\Psi(4T_2, v')$ to $\Psi(4T_2, v)$. The only operator which can connect these states is the spin-orbit coupling operator, and the nonradiative decay rate for each mechanism can be written as

$$K_{nr}(\text{ISC}) = \sum_v \sum_{\rho} \left(\sum_{\Gamma, \gamma, M, r, \gamma'', M''} \langle \phi(4T_2, \gamma^*, M^*) | V' | \phi(\Gamma, \gamma, M) \rangle \times \langle \phi(\Gamma, \gamma, M) | H_{s.a.} | \phi(4T_2, \gamma'', M'') \rangle \langle X(4T_2, v'_p) | q_p | X(\Gamma, r_p) \rangle \times \prod_{a} \langle X(4T_2, v'_a) | X(\Gamma, r_a) \rangle \times \langle X(\Gamma, r_a) | X(4T_2, v) \rangle / [W(4T_2) - W(\Gamma)] + \text{c.c.} \right)^2 \alpha(E_f)$$

$$+ \frac{2\pi}{h} \sum_v \sum_{\rho} \left(\sum_{\Gamma, \gamma, M, r, \gamma'', M''} \langle \phi(4T_2, \gamma^*, M^*) | H_{s.a.} | \phi(\Gamma, \gamma', M') \rangle \times \langle \phi(\Gamma, \gamma', M') | V'' | \phi(4T_2, \gamma'', M'') \rangle \langle X(4T_2, v'_p) | q_p | X(\Gamma, r_p) \rangle \times \prod_{a} \langle X(4T_2, v'_a) | X(\Gamma, r_a) \rangle \times \langle X(\Gamma, r_a) | X(4T_2, v) \rangle / [W(4T_2) - W(\Gamma)] + \text{c.c.} \right)^2 \alpha(E_f)$$

and

$$K_{nr}(\text{IC}) = \sum_v \sum_{\rho} \left(\sum_{\Gamma, \gamma, M, r, \gamma'', M''} \langle \phi(4T_2, \gamma^*, M^*) | V' | \phi(\Gamma, \gamma, M) \rangle \times \langle \phi(\Gamma, \gamma, M) | H_{s.a.} | \phi(4T_2, \gamma'', M'') \rangle \langle X(4T_2, v'_p) | q_p | X(\Gamma, r_p) \rangle \times \prod_{a} \langle X(4T_2, v'_a) | X(\Gamma, r_a) \rangle \times \langle X(\Gamma, r_a) | X(4T_2, v) \rangle / [W(4T_2) - W(\Gamma)] + \text{c.c.} \right)^2 \alpha(E_f)$$

$$+ \frac{2\pi}{h} \sum_v \sum_{\rho} \left(\sum_{\Gamma, \gamma, M, r, \gamma'', M''} \langle \phi(4T_2, \gamma^*, M^*) | V'' | \phi(\Gamma, \gamma', M') \rangle \times \langle \phi(\Gamma, \gamma', M') | H_{s.a.} | \phi(4T_2, \gamma'', M'') \rangle \langle X(4T_2, v'_p) | q_p | X(\Gamma, r_p) \rangle \times \prod_{a} \langle X(4T_2, v'_a) | X(\Gamma, r_a) \rangle \times \langle X(\Gamma, r_a) | X(4T_2, v) \rangle / [W(4T_2) - W(\Gamma)] + \text{c.c.} \right)^2 \alpha(E_f)$$

where γ represents the crystal-field component of the energetic intermediate state, and W is the energy of the state. The vibrational part of the wave function has been separated into promoting and accepting modes, $X(e, v_p)$ and $X(e, v_a)$, respectively. These modes are assumed to be distinct, which is a good approximation for high-symmetry crystal-field sites. Promoting modes represent phonons that mix the initial and final electronic states, and accepting modes represent phonons that absorb the difference in electronic energy. The reason for invoking admixture of intermediate states in the expression for $K_{nr}(\text{IC})$ is due to the properties of the overlap integrals of the vibrational wave functions. The vibrational wave functions for each particular excited state are orthogonal, and therefore the vibrational overlap integral, commonly called the Franck-Condon factor, vanishes for a transition from one vibrational level to a different vibrational level of the same electronic state. Equations (43) and (44) avoid the "Condon" approximation, which tends to underestimate transition rates by as much as several orders of magnitude. These expressions are summed over v and ρ to include all single-phonon transitions from
elements squared in terms of Tanabe et al. components of the intermediate representations. Terms of the single-electron reduced matrix element can also be multielectron reduced matrix elements. Using the Wigner-Eckart theorem, the matrix elements of the spin-orbit interaction, where γ, are important to the dynamics of the nonradiative relaxation processes from the $^4T_{2g}$ to 2E_g level. In octahedral symmetry there are three different species of Raman-active modes: A_{1g}, E_g, and T_{2g}. Symmetry assignments of the different Raman wave functions for this type of multielectron reduced matrix element. This reduced matrix element can be reexpressed in terms of the single-electron reduced matrix elements, $(t_{2g} || V(\Gamma)||t_{2g} || e_x^m)$, and $(t_{2g} || V(\Gamma)||e_x^m)$, by using the d wave functions for each representation. These wave functions are denoted $T_{2g}(s_\alpha\eta_\gamma, \epsilon_{\alpha\eta})$, $T_{2g}(u_v, \epsilon_v)$, $A_{2g}(\epsilon_v)$, and $A_{1g}(\epsilon_1)$. The spin-orbit term in the Hamiltonian can be expressed as follows:

$$H_{\text{SO}} = \frac{1}{\sqrt{2}} [- V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + \frac{1}{\sqrt{2}} [V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + V_{\text{SO}}(T_1) ,$$

where $V_{\text{SO}}(T_1)$ transforms as the α wave function of the T_1 representation with spin quantum number α. Using the Wigner-Eckart theorem, the matrix elements of the spin-orbit interaction can be expressed in terms of the multielectron reduced matrix elements. These multielectron reduced matrix elements can also be expressed in terms of the single-electron reduced matrix element $(t_{2g} || V(\Gamma)||e_x^m)$ and the results have been tabulated by Tanabe et al. Table III gives the average of the matrix elements squared in terms of the single-electron reduced matrix elements after summing over the different components of the intermediate representations.

$$\langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma = \delta(S, S') \delta(M, M') \langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma \gamma'$$

where γ is the dimension of the Γ representation, $\delta(S, S')$ is the Kronecker delta, $(\Gamma \gamma | \Gamma' \gamma')$ is the Clebsch-Gordan coefficient, and

$$\langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma = \langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma \gamma'$$

is the multielectron reduced matrix element. This reduced matrix element can be reexpressed in terms of the single-electron reduced matrix elements, $(t_{2g} || V(\Gamma)||t_{2g} || e_x^m)$, and $(t_{2g} || V(\Gamma)||e_x^m)$, by using the d wave functions for each representation. These wave functions are denoted $T_{2g}(s_\alpha\eta_\gamma, \epsilon_{\alpha\eta})$, $T_{2g}(u_v, \epsilon_v)$, $A_{2g}(\epsilon_v)$, and $A_{1g}(\epsilon_1)$. The spin-orbit term in the Hamiltonian can be expressed as follows:

$$H_{\text{SO}} = \frac{1}{\sqrt{2}} [- V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + \frac{1}{\sqrt{2}} [V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + V_{\text{SO}}(T_1) ,$$

where $V_{\text{SO}}(T_1)$ transforms as the α wave function of the T_1 representation with spin quantum number α. Using the Wigner-Eckart theorem, the matrix elements of the spin-orbit interaction can be expressed in terms of the multielectron reduced matrix elements. These multielectron reduced matrix elements can also be expressed in terms of the single-electron reduced matrix element $(t_{2g} || V(\Gamma)||e_x^m)$ and the results have been tabulated by Tanabe et al. Table III gives the average of the matrix elements squared in terms of the single-electron reduced matrix elements after summing over the different components of the intermediate representations.

$$\langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma = \delta(S, S') \delta(M, M') \langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma \gamma'$$

where γ is the dimension of the Γ representation, $\delta(S, S')$ is the Kronecker delta, $(\Gamma \gamma | \Gamma' \gamma')$ is the Clebsch-Gordan coefficient, and

$$\langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma = \langle (t_{2g} || e_x^m) | ST \rangle \gamma \Gamma \gamma'$$

is the multielectron reduced matrix element. This reduced matrix element can be reexpressed in terms of the single-electron reduced matrix elements, $(t_{2g} || V(\Gamma)||t_{2g} || e_x^m)$, and $(t_{2g} || V(\Gamma)||e_x^m)$, by using the d wave functions for each representation. These wave functions are denoted $T_{2g}(s_\alpha\eta_\gamma, \epsilon_{\alpha\eta})$, $T_{2g}(u_v, \epsilon_v)$, $A_{2g}(\epsilon_v)$, and $A_{1g}(\epsilon_1)$. The spin-orbit term in the Hamiltonian can be expressed as follows:

$$H_{\text{SO}} = \frac{1}{\sqrt{2}} [- V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + \frac{1}{\sqrt{2}} [V_{\text{SO}}(T_1) + i V_{\text{SO}}(T_1)] + V_{\text{SO}}(T_1) ,$$

where $V_{\text{SO}}(T_1)$ transforms as the α wave function of the T_1 representation with spin quantum number α. Using the Wigner-Eckart theorem, the matrix elements of the spin-orbit interaction can be expressed in terms of the multielectron reduced matrix elements. These multielectron reduced matrix elements can also be expressed in terms of the single-electron reduced matrix element $(t_{2g} || V(\Gamma)||e_x^m)$ and the results have been tabulated by Tanabe et al. Table III gives the average of the matrix elements squared in terms of the single-electron reduced matrix elements after summing over the different components of the intermediate representations.
<table>
<thead>
<tr>
<th>γ^*</th>
<th>M_i^*</th>
<th>$K_{\gamma^*}(\text{ISC})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>$3/2$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/486)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/486)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>0</td>
</tr>
<tr>
<td>η</td>
<td>$3/2$</td>
<td>$(1/2592)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/3888)(14 + 5\sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/1296)(2 - \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/2592)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td>ξ</td>
<td>$3/2$</td>
<td>$(1/2592)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/1776)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/1776)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/17592)(1 + \sqrt{3})^2(XZ)^2$</td>
</tr>
<tr>
<td>γ^*</td>
<td>$3/2$</td>
<td>$(1/2916)(1/4 + \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/384)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/384)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/384)(XZ)^2$</td>
</tr>
<tr>
<td>η</td>
<td>$3/2$</td>
<td>$(1/576)(2 - \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/1728)(1 + \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/1728)(1 + \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/1756)(1 + \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td>ξ</td>
<td>$3/2$</td>
<td>$(1/1152)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/3456)(7 + 4\sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/3456)(7 + 4\sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/1152)(XZ)^2$</td>
</tr>
<tr>
<td>γ^*</td>
<td>$3/2$</td>
<td>$(1/2592)(1/5 + \sqrt{3})(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>$(1/2160)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-1/2$</td>
<td>$(1/2160)(XZ)^2$</td>
</tr>
<tr>
<td></td>
<td>$-3/2$</td>
<td>$(1/2160)(XZ)^2$</td>
</tr>
</tbody>
</table>

Average Vanishes for all γ^*, M_i^*
and excited states of Cr3+ ions in alexandrite. Figure 11 shows an approximate Morse potential energy curve for the \textit{4}T\textsubscript{2} and \textit{2}E excited states. These curves were calculated using the absorption and fluorescence spectra, positions of the zero-phonon lines, and an effective phonon energy of 240 cm-1. The energy difference between the bottom of the \textit{4}T\textsubscript{2} and \textit{2}E potential energy curves is 800 cm-1. The energy levels of the vibrational levels in each excited state calculated by using Eq. (52) are shown in the figure. Equations (48)-(51) were used to calculate the vibrational wave functions for each vibrational level in both electronic states. These are also shown in the figure.

The vibrational parts of the matrix elements in Eqs. (43) and (44) given by

\[|\langle X(\textit{4}T\textsubscript{2},\nu') | X(\textit{2}E\nu) \rangle |^2 \text{ (53)} \]

and

\[|\langle X(\textit{4}T\textsubscript{2},\nu') | q_p | X(\textit{2}E\nu) \rangle |^2 \text{ (54)} \]

equations can be calculated by using the Morse potential wave functions.43,47,48-54 The first type of matrix element is the Franck-Condon factor (FCF). The FCF cannot be calculated analytically; therefore, both types of matrix elements in Eqs. (53) and (54) were calculated numerically.

The peak in the \textit{4}T\textsubscript{2} absorption is into the fourth vibrational level of the \textit{4}T\textsubscript{2} state. Figure 12 shows the calculated Morse potentials representing the \textit{4}T\textsubscript{2} and \textit{2}E levels of Cr3+ ions in mirror sites in alexandrite. The horizontal lines represent the vibrational energy levels for 240-cm-1 phonons, and the oscillating lines represent the wave functions for each vibrational energy level.
electronic configuration, whereas the are orthogonal. As mentioned previously, this is the Morse potential-energy curves. The Morse curves shown in calculating the various matrix elements in Eq. 54 were also calculated the FCF data for original electronic states having points. This keeps the vibrational overlap integrals from being set equal to vibrational sublevels of different electronic states having points. This avoids the problems associated with using approximate electronic wave functions to evaluate the single-electron reduced matrix elements which can severely affect the results. Taking the ratio given the relative probability of the two processes. The vibrational matrix elements between a specific vibrational level of an electronic state and another vibrational level of the intermediate electronic state were chosen so that the ion would end up in a level of lower total energy and the calculated rate would have its maximum value. The density of states for the ISC transition was taken from the vibrational level spacing of the Morse potential curve at the level at which the first step in the nonradiative decay process ends. The density of states for the IC transition was taken from the vibrational level spacing of the Morse potential curve at the vibrational level just below the point of optical absorption. This is a result of limiting each step in the nonradiative decay mechanism to single phonon processes. There is an additional factor of that accounts for the difference in the degeneracies in the ratio of the density of final states. The result of this calculation gives

\[
\frac{K_{m}(\text{ISC})}{K_{m}(\text{IC})} \approx 13 .
\]

The model for nonradiative decay presented here is different from other models in several respects. The promoting mode interaction is not assumed to be effective only at or near the point where the Morse potential energy curves cross. This is one of the reasons that the ISC mechanism can compete with the standard Dexter, Klick, and Russell IC mechanism. The effects of anharmonicities, which are difficult to treat in a solid and have therefore usually been ignored in previous treatments, are included in the estimates of the FCF's and the vibrational matrix elements determined here. The harmonic approximation would lead to FCF's that are much smaller than those obtained here, and this has justified, in the past, the neglect of the ISC channel for nonradiative decay mechanism proposed here. The reason the FCF's are larger when anharmonic effects are included is due to the shape of the wave functions and the shape of the Morse potential-energy curves. The Morse curves shown in Fig. 9 actually have two crossing points, and the curves remain close together in the region between these points. This keeps the vibrational overlap integrals from decreasing to the value that would be obtained in the harmonic approximation. In the harmonic approximation the potential-energy curves cross in only one point, and the curves get farther apart as the vibrational quantum number increases above the crossing point.

Figure 13 shows the dephasing time calculated from the FWM data for Cr$^{3+}$ ions in several different crystal-field environments, alexandrite mirror and inversion sites, emerald, and ruby. The dephasing time is shown as a
function of the energy difference between the peak of the
4T_2 absorption and the 2E absorption. This energy
difference is essentially the energy that must be emitted
in the nonradiative decay process outlined above. The de-
phasing mechanism is a result of population relaxation
from the 4T_2 level. The dependence of the dephasing rate
on the energy difference shown in Fig. 13 strongly sup-
ports the conclusion reached above that the dominant
nonradiative decay channel is the ISC channel. If the
nonradiative decay process does not involve the ISC de-
cay channel, then the dephasing rate would not depend
on the crystal field strength of the host crystal, and there-
fore would be independent of the energy difference be-
between the 4T_2 and 2E absorption transitions. If the ISC
channel of nonradiative decay is the dominant relaxation
pathway, then the well-known exponential dependence of
the decay rate on the energy gap should be observed.\(^{(35,38)}\)

This is observed in the data, confirming the results of the
theoretical calculation for the relative branching ratio of
the two relaxation pathways. The dominant decay chan-
nel in other host crystals with smaller crystal field
strengths and therefore a smaller energy difference be-
tween 4T_2 and 2E absorption transitions may be different.
An increase in the probability of the IC decay channel
would decrease the ratio in Eq. (55) leading to the in-
dependence of T_2 on the energy difference between the
4T_2 and 2E absorption transitions.

The mechanism for dephasing in this case is consistent
with a population relaxation process, namely the 4T_2 2E
nonradiative decay. The temperature dependence of the
dephasing rate should be the same as that of the multi-
photon emission rate. The temperature dependence of
the multiphoton emission rate is

$$R \approx (\bar{n} + 1)^{p'},$$

where p' is the number of phonons emitted. The energy
difference between the peak in the 4T_2 and 2E absorption

transitions for the mirror-site Cr$^{3+}$ ions is 1900 cm$^{-1}$.
Measurements of the vibronic, Raman, and anti-Stokes
excitation spectra\(^{(2)}\) have shown that the phonons
of lowest energy for which the electron-phonon coupling is
significant are 240-cm$^{-1}$ phonons. 40-cm$^{-1}$ phonons
play an important role in the dynamics of the 2E state,\(^{(11)}\)
but should not be as important in the 4T_2 2E nonradiative
decay. This leads to a multiphonon emission rate at 300
K that is only slightly higher than the multiphonon emis-
sion rate at 30 K. This agrees with the experimental ob-
servations within the experimental error.

C. FWM signal intensity

The intensity of the FWM signal for excitation into the
2E and 4T_2 levels was measured under identical con-
ditions: temperature (50 K), grating spacing, power, and
polarization. The measured value of the signal intensity
was adjusted to account for the difference in the absorp-
tion coefficient at the two excitation wavelengths. The
results show that the FWM signal formed after direct ex-
citation into the 2E state is 43 times more intense than
the FWM signal formed after excitation into the 4T_2
state. In both cases the grating inducing the scattering is
a population grating of Cr$^{3+}$ ions in the 2E level. There
are two possible reasons for this. First, it has been shown
here than an inversion site grating is formed after excita-
tion into the 4T_2 band but not after excitation into the 2E
zero-phonon lines of the mirror-site ions. This can pro-
vide a loss mechanism which decreases the FWM signal
intensity. Second, the difference in dephasing times, 2.2
and 55 ps, for the 4T_2 and 2E excitations, respectively,
may be the reason for this difference. The dephasing time
is related to the laser-induced changes in the optical
properties of the material\(^{(15)}\) which are responsible for the
FWM process, and therefore can indirectly affect the
FWM scattering efficiency as shown in Eq. (12). Since
the first process has been shown to be very weak, the
second process should be the dominant cause for the
difference in the scattering efficiency at the two excitation
wavelengths.

V. DISCUSSION AND CONCLUSIONS

In this paper LIG techniques have been used to extend
the previously reported energy transfer and dephasing
studies in alexandrite. The temperature dependence of
the exciton diffusion constant is the same for excitation
into the 2E level and for excitation into the 4T_2 level.
Using the theoretical framework developed by Kenkre,\(^{(23,24)}\)
the temperature dependence of the ion-ion interaction
rate and exciton scattering rate have been deduced. It
should be noted that the formalism of Kenkre is exact
only on a perfect lattice, and thus the theory of Kenkre
should be considered an approximation to the exciton
dynamics of the actual system. In this system there is a
broad distribution of distances between Cr$^{3+}$ ions,
and hence there is a broad distribution of interaction
strengths between Cr$^{3+}$ ions. Therefore, the ion-ion in-
teraction strength in the Kenkre theory should be con-
considered to be an average interaction strength. The tem-
perature dependence of the ion-ion interaction rate is con-
sistent with the Dexter22 model, dominated by the lifetime and linewidth of the spectral transition. This same analysis was used to analyze the data obtained pumping into the 4T_2 level. The ion-ion interaction rate is the same as obtained for the 1E excitation, but the exciton scattering rate is slightly higher. This may be a result of the additional phonons generated in the nonradiative decay from the 4T_2 state to the 2E state. This also confirms that the grating is formed in the 1E state. The exciton transport properties imply a nonuniform distribution of Cr$^{3+}$ ions. The intensity of the inversion-site grating contribution to the LIG signal as a function of the grating spacing is consistent with the very low concentration of inversion-site Cr$^{3+}$ ions in this sample. Results of similar measurements6 have shown that the exciton diffusion coefficient in emerald increases with increasing temperature. For that case the exciton scattering rate was found to increase with temperature similarly to the alexandrite results, but the ion-ion interaction rate exhibited a much stronger increase with temperature. This is due to the smaller crystal-field splitting in emerald which allows the 1T_2 level to become thermally populated at much lower temperatures than in alexandrite. The higher oscillator strength for the 4T_1-to-4A_2 transition and the greater spectral overlap from the 4T_2 emission significantly enhances the energy transfer efficiency.

The transient LIG signal was found to reflect the saturation behavior of the pumping dynamics. The model used to analyze these transients accurately predicts the functional dependence of the pumping dynamics on the lifetime of the excited state, the pump intensity, and the absorption cross section. The absorption cross section for the inversion-site ions at 488 nm and the laser-induced change in the index of refraction were calculated to be 0.5×10^{-20} cm2 and 3.0×10^{-6}, respectively. The results of similar measurements on ions in the mirror sites are consistent with the higher value of the saturation parameter. The power dependence of the LIG signal shows a quadratic dependence at low pump powers, but at high pump powers a deviation from this dependence is evident. The analysis of the data that this departure from a quadratic dependence is not a result of a normal saturation process in the pumping dynamics, but is a result of beam depletion through the laser-induced change in the absorption coefficient.

Measurements of the FWM scattering efficiency as a function of the grating spacing yield information on the dephasing time of the system. These measurements were done for excitation into the 2E and 4T_2 states and an analysis of the data yielded two different types of dephasing mechanisms. The dephasing time for the direct excitation of the 2E level is consistent with the linewidth data, implying that the inhomogeneous dephasing time is the dominant dephasing mechanism. It should be noted that this is not a line narrowing experiment and specific subsets of ions are not excited. The dephasing time for excitation into the 4T_2 band is consistent with the nonradiative decay time from the 4T_1 level to the 2E level. This is also evidenced in the temperature dependence of the dephasing time. A detailed theoretical analysis of the nonradiative decay process was carried out. The model used for this analysis includes the effects of anharmonicity and the admixing of the different states of the system. The results show the importance of intersystem-crossing in the initially excited vibrational level of the 4T_1 state. Calculation of the relative branching ratio shows this pathway for decay to the bottom of the 2E potential well to be more probable than the pathway leading to the initial relaxation to the bottom of the 4T_1 potential well. The dephasing time for alexandrite, emerald and ruby was found to vary approximately exponentially with the energy gap between the peak of the 4T_2 absorption and the 2E absorption, and this is interpreted as evidence for the important role this ISC relaxation pathway plays in the dephasing processes in these materials. Also, the intensities of the FWM signals for excitation into the 4T_2 and 2E levels were found to be significantly different and this is attributed to the difference in the dephasing rates.

\section*{ACKNOWLEDGMENT}

This research was supported by the U.S. Army Research Office.

\begin{thebibliography}{99}
\item 7. A. Suchocki, R. C. Powell, Chem. Phys. accepted for publication.
\end{thebibliography}
38 LAser-Induced Grating Spectroscopy of...

45] P. M. Morse, Phys. Rev. 34, 57 (1929).
Optical spectroscopy and four-wave mixing in emerald

Gregory J. Quarles,* Andrzej Suchocki, † and Richard C. Powell
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444

Shui Lai
Allied Signal, Inc., Morristown, New Jersey 07960
(Received 21 December 1987; revised manuscript received 2 May 1988)

The optical-spectroscopic properties of Cr3+ ions in Be3Al2(SiO3)6 crystals were investigated using several techniques. The temperature dependencies of the fluorescence intensity and lifetime were measured between 10 and 300 K and shown to be due to thermal population effects in the 4T2 and 4E levels. The results of time-resolved site-selection spectroscopy measurements show that the Cr3+ ions occupy several different types of sites having nonequivalent crystal fields, and that spectral energy transfer takes place between ions in different types of sites. The results of four-wave mixing measurements show the presence of long-range resonant energy migration among the chromium ions and provide information about the radiationless relaxation rate from the 4T2 level to the 4E level.

I. INTRODUCTION

The potential use of emerald [Be3Al2(SiO3)6:Cr3+] as a tunable solid-state laser material1-3 has generated renewed interest in understanding the details of the spectroscopic properties of this crystal. Although the general optical spectroscopic properties of emerald have been characterized,4-9 there are still important unanswered questions concerning the local crystal-field environment of the Cr3+ ions, the characteristics of energy transfer among the Cr3+ ions, and the details of radiationless transitions in this material. We report here the results of investigating the optical properties of emerald using several different spectroscopic techniques, including time-resolved site-selection spectroscopy (TRSSS) and four-wave mixing (FWM). The results show that the Cr3+ ions occupy sites having several different types of local crystal-field environments and that this leads to two different types of energy-transfer processes in this material. The first is a short-range process between ions in sites having nonequivalent crystal-field environments, while the second is a resonant, long-range migration process. These processes are characterized in terms of Frenkel excitons with the mobile excitation energy localized on a Cr3+ ion. The radiationless transitions distributing the population of excited ions among the 4T2 and 4E levels are shown to be responsible for the temperature dependencies of the fluorescence intensity and lifetime and for the dephasing time of the four-wave mixing signal.

The sample was used in this work had a rectangular shape of dimensions 7.5 × 13 × 3.8 mm and a dark-green color. It was grown by the hydrothermal method and contained 3 at. % Cr3+ ions (N3 = 1.77 × 1020 cm−3). Emerald has the beryl structure with a space group designated as P6/mmc and two molecules per unit cell.10 The Cr3+ ions substitute for the Al3+ ions and “sit” at the center of a slightly distorted octahedral site, as is seen in Fig. 1. The site symmetry of Cr3+ in this lattice is D3. The dominant structure in beryl is the Si8O16 rings which are linked by Be and Al ions. As noted on Fig. 1, the first- and second-nearest-neighbor distances for the Cr3+ sites are 4.6 and 5.3 Å, respectively.10 This is much larger than the 2.65- or 2.7-Å first-nearest-neighbor distances found in similar Cr3+-doped laser materials, ruby11 and alexandrite,12 respectively. These larger distances between Cr3+ ions allow for high concentrations without appreciable concentration quenching of the fluorescence. However, the tradeoff is that the density of available sites for Cr3+ is 5.9 × 1021 cm−3, which is approximately 12% of that in the corundum lattice of ruby.9 For emerald doped with 3 at. % Cr3+, there is evidence for the presence of exchange coupled pairs of Cr3+.

FIG. 1. Crystal structure of beryl projected onto a (110) plane. (Taken from Ref. 9)
ions. Also, at this high level of concentration there is a considerable amount of internal strain in the crystal, causing different local crystal-field environments for the \(\text{Cr}^{3+} \) ions which results in inhomogeneous broadening of the optical transitions. Both the exchange coupling and microscopic strains can contribute to the spectral structure described in Sec. II.

II. OPTICAL SPECTROSCOPIC PROPERTIES

The absorption and fluorescence spectra of emerald at 70 K are shown in Figs. 2 and 3. The former was obtained using an IBM 9430 UV-Visible Spectrophotometer. The latter was taken using the 488-nm line of an argon laser for the excitation, a 1-m Spex monochromator for spectral dispersion, a RCA-C31034 photomultiplier tube to detect the signal, and a lock-in amplifier to enhance the signal-to-noise ratio. The sample was placed in a cryogenic refrigerator in order to control the temperature. Front-surface excitation of the fluorescence was used to minimize the effects of reabsorption. The peaks in the absorption spectrum are labeled in terms of the octahedral crystal-field designations of the final states of their transitions from the \(^4A_2 \) ground state. The fluorescence is associated with zero-phonon transitions from the crystal-field-split components of the \(^2E \) level (\(R \) lines) and broadband fluorescence, which is a superposition of the vibronic sideband of the \(R \) lines and emission from the \(^4T_2 \) level.

Figure 4 shows the absorption and fluorescence spectra in the region of the \(R \) lines at 70 K uncorrected for polarization effects. (The effects of polarization on the spectra are clearly shown in Ref. 3.) Both fluorescence and absorption spectra were taken at temperatures ranging from 10 to 300 K, but the structure in the \(R_1 \) and \(R_2 \) lines becomes most visible around 70 K. These lines are inhomogeneously broadened with large linewidths, consistent with results reported previously. The fluorescence spectra were obtained with cw excitation at 457.9 nm. Both of the \(R \) lines in fluorescence exhibit a structure consisting of four peaks, and some structure is also observed in absorption. The positions of these components are listed in Table I. Each peak is designated with superscripts, but it is not clear how the peaks in \(R_1 \) correlate with those in \(R_2 \). Assuming that each of the peaks is associated with a different local crystal-field environment for the \(\text{Cr}^{3+} \) ion, and assuming the same oscillator strength for the \(6A_2 \rightarrow 4E_1 \) transition for each type of environment, it is possible to estimate the relative concentrations of the \(\text{Cr}^{3+} \) ions in each of the different environments from the absorption spectra of the \(R \) lines. These values are listed in Table I.

The decay kinetics of the fluorescence exciting at 588 nm were monitored using a boxcar integrator. The sig-
TABLE I. Spectral properties of the R lines of emerald with 3 at. % Cr$^{3+}$ at 20 K.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak position λ_{R1} (nm) Absorption</td>
<td>681.55</td>
<td>681.80</td>
<td>682.25</td>
<td>682.60</td>
<td>682.60</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>681.80</td>
<td>682.20</td>
<td>682.30</td>
<td>682.60</td>
<td>682.60</td>
</tr>
<tr>
<td>Peak position λ_{R2} (nm) Absorption</td>
<td>678.80</td>
<td>679.24</td>
<td>679.56</td>
<td>679.65</td>
<td>679.65</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>678.95</td>
<td>679.25</td>
<td>679.50</td>
<td>679.65</td>
<td>679.65</td>
</tr>
<tr>
<td>Concentration of ions $N_i (\times 10^{16} \text{ cm}^{-1})$</td>
<td>1.72</td>
<td>3.68</td>
<td>171.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorescence decay time τ (ms)</td>
<td>1.112</td>
<td>1.436</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 678.94$ nm</td>
<td>0.317</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 679.24$ nm</td>
<td>1.859</td>
<td>1.079</td>
<td>1.610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 679.45$ nm</td>
<td>0.707</td>
<td>0.351</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorescence rise time t_r (µs)</td>
<td>1.540</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 678.94$ nm</td>
<td>1.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 679.24$ nm</td>
<td>149.8</td>
<td>364.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lambda_{sa} = 679.45$ nm</td>
<td>149.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This represents the sum of the concentrations of ions in sites c and d since their transitions are not well resolved; the transition from ions in site e is too small to determine an accurate concentration.

nals were found to be single-exponential decays over two decades between 12 and 200 K. The decay time of the fluorescence was 1.7 ms at temperatures below 60 K. This is slightly longer than the low-temperature lifetimes reported by Kisliuk and Moore and by Hassan et al. In both of these cases it was suggested that traces of Fe$^{3+}$ ions quenched the Cr$^{3+}$ fluorescence. Above 60 K the lifetime decreases with increasing temperature due to thermal population of the 4T_2 level. The temperature dependence of the fluorescence lifetime is shown in Fig. 5. A theoretical prediction for the temperature dependence of the fluorescence lifetime can be obtained from the expression

$$
\tau^{-1} = \tau_E^{-1} + \tau_T^{-1} \exp(-\Delta E/k_B T).
$$

Here it has been assumed that the 2E and 4T_2 levels are separated by an energy ΔE and their populations are in thermal equilibrium. τ_E and τ_T are the intrinsic lifetimes of these levels and it is assumed that the intermediate 2T_1.

<table>
<thead>
<tr>
<th>From fitting the temperature dependence of the fluorescence lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE</td>
</tr>
<tr>
<td>τ_E</td>
</tr>
<tr>
<td>τ_T</td>
</tr>
<tr>
<td>From time-resolved site-selection spectroscopy results</td>
</tr>
<tr>
<td>$I_i(0)/I_i(0)$</td>
</tr>
<tr>
<td>Ω</td>
</tr>
<tr>
<td>R_0</td>
</tr>
<tr>
<td>From fitting the fluorescence-decay kinetics</td>
</tr>
<tr>
<td>α'</td>
</tr>
<tr>
<td>D_{α}</td>
</tr>
<tr>
<td>σ'</td>
</tr>
<tr>
<td>R_0</td>
</tr>
<tr>
<td>Theoretical prediction</td>
</tr>
<tr>
<td>D_{α}</td>
</tr>
</tbody>
</table>
levels do not play a significant role in the spectral dynamics.16 Using Eq. (1) with the intrinsic lifetimes and the energy gap treated as adjustable parameters, the best fit to the data is shown as a solid line in Fig. 5. The value of the energy gap between the 2E and the 4T_2 levels is found to be equal to 381 cm$^{-1}$, which is in good agreement with previous reported values.16,17 The intrinsic decay time of the 4T_2 level was found to be 14 μs, which is close to the values found from previous investigations.8,16 The intrinsic lifetime of the 2E level was found to be 1.7 ms. The parameters used in obtaining this fit are listed in Table II.

III. TIME-RESOLVED SITE-SELECTION SPECTROSCOPY

Time-resolved site-selection spectroscopy (TRSSS) measurements were used to characterize the properties of short-range spectral energy transfer between Cr$^{3+}$ ions with different crystal-field environments in emerald. A nitrogen-laser-pumped dye laser, using Oxazine 720 dye with a narrow linewidth (<0.6 Å) was used to selectively excite the Cr$^{3+}$ ions having a specific type of crystal-field environment. Excitation in the R_2 line typically yields three emission peaks in the R_1 line, and the energy transfer is predominantly from ions in crystal-field environments, resulting in higher-energy transitions to those in environments having lower-energy transitions. Using the labeling scheme from Table I, the ions with environments giving transitions a and b act as sensitizers and those with the environment giving transition d act as activators. It was not possible to resolve the c or e transitions using nanosecond pulse excitation into the R_2 line, and thus ions with environments giving rise to these transitions are also counted as activators. By taking spectral scans of the fluorescence emission at different times after the laser-excitation pulse, it was possible to characterize the time evolution of the energy transfer between Cr$^{3+}$ ions having different crystal-field environments.

The experimental apparatus for the TRSSS measurements has been described previously.18 The emerald sample was excited using three different laser wavelengths, 6789.4, 6792.4, and 6794.5 Å, which are shown as vertical arrows in the R_2 absorption line in Fig. 4. The fluorescence spectra of the R_1 lines were then spectrally resolved through a 1-m monochromator and directed onto a RCA-C31034 photomultiplier tube. The input and output slits were maintained at 100 μm to ensure a resolution of <0.4 Å.

Figure 6 shows the typical fluorescence spectrum of the R_1 lines at 20 K and at 1.00 ms after excitation at 6789.4 Å. It was possible to resolve three separate peaks in the fluorescence as shown in the figure. To study the spectral energy transfer, it is necessary to know the area associated with each peak and how it evolves with time. To get a good estimate for the area, the data were deconvoluted with a curve-fitting routine that fitted three overlapping Gaussian peaks to the fluorescence spectra. The separate Gaussians are denoted by the dashed lines in Fig. 6, with the overall fit shown by the solid line. The Gaussian profile fits the data quite well. From the curve-fitting routine it was possible to obtain the total area, the peak wavelength and intensity, and the full width at half maximum for each Gaussian component.

The fluorescence risetimes and lifetimes of each of the three peaks were monitored for each excitation wavelength and temperature, and their values at 20 K are listed in Table I. The two highest-energy peaks are both double-exponential decays with fast risetimes, while the lowest-energy peak is single exponential over two decades with a much longer risetime. The accuracy of the lifetimes and risetimes is approximately ±5%. To characterize the properties of energy transfer between ions with different types of crystal-field environments, the two highest-energy peaks are designated as being from sensitizer ions and the lowest-energy peak as being from activator ions, as discussed above. Figure 7 shows the fluorescence spectra of the R_1 lines for four different temperatures at 100 ms after the pulse at the three different excitation wavelengths. As the excitation wavelength is shifted to lower energy, the number of distinct peaks decreases until there is only one fluorescence peak remaining, that being associated with the emission from the activator ions excited by the lowest-energy excitation wavelength. There is also very slight backtransfer from activator to sensitizer sites, noticeable mostly at higher temperatures. Figure 8 shows the fluorescence spectra at 20 K, for the three excitation wavelengths, at five different times after the pulse. The two highest-energy peaks (transitions from sites a and b) evolve at approximately the same rate, while the lowest-energy peak (transitions from sites c, d, and e) evolves more slowly and becomes the dominant peak at the longer times after the pulse.

The time evolution of the R_1 lines is demonstrated in Fig. 9, which shows the changes in the ratios of the integrated fluorescence intensities of the activator transition to that of the sensitizer transition. These areas are taken from the fits of the experimental data with Gaussian curves. There is an initial buildup of the ratios of the relative area of the transitions and, at longer times after...
the pulse, an equilibrium condition is approached. The time evolution of the ratios can be modeled using a phenomenological rate-parameter model. The sensitizing ions are those preferentially excited by the laser at a rate W_p, whereas the activator ions receive the energy through energy transfer as well as a small amount of direct pumping at a rate W_a. n_s and n_a are the concentrations of the ions in the excited states, W_{sa} is the rate of energy transfer from sensitizer to activator, and β_s and β_a are the fluorescence decay rates associated with each type of ion. As noted above, the time-resolved spectral data show that backtransfer from activator ions to sensitizer ions is negligible at low temperatures and weak at high temperatures. Therefore this process is neglected in the analysis. The reason that there is no strong backtransfer in this case is that the concentration of ions in activator sites is much higher than the concentration of ions in sensitizer sites and strong energy transfer occurs among activator ions. This is discussed in detail in the next section. With these assumptions, the rate equations

FIG 7 Fluorescence spectra of the R_1 lines in emerald for different temperatures at 100 μs after the pulse after selectively exciting the R_2 line at (a) 6789.4 Å, (b) 6792.4 Å, and (c) 6794.5 Å.

FIG 8 Fluorescence spectra of the R_1 lines in emerald at 20 K at five different times after the pulse after selectively exciting the R_1 lines at (a) 6789.4 Å, (b) 6792.4 Å, and (c) 6794.5 Å.
describing the time evolution of the populations of the excited state are
\[\frac{dn_1}{dt} = W_1 - \beta_1 n_1 - W_{\text{sa}} n_1, \]
\[\frac{dn_a}{dt} = W_a - \beta_a n_a + W_{\text{sa}} n_1. \]

These equations can be solved assuming a δ-function excitation pulse and an explicit time dependence for the energy-transfer rate. The solutions were obtained using various types of time dependencies for \(W_{\text{sa}} \) associated with different types of energy-transfer mechanisms. It was found that the best fit to the data was obtained with a time dependence for the energy-transfer rate of \(t^{-1/2} \).

The physical meaning of this time dependence is discussed below. The solutions of Eqs. (2) and (3) in this case are given by
\[n_1(t) = n_1(0) \exp(\beta_1 t - 2\Omega t^{1/2}), \]
\[n_a(t) = n_a(0) \exp(\beta_a t - 2\Omega t^{1/2}) + n_a(0) \exp(-\beta_a t), \]

where the time dependence of the energy-transfer rate is written explicitly as \(W_{\text{sa}} = \Omega t^{-1/2} \). The ratio of the integrated fluorescence intensities is proportional to the ratios of the excited-state populations,
\[\frac{I_a}{I_a} = \left(\frac{\beta_a}{\beta_a'} \right) \left(\frac{I_a(0)h v_a/I_i(0)h v_a}{\beta_a'/\beta_a'} \right) + 1 \exp(2\Omega t^{1/2}) - 1, \]

where \(\beta_a \) and \(\beta_a' \) are the radiative decay rates associated with the activator and sensitizer ions, respectively. The solid and dashed lines in Fig. 9 represent the best fits of Eq. (6) to the experimental data, treating \(I_a(0)/I_i(0) \) and \(t \) as adjustable parameters. The values for these parameters at 20 K are listed in Table II.

The \(t^{-1/2} \) variation of the energy-transfer rate is characteristic of a single-step electric-dipole–dipole interaction between randomly distributed sensitizers and activators. This time dependence may still be observed when additional energy migration among the sensitizer ions is present. In order to determine the importance of sensitizer energy migration compared to single-step transfer, the change in the fluorescence intensity was monitored as a function of time. This decay can be fitted with an expression for the time evolution of the fluorescence with the energy-transfer rate expressed by an appropriate energy-transfer theory. In each of these theories the excitation energy is treated as a mobile Frenkel exciton localized on a specific ion and able to migrate on a lattice of sensitizer ions. Analysis of the data was attempted using several models and it was found that the best analytical model for describing the transfer kinetics in emerald is that of Chow and Powell. This theory assumes that an exciton is created on the sensitizer site and migrates among the sensitizers, and at each step in the random walk the exciton has a possibility of transferring its energy to any activator in the lattice. It is also assumed for this model that the ion-ion interaction is of electric-dipole–dipole type and that the sensitizer-sensitizer interaction is large compared to that of the sensitizer-activator interaction. Thus, the energy-transfer rate is given by
\[W_{\text{sa}} = 4\pi N_a D_a a' \left[1 + a' (\pi D_a t)^{-1/2} \right] + 4\pi N_a \alpha''/3a'^3 \]
\[+ 2\pi N_a a' \int_0^\infty dr (r^5/\pi)^b \left[\text{erfc}[(r-a')/(4D_a t)^{1/2}] \right]^2 \]
\[- 8\pi N_a a' \int_0^\infty dr (r^5/\pi)^b \left[\text{erfc}[(r-a')/(4D_a t)^{1/2}] \right], \]
validity of this theory is determined by the criterion that
interaction among the four laser beams in
obtain an accurate analysis of the data because of thermal
the complex coupling constants which describe the
values of
results.
was predicted a dipole-dipole-interaction mechanism for this is difficult to calculate accurately.
for the transitions.23 However, the results involve a stiffer expression can
fitting procedure are

\[
\eta = \exp(-2\alpha L\left[\sin^2(d \Delta \alpha/2\pi) + \sinh^2(d \Delta \alpha/4)\right])
\]

where \(\alpha\) and \(L\) are the absorption coefficient and thickness of the sample, and \(d\) is the thickness of the grating. Making the assumption that there is little or no beam depletion, and that the product of the grating thickness and the modulation depth is small, Eq. (8) simplifies to

\[
\Delta \alpha = N_0 I_0 (\sigma_1 - \sigma_2)/\left(2I_0 I_1 + h \nu / r\right)
\]

where \(N_0\) is the concentration of active ions, \(I_0\) is the intensity of the write beams, \(r\) is the fluorescence lifetime, and \(\sigma_1\) and \(\sigma_2\) are the ground- and excited-state absorption cross sections, respectively. A similar expression can be derived for the change in \(\Delta \alpha\) using an oscillator model for the transitions.23 However, the results involve a sum over oscillator strengths for all possible transitions and this is difficult to calculate accurately.

One method for determining the contributions to the FWM signal due to \(\Delta \alpha\) and \(\Delta \Delta\) is to measure the variation of the signal intensity with the crossing angle of the write beams, \(\theta\).20 The angle at which the peak scattering efficiency occurs is sensitive to the relative magnitudes of the complex coupling constants which describe the interaction among the four laser beams in the crystal, \(D_1\) and \(D_2\). The real and imaginary parts of \(D_1\) and \(D_2\) were determined by using a Runge-Kutta technique to solve the four simultaneous differential equations describing the coupled waves in the crystal. The results were fitted to the data using a computer fitting routine and treating \(D'_1, D'_2, D''_1, D''_2\), and \(D'_3\) as adjustable parameters. The details

IV. FOUR-WAVE MIXING RESULTS

Four-wave mixing (FWM) measurements were used to characterize the properties of long-range spatial energy migration in emerald. The details of the experimental setup used in this work were described previously in Ref. 20. Crossed laser beams from a ring dye laser were tuned to 588 nm, in order to resonantly pump the \(T_{2g}\) band. This establishes a population grating of excited \(Cr^{3+}\) ions in the sample. The total laser power used in this work was about 300 mW. A He-Ne laser was used as the probe beam and the signal beam was processed by a Princeton Applied Research–EG&G signal averager. By chopping the write beams on and off, the kinetics of the laser-induced grating could be monitored. These are influenced by the fluorescence decay and the spatial migration of \(Cr^{3+}\) excitation energy from the peak-to-valley regions of the grating. The primary measurements involved in this work are the variations of the FWM signal efficiency and decay rate with the crossing angle of the write beams. The former provides information about radiationless decay and excited-state absorption processes, while the latter provides information about the properties of energy migration among the \(Cr^{3+}\) ions. Characterizing the energy migration is the main focus of this work.

For a simple one-wave grazing, the scattering efficiency at the Bragg angle is given by21

\[
\eta = \exp(-2\alpha L\left[\sin^2(d \Delta \alpha/2\pi) + \sinh^2(d \Delta \alpha/4)\right])
\]

where \(\alpha\) and \(L\) are the absorption coefficient and thickness of the sample, and \(d\) is the thickness of the grating. Making the assumption that there is little or no beam depletion, and that the product of the grating thickness and the modulation depth is small, Eq. (8) simplifies to

\[
\Delta \alpha = N_0 I_0 (\sigma_1 - \sigma_2)/\left(2I_0 I_1 + h \nu / r\right)
\]

where \(N_0\) is the concentration of active ions, \(I_0\) is the intensity of the write beams, \(r\) is the fluorescence lifetime, and \(\sigma_1\) and \(\sigma_2\) are the ground- and excited-state absorption cross sections, respectively. A similar expression can be derived for the change in \(\Delta \alpha\) using an oscillator model for the transitions.23 However, the results involve a sum over oscillator strengths for all possible transitions and this is difficult to calculate accurately.

One method for determining the contributions to the FWM signal due to \(\Delta \alpha\) and \(\Delta \Delta\) is to measure the variation of the signal intensity with the crossing angle of the write beams, \(\theta\).20 The angle at which the peak scattering efficiency occurs is sensitive to the relative magnitudes of the complex coupling constants which describe the interaction among the four laser beams in the crystal, \(D_1\) and \(D_2\). The real and imaginary parts of \(D_1\) and \(D_2\) were determined by using a Runge-Kutta technique to solve the four simultaneous differential equations describing the coupled waves in the crystal. The results were fitted to the data using a computer fitting routine and treating \(D'_1, D'_2, D''_1, D''_2\), and \(D'_3\) as adjustable parameters. The details

\[
\eta = \exp(-2\alpha L\left[\sin^2(d \Delta \alpha/2\pi) + \sinh^2(d \Delta \alpha/4)\right])
\]

where \(\alpha\) and \(L\) are the absorption coefficient and thickness of the sample, and \(d\) is the thickness of the grating. Making the assumption that there is little or no beam depletion, and that the product of the grating thickness and the modulation depth is small, Eq. (8) simplifies to

\[
\Delta \alpha = N_0 I_0 (\sigma_1 - \sigma_2)/\left(2I_0 I_1 + h \nu / r\right)
\]

where \(N_0\) is the concentration of active ions, \(I_0\) is the intensity of the write beams, \(r\) is the fluorescence lifetime, and \(\sigma_1\) and \(\sigma_2\) are the ground- and excited-state absorption cross sections, respectively. A similar expression can be derived for the change in \(\Delta \alpha\) using an oscillator model for the transitions.23 However, the results involve a sum over oscillator strengths for all possible transitions and this is difficult to calculate accurately.

One method for determining the contributions to the FWM signal due to \(\Delta \alpha\) and \(\Delta \Delta\) is to measure the variation of the signal intensity with the crossing angle of the write beams, \(\theta\).20 The angle at which the peak scattering efficiency occurs is sensitive to the relative magnitudes of the complex coupling constants which describe the interaction among the four laser beams in the crystal, \(D_1\) and \(D_2\). The real and imaginary parts of \(D_1\) and \(D_2\) were determined by using a Runge-Kutta technique to solve the four simultaneous differential equations describing the coupled waves in the crystal. The results were fitted to the data using a computer fitting routine and treating \(D'_1, D'_2, D''_1, D''_2\), and \(D'_3\) as adjustable parameters. The details

\[
\eta = \exp(-2\alpha L\left[\sin^2(d \Delta \alpha/2\pi) + \sinh^2(d \Delta \alpha/4)\right])
\]

where \(\alpha\) and \(L\) are the absorption coefficient and thickness of the sample, and \(d\) is the thickness of the grating. Making the assumption that there is little or no beam depletion, and that the product of the grating thickness and the modulation depth is small, Eq. (8) simplifies to

\[
\Delta \alpha = N_0 I_0 (\sigma_1 - \sigma_2)/\left(2I_0 I_1 + h \nu / r\right)
\]

where \(N_0\) is the concentration of active ions, \(I_0\) is the intensity of the write beams, \(r\) is the fluorescence lifetime, and \(\sigma_1\) and \(\sigma_2\) are the ground- and excited-state absorption cross sections, respectively. A similar expression can be derived for the change in \(\Delta \alpha\) using an oscillator model for the transitions.23 However, the results involve a sum over oscillator strengths for all possible transitions and this is difficult to calculate accurately.
of this procedure are described fully in Ref. 20 and the values obtained for the coupling parameters are listed in Table III.

The relationships between the coupling parameters and the physical quantities of interest have been derived by analyzing the interaction of the laser beams with the ensemble of atoms.\(^{24,25}\) The values of \(\Delta\alpha\), \(\Delta n\), and \(T_2\) are given by

\[
\Delta\alpha = -2\alpha D'_1 / D'_1 ,
\]

\[
\Delta n = (\alpha c / o)(D'_2 / D'_1) ,
\]

\[
T_2 = (2\omega / c)(\Delta n / \Delta\alpha)(\omega - \omega_1)^{-1} ,
\]

where \(\alpha\) is the absorption coefficient for the write-beam wavelength \(\lambda = 5.57\ \text{cm}^{-1}\) at 588 nm, \(c\) is the speed of light, \(\omega\) is the circular frequency of the write beams, and \(\omega_1\) is the resonant frequency of the atomic transitions. The dephasing time can be separated into two contributions,

\[
T_2^{-1} = (2T_1^{-1}) + \gamma ,
\]

where \(\gamma\) is the pure dephasing rate due to phonon scattering and \(2T_1^{-1}\) represents the dephasing due to population relaxation. The values obtained for these parameters are listed in Table III. Using the value obtained for \(\Delta\alpha\) in Eq. (10). A value for the excited-state absorption cross section can be obtained. The magnitude of \(\sigma_2\) obtained in this way agrees with the value of \(2.79 \times 10^{-20}\ \text{cm}^2\) reported from direct excited-state absorption measurements.\(^{26}\)

The FWM signal-decay kinetics were found to be nonexponential and dependent on the crossing angle of the write beams for all temperatures for which a signal was visible. Above 160 K no FWM signal was observed, and this can be attributed to the small value of the fluorescence lifetime at these temperatures.\(^{27}\) The signal kinetics are consistent with the predictions of the theory of Kenkre,\(^{28}\) which describes the decay of a laser-induced grating in the presence of long-mean-free-path excitation migration. Again, it should be emphasized that the term exciton in this case refers to a Frenkel exciton in which the excitation energy is localized on an individual \(\text{Cr}^{3+}\) ion and can migrate on a lattice of \(\text{Cr}^{3+}\) ions. In the Kenkre model, the time dependence of the normalized FWM signal is given by

\[
I(t) = e^{-2\alpha \tau} \left[J_0(b t) e^{-\alpha' \tau} + \alpha' \int_0^\infty du e^{-\alpha' \tau - u} J_0(b (t^2 - u^{2})^{1/2}) \right] ,
\]

where \(\tau\) is the fluorescence lifetime, \(\alpha'\) is the exciton scattering rate, and \(b\) is given by

\[
b = \pi^2 nV\theta / 45\lambda .
\]

Here, \(V\) is the ion-ion-interaction rate, \(n\) is the index of refraction of the crystal, \(\theta\) is the crossing angle of the write beams, and \(\lambda\) is the wavelength of the write beams. The average distance between uniformly distributed chromium ions in this sample is estimated to be \(\lambda = 9.87\ \text{Å}\).

The FWM signal-decay kinetics were fitted using Eq. (15), treating \(\alpha'\) and \(b\) as adjustable parameters. In order to emphasize the effects of energy migration, both the experimental data and the theoretical expression were divided by \(\exp(-2\tau / \tau)\), which eliminates the fluorescence-decay contribution to the signal kinetics. A typical theoretical fit to the data is shown in Fig. 11. The excellent fit to the nonexponential shape of the curve indicates the presence of long-mean-free-path excitation migration. The values of \(\alpha'\) and \(V\) obtained in this way can be used to calculate the parameters for characterizing the dynamics of the excitation migration. These include the resonant diffusion coefficient, the mean free path, the diffusion length, and the number of sites visited between scattering events,

\[
D_m = 2V^2 \alpha^2 / \alpha' ,
\]

\[
L_m = V \alpha' / \alpha' ,
\]

\[
L_D = (2D_m \tau)^{1/2} ,
\]

\[
N_i = L_m / \alpha .
\]

The values of \(\alpha', V, D_m, L_m,\) and \(N_i\) were calculated for each temperature and the values obtained at low temperature are listed in Table III. It should be pointed out that the expressions in Eqs. (17)-(20) are for migration on a uniform lattice and thus should be considered as approximate values for the random lattice associated with the case of interest here.

Figure 12 shows the temperature dependences of the
ion-ion-interaction rate and the scattering rate. Both α' and V increase with temperature in this range. The increase in the former can be attributed to increased scattering by acoustic phonons. The theoretical treatment of Frenkel exciton scattering by acoustic phonons has been developed by Agranovich and co-workers.\(^{29}\)

The results of their work show that the scattering rate should increase as $T^{3/2}$ and the dashed line in Fig. 12(a) shows this type of variation. This provides a reasonable explanation for the experimentally observed temperature dependence of α'.

The temperature dependence of V can be attributed to the relative increase in the vibronic sideband emission compared to the R-line emission as temperature is raised. This causes an increase in the overlap between the emission and absorption spectra and an increase in the total emission rate. Both of these factors cause the ion-ion-interaction rate to increase. This can be approximated by

$$V(T) = C \left(\frac{1}{I_{\text{R}}} \right)^{-1/2}$$

where the I's represent the intensities of the two components of the fluorescence spectrum and C is a proportionality constant. Using the values of the relative intensities and the fluorescence lifetime measured experimentally in Eq. (21) gives the theoretical points shown in Fig. 12(b), which are in good agreement with the experimentally determined temperature dependence for V.

Using Eq. (17), the diffusion coefficient for long-range resonant exciton migration can be determined. Figure 13 shows the results obtained using the experimental points for V and α'. The solid line in the figure is obtained using the theoretical curves given in Figs. 12(a) and 12(b). There is a good agreement between the two results.

FIG. 11. Four-wave mixing decay kinetics (points) and theoretical fit to the data using Eq. (15) (solid line) after dividing by the fluorescence-decay factor. $T=16$ K and the crossing angle of the write beams is $\theta=20^\circ$.

FIG. 12. Temperature dependence of (a) the ion-ion-interaction rate V and (b) the exciton scattering rate α' obtained from FWM data. The dashed line in (a) and the solid points in (b) represent theoretical predictions.

FIG. 13. Temperature dependence of the exciton diffusion coefficient obtained from FWM data. The solid line represents the theoretical prediction for D_x.

References:

29. Agranovich and co-workers.
V. SUMMARY AND CONCLUSIONS

Laser site-selection spectroscopy shows that the Cr$^{3+}$ ions in emerald have different types of local crystal-field environments. The origin of these different environments cannot be determined from available spectroscopic information. The beryll host structure does not have distinctly different lattice sites for the Al$^{3+}$ ions for which the Cr$^{3+}$ ions substitute. However, this type of spectral structure has been observed for many types of optically active ions in crystals and is generally attributed to two possible sources. The first is microscopic strains associated with neighboring lattice impurities (either point defects or dislocations). The second is exchange interaction between pairs of Cr$^{3+}$ ions. The identification of the origin of the spectral structure in emerald requires further work with a variety of samples having different concentrations of defects and of Cr$^{3+}$ ions. However, it is not necessary to know the exact nature of the equivalent environments to analyze the general dynamics of the energy-transfer processes in the material, which is the central interest of this work.

The results described here indicate that there are two different types of energy-transfer processes taking place in emerald. The first is short-range spectral migration among Cr$^{3+}$ ions having different types of local crystal-field environments, while the second is long-range spatial migration among Cr$^{3+}$ ions having resonant transition energies. The former evolves from ions having local environments leading to high-energy transitions in the spectral profile to ions having local environments leading to low-energy transitions. The relative concentration of the latter type of ions is about 2 orders of magnitude greater than the former. In this case the spectral transfer is consistent with an electric-dipole-dipole interaction mechanism and is independent of temperature at low temperatures. The latter type of spatial transfer involves a stronger interaction mechanism between ions in the more concentrated type of environment, and the transfer rate increases with increasing temperature due to the increasing importance of vibronic emission.

For both types of energy transfer observed in this work, the multistep migration of energy is modeled as a mobile Frenkel exciton with excitation energy localized on an individual Cr$^{3+}$ ion. Theoretical estimates can be made for the diffusion coefficient describing this type of process. For incoherent hopping migration via dipole-dipole interaction, the diffusion can be expressed as

$$D_x = \frac{4\pi N \alpha^2 \hbar \gamma}{6\hbar \omega} \int_0^\infty R^{-2} \exp(-4\pi N R^{-3}/3) e^{-D_2 R^2} dR$$

(22)

Here, N_x is the concentration of ions in the type of site transferring the energy and τ_x is the fluorescence decay time of these ions. R_c is the critical interaction distance which can be determined from the overlap of the emission and absorption spectra of the ions between which transfer is occurring. The lower limit of the integral is taken to be the nearest-neighbor distance of 4.6 Å. The value of D_x calculated from this expression using measured spectral data is listed in Table II. The result is the same order of magnitude as that determined from the experimental results described above. This is also consistent with the values obtained for the diffusion coefficient in other materials measured under similar conditions.

The order of magnitude of the diffusion coefficient describing long-range resonant energy migration is significantly larger than the spectral diffusion coefficient. If Eq. (22) is solved using the greater concentration of ions in sites a, b, and c, a value is predicted for the diffusion coefficient of the order of 4×10^5 cm2 s$^{-1}$, which is still much smaller than the diffusion coefficient determined by FWM results. The only way the higher values of the diffusion coefficient to be predicted theoretically is to assume a stronger mechanism of the ion-ion interaction. If the energy transfer takes place by exchange interaction, Eq. (22) is replaced by

$$D_x = \frac{2\pi N P_o / 3}{4\pi N R^3} \int_0^\infty R^{-2} \exp(-2R/L + 4\pi N R^3/3) dR$$

(23)

where L is the average Bohr radius of the electron wave functions and P_o is a constant that depends on the spatial overlap of the wave functions and the spectral overlap integral. These parameters have not been determined specifically for emerald, and thus an exact value for D_x cannot be obtained for this system. However, for Cr$^{3+}$ ions in Al$_2$O$_3$ (ruby) these parameters have been found to be $L = 0.97$ Å and $P_o = 4.3 \times 10^{14}$ s$^{-1}$. Using these values in Eq. (23) gives $D_x = 10^{-7}$ cm2 s$^{-1}$, which is in good agreement with the value of D_x obtained from FWM results. The value of L will always be close to 1 Å, but P_o can vary appreciably from host to host. The nearest-neighbor spacings between Cr$^{3+}$ ions in the ruby lattice are smaller than in emerald, but the concentration of Cr$^{3+}$ ions present in our emerald sample is much greater than in most ruby samples. Thus the predicted value of D_x, obtained from Eq. (23) must be taken as only a rough estimate for emerald. However, the point of this analysis is to show that a strong, short-range interaction mechanism such as exchange can lead to a diffusion coefficient of the order of magnitude of that obtained from FWM measurements.

It should be emphasized that there is no discrepancy between the results of TRSSS and FWM measurements. The former probes the properties of energy transfer from ions in a specific type of environment to ions in other types of environments. These results are strongly affected by the fact that the concentration of ions in activator environments is significantly greater than the concentration of ions in sensitized environments. This leads to a dipole-dipole interaction with negligible backtransfer. On the other hand, the FWM measurements are only sensitive to energy migration of distances of the order of a grating spacing. Thus the energy transfer measured by this method takes place among the ions in the highest-concentration environment through a strong interaction mechanism such as exchange. Both types of measurements are necessary to obtain a complete picture of the different types of energy-transfer processes taking place in the sample.

The value obtained for D_x is similar to that obtained
for alexandrite. However, the temperature dependence of D_e is quite different in alexandrite and emerald. In both materials the scattering rate limiting the mean free path of the excitons was found to increase with temperature. However, at low temperatures the ion-ion-interaction rate in alexandrite is independent of temperature, whereas in emerald it increases with temperature. This is because the vibronic emission transitions begin to become important at much lower temperatures in emerald than in alexandrite, as can be seen from their fluorescence spectra. This is associated with the weaker crystal field at the site of the Cr$^{3+}$ ion in the emerald host compared to alexandrite.

The dephasing time found for emerald is less than the values found from ruby and alexandrite. This follows a trend of decreasing T_2 with decreasing crystal-field strength. Assuming the dephasing is dominated by the radiationless relaxation to the bottom of the 2E potential well, the dependence on crystal-field strength implies direct relaxation in the 2E level instead of initial relaxation in the 4T_2 level. Since the two states are mixed, the branching ratio for radiationless relaxation will be determined by the relative densities of states at the terminal point of the absorption transition. For the materials investigated thus far, the branching ratio in the 2E level will be much greater than that in the 4T_2 level. For hosts with smaller crystal-field strengths the relative magnitudes of these branching ratios will be quite different. Therefore, making similar measurements on low-crystal-field-strength materials is an important test of this model for interpreting the T_2 results.

ACKNOWLEDGMENTS

The Oklahoma State University part of this work was sponsored by the U.S. Army Research Office. One of us (G.J.Q.) was supported by a grant provided by the U.S. Air Force Weapons Laboratory.
Four-wave-mixing spectroscopy of a Cr$^{3+}$-doped transparent glass ceramic

Frederic M. Durville and Richard C. Powell
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-0444

Georges Boulon and Bernard Champagnon
Université Lyon I, Villeurbanne, France
(Received 29 June 1987)

Four-wave-mixing (FWM) experiments were performed on a Cr$^{3+}$-doped transparent ceramic material with the composition of cordierite. Whereas no FWM signal could be observed in a normal glass of this type, a strong signal was observed after devitrification. The signal strength increases as temperature is lowered, even though the fluorescence lifetime is constant. The variation of the signal strength and decay rate with crossing angle of the write beams shows that there is no long-range energy migration, and the dephasing time due to radiationless processes in the excited state is very fast compared to Cr$^{3+}$-doped crystals. The increase of the signal intensity with laser power shows the effects of saturation and excited-state absorption.

I. INTRODUCTION

Glass ceramics are highly attractive materials for many optical technology applications because they combine the properties of crystals with the advantages of glasses. Several different authors have suggested the application of Cr$^{3+}$-doped transparent glass ceramics as lasers and other luminescent devices. In earlier publications we reported a technique for synthesizing a transparent glass ceramic similar to cordierite without any nucleating agent other than Cr$^{3+}$. This particular technique results in a high concentration of Cr$^{3+}$ ions, with most of them being in the crystalline phase. The fluorescence properties of this material were also reported. The luminescence consists mainly of a broad of the same absorption band. The total power was centered around 693 nm, with a width of approximately 250 cm$^{-1}$ at room temperature. This fluorescence comes from the $^2E^{-}^2A_2$ transitions of the Cr$^{3+}$ ions in the MgAl$_2$O$_4$ crystalline phase. The significant inhomogeneous broadening was attributed to a cation disorder in this phase.

In this paper, we report the results of further investigations of the spectroscopic properties of this material using four-wave mixing (FWM) spectroscopy. This technique has been shown to be a powerful tool in characterizing the spectral dynamics of rare-earth and transition-metal ions in crystalline hosts. The results obtained in this work show that devitrification allows FWM signals to be observed in glass ceramics whereas no signal could be observed in the normal glass. The properties of the variation of the signal with laser power, write-beam-crossing angle, and temperature provide information about the pumping, decay, and energy-transfer characteristics of the Cr$^{3+}$ ions in this type of host material.

II. EXPERIMENT

The base glass used to obtain the glass ceramic has the following composition (in mol %): 56.9 SiO$_2$, 22.36 Al$_2$O$_3$, 20.39 MgO, and 0.35 Cr$_2$O$_3$. This is close to the mineral cordierite and contains 1.77 x 1020 Cr atoms per cm3. The glass ceramic is obtained by heating the glass to 950°C. The final sample is about 68% crystallized. The crystalline regions are about 350 Å in diameter and their composition is Mg$_{1-x}$Cr$_x$$_2O_4$. Since x is much less than 1, the particles are similar to chromium-doped spinel crystals.

The experimental setup used for the FWM measurements is shown in Fig. 1. The 514.5-nm line of a Spectra Physics argon laser was used to excite the high-energy side of the $^4A_2^{-}^4T_2$ absorption band of the Cr$^{3+}$ ions. An argon-laser-pumped jet dye laser with rhodamine 6G tuned to 571.5 nm was used to excite the low-energy side of the same absorption band. The total power was varied using a variable neutral-density filter. The laser output was split into two beams which were slightly focused and crossed inside the sample to form an interference pattern in the shape of a sine wave. The difference

![Experimental setup for FWM measurements. CH1 chopper; ND, variable neutral-density filter; M, mirror; BS, beam splitter; and PM, photomultiplier tube.](image-url)
in the optical path lengths of these two write beams was less than the coherence length of the laser.

The interference pattern of the crossed laser beams induces a change in the complex refractive index of the sample with the same spatial pattern. This appears as a refractive-index grating which can be probed by scattering a read beam produced by a 10-mW He-Ne laser at 632.8 nm. The maximum signal intensity is obtained for the Bragg scattering condition. For this situation, the read beam is slightly misaligned from being counterpropagating with one of the write beams and the signal beam is slightly off counterpropagating with the other write beam. A mirror was used to pick off the signal beam and send it through a 0.25-m monochromator to eliminate sample fluorescence. The signal was detected by a Hamamatsu R1547 photomultiplier tube, processed by an EG&G/PAR signal averager, and read out on a strip-chart recorder. For transient measurements, a mechanical chopper was used to turn the write beams off and on. To determine the temperature dependence of the FWM signal, the sample was mounted on the cold finger of a cryogenic refrigerator with a temperature controller capable of temperature variation between about 15 and 300 K.

III. DESCRIPTION OF RESULTS

FWM experiments were attempted on the normal glass sample, but no signal could be observed at any temperatures. On the other hand, for the glass ceramic a strong FWM signal was observed for both the 514.5- and 571.5-nm excitation lines. The scattering efficiency was measured to be approximately 0.01 with the 514.5-nm excitation at a write-beam intensity of 1.3 x 10^6 W cm^{-2}. When exciting with the 571.5-nm line at a write-beam intensity of 3.8 x 10^6 W cm^{-2}, the scattering efficiency was found to be approximately 0.002. In addition, a thermal lensing effect was also observed with the 514.5-nm excitation line, becoming significantly important at intensities greater than 4.0 x 10^5 W cm^{-2}, and leading to the destruction of the FWM signal above 1.3 x 10^4 W cm^{-2}. For this study, we restricted the laser power to below 5.0 x 10^5 W cm^{-2}.

When the write beams were chopped off, the decay rate of the FWM signal was measured to be equal to twice the measured \(E^A \rightarrow A \) luminescence decay rate for all crossing angles of the write beams. The same result was obtained for both excitation wavelengths at all temperatures. This is the normal behavior for a population grating without the presence of any long-range energy migration.

The scattering efficiency was measured for different write-beam crossing angles using the 514.5 nm laser line. At room temperature and relatively high power (3.8 x 10^4 W cm^{-2}), the angular dependence of the FWM signal is shown in Fig. 2(a). The observed behavior with a rather flat angular dependence is quite unusual. When the power is decreased to 6.4 x 10^4 W cm^{-2}, the angular dependence changes drastically, as shown in Fig. 2(b). A change in the shape of the angular dependence is also observed when the temperature is lowered to 120 K [Fig. 2(c)].

![Fig. 2](image-url)

Fig. 2. FWM scattering efficiency vs. crossing angle of the write beams in the sample for an excitation wavelength of 514.5 nm. (a) \(T = 300 \) K, \(P = 3.8 \times 10^3 \) W cm^{-2}. (b) \(T = 300 \) K, \(P = 6.4 \times 10^4 \) W cm^{-2}. (c) \(T = 120 \) K, \(P = 3.8 \times 10^4 \) W cm^{-2}. (See text for explanation of theoretical lines.)

The intensity of the FWM signal was monitored as a function of temperature and found to increase as the temperature was lowered. Typical results are shown in Fig. 3. The same type of temperature dependence of the FWM signal was observed for both excitation wavelengths. The temperature dependence of the luminescence decay rate was also measured for this sample and no change was observed in this temperature range. The temperature dependence of the FWM signal intensity from a population grating is generally proportional to
the temperature dependence of the fluorescence lifetime. Since this is not the case for the glass ceramic studied here, other temperature-dependent processes must be affecting the FWM signal.

The FWM scattering efficiency was also recorded as a function of total laser power in the write beams and the results are presented in Fig. 4. With the 514.5-nm excitation line [Fig. 4(a)], the signal intensity follows approximately a quadratic dependence on the writing-beam intensity \(I_t = (I_1 I_2)^{1/2} \) at low powers. Above \(4.0 \times 10^3 \) W cm\(^{-2} \) the signal tends toward a saturation level. With the 571.5-nm excitation line [Fig. 4(b)] the signal follows a fourth-law dependence on laser power with no observed saturation.

IV. DISCUSSION

For the type of sample investigated here, the FWM signal is associated with the scattering of the write beam from a laser-induced population grating. The grating arises from the modulation of the complex refractive index of the material due to the difference in the polarizability of the \(\text{Cr}^{3+} \) ions in the ground state and excited state.\(^{13} \) The absence of a FWM signal in the base glass is not surprising due to the very low quantum yield of \(\text{Cr}^{3+} \) ions in this host even at low temperatures.\(^{3,14} \) This is associated with strong nonradiative relaxation for \(\text{Cr}^{3+} \) ions in weak crystal field sites.

For a holographic grating, the FWM scattering efficiency is expressed in terms of the contributions from the modulated absorption and dispersion parts of the refractive index as:\(^{13} \)

\[
\eta = \exp(-2\sigma_0 \Gamma \left[\sinh^2(\Delta t \Delta \Gamma / 2) + \sin^2(\pi \Gamma \Delta n / \lambda)\right]). \tag{1}
\]

Here \(\Gamma = d / \cos 2\theta \) where \(d \) is the grating thickness and \(\theta \) is the crossing angle of the write beams in the sample. As a first approximation, the contribution from the absorption part can be neglected and the sine function expanded. This predicts that the signal intensity \(I_s \) will be proportional to the square of the modulation of the refractive index, \(\Delta n \),

\[
I_s \propto (\Delta n)^2. \tag{2}
\]

In the absence of any long-range energy migration, \(\Delta n \) will decay with the decay of the excited-state population, and therefore

\[
I_s(t) = I_0 \exp(-2t / \tau_f) \tag{3}
\]

where \(\tau_f \) is the fluorescence lifetime. In this glass ceramic sample, the \(^2E \) fluorescence decay is highly nonexponential due to the wide distribution of crystal field sites and the presence of strong ion-ion interactions.\(^{10} \) In this case, we define the lifetime as the \(1/e \) time of the decay of the fluorescence intensity. The FWM signal exhibits the same degree of nonexponentiality, and thus the \(1/e \) definition is again used for the signal decay time. Typical fluorescence and FWM signal decays are shown in Fig. 5. Equation (3) predicts that the FWM signal will decay with a decay time equal to half that of the fluorescence decay. This corresponds exactly to what we observe and holds for all times of the nonexponential decays for our glass ceramic sample. Thus we attribute the FWM signal to scattering from a population grating of \(\text{Cr}^{3+} \) ions in the \(^2E \) excited state without any long-range energy migration, at all temperatures in the range 20–300 K. The sample consists of microcrystals of about 400 Å diameter embedded in a glass matrix, and the grating spacing is of the order of 10 000 Å. Since the FWM signal is only sensitive to energy migration over distances of the order of the grating, it is not surprising that no long-range energy transfer is ob-

![FIG. 4. FWM scattering efficiency vs total write-beam power for (a) 514.5 nm excitation and (b) 571.5-nm excitation. (See text for explanation of the theoretical lines.)](image)

![FIG. 5. Decay curves at 120 K of the fluorescence (circles) and FWM signal for \(\theta = 2.6^\circ \) (squares).](image)
served. We expect some energy diffusion within each microcrystal, but not between different microcrystals. This is similar to what has been observed in semiconductor-doped glasses.16

Assuming a simple two-level model for the atomic system, equations describing the FWM scattering efficiency versus crossing angle have been derived,13 but no analytical solution has been obtained for these equations. To analyze the experimental results, the two coupled, complex differential equations needed to describe the FWM signal are solved numerically using a fourth-order Runge-Kutta method. The numerical values of the coupling coefficients obtained by fitting this model to experimental results can then be used to determine the laser-induced modulation of the absorption Δn and dispersion $\Delta \varepsilon$ parts of the refractive index.14 Theoretical fits to the data are shown as solid lines in Fig. 2 and the values of the fitting parameters are listed in Table I. Using these results, the dephasing time of the atomic system T_2 can then be calculated from the expression11

$$T_2 = \frac{(2\pi/c) \Delta n}{\Delta \varepsilon (\omega_0 - \omega_1)^{-1}}.$$ \hfill (4)

where ω_1 is the center frequency of the transition. The values of T_2 obtained from this analysis are reported in Table I. Depending on the temperature and excitation power, the dephasing time varies from 10.2 to 53.4 fs.

In previous work of this type on Cr3+ crystals,10 the magnitude of the dephasing time has been related to the energy gap between the 1T_2 and 2E levels. The smaller this gap the smaller T_2. However, for the glass ceramic the average energy gap is greater than 1400 cm$^{-1}$, which is consistent with the observation of a constant fluorescence decay time between 10 and 300 K. Extrapolating the crystal results to this value of ΔE predicts a dephasing time of the order of several picoseconds. However, the glass ceramic has a much greater degree of inhomogeneous broadening not present in the crystalline hosts.10 The broad distribution of crystal field strengths for the Cr3+ sites results in some of them having the relaxed 1T_2 level below the 2E level. This is shown by the observation of weak luminescence from the 1T_2 level along with the strong luminescence from the 2E level.10 The observed nonlinear polarization responsible for the FWM properties is due to a combination of the individual nonlinear polarizabilities of each of the Cr3+ ions. In addition, strong interactions between the Cr3+ ions and electron-phonon interactions are present. This is demonstrated by the strongly nonexponential luminescence decay curves. The dephasing is mainly governed by the fastest relaxation mechanism, even if this involves only a small part of the total Cr3+ ions.

The results listed in Table I indicate that the FWM signal arises mainly from a dispersion grating. At low temperatures, the contribution from the absorption grating is more important. The values of Δn and $\Delta \varepsilon$ listed in Table I were obtained by fitting the experimental data of the relative signal intensity versus the crossing angle of the write beams. However, the value obtained this way for Δn is consistent with that calculated from the absolute value of the scattering efficiency at room temperature, assuming negligible contribution from an absorption grating.

A theoretical expression for the modulation of the absorption part of the refractive index can be derived from the rate equations describing the atomic system.17 For the simplest case, the absorption is given by

$$\alpha = \sigma_1N_1 + \sigma_2N_2,$$ \hfill (5)

where N_1 and N_2 are the populations of the ground and excited states, respectively, and $N = N_1 + N_2$ represents the total number of Cr3+ ions per unit volume. σ_1 and σ_2 are the absorption cross sections in the ground and excited states, respectively. Under cw pumping, the solutions of the rate equations give

$$N_2 = \frac{N_1(\sigma_2 - \sigma_1)}{\sigma_1 + \sigma_2} = \frac{N_1}{1 + \sin(k \cdot \tau)},$$ \hfill (6)

where N_2 is the excited-state population in the peak region of the grating, given by

$$N_2 = N_1/\sigma_1 + h \nu \tau^{-1}.$$ \hfill (8)

Using the same model, the modulation of the dispersion part of the refractive index can be found by treating the atoms as damped harmonic oscillators.18 In this case the dispersion part of the refractive index is given by

$$n^2 - 1 = \sum_i \frac{[N_i f_i (\omega_i - \omega)^2]}{[i(\omega_i - \omega)^2 + (\omega \gamma_i)^2]},$$ \hfill (9)

where i refers to all different possible transitions with os-

\begin{table}[h]
\centering
\caption{Parameters obtained from FWM measurements.}
\begin{tabular}{|c|c|c|c|}
\hline
Parameter & $T = 300$ K & $T = 368 \times 10^3$ W cm$^{-2}$ & $T = 120$ K \tabularnewline
& $P = 6.4 \times 10^4$ W cm$^{-2}$ & $P = 3.6 \times 10^4$ W cm$^{-2}$ & $P = 3.6 \times 10^4$ W cm$^{-2}$ \tabularnewline
\hline
Δn (cm$^{-1}$) & 0.24 & 0.13 & 0.97 \tabularnewline
$\Delta \varepsilon$ & 3.0×10^{-5} & 3.3×10^{-6} & 1.07×10^{-4} \tabularnewline
T_2 (ns) & 5.34×10^{-14} & 7.94×10^{-14} & 1.02×10^{-14} \tabularnewline
$\eta \Delta \varepsilon t$ & 1.17×10^4 & 1.27×10^4 & 7.12×10^3 \tabularnewline
$\eta \Delta n t$ & 2.05×10^2 & 3.17×10^3 & 1.99×10^2 \tabularnewline
η_{disp} & 2.09×10^{-2} & 3.30×10^3 & 1.99×10^{-2} \tabularnewline
η_{abs} & 1.60×10^{-2} & 2.50×10^3 & 2.30×10^{-2} \tabularnewline
\hline
\end{tabular}
\end{table}
cillator strengths f_i at frequencies ω_i, and widths γ_i. If
the laser frequency is near resonance with only one
ground-state and one excited-state transition, the other
terms in the sum can be neglected and combining Eqs.
(6), (8), and (9) gives an expression for the modulation of
the dispersion part of the refractive index,
\[
\Delta n = \frac{N_{2p}}{2n_p} \times \left[f_g(\omega_i^2 - \omega_j^2)(\omega_i^2 - \omega)^2 + \gamma_i^2 \right]^{-1} - f_f(\omega_i^2 - \omega_j^2)(\omega_i^2 - \omega)^2 + \gamma_i^2 \right]^{-1},
\]
where n_0 is the refractive index of the unperturbed sam-
ples.

Equation (1) along with Eqs. (5)-(10) can be used to
interpret the observed temperature and powers depen-
dences of the FWM signal. The data in Fig. 3 indicate
that the temperature dependence of the scattering
efficiency can be described by
\[
\eta(T) = \eta(0) \exp(-T/T_c),
\]
where $T_c = 165.5$ K. For the glass ceramic in the range
of temperatures investigated here, the absorption
coefficient (and thus the ground-state absorption cross
section) and the fluorescence decay time are both con-
stant with temperature. Thus Eqs. (7)-(11) imply that
the observed temperature dependence of the FWM sig-
nal is associated with the spectroscopic characteristics
of the excited state. The increase in the FWM signal
intensity as temperature is lowered would be consistent
with an excited-state absorption transition whose width
decreases or whose oscillator strength increases at low
temperatures. Although these are normal spectral tem-
perature dependences, at the present time, no specific data
are available on the excited-state absorption character-
istics of this sample.

The same simple two-level system model predicts that
the power dependence of the scattering efficiency is
governed by the excited-state population N_{2p}, which is
proportional to the incident laser intensity, and thus
\[
\eta \propto |f_p|^2.
\]
This theoretical prediction is consistent with the data
shown in Fig. 4(a) for 514.5-nm excitation at lower
powers. Above about 4.0×10^{13} W cm$^{-2}$ a deviation
from the quadratic dependence is observed.

Several phenomena can contribute to the deviation
from a quadratic power dependence. First, saturation of
the excited-state population can occur.19,20 The “satura-
tion intensity” of a two-level atomic system is given by
\[
l_s = \frac{(c c_0 / 2 \mu^2 T^2)}{n_0 \chi_{22}},
\]
where μ is the electric dipole moment, $\mu^2 = 2\hbar \sigma_0^2 / \hbar \chi_{22}^4 T^2$. The calculated value for the laser power needed
to saturate the population of the 4E level in this sample
is 9.0×10^9 W cm$^{-2}$. This calculation does not take into
account the effects of inhomogeneous broadening.
Second, thermal lensing becomes important above
3.8×10^8 W cm$^{-2}$. This can contribute to the destruc-
tion of the grating through thermal effects and, in addi-
tion, produce a self-focusing effect that increases the
power density of the write beams inside the sample. The
latter effect would make it possible to reach saturation of
the 4E population at a lower laser power than that pre-
dicted theoretically.

The power dependence of the scattering efficiency for
571.5-nm excitation can be described by a fourth-power
dependence on the total laser intensity. This implies
that the nonlinear interaction between the excitation
beams and the ions occurs through the fifth-order sus-
cceptibility, $\chi^{(5)}$. The most important contribution to $\chi^{(5)}$
usually arises from the population of an intermediate
state.9,22 This can occur through either two-photon ab-
orption or excited-state absorption processes. Excited-
state absorption is known to be important in other types
of Cr$^{3+}$-doped samples.19,24 For example, an excited-
state absorption band is located around 18 000 cm$^{-1}$ in
ruby.24 The strength of the crystal field at the site of the
Cr$^{3+}$ ions in our sample is similar to that of ruby, and
thus we can expect a similar excited-state absorption
band to be present. The 517.5-nm (17 500-cm$^{-1}$ excita-
tion is close to the maximum of this excited-state ab-
sorption transition, whereas the 514.5-nm (17 440-cm$^{-1}$) excita-
tion is on the edge of the band. This could explain
the observation of excited-state absorption effects with
the former excitation wavelength and not the latter.
However, as noted above, no information on excited-
state absorption is currently available for the type of
sample investigated here.

The observed power dependence suggests that high
scattering efficiency can be achieved with 571.5-nm exci-
tation. For example, considering the measured value of
0.002 for an intensity of 3.8×10^3 W cm$^{-2}$, extrapolation
to higher power densities of the order of 1.0×10^5
W cm$^{-2}$ should produce a scattering efficiency of ap-
proximately 0.094. Such high scattering efficiencies are
associated with the contribution from $\chi^{(5)}$, which may be
related to the high Cr$^{3+}$ concentration and the long
excited-state lifetime of about 6 ms.

V. CONCLUSIONS
This work represents the first investigation of four-
wave mixing properties of a transparent glass ceramic
material. Since no FWM signal can be observed in the
normal glass whereas a strong signal was observed in the
ceramic sample, these results demonstrate that devitrif-
ication drastically enhances the strength of FWM. The observed characteristics of the FWM signal
provide information about the spectral dynamics of Cr$^{3+}$
ions in this type of material. The properties of the
FWM signal are consistent with scattering from a laser-
induced population grating of Cr$^{3+}$ ions in the 4E
level. The variation of the signal with temperature and laser
power indicate that the properties of the FWM signal
are governed by the spectroscopic characteristics of
the excited state. No long-range energy migration takes
place in this sample, probably due to the separation of
the microcrystals. The inhomogeneous broadening due
to random disorder in the crystal field sites along with
ion-ion interaction leads to a fast dephasing time of the
atomic system. The maximum signal strength is limited
by thermal lensing and saturation effects. However, scattering efficiencies as high as a few percent were observed, indicating that this type of transparent glass ceramic may be an attractive new material for FWM applications such as optical switching and phase conjugation. A final important aspect of this work is showing the usefulness of FWM techniques in studying the optical properties of ions in crystals. Somewhat different applications of this technique used on other types of materials have been published since this manuscript was originally prepared.15

ACKNOWLEDGMENTS

This research was supported by the U.S. Army Research Office. The Universite Lyon I is “Unite associee au Centre National de la Recherche Scientifique No. 442.”

1Permanent address: Universite Lyon I, Villeurbanne, France.
LASER-INDUCED GRATING SPECTROSCOPY
OF Cr2+-DOPED Gd\textsubscript{3}Ga\textsubscript{5}O\textsubscript{12} AND Gd\textsubscript{3}Sc\textsubscript{2}Ga\textsubscript{3}O\textsubscript{12} CRYSTALS

Andrzej SUCHOCKI 1 and Richard C. POWELL

Department of Physics, Oklahoma State University, Stillwater, OK 74078-0444, USA

Received 4 December 1987

The absorption and fluorescence spectra and fluorescence lifetimes of Cr2+ ions in two garnet hosts, (Gd,Sc)\textsubscript{3}Ga\textsubscript{5}O\textsubscript{12} and Gd\textsubscript{3}Sc\textsubscript{2}Ga\textsubscript{3}O\textsubscript{12}, were measured as a function of temperature. In addition, laser-induced grating measurements were made as a function of laser power and write beam crossing angle for various temperatures between 10 and 300 K. For short writing times, Cr2+ population gratings are produced and the observed signal dynamics were used to determine the properties of excited migration in these materials. The excited diffusion coefficient for Gd\textsubscript{3}Sc\textsubscript{2}Ga\textsubscript{3}O\textsubscript{12}:Cr2+ was found to decrease as temperature is raised while in Gd\textsubscript{3}Ga\textsubscript{5}O\textsubscript{12}:Cr2+ the diffusion coefficient increases. Contributions to the laser-induced gratings from absorption and dispersion changes were determined and this was used to provide information on radiationless decay and excited state absorption processes. The differences in the results obtained on these two materials are attributed to the spectral effects produced by the different crystal field splittings of the Cr2+ energy levels. For long writing times, long-lived changes in the refractive index were also observed and attributed to optically induced color centers.

1. Introduction

Garnet crystals such as Gd\textsubscript{3}Ga\textsubscript{5}O\textsubscript{12} (GGG) and Gd\textsubscript{3}Sc\textsubscript{2}Ga\textsubscript{3}O\textsubscript{12} (GSGG) have been used as host materials for lasers with Cr2+ and Nd3+ as the active ions. The fundamental optical spectroscopic properties of these materials have been measured \cite{1-14} but many of the details of the optical properties have not yet been studied. It is especially important to understand the process of energy transfer among the chromium ions since this can effect the lasing characteristics of Cr2+ lasers and the efficiency of sensitizing Nd3+ ions in double-doped laser crystals. We report here the results of a study of Cr2+-doped GGG and GSGG crystals using both standard spectroscopy techniques and the technique of four-wave mixing (FWM) to produce laser-induced gratings (LIGs). The results obtained on energy migration among the Cr2+ ions are significantly different for the two garnet hosts. This is attributed to the different magnitudes of the spin-orbit crystal field splitting of the Cr2+ energy levels. The effects of optically induced color centers are also observed with LIG spectroscopy.

The GGG:Cr2+ sample used for these experiments was 1.5 mm thick. The average concentration of Cr2+ ions was 0.5 at\%, but color gradients in the crystal indicate a nonuniform distribution of chromium. The majority of the measurements reported here were performed on the dark green part of the crystal, where the Cr2+ concentration was highest. The GSGG:Cr2+ was 0.35 cm thick with 0.5 at\% Cr2+ and no obvious color gradients. The Cr2+ ions substitute for the Ga3+ ions in GGG and for the Sc3+ ions in GSGG. This results in a local crystal field site with an octahedral coordination of oxygen ions in the garnet lattice \cite{7,15}. The presence of different types of crystal field sites for Cr2+ in GGG has been recognized previously \cite{7} and attributed to the statistical occupancy of the next nearest neighbor sites with Gd3+ instead of Ga3+.

The sample was mounted on the cold finger of a cryogenic refrigerator with a temperature controller which allowed the sample temperature to be maintained to about ±0.5 K between 10 and 300 K. The absorption spectra were taken on an IBM 9430 UV-visible spectrophotometer. The fluorescence spectra were recorded with the use of a 1 m Spex mono-
chromator and an RCA C31034 photomultiplier tube. Excitation was provided by either a Spectra Physics cw argon ion laser or by a pulsed Molelectron nitrogen laser-pumped dye laser using a solution of oxazine 720 and rhodamine B in ethanol and DMSO [16]. For chopped cw excitation an EG&G/PAR model 128 lock-in amplifier was used to enhance the signal-to-noise ratio, while for pulsed excitation an EG&G/PAR model 165 boxcar averager was used.

Four-wave mixing was used to establish and probe laser-induced gratings. The LIG measurements were performed using either the 488.0 or 514.5 nm line of the argon laser for the "write beams" and a helium-neon laser for the "read beam". The write beams were chopped to measure the transient behavior of the LIG signal beam. The signal was recorded by an EG&G 4202 signal averager and processed by an IBM XT computer. The LIG scattering efficiency was measured with the use of a lock-in amplifier. More complete details of the LIG experimental setup have been published previously [17].

2. Spectroscopic properties of Cr$^{3+}$ ions in GGG and GSGG

The absorption spectra of Cr$^{3+}$ in GGG and GSGG at 1.2 K are shown in Fig. 1. The two broad bands are characteristic of the transitions from the 4A$_2$ ground state of the 3d4 electron configuration of Cr$^{3+}$ ions in an octahedral environment to the 4T$_2$ and 4T$_1$ levels, respectively. The third band in the GGG crystal peaked near 350 nm is attributed to transitions terminating on the 3T$_2$(h) level. Sharp lines appear in three regions of the spectra. The two lines near 695 nm are the R lines due to transition terminating on the components of the 4E level split by spin-orbit interaction and lower-order crystal field perturbations. The nearby lines at higher energy are a mixture of vibronic transitions and zero-phonon lines associated with transitions terminating on the 4T$_2$ and 4T$_1$ levels. The structure on the low-energy side of the 4T$_2$ band may be due to vibronic transitions or zero-phonon lines associated with transitions terminating on the 4T$_1$ or 4I$_1$ levels. The sharp lines around 310 nm are due to transitions of the Gd$^{3+}$ ions which are split into several Stark components as shown in the insert.

![Fig. 1. Absorption spectra of GSGG:Cr$^{3+}$ (A) and GGG:Cr$^{3+}$ (B) at 1.2 K. The inserts show expanded views of the gadolinium transitions. (See text for sample thicknesses and Cr$^{3+}$ concentrations.)](image-url)
was investigated in greater detail using site-selection spectroscopy techniques. Fig. 4 shows higher-resolution spectra of the \(R_1\) and \(R_2\) lines at 20 K for this sample. The \(R_2\) spectrum was again recorded after broadband excitation. The upper and lower traces of the \(R_1\) spectrum were obtained using narrow line excitation from the nitrogen laser-pumped dye laser set on wavelengths of 691.53 and 692.25 nm, respectively, while the middle trace was taken after excitation with the 488.0 nm argon ion laser line which is equivalent to broadband excitation. In the latter case, the cw laser excitation was chopped at a frequency of 500 Hz which tends to suppress the stronger but slower component of the \(R_1\) line. The two wavelengths of the dye laser excitation are absorbed at different positions in the \(R_2\) line and the spectra were recorded at 200 \(\mu\)s after the excitation pulse. The general shape of the spectral peak near 694.5 nm does not vary with time after the excitation pulse but peak position of the stronger component of the \(R_1\) line moves to longer wavelengths as time increases. The exact shapes of the \(R\) lines at very short times after the excitation pulse were impossible to determine due to strong, broadband superfluorescence from the dye laser.

The data described above are consistent with having at least four nonequivalent crystal field sites for the \(\text{Cr}^{3+}\) ions in GGG crystals. The positions of the \(R_1\) lines for ions in each type of center can be determined from the site-selection measurements and are listed in table 1. The emission transitions associated with ions in the a and b sites are strongly overlapped and those associated with the c and d sites are strongly overlapped. For the \(R_2\) lines, all four of the transitions are overlapped to the extent that it is impossible to accurately determine their exact peak positions. The strong overlap only allows for measurement of the fluorescence lifetimes of the \(^2E\) levels for ions in the two sets of sites with strongly overlapped transitions, and their values at 12 K are also listed in table 1. The time-resolved spectroscopy results indicate that the only type of spectral energy transfer taking place at low temperatures is between ions in the sites labeled a and those in the sites labeled b. However, the strong overlap of the transitions of ions in these two
types of sites makes it difficult to obtain an accurate quantitative measurement of the transfer properties.

The fluorescence decay kinetics of the two major R lines of GGG:Cr* at 12 K are both single exponential with a decay time of 1.5 ns. The secondary peak has a single-exponential decay with a fluorescence lifetime of 1.5 nm at the same temperature. The fluorescence of Cr* in GSGG at low temperature is also single exponential with a decay time of 232 µs at all emission wavelengths. The variation of the fluorescence lifetimes with temperature are shown in Fig. 5. The data were obtained after pulsed dye laser excitation into the 5T2 absorption band and the fluorescence was monitored in the vibronic emission band. The emission from GSGG:Cr* was found to be single exponential at all temperatures, whereas the observed decay kinetics for GGG:Cr* were nonexponential between 12 and 200 K and were single exponential at higher temperatures. At low temperatures the decay curves for GGG:Cr* can be approximated as the sum of two exponentials, and the open and filled circles in the figure represent the fit decay times of the long and short components of the double-exponential curves. The stronger compo-

Table 1

Spectroscopic properties of Cr** ions in GGGG and GGGG crystals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GGGG</th>
<th>GGGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (nm)</td>
<td>696</td>
<td>695</td>
</tr>
<tr>
<td>M (cm−1)</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>η (mm)</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>τ (ns)</td>
<td>222</td>
<td>131</td>
</tr>
<tr>
<td>η (mm)</td>
<td>212</td>
<td>108</td>
</tr>
<tr>
<td>τ (ns)</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>M (cm−1)</td>
<td>9.9 × 10−4</td>
<td>2.7 × 10−5</td>
</tr>
<tr>
<td>n (cm−1)</td>
<td>0.082</td>
<td>2.8</td>
</tr>
<tr>
<td>f (a)</td>
<td>31</td>
<td>8.3</td>
</tr>
<tr>
<td>f (b)</td>
<td>3.9 × 10−7</td>
<td>1.1 × 10−4</td>
</tr>
<tr>
<td>f (c)</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>f (d)</td>
<td>0.30</td>
<td>0.09</td>
</tr>
<tr>
<td>f (e)</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>f (f)</td>
<td>0.50</td>
<td>0.01</td>
</tr>
</tbody>
</table>

* Measured at 32 K.
** From β dependence.
*** For pumping into the 5T2 band.
**D^* Measured at 50 K for GGGG and at 18 K for GGGG.

Fig. 4 Fluorescence spectra of the R lines of GGG:Cr** at 30 K. (A) R1, excited by 488.0 nm light chopped at 500 Hz. (B) Top curve, R1, excited by a 10 ns pulse at 693 53 nm. Middle curve: R1, excited by 488.0 nm light chopped at 500 Hz. Bottom curve: R1, excited by a 10 ns pulse at 692 25 nm.
This was obtained with $\tau_1 = 1.6$ ms, $\tau_2 = 40$ μs, and $\Delta E = 298$ cm$^{-1}$. These are listed in table 1. The value obtained for ΔE is very close to the splitting between the R_1 line and the sharp line in the absorption spectrum at 697 nm. This is consistent with assigning the line at 697 nm to the zero-phonon transition to the lowest component of the 2E and 4T_2 potential coordinates occur at the bottom of the 4T_2 potential well.

No attempt was made to obtain a similar theoretical fit to the temperature dependence of the short-lifetime component of GGG:Cr$^{3+}$ since the accuracy of these data was much poorer. This is because the magnitudes of the short lifetimes were determined after subtracting the extrapolated curve associated with the long-lifetime component. This procedure provides a rough estimate of the short-lifetime values but cannot be considered to be extremely accurate.

It was not possible to obtain a good fit to the GSGG:Cr$^{4+}$ data using eq. (1). In this case the origin of the temperature dependence of the fluorescence lifetime appears to be associated with the increase in vibronic emission probability. For low-energy vibronic emission involving effective phonons with energy $\hbar\omega$, this can be expressed as

$$\tau^{-1} = \tau_t^{-1}(0) \exp(kT/\hbar\omega), \tag{2}$$

where $\tau_t(0)$ is the lifetime of the purely electronic transition. The solid line in fig. 5 shows the best fit of eq. (2) to the GSGG:Cr$^{4+}$ data obtained by treating $\tau_t(0)$ and $\hbar\omega$ as adjustable parameters. The good fit was obtained with $\tau_t(0) = 242 \mu$s and $\hbar\omega = 253$ cm$^{-1}$.

3. Results of laser-induced grating measurements

Four-wave mixing is an important technique for establishing and probing laser-induced gratings in solids. These LIGs are useful in studying the dynamics of exciton migration in doped crystals [17-21] as well as providing information on thermal, nonlinear optical, radiationless relaxation, and excited state absorption properties. In spectroscopic application of FWM, the crossed write beams are used to create a refractive index grating and the probe beam scatters off this grating. The scattered signal beam carries information about the physical properties of the mate-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Temperature dependence of the fluorescence decay times of (A) GSGG:Cr$^{4+}$ and (B) GSGG:Cr$^{3+}$ where the open and solid circles represent the long and short components of the double exponential decays, respectively. (See text for explanation of the theoretical lines.)}
\end{figure}
rial associated with the laser-induced grating. For characterizing the properties of ions in solids, FWM is used to form population gratings. In this case the write beams are tuned to resonance with an absorption transition of the dopant ions thus creating a sine wave spatial distribution of ions in the excited state. If the ions have a different polarizability in the excited state than in the ground state, this excited state population distribution acts as a refractive index grating. The dynamics of the transient signal decay are especially helpful in understanding the properties of energy migration processes which contribute to the destruction of the grating. The variation in the LIG signal magnitude with write beam crossing angle is useful in determining the induced changes in the complex refractive index, and from this information the dephasing time and excited state absorption cross section can be obtained. Laser-induced grating measurements were performed on Cr$^{3+}$ ions in GGG and GSGG crystals at temperatures ranging from about 15 to 300 K and the results are described below.

3.4. Transient LIG decay dynamics

Transient population gratings were established and probed for Cr$^{4+}$ ions in GGG and GSGG using short enough writing times to prevent optical damage to the materials. The 488.0 nm line of the argon laser beam was for the write beams to excite the 4T_2 absorption band, the excited state population was built up in the 4T_2 and 4E levels after radiationless relaxation. The decay dynamics of the scattered probe beam were monitored as a function of crossing angle of the write beams and temperature.

For the GGG:Cr$^{3+}$ sample, the decay curves of the LIG signal were found to be double exponentials for temperatures less than 200 K, in agreement with the double-exponential behavior of the fluorescence decay kinetics in this temperature range. The long components of the decay curves are dependent on the crossing angle of the write beams θ and on temperature. Examples of the results are shown in Fig. 6. The insert shows the double-exponential curve at 18 K for $\theta = 7.06^\circ$ and the decay rate of the longer component of the signal is plotted as a function of the crossing in the major part of the figure. At small values of θ the signal decay rate tends toward a value close to twice the measured value of the fluorescence decay rate of the Cr$^{3+}$ ions in type a and b sites as indicated by the filled circle in the figure. This is consistent with creating a populating grating of Cr$^{3+}$ ions, mainly in type a and b sites. This component accounts for more than 80% of the LIG signal at all temperatures, which is consistent with the fluorescence data.
The second contribution to the transient LIG signal in GGG:Cr$^{3+}$ was found to be independent of the first one and is attributed to a population grating of Cr$^{3+}$ ions in the c and d types of sites. This grating is responsible for the short component of the LIG signal decay and the decay rate is approximately equal to twice the short component of the fluorescence decay rate. This component of the LIG decay rate is independent of the crossing angle θ.

The decay kinetics of the LIG signals for GSGG:Cr$^{3+}$ were found to be single exponential at temperatures less than 200 K. The decay rates were independent of the crossing angle of the write beams and equal to twice the measured decay rate of the fluorescence in this temperature range. Above 200 K the decay kinetics became dependent on the write beam crossing angle θ and above 240 K the signal decays became double exponentials. The longer-decay components were still found to be independent of θ but their decay rates were the same as those of the fluorescence emission. The long-time part of the decay kinetics was extrapolated to short times and subtracted from the total signal to determine the decay rate of the short-time part of the decay kinetics. An example of this procedure is shown in the insert in fig. 6. Although this introduces some degree of uncertainty in the exact values determined for the decay rate of the short component of the signal decay, it is clear from the example results shown in fig. 6 that there is a distinct dependence of this decay rate on the write beam crossing angle. The circle at $\theta=0^\circ$ represents twice the fluorescence decay rate measured under the same experimental conditions.

The decay rate of a laser-induced grating in the presence of exciton migration by an incoherent hopping motion can be expressed as [21]

$$K = 2/\tau + 32(\pi/\lambda)^2 \sin^2(\theta/2) D,$$

(3)

where the first term described the destruction of the grating due to the fluorescence decay of the ions in the excited state with a decay time τ and the second term describes the destruction of the grating due to the migration of the excitation energy from the ions in the peak to ions in the valley region of the grating. The latter term depends on the diffusion coefficient of the energy migration D, and the grating spacing $\lambda = \lambda/2 \sin(\theta/2)$, where λ and θ are the wavelength and crossing angle of the write beams in the crystal.

Applying this theory to the experimental results described above for GGG:Cr$^{3+}$ indicates that long-range energy migration occurs among ions in the type a and b sites but not among ions in the type c and d sites. The solid line in fig. 6 represents the best fit to the experimental data using eq. (3). The theory predicts a linear dependence of K on $\sin^2(\theta/2)$ and, at zero crossing angle, a value of $2/\tau$ which is in agreement with the experimental data. The values of the diffusion coefficient obtained from this type of analysis of the data are plotted versus temperature in fig. 7. The small values of D result in large error bars in the results, but it is obvious that the energy migration decreases with increasing temperature and is negligible above 150 K.

Between 200 K and room temperature, the LIG signal decay for GGG:Cr$^{3+}$ is a single exponential and independent of θ. The decay times are measured to be approximately half those of the fluorescence de-

![Fig. 7. Temperature dependence of the exciton diffusion coefficient for (A) GSGG:Cr$^{3+}$ and (B) GGG:Cr$^{3+}$. In (B), D is represented by full circles and the reciprocal of the full width at half maximum of the $R^1 + R^2$ lines is represented by open circles.](image-url)
cay. Thermal broadening of the spectral transitions makes it impossible to distinguish between transitions associated with ions in different types of site. These results show that no long-range spatial migration of energy is taking place in this temperature range.

For GSGG·Cr3+, the lack of dependence of the short-time component of the LIG signal decay on the write beam crossing angle below 200 K indicates a lack of long-range energy migration among Cr3+ ions at low temperatures. Above 200 K energy migration does occur and estimates for the diffusion coefficient can be obtained by using eq. (3) to fit the data obtained on the dependence of \(K \) on \(\theta \). An example of this is shown as a solid line in fig. 6 and the results of this type of analysis provides information on the temperature dependence of the diffusion coefficient as shown in fig. 7. The weak dependence of \(K \) on \(\theta \) results in large error bars in the estimates of \(D \). However, there is a definite increase in \(D \) between 200 K and room temperature.

3.2 LIG scattering efficiency characteristics

The dependence of the transient LIG signal efficiencies on the power of the write beams for 488.0 nm excitation are shown in fig. 8 for two temperatures for both samples. The observed power dependences are different at low and high temperatures and neither are quadratic as expected from a simple two-level model for the atomic system \([22,23]\). This indicates the importance of the presence of multiple levels and transitions but is difficult to interpret quantitatively with presently available data.

The variation of the LIG scattering efficiency with the crossing angle of the write beams at 488.0 nm is shown in fig. 9 for both samples. The solid lines represent the best fits to the data using the model developed in detail in ref. \([17]\). In this model, the equations representing the four coupled waves in the crystal are solved numerically on the computer treating the coupling parameters as adjustable parameters. Using a two-level system model to describe the interaction of the laser beams with the crystal shows the complex coupling parameters to be determined by the laser-induced changes in the absorption and dispersion parts of the complex refractive index \([22,23]\).

![Fig. 8. Variation of the LIG scattering efficiency with the power of the write beams at two temperatures for \(\theta = 3.5^\circ \) for (A) GSGG·Cr3+ and (B) GGG·Cr3+.](image-url)
ions and gives rise to the shorter signal decay. The second is associated with a very long-lived laser-induced refractive index grating. Since the probe beam simultaneously interacts with both types of grating, the signal decay kinetics is described by the square of the sum of the changes in the refractive index associated with the two gratings,

$$\eta = |A \exp(-t/\tau_1) + B \exp(-t/\tau_2)|^2$$

$$= A^2 \exp(-2t/\tau_1) + 2AB \exp(-t/\tau_1 - t/\tau_2)$$

$$+ B^2 \exp(-2t/\tau_2) .$$

where A and B are the magnitudes of the relative contributions due to the transient and long-lived gratings, respectively, and $\tau_1/2$ and $\tau_2/2$ are their decay times. The ratio B/A is very small for this sample (a few percent) and the decay time of the transient grating is much shorter than the decay time of the long-lived one. Thus eq. (8) reduces to approximately

$$\eta = A^2 \exp(-2t/\tau_1) + 2AB \exp(-t/\tau_1) .$$

Fig. 10 shows typical signal decays after long write times. The contribution of the long-lived grating becomes greater for longer writing times than those used to characterize the properties of the transient grating. For a given writing time and laser power, the signal associated with the long-lived grating was also found to increase with increasing temperature between 12 and 300 K. The strength of the long-lived grating is dependent on the writing time in a complicated manner. There is a critical writing time, of the order of a few minutes, when the LIG signal efficiency from the long-lived grating reaches a maximum and begins to decrease. For the results shown in fig. 10, both write beams were turned off after one minute causing a rapid decay of the transient grating followed by a slow, oscillatory decay associated with the long-lived grating. At longer times one of the write beams was turned on to erase the remaining long-lived grating. The kinetics of the long-lived grating signal are essentially independent of the crossing angle of the write beams, but the oscillatory decay of the signal does not permit an accurate estimate of the decay times.

Exciting with the 514.5 nm line of the argon ion laser which falls between the $^{4}T_{1g}$ and $^{4}T_{2g}$ absorption bands enhances the relative contribution of the long-lived grating. Fig. 11 shows the dependence of both components of the LIG signal on the power...
6.1.1-hocki, R. C. Powell / Fluorescence spectra and lifetimes of Cr⁺⁺ in host crystals

Fig. 10. LIG signal decays at 300 K showing the decays of the long-lived contributions to the signals and the effects of erasing by a single laser beam for (A) GSGG:Cr⁺⁺ and (B) GGG:Cr⁺⁺.

Fig. 11. Dependences of the transient and long-lived contributions to the LIG scattering efficiency on the power of the write beams for GGG:Cr⁺⁺ at 40 K for 514.5 nm excitation.

tical properties of Cr³⁺ ions in GGG and GSGG. One important difference between these two materials is the magnitude of the crystal field splitting of the ³E and ⁴T₂ levels. The value of ΔE is 298 cm⁻¹ for GGG. For GSGG this splitting is 50 ± 5 cm⁻¹ which is consistent with reported values that range from close to 0 cm⁻¹ up to 50 cm⁻¹. One major effect this has is to change the mechanism causing the temperature dependence of the fluorescence lifetime. For the wide energy gap in GGG:Cr³⁺⁺, the thermal effects on the population distribution between the two levels dominate the temperature dependence of τ. For a small energy gap material such as GSGG:Cr³⁺⁺ these population distributions do not change with temperature. Instead the increase in the vibronic emission probability with increasing temperature dominates the temperature dependence of τ.

The energy migration observed in these samples can be described as a random walk of an exciton caused by ion–ion interaction [24,25]. The mechanism of ion–ion interaction is difficult to establish because of the presence of concentration gradients of the Cr³⁺⁺ ions and the different types of crystal field site. By assuming electric dipole–dipole interaction among a statistically random distribution of ions, a theoreti-

4. Discussion and conclusions

Despite the similarity of the two garnet host crystals, there are some significant differences in the optical properties of Cr³⁺ ions in GGG and GSGG. One important difference between these two materials is the magnitude of the crystal field splitting of the ³E and ⁴T₂ levels. The value of ΔE is 298 cm⁻¹ for GGG. For GSGG this splitting is 50 ± 5 cm⁻¹ which is consistent with reported values that range from close to 0 cm⁻¹ up to 50 cm⁻¹. One major effect this has is to change the mechanism causing the temperature dependence of the fluorescence lifetime. For the wide energy gap in GGG:Cr³⁺⁺, the thermal effects on the population distribution between the two levels dominate the temperature dependence of τ. For a small energy gap material such as GSGG:Cr³⁺⁺ these population distributions do not change with temperature. Instead the increase in the vibronic emission probability with increasing temperature dominates the temperature dependence of τ.

The energy migration observed in these samples can be described as a random walk of an exciton caused by ion–ion interaction [24,25]. The mechanism of ion–ion interaction is difficult to establish because of the presence of concentration gradients of the Cr³⁺⁺ ions and the different types of crystal field site. By assuming electric dipole–dipole interaction among a statistically random distribution of ions, a theoreti-
cal estimate for the diffusion coefficient can be obtained from the expression

$$D = \frac{4\pi R_0^2}{6\tau} \int_0^\infty r^2 \exp\left(-4\pi N r^2/3\right) dr,$$ \hspace{1cm} (10)

where \(\tau\) is the decay time of the sensitizer fluorescence and \(R_0\) is the critical interaction distance. In the Forster-Dexter theory [24,26] the critical interaction distance is proportional to the overlap integral between the emission spectrum of the sensitizer ions and the absorption spectrum of the activator ions. For energy transfer which occurs due to ions in the \(^3E\) excited state of \(Cr^{3+}\), the overlap integral is approximately inversely proportional to the linewidth (fwhm) of the R lines.

To understand the observed energy transfer in GGG:Cr\(^{3+}\), the average value of the concentration of \(Cr^{3+}\) ions \(N = 1.4 \times 10^{20}\) cm\(^{-3}\) and the value of \(R_0\) estimated by using the width of the R lines at 12 K to determine the overlap integral, 29 Å, eq. (10) gives the value of \(D = 2.3 \times 10^{-9}\) cm\(^2\)/s. This value is about an order of magnitude smaller than the experimentally determined value of the diffusion coefficient at \(T = 12\) K. This estimate gives a lower limit for \(D\). A higher value can be obtained for regions of high concentration due to a nonuniform distribution of \(Cr^{3+}\) ions. Also, energy transfer may take place through exchange interaction which is more difficult to estimate theoretically but will lead to a larger value of the ion-ion interaction rate.

The temperature dependence of \(D\) and the inverse of the fwhm of \(R_1^2 + R_0^2\) for GGG:Cr\(^{3+}\) are compared in fig. 7. Both decrease with temperature with the diffusion coefficient decreasing somewhat faster than the inverse of the linewidths. This gives a reasonable explanation for the observed temperature dependence of the excitation diffusion coefficient. It should be noted that the assumption of energy migration mostly within the \(^3E\) level is valid only for a wide \(\Delta\varepsilon\) material such as GGG:Cr\(^{3+}\). It was also found that the magnitude of the excitation diffusion coefficient for GGG:Cr\(^{3+}\) at 18 K decreased to 6.9 \times 10^{-9}\) cm\(^2\)/s when the light green region of the sample was excited. This indicates a concentration dependence associated with \(D\) as expected. The exact quantitative dependence requires a knowledge of the microscopic concentration gradient of the \(Cr^{3+}\) ions.

For GGG:Cr\(^{3+}\), the small value of \(\Delta\varepsilon\) means that energy migrations will occur in both the \(^3E\) and \(^4T_2\) levels. Thus the spectral overlap integral must be calculated from the absorption and emission spectra instead of approximating it by the width of the R lines. This was calculated to be about 9.3 Å at low temperatures. Using this in eq. (10) again predicts a value for \(D\) which is significantly smaller than the measured value. As with GGG:Cr\(^{3+}\), this is probably due to a nonuniform distribution of \(Cr^{3+}\) ions or stronger ion-ion interaction mechanisms such as superexchange. As temperature is raised the increase in vibronic emission causes an increase in the spectral overlap which results in an increase in \(D\) with temperature. This is qualitatively consistent with results for GGG:Cr\(^{3+}\) shown in fig. 7. Thus the difference in \(\Delta\varepsilon\) is responsible for the significant difference in energy migration properties in GGG:Cr\(^{3+}\) and GGG:Cr\(^{3+}\).

The values of the dephasing time \(T_2\) found from the LIG scattering efficiency results are significantly faster than those reported for other \(Cr^{3+}\)-doped crystals [17]. However, previous measurements were made by pumping into the \(^4T_2\) band instead of the \(^3T_2\) band as was done in this work. If the dephasing is dominated by radiationless relaxation processes, these results indicate the presence of faster decay processes in the higher level. To develop a complete understanding of dephasing processes requires comparing results obtained by pumping different transitions in a series of samples of different \(Cr^{3+}\)-doped crystals with different crystal field splittings. This systematic study is currently in progress.

The value of \(\Delta\alpha\) for GGG:Cr\(^{3+}\) determined from LIG measurements can be used to determine the excited state absorption cross section at the wavelength of the laser write beams. A simple rate equation analysis of the optical dynamics of a two-level atomic system can be used to obtain an estimate for the difference in the absorption coefficient in the peak and valley regions of the grating,

$$\Delta\alpha = \frac{l_0 N \sigma_2 \left(\sigma_2 - \sigma_1\right)}{2 l_0 \sigma_1 - h\nu/\tau},$$ \hspace{1cm} (11)

where \(l_0\) is the energy density of the laser pump beams with photon energy \(h\nu\), \(N\) is the concentration of active ions, \(\tau\) is the fluorescence decay time of the excited state, and \(\sigma_1\) and \(\sigma_2\) are the ground and excited state absorption cross sections, respectively. This
equation can be solved for σ_2 and the measured values of the parameters used to calculate the excited state absorption cross section. Doing this gives a value of 2.1×10^{-20} cm2, which is consistent with the value found [27] from excited state absorption measurements on GSGG:Cr$^{3+}$. No direct measurements of the excited state absorption spectrum of GGG:Cr$^{3+}$ have been reported, and thus a similar comparison cannot be made with the LIG results obtained on this sample.

There is additional evidence for the effects of excited state absorption in the results obtained for the power dependence of the LIG scattering efficiency. The deviation from a simple quadratic dependence can be attributed to the fact that at the two laser wavelengths used, the excited state absorption cross sections are greater than the ground state cross sections. A quantitative description of the results would require a four-wave mixing analysis based on a three-level atomic system which is extremely complicated. A qualitative comparison of these results with those obtained on other Cr$^{3+}$-doped laser crystals such as ruby and alexandrite indicates that excited state absorption effects are significantly more important in these garnets than in the other hosts.

The long-lived grating is most probably associated with the creation of transient color centers in the host crystal. The creation of color centers in garnet crystals due to exposure to high-intensity light (especially in the ultraviolet region of the spectrum) is a well-known phenomenon [28]. The tendency to produce color centers has been attributed to oxygen deficiency in the garnet lattice [29]. In GSGG crystals the production of color centers was found to be accompanied by the valence change [14,30] Cr$^{3+}$$\rightarrowCr^{2+}$. This type of charge transfer process can also produce space charge electric fields in a crystal. The oscillatory decay kinetics observed for the long-lived grating may be due to the creation of space charge fields in GGG. Similar oscillatory kinetics have been reported in writing and erasing holographic gratings due to charge relocation in photorefractive crystals [31,32]. The dark decay times of the long-lived gratings in these crystals are of the order of several hours which indicates that this type of optically induced refractive index change can be an important loss mechanism for laser operation based on this material.

The results reported here demonstrate the usefulness of LIG spectroscopy in characterizing the properties of solid state laser materials. This technique provides information about the properties of energy migration, radiationless decay processes, excited state absorption, and optically induced color centers. However, the results are quite complicated and there are still a number of details concerning these processes which require further study. It is especially important to compare the results of LIG measurements with those obtained by other techniques to verify some of the proposed interpretations. Also a systematic study of different types of Cr$^{3+}$-doped materials is needed.

Acknowledgement

This work was sponsored by the US Army Research Office. The GSGG:Cr$^{3+}$ sample was provided by Allied-Signal Laboratories and the GGG:Cr$^{3+}$ sample was provided by Lawrence Livermore National Laboratory.

References

Four-wave-mixing spectroscopy of Cr-doped garnet crystals

Faqir M. Hashmi, Keith W. Ver Steeg, Frederic Durville, and Richard C. Powell
Center for Laser Research, Oklahoma State University, Stillwater, Oklahoma 74078-0444

G. Boulon
Universite Claude Bernard Lyon I, F-69622 Villeurbanne CEDEX, France
(Received 5 March 1990)

The characteristics of the four-wave-mixing signal of Cr$^{3+}$ ions were measured for host crystals of Ga$_2$Sc$_5$O$_{12}$, Ga$_2$Ga$_5$O$_{12}$, (La$_2$Ca)$_5$(Ga$_2$Mg)$_2$Ga$_5$O$_{12}$, and La$_2$(Lu$_2$Ca)$_5$Ga$_5$O$_{12}$. Signal strengths and decay times were measured as functions of laser-beam crossing angles and temperature. The results are used to determine the properties of radiationless decay and energy-transfer processes in these samples. By comparing the characteristics of the $^4T_2\rightarrow^6E$ radiationless relaxation process among these and previously investigated Cr$^{3+}$-doped laser crystals, it is shown that the ratio of the intersystem-crossing relaxation rate to the internal conversion relaxation rate decreases as the strength of the crystal field at the site of the dopant ion which is larger. Lattice constant of 12.4942 Å, and a segregation coefficient of 2.8 and a relatively high segregation coefficient of 2.8 and a larger lattice constant of 12.4942 Å. This produces a lower crystal field at the site of the dopant ion which is intermediate between the crystal-field values for GGG and GSGG. In addition, there are several nonequivalent sites for the Cr$^{3+}$ ions which causes spectral structure and significant inhomogeneous broadening of the optical transitions. The sample used in this study, provided by the Comitec company in France, was 4×4×5 mm3 with a concentration of 5.4×1019 Cr$^{3+}$ ions/cm3. The GSGG and GGG samples were 5.5- and 1.5-mm thick with Cr$^{3+}$ concentrations of 1.4×1020 and 1×1020 cm$^{-3}$, respectively. The LLGG sample was approximately 20×10×4 mm3, with the large flat surfaces perpendicular to the [111] direction, and a concentration of 5.0×1019 Cr$^{3+}$ ions/cm3.

Figures 1 and 2 show the room-temperature absorption and emission spectra of the GGG and LLGG samples. The absorption spectra, taken by an IBM 9430 uv-visible spectrometer, are dominated by two strong absorption transitions. The sample used in this study, provided by the Comitec company in France, was 4×4×5 mm3 with a concentration of 5.4×1019 Cr$^{3+}$ ions/cm3. The GSGG and GGG samples were 5.5- and 1.5-mm thick with Cr$^{3+}$ concentrations of 1.4×1020 and 1×1020 cm$^{-3}$, respectively. The LLGG sample was approximately 20×10×4 mm3, with the large flat surfaces perpendicular to the [111] direction, and a concentration of 5.0×1019 Cr$^{3+}$ ions/cm3.

Figures 1 and 2 show the room-temperature absorption and emission spectra of the GGG and LLGG samples. The absorption spectra, taken by an IBM 9430 uv-visible spectrometer, are dominated by two strong absorption bands, centered at 460 and 640 nm in GGGM and 485 and 685 nm in LLGG. In both samples, the higher-energy band is due to the $^4A_2\rightarrow^4T_1$ absorption transition.

I. INTRODUCTION

The use of garnet crystals such as Ga$_2$Sc$_5$O$_{12}$ (GGG) and Ga$_2$Ga$_5$O$_{12}$ (GSGG) doped with Cr$^{3+}$ and/or Nd$^{3+}$ as laser materials has stimulated an interest in the study of the physical properties of these and similar garnets. A good deal of research has been directed towards the study of material characteristics essential to lasing. These characteristics can be altered by changing the composition of these materials. This can be accomplished by studying other garnets such as La$_2$(Lu$_2$Ca)$_5$Ga$_5$O$_{12}$ (LLGG) or by additional doping of optically inert ions. One attempt at the latter approach is substituting Ca$^{3+}$, Mg$^{2+}$, and Zr$^{4+}$ ions for some of the Ga$^{3+}$ and Ga$^{3+}$ ions in GGG to give a mixed garnet structure designated GGGM. An understanding of how the crystal structure affects the dephasing and energy-transfer characteristics of the optically active ions is therefore essential. To this end, four-wave-mixing (FWM) spectroscopy is a useful tool. Previous studies of the spectroscopic properties as well as preliminary FWM results on GGG, GSGG, and GGGM have been reported. This paper extends the previous work by using FWM to study energy migration and optical dephasing of Cr$^{3+}$ ions by pumping into the 4T_2 band in GGGM, GGG, and GSGG, and by pumping into the 4T_1 band in LLGG. The results are compared to those obtained previously on Cr$^{3+}$ ions in other laser crystals.

As reported in Ref. 10, the substitution of Zr$^{4+}$, Ca$^{3+}$, and Mg$^{2+}$ ions for Ga$^{3+}$ and Ga$^{3+}$ ions in GGG results in a relatively high segregation coefficient of 2.8 and a larger lattice constant of 12.4942 Å. This produces a lower crystal field at the site of the dopant ion which is intermediate between the crystal-field values for GGG and GSGG. In addition, there are several nonequivalent sites for the Cr$^{3+}$ ions which causes spectral structure...
peak of the $4T_1$ band, the fluorescence intensity resulting from excitation at 685 nm is slightly less than the fluorescence from 490 nm excitation. This implies that some sort of fluorescence quenching occurs for excitation into the $4T_2$ band. It is conceivable that a center other than the Cr$^{3+}$ is being excited. However, analysis of the $4T_2$ fluorescence shows an emission peak and lifetime consistent with excitation of Cr$^{3+}$ which implies that the additional center must be nonfluorescing. We are unable to conclusively explain these results at the present time, although it appears that fluorescence quenching of the $4T_2$ band may be the reason why laser-induced grating is observed when exciting into this level, as discussed in the following.

II. RESULTS FOR FOUR-WAVE-MIXING SPECTROSCOPY

FWM is an effective method for studying long-range energy migration and optical dephasing phenomena among dopant ions in solids.$^{12-14}$ Earlier papers9,12,14 describe in detail the procedure for using FWM techniques as a spectroscopic tool. Figure 3 shows the experimental setup used in these experiments. Emission from a Spectra Physics argon ion laser or argon ion laser-pumped ring dye laser was passed through a chopper (CH) and divided into two beams of equal intensities using a 50:50 beam splitter (BS). These two noncollinear laser beams (called the write beams) are then focused onto the sample using the appropriate mirrors M_1, M_2, and M_3. The path length is adjusted so that the two write beams cross inside the sample creating a sinusoidal interference pattern. Since the energy of the laser photons is resonant with the energy of an electronic transition of the Cr$^{3+}$ ions, an excited-state population grating is created having the same spatial pattern. This population grating produces a sinusoidal variation in the refractive index due to the difference in the polarizability of Cr$^{3+}$ ions in the excited state versus the ground state. A very low power He-Ne laser beam nearly counterpro-

![Graphical representation of absorption and emission spectra](image)

The emission spectrum was excited by a nitrogen laser-pumped dye laser, analyzed with a 1-m spectrometer, and detected by an RCA C31034 photomultiplier tube for the GGGM and an RCA 7102 for the LLGG. The fluorescence for both samples is characterized by a very broad, Stokes shifted emission which is the result of the low crystal field causing the $4T_2$ energy level to be lowered; in the case of LLGG, $4T_2$ is 1000 cm$^{-1}$ lower than $2E$ as measured from minima to minima on the configuration coordinate diagram. For GGGM, the $4T_2$ $4A_2$ emission is centered at 750 nm with the $2E$ $4A_2$ transition manifesting itself as a shoulder at 695 nm. For LLGG, the fluorescence is centered at 820 nm with the sharp dips and peaks due to Nd$^{3+}$ impurities. For excitation at both 490 and 685 nm, the fluorescence decay of LLGG was single exponential, with the corresponding lifetime ranging from 120 μs at 11 K to 70 μs at room temperature. This is consistent with the fluorescence being dominated by emission from the $4T_1$ level rather than the long-lived metastable $2E$ level. Although the absorption at the peak of the $4T_1$ band is about twice that at the

![Experimental setup for four wave mixing](image)
pagating to one of the write beams is scattered off this grating. When the Bragg condition is satisfied, the diffracted beam is nearly counterpropagating to the second write beam. This laser-induced grating (LIG) signal is then directed to an RCA C31034 photomultiplier tube (PMT) using mirror M_2. The output of the PMT is taken into an EG&G Princeton Applied Research model 4202 signal averager (averager) and then to an IBM XT personal computer where the digital data is stored. The trigger to the averager was provided by the chopper and pulse generator assembly. The sample was kept in a cryostat and the temperature was controlled using a CTI Cryogenics closed-cycle helium refrigerator and a Lake Shore Cryotronics model 805 temperature controller. The temperature measurements were accurate to better than 0.5 K.

The LIG signal carries all of the information about the physical processes influencing the population grating. Gratings were created by laser pumping into the 4T_1 band using an argon ion laser and pumping the 4T_2 band using an argon ion laser pumped dye laser. In both cases the population grating is observed after radiationless relaxation processes establish an equilibrium population in the 4E and 4T_2 levels.

Figure 4 shows the intensity of the signal beam at room temperature for GGGM with 514.5 nm pumping. When both write beams are turned off at $t=0$, the signal decreases by a significant amount with a decay time of the order of the $^{3}Cr^{3+}$ fluorescence lifetime indicating that the major contribution to the signal is associated with the $^{3}Cr^{3+}$ population grating. The presence of a small residual signal indicates the presence of a long-lived grating which is due to other physical processes such as charge relocation or the creation of color centers. To erase this long-lived grating, a single "erase beam" was turned on at $t=4$ min. Similar long-lived components to the LIG signals were observed in the GGG and GSGG samples but no long-lived grating component was observed for the LLGG sample. The characteristics of the signal beam associated with the population grating are discussed following.

The scattering efficiency for GGGM is plotted as a function of write beam power in Fig. 5. It was found to vary quadratically for low values of power, saturate for intermediate powers and then rise again for higher powers. The saturation occurs at power levels where the rate of pumping ions into the metastable state is equal to the fluorescence decay rate of the metastable state. The quadratic dependence and saturation level are consistent with the predicted behavior for this type of population grating. The behavior at higher laser power indicates the onset of additional nonlinear optical processes. In order to ensure the validity of the results in the following sections, the write beam powers were kept low enough that the system was well below saturation.

A. Energy transfer

The decays of the LIG signal in GGGM were recorded at temperatures between 18 K and room temperature for both 514.5 and 581 nm excitation at various crossing angles of the write beams. The decay of the transient signal is shortened by energy migration from the peak to the valley region of the grating. As the crossing angle of the write beams is increased, the grating spacing is decreased and the effects of energy transfer are enhanced. The grating spacing Λ is given by

$$\Lambda = \frac{\lambda}{2 \sin(\theta/2)},$$

where θ is the write beam crossing angle. The crossing angles used here ranged from about 2° to about 22° giving

![FIG. 4 LIG signal decay after the write beams are turned off at $t=0$ min, and after an erase beam is turned on at $t=4$ min.](image)

![FIG. 5 Scattering efficiency as a function of laser beam power for excitation into the 4T_1 band of $^{3}Cr^{3+}$-doped GGGM.](image)
FOUR-WAVE-MIXING SPECTROSCOPY OF Cr-DOPED GARNET . . .

42

basic assumptions used in the development of this model are consistent with the conditions of our experiments. According to this theory, exponential decays of the normalized transient grating signal in the presence of exciton migration can be described by

\[I(t) = \text{I}_0 \exp(-2t [(1/\tau_f + \alpha)^{1/2} + b]^{1/2} - \alpha). \]

Here \(\tau_f \) is the fluorescence lifetime, \(\alpha \) is the exciton scattering rate, and \(b \) is defined as,

\[b = 4V \sin(2\pi a / \lambda \sin(\theta/2)), \]

where \(V \) is the nearest-neighbor ion-ion interaction rate, and \(a \) is the average distance between active ions. The exciton dynamics can be characterized by these parameters in terms of the diffusion coefficient \(D \), the diffusion length \(L_d \), the mean free path \(L_m \), and the number of sites visited between successive scattering events \(N_s \). These parameters are given by

\[D = 2V^2a^2 / \alpha, \]

\[L_d = (2D\tau_f)^{1/2}, \]

\[L_m = \sqrt{2V a / \alpha}, \]

\[N_s = L_m / a, \]

respectively. Table 1 shows the energy migration parameters for Cr\(^{3+}\) in GGGGM determined in these experiments.

In Fig. 8, the exciton diffusion coefficient \(D \) is plotted as a function of temperature. The data can be fit by an expression of the form

\[D = 4 + (B / \sqrt{T}), \]

which is consistent with phonon scattering limiting the mean free path of the exciton migration.\(^{13}\)

Figure 9 shows the temperature dependences of the ion-ion interaction rate and the exciton-phonon scattering rate for GGGGM. The ion-ion interaction rate is independent of the temperature while the exciton-phonon scattering rate increases linearly with temperature. This

![Graph of transient IG signal decay at 18 K for Cr\(^{3+}\)-doped GGGGM using 514.5 nm excitation. Total signal is shown to be comprised of two single exponentials.](image1)

Figure 6 shows an example of the decay of the transient IG signal in GGGGM. The decay is a double exponential which is consistent with the presence of two crystal-field sites for Cr\(^{3+}\) ions in the sample.\(^{10}\) The decay times of the two components were found to have the same temperature and crossing angle dependences, therefore we show the analysis only for the short component.

Figure 7 shows an example of the signal decay rate in GGGGM as a function of \(\sin^2(\theta/2) \) for a given temperature. From the slope of the curve, we can calculate the exciton diffusion coefficient \(D \) for that temperature as described in the following. The temperature was varied from 18 to 300 K but no energy migration was observed for temperatures exceeding 150 K.

To obtain detailed information about the ion-ion interaction rate and exciton-phonon scattering rate, we have used the theory developed by Kenkre et al.\(^{13}\) The

![Graph of FWM signal decay rate as a function of \(\sin^2(\theta/2) \) for Cr\(^{3+}\)-doped GGGGM. The point at \(\theta = 0 \) is twice the measured fluorescence decay rate.](image2)

![Graph of variation of the exciton diffusion coefficient \(D \) with respect to the temperature for Cr\(^{3+}\)-doped GGGGM.](image3)
increase is associated with the additional phonons available at higher temperatures.

Similar studies on LLGG revealed that when exciting the 4T_1 band at 488 nm, the transient grating decay rate was independent of the angle between the write beams at all sample temperatures between 25 and 220 K. This is consistent with no long-range energy migration occurring in this material. No FWM signal could be observed when exciting the 4T_2 band at 660 nm.

B. Optical dephasing measurements

The laser beams in a FWM experiment drive the system of ions coherently and the time it takes the system of ions to lose phase coherence affects the strength of the FWM signal. Dephasing can occur when the ions interact with the phonons of the system or with other ions in the ensemble or when decay to another energy level occurs. The model used to describe the effect of dephasing on the FWM signal was developed in Refs. 16, 17, 18 and extended for our experimental conditions in Refs. 12 and 14. The main assumption of this model is the approximation of the ensemble of ions as a two-level system.

The model describes an ensemble of two-level systems and their interaction with the four laser beams through four coupled differential equations. These equations have been solved numerically treating the real and imaginary parts of the coupling parameters D_1 and D_2 as adjustable parameters defined below:

$$D_1 = D'_1 + iD''_1 = 2\pi\mu L(k - \xi)$$ \hspace{1cm} (9)

$$D_2 = D'_2 + iD''_2 = \pi\mu\Delta\kappa L$$ \hspace{1cm} (10)

where μ is the permeability of the material, ξ is an effective susceptibility, L is the distance of the overlap region, κ is a parameter related to the complex index of refraction, and $\Delta\kappa$ is the laser induced modulation of κ. This can be separated into a modulation Δn of the refractive index and $\Delta\alpha$ of the absorption coefficient. These parameters are related to the adjustable coupling parameters D'_1, D'_2, D''_1, and D''_2 as follows:

$$\Delta\alpha = -2\pi D''_2 / D'_1$$ \hspace{1cm} (11)

$$\Delta n = (\pi c / \omega) D'_2 / D'_1$$ \hspace{1cm} (12)

where ω is the frequency of the laser line, $\bar{\alpha}$ is the average absorption coefficient at the write beam wavelength and c is the speed of light. The dephasing time, T_φ is given by

$$T_\varphi = \pi c \omega / \Delta n (\Delta\alpha / \omega - \omega_2)^{-1}$$ \hspace{1cm} (13)

where ω_2 is the resonant transition frequency.

The set of coupled differential equations can be solved for special cases. To see the effect of the crossing angle on the scattering efficiency, we consider one special case, where

$$(D'_1)^2 + (D''_1)^2 - (D'_2 + D''_2)^2 > 0$$ \hspace{1cm} (14)

and

$$D'_1 - D'_2 = \left[\left((D'_1)^2 + (D''_1)^2 - (D'_2 + D''_2)^2 \right)^{1/2} \right]^{1/2}$$ \hspace{1cm} (15)

The scattering efficiency is then given by

$$\eta(\theta) = \frac{2[(D'_1)^2 + (D''_1)^2][(D'_2)^2 + (D''_2)^2 - (D'_1 + D''_2)^2]^{1/2}}{\sin^2\theta [((D'_1)^2 + (D''_1)^2 - (D'_2 + D''_2)^2)^{1/2}]^{1/2}}$$ \hspace{1cm} (16)

The crossing angle θ in the preceding expression is directly connected with the overlap of the laser beams which in turn determines the modulation of the complex index of refraction.
FOUR-WAVE-MIXING SPECTROSCOPY OF Cr-DOPED GARNET... 3823

42

refraction and the absorption coefficient. The coefficients in the expression for \(\eta \) are found numerically.

In Fig. 10 the scattering efficiency is plotted as a function of the crossing angle for excitation into the \(^4T_1 \) band of GGGM. Solid circles represent the experimental data points whereas the solid line denotes the theoretical fit. The good agreement between theory and experiment shows that for write beam powers well below saturation,

![Graph](image1)

FIG. 10. LIG scattering efficiency as a function of crossing angle of the write beams for excitation into the \(^4T_1 \) band of Cr\(^{3+}\)-doped GGGM.

![Graph](image2)

FIG. 11. LIG scattering efficiency as a function of crossing angle of the write beams for excitation into the \(^4T_1 \) band of Cr\(^{3+}\)-doped GGGM.

<table>
<thead>
<tr>
<th>Material and transition</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(T_2) (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandrite (Ref. 12)</td>
<td>(0.006)</td>
<td>(0.015)</td>
<td>(0.135)</td>
<td>(0.00002)</td>
<td>(80 \pm 5)</td>
</tr>
<tr>
<td>(^4T_2) inversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby (Ref. 12)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(4.5 \pm 3)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandrite (Ref. 12)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>(2.2 \pm 4)</td>
</tr>
<tr>
<td>(^4T_2) mirror</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandrite (Ref. 14)</td>
<td>(0.250)</td>
<td>(0.650)</td>
<td>(0.350)</td>
<td>(0.0015)</td>
<td>(55.3)</td>
</tr>
<tr>
<td>(^4E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerald (Ref. 29)</td>
<td>(5.0 \times 10^{-7})</td>
<td>(4.0 \times 10^{-7})</td>
<td>(2.0 \times 10^{-6})</td>
<td>(8.0 \times 10^{-6})</td>
<td>(1.2)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGG</td>
<td>(0.205)</td>
<td>(0.02)</td>
<td>(0.230)</td>
<td>(0.0007)</td>
<td>(1.35 \pm 0.5)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGG (Ref. 9)</td>
<td>(0.2 \pm 0.45)</td>
<td>(0.09 \pm 0.2)</td>
<td>(0.27 \pm 0.31)</td>
<td>(0.01 \pm 0.05)</td>
<td>(0.008 \pm 0.033)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSGG</td>
<td>(0.210)</td>
<td>(0.18)</td>
<td>(0.240)</td>
<td>(0.001)</td>
<td>(0.77 \pm 0.5)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSGG (Ref. 9)</td>
<td>(0.30)</td>
<td>(0.30)</td>
<td>(0.31)</td>
<td>(0.01)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGM</td>
<td>(0.92)</td>
<td>(0.01)</td>
<td>(0.100)</td>
<td>(0.05)</td>
<td>(0.00028 \pm 0.00005)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGGM</td>
<td>(0.200)</td>
<td>(0.22)</td>
<td>(0.235)</td>
<td>(0.001)</td>
<td>(0.92 \pm 0.5)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGGG</td>
<td>(0.400)</td>
<td>(0.280)</td>
<td>(0.303)</td>
<td>(0.015)</td>
<td>(0.74 \pm 0.5)</td>
</tr>
<tr>
<td>(^4T_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II. Parameters for the best fit to the scattering efficiency vs crossing angle plot and the dephasing time \(T_2 \) for Cr\(^{3+}\)-doped laser materials. NA indicates that the data is not available.
the two-level system gives a reasonable description of the results. The values of the parameters used to obtain the best fit along with the calculated dephasing times for different materials used in this survey are given in Table II.

Figures 11-14 give the experimental data and theoretical fits for the scattering efficiencies as a function of the write beam crossing angle for the excitation into the 4T_2 band of GGG, GGG, GSGG, and the 4T_1 band of LLGG, respectively. The values of the parameters used to obtain the best fit and the corresponding dephasing times are given in Table II.

The expression for the dephasing time T_2 is given by\(^18\)

$$1/T_2 = 1/T_1 + 1/T_\text{PD}$$ \,(17)
FOUR-WAVE-MIXING SPECTROSCOPY OF Cr-DOPED GARNET...

I can then relax within the 4T_{1} band following the path through point B (where the two parabolas cross). The excitation then crosses over to the 2E state and emits phonons until it reaches the bottom of the 2E potential well. This process is called internal conversion (IC) and the corresponding nonradiative rate is denoted by K_{nr}(IC). Alternatively, the excited ion can relax by immediately crossing over to the 2E band at point B' and then emitting phonons to reach the bottom of the potential well. This process is called intersystem crossing (ISC) and the corresponding nonradiative rate is denoted by K_{nr}(ISC). As noted in Ref. 14, after the first step is taken, the entire path for the dephasing is determined. The dephasing time \(T_{2} \) is directly affected by whether IC or ISC path is the preferred channel for the nonradiative relaxation. Since the details of this process are described in Ref. 14, we will only mention the important points.

The nonradiative decay rates are calculated using standard perturbation theory techniques.\(^\text{15}\) The vibrational matrix elements are calculated using a single effective phonon frequency and Morse potential wave functions to account for anharmonicity.\(^\text{20-27}\) The multielectron reduced matrix elements involved here are expressed in terms of the single-electron reduced matrix elements which have already been tabulated by Sugano et al.\(^\text{28}\) Due to the difficulties involved in calculating the exact electronic wave functions needed for the evaluation of the single-electron matrix elements, only the ratio of the two rates \(K_{nr}(ISC)/K_{nr}(IC) \) is considered.

Calculations were performed for the Cr-doped laser materials ruby, alexandrite, emerald, GGG, GGGM, and GSGG, which have been investigated by FWM spectroscopy. The results can be used to determine the relationship between the dephasing process and the energy

TABLE III. Results of dephasing time measurements on Cr\(^{3+}\)-doped laser materials for pumping into the 4T_{1} band.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\Delta E_{pp}) (cm(^{-1}))</th>
<th>(K_{nr}(ISC)/K_{nr}(IC))</th>
<th>(\Delta \alpha) (cm(^{-1}))</th>
<th>(\Delta n) (10(^{-4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandrite (Ref. 12)</td>
<td>5500</td>
<td>0.0011</td>
<td>2.52</td>
<td></td>
</tr>
<tr>
<td>(Inversion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby (Ref. 12)</td>
<td>3850</td>
<td>31</td>
<td>0.00106</td>
<td>8.16</td>
</tr>
<tr>
<td>(Mirror)</td>
<td></td>
<td>13</td>
<td>0.0019</td>
<td>1.83</td>
</tr>
<tr>
<td>Alexandrite (Ref. 12)</td>
<td>1950</td>
<td>4.0</td>
<td>0.22</td>
<td>13</td>
</tr>
<tr>
<td>(Mirror)</td>
<td></td>
<td>2.6</td>
<td>0.0093</td>
<td>1.44</td>
</tr>
<tr>
<td>Emerald (Ref. 29)</td>
<td>1800</td>
<td>2.3</td>
<td>0.0035</td>
<td>0.38</td>
</tr>
<tr>
<td>GGG</td>
<td>1650</td>
<td>2.2</td>
<td>0.0031</td>
<td>0.35</td>
</tr>
<tr>
<td>GGGM</td>
<td>1250</td>
<td>2.3</td>
<td>0.0035</td>
<td>0.38</td>
</tr>
<tr>
<td>GSGG</td>
<td>1150</td>
<td>2.2</td>
<td>0.0031</td>
<td>0.35</td>
</tr>
</tbody>
</table>

FIG. 16. \(T_{2} \)-dephasing time and the ratio \(K_{nr}(ISC)/K_{nr}(IC) \) as a function of \(\Delta E_{pp} \) (the energy difference between the peak of the 4T_{1} band and the peak of the 2E band in the absorption spectrum of Cr\(^{3+}\)-doped laser materials).

FIG. 17. Dephasing time \((T_{2}) \) as a function of the ratio \(K(ISC)/K(IC) \).
difference between the peak of the 4T_2 band and the peak of the 2E band in the absorption spectrum denoted by ΔE_{pp}. Nonradiative decay rates were calculated for the two possible dephasing paths and results of the calculations are given in Table III.

It is interesting to note that for all the materials considered, the ratio $K_{nr}(\text{ISC})/K_{nr}(\text{IC})$ is greater than 1. This generalizes the conclusion drawn in Ref. 14 that in Cr-doped laser materials, after pumping into the 4T_2 level, the dominant relaxation path for the excitation is ISC and not IC.

In Fig. 16 the ratio $K_{nr}(\text{ISC})/K_{nr}(\text{IC})$ and the dephasing time are plotted as a function of the energy splitting ΔE_{pp}. The two quantities have the same dependence on ΔE_{pp}. To further demonstrate this relationship, the dephasing time T_2 is plotted as a function of the ratio $K_{nr}(\text{ISC})/K_{nr}(\text{IC})$ in Fig. 17 and the result is a straight line.

III. DISCUSSION AND CONCLUSIONS

Investigations of long-range energy migration have been carried out on several different Cr$^{3+}$-doped laser crystals. No long-range energy migration was observed in ruby, the inversion site ions in alexandrite, or LLGG. Detailed information on ion-ion interaction rates and exciton-phonon scattering rates was not available from the previous results reported for GGG and GSGG. Table IV summarizes the results for GGG, GSGG, GGGM, LLGG, emerald, ruby, and inversion and mirror site ions in alexandrite. The characteristics of energy transfer vary significantly from host to host depending on parameters such as the distance between the Cr$^{3+}$ ions, the lifetime of the metastable state, the spectral overlap between absorption and emission, and the electron-phonon interactions. The variation of each of these parameters from host to host makes it difficult to establish a simple trend for energy transfer in Cr$^{3+}$-doped crystals.

One critical parameter in a diffusion or random walk picture of energy migration is the spacing between the sites of the lattice on which the random walk is occurring, designated as a. In this case a is the average separation between Cr$^{3+}$ ions. This appears explicitly in the expression for both the ion-ion interaction rate V and the diffusion coefficient D. This separation is affected by the Cr$^{3+}$ concentration in the sample, the host lattice spacings, and the distribution properties of the Cr$^{3+}$ ions in the host. For mirror sites in alexandrite crystals, it is well known that the Cr$^{3+}$ ions are not distributed randomly and the value of a used in Table IV was estimated from previous measurements on this sample 12,14 For the

<table>
<thead>
<tr>
<th>Material and transition</th>
<th>Dq (cm$^{-1}$)</th>
<th>ΔE (cm$^{-1}$)</th>
<th>D (10^{-4} cm2/sec)</th>
<th>V (10^3 sec$^{-1}$)</th>
<th>α (10^5 sec$^{-1}$)</th>
<th>T (K)</th>
<th>a (A)</th>
<th>N (1015 cm$^{-3}$)</th>
<th>L_d (10$^{-6}$ m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandrite (inversion)</td>
<td>2200</td>
<td>6400</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>ALL</td>
<td>41</td>
<td>2.5</td>
<td>NA</td>
</tr>
<tr>
<td>4T_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Refs. 12,14,31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruby 2E</td>
<td>1820</td>
<td>2300</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>ALL</td>
<td>59-108</td>
<td>79-490</td>
<td>3</td>
</tr>
<tr>
<td>(Ref. 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexandrite (mirror) 2E</td>
<td>1680</td>
<td>800</td>
<td>3</td>
<td>12</td>
<td>200</td>
<td>25</td>
<td>27</td>
<td>8.9</td>
<td>12</td>
</tr>
<tr>
<td>(Refs. 14,31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerald 4T_2</td>
<td>1620</td>
<td>400</td>
<td>28</td>
<td>1.9</td>
<td>2.6</td>
<td>12</td>
<td>10</td>
<td>177</td>
<td>31</td>
</tr>
<tr>
<td>(Refs 29,34,35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGG 4T_1</td>
<td>1597</td>
<td>298</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>18</td>
<td>NA</td>
<td>140</td>
<td>NA</td>
</tr>
<tr>
<td>(Refs. 4,9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGM 4T_1</td>
<td>1567</td>
<td>100</td>
<td>6410</td>
<td>42</td>
<td>12</td>
<td>18</td>
<td>15</td>
<td>54</td>
<td>16</td>
</tr>
<tr>
<td>(Ref. 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGGM 4T_1</td>
<td>1563</td>
<td>50</td>
<td>10</td>
<td>NA</td>
<td>NA</td>
<td>230</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>(Refs. 4,9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLGG 4T_1</td>
<td>1480</td>
<td>-1000</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>ALL</td>
<td>15</td>
<td>50</td>
<td>NA</td>
</tr>
<tr>
<td>(Refs. 4,9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
other samples, the values listed for a are the average Cr$^{3+}$ separations assuming a uniform distribution of ions. This of course is a rough approximation to the true situation of randomly distributed impurity ions. Note that for the two high crystal-field cases of ruby and alexandrite inversion sites, the values of a are extremely large. This results in a very small value for V and thus explains the lack of long-range energy migration in these cases.

The samples in Table IV are listed in order of decreasing crystal field. As the crystal field decreases, the population distribution of the excited state of the Cr$^{3+}$ ion changes from being primarily in the 4E level to being primarily in the 4T_2 level. The latter level has a shorter lifetime and larger Stokes shift compared to the former level. The lifetime decrease results in an increase in V' while the increased Stokes shift decreases the spectral overlap integral thus decreasing the number density of ions, N and V. The value of the ion-ion interaction rate decreases by an order of magnitude between alexandrite (M) and emerald and then increases by an order of magnitude between emerald and GGG. The fluorescence lifetime is not significantly different for alexandrite (M) and emerald samples so the observed decrease in V' is associated with the decreased spectral overlap. The increase in the case of GGG may, however, be associated with the smaller fluorescence lifetime in this sample. The increased values of D for these three samples is associated with the decreased values of α as well as changes in the number density of ions, N. The value of V' was found to be essentially independent of temperature at low temperatures for alexandrite mirror sites and the GGG sample indicating that α and N do not vary with T in this range. However, in emerald, V' was found to increase with temperature because N increases. The temperature dependence of V' was not determined for the other samples.

The values of the scattering rate α which limits the mean free path of the migrating energy varies from alexandrite (M) to GGGM and is found to increase with temperature. Since the details of the exciton-phonon coupling are not known, it is not possible to predict the sample-to-sample variation in α.

From the discussion above, it is possible to understand the observed differences in the energy diffusion coefficient D from sample to sample. The values of D increase with increasing ion-ion interaction rate and decrease with increasing excitation scattering rate. The diffusion coefficient increases with temperature in emerald where V' is phonon assisted but decreases with temperature for alexandrite mirror sites and GGGM where V' is constant and α increases with temperature. Recently Kaplyanskii has combined the techniques of site-electron spectroscopy and Stark shifting of spectral lines to distinguish between resonant and nonresonant energy transfer between Cr$^{3+}$ ions at low temperature. He observed "anomalously fast and effective" resonant energy transfer among the Cr$^{3+}$ ions in mirror sites in alexandrite crystals but not in ruby crystals. His results are consistent with the results of FWM studies of energy migration in these samples.

Comparing the results obtained on the dependence of the FWM signal magnitude of the crossing angle of the write beams with the model proposed by Gilliland et al., for the dephasing mechanism in Cr-doped materials, we conclude that internal conversion is the dominant relaxation path when the chromium ions are excited to the 4T_2 level. This is due to the fast relaxation of the excitation to the bottom of the 4T_2 configuration potential well. The information on optical dephasing obtained from FWM measurements pumping into the 4T_2 level shows that radiationless relaxation to the 2E level through intersystem crossing is the dominant dephasing process in these Cr$^{3+}$-doped laser crystals. The relative importance of dephasing through internal conversion within the 4T_2 level becomes more important as the crystal field of the host decreases.

The analysis for determining the dephasing time, change in refractive index (Δn), and the change in absorption coefficient ($\Delta \alpha$) assumes an effective two-level system model. The use of this model, despite its simplicity, has been justified on the basis of its ability to predict values of $\Delta \alpha$ which are consistent with values determined independently by ground and excited-state absorption measurements. Such checks have been done when values of the excited-state absorption cross section σ_2 are available, such as for alexandrite, ruby, GGG, and emerald.

Recently, the results of FWM measurements on Nd$^{3+}$-doped materials have been analyzed using a model based on an effective four-level system. In this model, the laser beams interact with ions both in the ground and metastable state. The transitions from the ground and metastable states to higher-energy states is accounted for by combining the upper states into two effective states. A density matrix formalism yields the change in the real and imaginary parts of the nonlinear susceptibility between ions in the peak and valley of a population grating. By measuring the absolute magnitude of the FWM signal in a variety of samples, it was concluded that the dominant contribution to the signal comes from the real part of the nonlinear susceptibility associated with the off resonant, allowed transitions to the levels of different configuration in the ultraviolet spectral region. The relative values of Δn and $\Delta \alpha$ obtained in this work are consistent with the proposed model. In this case the weak contribution to the signal associated with the imaginary part of the nonlinear susceptibility comes from the resonant interaction with the pump transition. Recognizing the contributions due to these two different types of transitions, the expressions for Δn and $\Delta \alpha$ will be the same for the two-level and four-level modes.

It is important to note that the procedure for using the two-level system fit to the crossing angle dependence of the FWM scattering efficiency to find the dephasing time should be approached with caution. This approach has been justified on the basis that values found for $\Delta \alpha$ are in good agreement with those values found independently from excited-state absorption measurements. Equation (11) shows how $\Delta \alpha$ depends on the fitting parameter D_2; however, the computer fit to the crossing angle dependence of the FWM scattering efficiency can be relatively insensitive to the parameter D_2. This may result in large
error bars for $\Delta \alpha$ and thus a large error in the value determined for T_2 which is dependent on $\Delta \alpha$, as shown in Eq. (13).

Accurate confirmation of the values of T_2 determined by these FWM measurements must come from a direct measurement of the dephasing time. Photon echo measurements are currently being made on these Cr$^{3+}$-doped materials to determine T_2.

ACKNOWLEDGMENTS

This work was supported by a contract from the U.S. Army Research Office and by the National Science Foundation under Grant No. DMR-87-22350. The Université Claude Bernard Lyon I is Unité Associé No. 442 du Centre National de la Recherche Scientifique.

20P. Morse, Phys. Rev. 34, 57 (1929).
IV. NONLINEAR OPTICAL PROPERTIES OF CRYSTALS AND GLASSES

The six manuscripts in this section describe the results of investigations of two classes of nonlinear optical materials, rare earth-doped glasses and displacive ferroelectrics. The first five papers focus on a new method for producing laser-induced holographic gratings in glasses. This type of laser-induced refractive index change forms the basis of devices for optical technology applications such as demultiplexers, filters, beam deflectors, and optical limiters. This method developed involves generating a significant number of local vibrational modes by radiationless relaxation of the resonantly pumped rare earth ion. These local vibrational modes provide enough energy to cause a structural change in the glass host surrounding the rare earth ion and this changes the refractive index. The gratings are stable at room temperature and can be erased thermally. The important new results of this investigation include characterizing the effects of both alkali and alkaline earth modifier ions on the efficiency of grating formation, demonstrating the difference between Pr$^{3+}$ and Eu$^{3+}$ ions in the dynamics of grating formation, developing a two-level system model to describe the local structural modification, developing a polarizability change model to explain the origin of the refractive index change, and demonstrating the device capabilities of these materials for holographic information storage, demultiplexing, and amplitude modulation of light signals. The fifth manuscript describes the radiative and radiationless relaxation processes that take place in Eu$^{3+}$-doped
fluoride and oxide glasses under high-power, picosecond-pulse excitation. A comparison of these spectral properties originating from excitation into highly excited states of the rare earth ion is useful in determining the best host glasses for producing holographic gratings.

The final manuscript describes a comprehensive investigation of the nonlinear optical properties of $\text{K}\text{N}\text{bO}_3$. This is a displacive ferroelectric crystal that can be used for frequency doubling, photorefractive phase conjugation, and other applications related to its electro-optic properties. Using continuous wave four-wave mixing and two-beam energy transfer techniques the properties of charge relocation dynamics resulting in a photorefractive effect on a millisecond time scale were determined. The effects of different types of doping ions on these photorefractive properties were measured. In addition, the nonlinear optical response of the material to picosecond pulse excitation was investigated. The results of these experiments revealed laser-induced absorptive changes on time scales of a nanosecond and an ultrafast, picosecond response. The latter can be affected by contributions from several physical sources. However, one important physical processes that was identified is stimulated scattering from niobium hopping modes.
I. INTRODUCTION

We have previously reported the observation of permanent, laser-induced refractive-index gratings in \(\text{Eu}^{3+} \)-doped glasses using four-wave-mixing (FWM) techniques.\(^{123} \) These gratings were established using crossed write beams in resonance with the \(^{7}I_{0} \rightarrow ^{7}F_{2} \) absorption transition of the \(\text{Eu}^{3+} \) ion and displayed buildup times of the order of 15 min. The grating is stable at room temperature but can be erased thermally by heating the sample to temperatures above room temperature or it can be erased optically with a single beam tuned in resonance with the \(^{7}I_{0} \rightarrow ^{7}F_{2} \) transition of the \(\text{Eu}^{3+} \) ion. No grating formation or erasure occurs if the laser beams are not in resonance with the \(^{7}I_{0} \rightarrow ^{7}F_{2} \) absorption transition of the \(\text{Eu}^{3+} \) ion.

A model was proposed to explain these gratings in which the network former and network modifier ions of the glass host can arrange themselves into two different configurations in the local environment of the \(\text{Eu}^{3+} \) ion. This leads to double-minimum potential wells for the \(\text{Eu}^{3+} \) electronic energy levels. It is assumed that the material possesses a different index of refraction depending on which configuration is present. When the \(\text{Eu}^{3+} \) ion relaxes nonradiatively from the \(^{5}D_{0} \) level to the \(^{7}D_{0} \) level several high-energy “phonons” are created. The local heating produced by the vibrational modes can produce a change in the structure of the local environment of the \(\text{Eu}^{3+} \) ion by causing the ions to move from one equilibrium configuration to the other.

In this paper we extend our previous work by looking at different hosts, altering the \(\text{Eu}^{3+} \) concentration, and varying the network modifier ion in a series of silicate glasses. Finally, the details of the two-level-system model are developed to provide a quantitative explanation of the data.

II. EXPERIMENTAL RESULTS OF SCATTERING EFFICIENCY MEASUREMENTS

A. Effects of \(\text{Eu}^{3+} \) concentration

To study the effect of the \(\text{Eu}^{3+} \)-ion concentration on the permanent, laser-induced grating, samples were obtained whose compositions varied only in the \(\text{Eu}^{3+} \) concentration. The first samples investigated were two \(\text{Eu}^{3+} \)-doped metaphosphate samples, one with a composition of \(90 \text{ mol} \% \text{LaPO}_{4} \) and \(10 \text{ mol} \% \text{EuPO}_{3} \), and the other with \(50 \text{ mol} \% \text{LaPO}_{4} \) and \(50 \text{ mol} \% \text{EuPO}_{3} \). These are labeled MP10 and MP50, respectively.

Permanent, laser-induced gratings were written in each sample at room temperature and the scattering efficiency of these gratings was measured using a HeNe laser for the read beam. The experimental configuration and procedures used were the same as those reported previously.\(^{1} \) It was found that the laser-induced grating signal intensity of the MP50 sample was eight times stronger than that of the MP10 sample. This is consistent with the double-minimum potential-well model discussed below.

One other set of samples was investigated along this line, a lithium borate glass, LB15, with a composition of \(75 \text{ mol} \% \text{B}_{2}\text{O}_{3}, 10 \text{ mol} \% \text{Li}_{2}\text{O}, \) and \(15 \text{ mol} \% \text{Eu}_{2}\text{O}_{3} \). It was possible to establish a permanent, laser-induced grating in this sample whereas in a previously investigated lithium borate sample, LB1, with only \(1 \text{ mol} \% \text{Eu}_{2}\text{O}_{3}, \) no grating was created.

B. Effects of modifier ions

To study the effect of the network modifier ions of the host glass on the ability to produce gratings with high scattering efficiencies, five silicate glasses were obtained which had identical compositions except for one modifier ion. This modifier ion was changed through the series of alkali-metal ions Li, Na, K, Rb, and Cs. The exact compositions of these glasses are listed in Table I.

Permanent, laser-induced gratings were written in each of the five samples at room temperature and measurements were made of the scattering efficiencies using a HeNe laser for the read beam. The effective scattering efficiency, which is defined below, was found to decrease as the modifier ion was changed as \(\text{Li} \rightarrow \text{Na} \rightarrow \text{K} \rightarrow \text{Rb} \rightarrow \text{Cs} \) and the results are shown in Fig. 1 where the experimental values of the effective scattering efficiency are plotted versus the mass of the alkali-metal modifier ion. The solid line represents the best fit to the data using the theoretical treatment discussed in Sec. III.
TABLE I. Composition of silicate glass samples investigated.
(Notation discussed in text.)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition (mol %)</th>
<th>Network former</th>
<th>Network modifier</th>
<th>Eu content</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS5</td>
<td>70 SiO₂</td>
<td>15 Li₂O</td>
<td>5 BaO</td>
<td>5 Eu₂O₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ZnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5</td>
<td>70 SiO₂</td>
<td>15 Na₂O</td>
<td>5 BaO</td>
<td>5 Eu₂O₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ZnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS5</td>
<td>70 SiO₂</td>
<td>15 K₂O</td>
<td>5 BaO</td>
<td>5 Eu₂O₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ZnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS5</td>
<td>70 SiO₂</td>
<td>15 Rb₂O</td>
<td>5 BaO</td>
<td>5 Eu₂O₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ZnO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>70 SiO₂</td>
<td>15 Cs₂O</td>
<td>5 BaO</td>
<td>5 Eu₂O₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ZnO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Fluoride glasses

Along with the other samples investigated a new fluoride glass was acquired, CLAP5, with a composition of 36.1 mol % PbF₂, 26.1 mol % CdF₂, 27.1 mol % AlF₃, 4.7 mol % LiF, and 5.0 mol % EuF₃. No permanent grating was observed in this sample. This is the same result as obtained previously with other fluoride glasses.¹⁴⁻¹⁸

The lack of permanent grating formation in fluoride-glass hosts is consistent with the fact that Eu³⁺-doped fluoride glasses have been shown¹ to exhibit a significant amount of radiative emission from the ³D₉ levels above ³D₀. This results in fewer ions relaxing nonradiatively from the ³D₂ and ³D₁ levels to the ³D₀ metastable state leading to a smaller number of high-energy "phonons" being available. Since it is these high-energy local mode vibrations which are responsible for the formation of a permanent, laser-induced grating, no grating will be produced in these glasses.

In contrast, it was found that in a fluorophosphate glass, (FP, Schott FK-54), with 5 mol % EuF₃, it was possible to produce a permanent, laser-induced grating. This implies that the fluorophosphate glass contains enough of the characteristics of the phosphate glasses to allow formation of the permanent grating.

D. Temperature dependence of scattering efficiency

The temperature dependence of the laser-induced grating signal intensity in an EP sample was measured at temperatures above room temperature and the results were reported previously.¹ This section reports the results of measurements of the laser-induced grating signal intensity at temperatures below room temperature. To obtain the data the sample was mounted in a cryogenic refrigerator and the temperature was lowered to the desired level. Then a permanent grating was written and the scattering efficiency measured. This procedure was repeated at each temperature of interest. The laser-induced grating signal intensity is plotted versus temperature in Fig. 2.

As can be seen from the results, the trend toward higher laser-induced grating signal intensities continues at lower temperatures. However, there is a change in the slope between high and low temperatures. The solid lines in Fig. 2 describe an exponential temperature variation of the form

\[I = I₀ \exp \left(\frac{\Delta}{k_BT} \right), \]

where \(\Delta \) is the activation energy. The values obtained for

![FIG. 1. Scattering efficiency of the samples listed in Table I as a function of the mass of the alkali-metal ion. ■, experimental points; ——, theoretical points.](image1)

![FIG. 2. Intensity of signal beam of the EP sample as a function of temperature.](image2)
\[\Delta \text{ in the high-temperature and low-temperature regions are } 2219 \text{ and } 189.6 \text{ cm}^{-1}, \text{ respectively.} \]

III. THEORETICAL MODEL

In the double-minimum potential-well model the network former and network modifier ions of the glass host can arrange themselves in two possible configurations in the local environment of the Eu\(^{3+}\) ion. Thus these ions or groups of these ions have available to them two mutually accessible equilibrium positions and move in a potential of the form shown in Fig. 3. In this model it is assumed that the index of refraction depends on which configuration is present. Thus the total index of refraction of the material will be of the form

\[n = n_I N_I + n_{II} N_{II}, \tag{2} \]

where \(N_I\) is the population of well I (II) and \(n_{II}\) is the index of refraction per ion populating the well. When the laser beam is turned on the population of the wells will display a time dependence of the form

\[
\frac{dN_I(t)}{dt} = -p_{II} N_I + p_{II} N_{II}, \tag{3}
\]

\[
\frac{dN_{II}(t)}{dt} = p_{II} N_I(t) - p_{II} N_{II}(t), \tag{4}
\]

where \(p_{II}\) is the jump frequency and is the probability per unit time that the ion will have enough energy to jump from well I (II) to well II (I). In these experiments the system is allowed to reach equilibrium before measurements are taken. Thus the population of each well can be taken as constant and Eqs. (3) and (4) give the ratio of the populations of the two wells as

\[
\frac{N_I(\infty)}{N_{II}(\infty)} = \frac{p_{II}}{p_I}, \tag{5}
\]

where \(p_{II}\) is given by

\[
p_{II} = \nu_{II} \exp \left(-\frac{E_{II} - E_I}{k_B T} \right), \tag{6}
\]

\(k_B\) is Boltzmann's constant and \(\nu_{II}\) is the attack frequency which is the number of attempts the ion makes at surmounting the barrier of height \(E_{II}\). Equations (5) and (6) lead to the thermal equilibrium condition

\[
\frac{N_I(\infty)}{N_{II}(\infty)} = \frac{\nu_{II}}{\nu_I} \exp \left(-\frac{\Delta E}{k_B T} \right), \tag{7}
\]

where \(\Delta E = E_{II} - E_I\). The equations derived so far are completely general and are valid for single-beam or crossed-beam experiments.

For crossed beams the intensity of the laser-induced grating signal is given by

\[
I \propto |n_p - n_v|^2, \tag{8}
\]

where \(n_p\) and \(n_v\) refer to the index of refraction of the peak and valley regions of the laser-induced grating with

\[
n_p = n_{II} N_{II}(\infty) + n_{II} N_{II}(\infty) \tag{9}
\]

\[
n_v = n_{II} N_{II}(\infty) \tag{10}
\]

The \(p\) and \(v\) subscripts refer to the peak and valley regions of the laser-induced grating whereas the \(I\) and \(II\) subscripts refer to the potential well occupied. In arriving at Eq. (10) it is assumed that the ions in the valley region of the grating remain in well I for all times. These equations lead to the following expression for the laser-induced grating signal intensity:

\[
I \propto |N_{II}(\infty) \Delta n_{II-1}|^2, \tag{11}
\]

where \(\Delta n_{II-1} \equiv n_{II} - n_1\). By using the thermal equilibrium condition and the fact that the total population of the wells must remain constant, the laser-induced grating signal intensity can be written as

\[
I \propto \frac{N_I(0)\Delta n_{II-1}}{1 + \nu_{II} \exp \left(-\frac{\Delta E}{k_B T} \right)}^2, \tag{12}
\]

where \(N_I(0)\) is defined as \(N_{II}(0) = N_{II}(0) \equiv N_I(0)\).

This model can be used to interpret the observed changes in laser-induced grating signal intensities. For the MP50 sample and the MP10 sample the only difference will be in the initial population of configuration I. The ratio of the laser-induced grating signal intensities will be given by

\[
\frac{I_{50}}{I_{10}} \propto \left[\frac{N_I(0)_{50}}{N_I(0)_{10}} \right]^2, \tag{13}
\]

This ratio of the squares of the initial populations was calculated using \(E_{II}^+\) concentration and the size of the peak region of the grating and was found to be 56.33. This number is larger than the measured ratio of eight, however, taking into consideration the simplicity of the model which does not include any saturation effects.
which have been seen in power dependence measurements, the model does a fairly good job in predicting the relative change in laser-induced grating signal intensities with a change in Eu$^{3+}$ concentration.

This model can also be used to explain the results shown in Fig. 1. Since the only component of these glasses which has changed is the alkali-metal ion and it is seen that the effective scattering efficiency varies as the mass of this alkali-metal ion, this alkali-metal ion can be taken as the ion that is moving to provide the double-equilibrium configuration surrounding the Eu$^{3+}$ ion. In Eq. (12), $N_i(0)$, which is the initial population of well I, will depend on the size of the peak or valley regions of the laser-induced grating. Therefore, the effective scattering efficiency is defined as

$$\eta_{eff} = \frac{1}{N_i(0)} \frac{|\Delta n_{II-I}|^2}{1 + \frac{v_{II}}{v_1} \exp \left[\frac{-\Delta_\gamma}{k_B T} \right]} \exp \left[\frac{-d}{m} \left[\frac{2mV_0}{R^2} \right]^{1/2} \right].$$

The attack frequency v_{II} is proportional to the mass of the ion in the well and can be expressed as

$$v_{II} = \left[\frac{k_{II}}{m} \right]^{1/2},$$

where k_{II} is the force constant of well I, II, respectively, and m is the mass of the ion populating the well. Δn_{II-I} is the change in refractive index per ion and is treated as an adjustable parameter. The term Δ_γ, which is the difference in the minima of the potential wells can be expressed more specifically using the mathematical formalism developed to describe a double-minimum potential well.

Basis states $|\phi_1\rangle$ and $|\phi_2\rangle$ are chosen which are ground states for the appropriate single-well potentials. These basis states are eigenstates of the Hamiltonian of the unperturbed system H_0, with eigenvalues E_1 and E_2,

$$H_0|\phi_1\rangle = E_1|\phi_1\rangle,$$

$$H_0|\phi_2\rangle = E_2|\phi_2\rangle.$$

Upon applying a perturbation W which couples $|\phi_1\rangle$ and $|\phi_2\rangle$ the Hamiltonian matrix will become

$$(H) = \begin{bmatrix} E_1 + (\langle \phi_1 | W | \phi_1 \rangle & \langle \phi_1 | H | \phi_2 \rangle \\ \langle \phi_2 | H | \phi_1 \rangle & E_2 + (\langle \phi_2 | W | \phi_2 \rangle) \end{bmatrix}. \quad (18)$$

To a good approximation $\langle \phi_1 | W | \phi_1 \rangle \ll E_1$. Defining the zero of energy to be midway between E_1 and E_2 the Hamiltonian matrix will become

$$(H) = \begin{bmatrix} \Delta_\epsilon & \Delta_0 \\ \Delta_0 & -\Delta_\epsilon \end{bmatrix},$$

where Δ_0 is defined as

$$\Delta_0 = 2 \langle \phi_1 | H | \phi_2 \rangle.$$ \quad (19)

$\Delta_\epsilon/2$ is the coupling energy and is the difference between the two lowest symmetric states. The solution for the coupling energy is derived in a number of quantum mechanics textbooks and is given by

$$\Delta_0 = \hbar \omega_0 \exp \left[-d \left(\frac{2mV_0}{R^2} \right)^{1/2} \right],$$

where $\hbar \omega_0$ is an energy roughly equal to the zero-point energy and will vary as $1/\sqrt{m}$. For this reason we can write

$$\Delta_0 = \hbar \left[\frac{k}{m} \right]^{1/2} \exp \left[-d \left(\frac{2mV_0}{R^2} \right)^{1/2} \right],$$

where k is the force constant for the initial configuration.

The coupling energy can be related to the asymmetry by

$$\tan \theta = \frac{\Delta_0}{\Delta_\epsilon},$$

where θ is a measure of the mixing of the original eigenstates due to the perturbation. Combining Eqs. (22) and (23) gives

$$\Delta_\epsilon = \hbar \left[\frac{k}{m} \right]^{1/2} \exp \left[-d \left(\frac{2mV_0}{R^2} \right)^{1/2} \right].$$

Inserting this into Eq. (14), the effective scattering efficiency becomes

$$\eta_{eff} = \frac{|\Delta n_{II-I}|^2}{1 + \frac{v_{II}}{v_1} \exp \left[\frac{-\Delta_\gamma}{k_B T \tan \theta} \right] \exp \left[-d \left(\frac{2mV_0}{R^2} \right)^{1/2} \right]}.$$

Equation (25) was fitted to the experimental values of the effective scattering efficiency with $|\Delta n_{II-I}|^2$, v_{II}/v_1, $\hbar \nu k / k_B T \tan \theta$, and $d(2V_0/R^2)^{1/2}$ treated as adjustable parameters. The best fit to the data is the solid line plotted in Fig. 1 where the following values were found for the adjustable parameters:
\[|\Delta n_{II-1}|^2 = 2.787 \times 10^{-37}, \]

\[\frac{\nu_{II}}{\nu_1} = 1.329, \]

\[\frac{2V_o}{k_B T \tan \theta} = \frac{2.25 \times 10^{10} \text{g}^{1/2}}{2.39 \times 10^{11} \text{g}^{-1/2}}. \]

It is seen that as an ion moves from one potential well to the other the index of refraction changes by 5.279 \times 10^{-19}. The number of ions that accumulate in well II is of the order of 1 \times 10^{18}. This gives a total change in the index of refraction of 5.279 \times 10^{-3}. This number is of a similar order of magnitude to that found in other experiments. \(^9\)

From the ratio of the attack frequencies the relationship between the force constants of the individual well can be found. From Eq. (15) it is seen that

\[\frac{\nu_{II}}{\nu_1} = \left(\frac{k_{II}}{k_1} \right)^{1/2}. \]

\[(26) \]

It is seen that the force constant for well II, \(k_{II}\), is 1.329 times larger than that for well I, \(k_1\).

It is also possible to approximate the distance between the two wells, \(d\), using the last parameter. From Fig. 3 it is seen that \(V_o\) must be as large as \(\Delta_e/2\). Taking \(V_o\) to range from 3000 cm\(^{-1}\) for LS5 to 45 cm\(^{-1}\) for CSS leads to values of \(d\) from 0.023 to 0.189 Å, respectively. It should be remembered that this model has considered only the alkali-metal ion to be the source of the double-minimum potential well. There are realistically many ions involved and the small values for \(d\) suggest that even though individual ions may move over large distances, the net effect on the configuration coordinate is minimal in moving between equilibrium configurations.

From the final two adjustable parameters it is possible to calculate \(\Delta_e\) for each sample using Eq. (24). These values are listed in Table II. It is observed that as the mass of the network modifier ion increases there is a dramatic change in the asymmetry. As this ion becomes heavier the difference in the minima of the two wells becomes less, implying that the change in the local environment of the Eu\(^{3+}\) ion becomes less pronounced as you go as Li → Na → K → Rb → Cs. It has been reported that in binary alkali silicate glasses the glass becomes more ordered as the radius of the alkali-metal ion increases. \(^10\)

This same trend would be expected to continue in these glasses and as the glass becomes more ordered there would be less opportunity for multiple configurations leading to a smaller asymmetry between the two potential wells.

From Eq. (7) and the fact that the initial population of well I must equal the final population of well I and well II, it is possible to find the final populations of the two wells for each sample. These populations along with the ratio of the final population of well II to the initial population of well I are given in Table II. This ratio can be interpreted as the relative effectiveness of moving an ion initially in well I to well II. It is observed that in LS5, NS5, and KS5 almost 100% of the ions are driven into well II. In RS5 and CSS a majority will end up in well II, however, it is a much smaller number than in the first three. In the heavier alkali-metal glasses it is harder to trap the ions in well II, implying the change in local environment of the Eu\(^{3+}\) ions is less than in the lighter alkali-metal glasses.

The inability to produce a laser-induced grating in fluoride glasses is also consistent with the double-minimum potential-well model which requires the presence of high-energy "phonons" to enable the ions to surmount the barrier and hop from well I to well II. With the absence of the high-energy local mode vibrations produced by radiationless relaxation of the Eu\(^{3+}\) ions the ions remain trapped in well I and no grating will be produced.

Finally, the temperature variation of the laser-induced grating signal intensity can be explained using the same model. Solving Eq. (7) for \(N_{I1}(\infty)\) and substituting directly into Eq. (11) leads to the following equation for the laser-induced grating signal intensity:

\[I \propto N_{I1}(\infty) \Delta n_{II-1} \left(\frac{\nu_1}{\nu_{II}} \right) \exp \left(\frac{2\Delta_e}{k_B T} \right). \]

\[(27) \]

Thus the measured activation energy is half the asymmetry. From Sec. IID the activation energy was measured to be 2219 cm\(^{-1}\) leading to an asymmetry of 1109.5 cm\(^{-1}\) for the high-temperature case. Even though this glass is different than the silicate glasses discussed above it is seen that the asymmetry is of the same order. The low-temperature activation energy was found to be 189.6 cm\(^{-1}\), giving an asymmetry of 94.8 cm\(^{-1}\). This suggests that as the temperature is lowered the minima of the two wells approach each other implying that the difference in energy of the ions in each well at low temperature is not

Table II. Summary of parameters.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\Delta_e) (cm(^{-1}))</th>
<th>(N_I(0))</th>
<th>(N_I(\infty))</th>
<th>(N_{II}(\infty))</th>
<th>(\frac{N_{II}(\infty)}{N_I(0)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS5</td>
<td>6068.38</td>
<td>1.041 \times 10^{18}</td>
<td>0</td>
<td>1.041 \times 10^{18}</td>
<td>1.00</td>
</tr>
<tr>
<td>NS5</td>
<td>1714.43</td>
<td>1.809 \times 10^{18}</td>
<td>1.0 \times 10^{13}</td>
<td>1.808 \times 10^{18}</td>
<td>0.999</td>
</tr>
<tr>
<td>KS5</td>
<td>838.61</td>
<td>0.815 \times 10^{18}</td>
<td>1.81 \times 10^{14}</td>
<td>7.969 \times 10^{13}</td>
<td>0.893</td>
</tr>
<tr>
<td>RS5</td>
<td>225.84</td>
<td>0.718 \times 10^{18}</td>
<td>2.21 \times 10^{13}</td>
<td>4.972 \times 10^{13}</td>
<td>0.992</td>
</tr>
<tr>
<td>CSS5</td>
<td>89.69</td>
<td>0.442 \times 10^{18}</td>
<td>2.04 \times 10^{15}</td>
<td>2.376 \times 10^{15}</td>
<td>0.538</td>
</tr>
</tbody>
</table>
as great as at high temperature. This leads to the conclusion that at low temperature the local structure around each Eu$^{3+}$ ion is close to the same in each configuration. This seems to be reasonable since at low temperature you would expect the structure to resist changes to a new configuration whereas at high temperatures the changes are more likely.

IV. DISCUSSION AND CONCLUSIONS

The double-minimum potential-well model used to describe the formation of the permanent, laser-induced grating agrees well with experimental results. It also provides some insight into the physical processes involved in the formation and erasure of these gratings. However, caution must be used in the interpretation of the physical parameters since a simple model is being used to describe a complex and poorly understood physical system.

The Eu$^{3+}$ ions play a major role by providing the high-energy local mode phonons required to produce a structural modification of the glass host. The strength of the grating which can be produced is proportional to the concentration of Eu$^{3+}$ ions, however, at high Eu$^{3+}$ concentrations saturation effects occur.

The structure of the glass host in the local environment of the Eu$^{3+}$ ions is also important to the formation of the grating. By changing one of the network modifier ions, variations in the laser-induced grating signal intensity can be produced.

As a simple model consider the glass to consist of point masses connected by springs. These point masses have available to them two equilibrium configurations which result from a change in position or a change in the force constants of the springs to which they are attached. Independent measurements have shown the elastic constants of the glasses to decrease from LS5 to CS5. This implies that the two equilibrium configurations will be more stable in the lighter alkali-metal glasses than in the heavier ones. This will result in a larger value of $N_{\text{II}}(\infty)/N_{\text{I}}(0)$ in the lighter alkali-metal glasses than in the heavier alkali-metal glasses and is what is observed in Table II.

Stronger elastic constants also suggest there will be less displacement of the ions in the lighter alkali-metal glasses. This is exactly what was calculated in Sec. III where it was found that d ranged from 0.023 Å for LS5 to 0.189 Å for CS5. Also in Sec. III it was discovered that the ratio of k_{II} to k_{I} was 1.329. Since k_{I} decreases from LS5 to CS5, $\Delta k = k_{\text{II}} - k_{\text{I}}$ will also decrease from the lighter to the heavier alkali-metal-ion glasses. This suggests that Δe should be largest in LS5 and decrease to its smallest value in CS5. However, the actual physical displacement of the ions increases from LS5 to CS5 and suggests Δe should increase from LS5 to CS5. In order to form a permanent, laser-induced grating whose signal intensity decreases for LS5 to CS5 as seen in Fig. 1, Δe must decrease from LS5 to CS5. Therefore, the change in force constants must dominate over the change in position.

Measurements of the temperature dependence of the laser-induced grating signal intensity provides a direct means of obtaining the asymmetry and verifying the two-level-system model. For the glasses investigated in this paper the asymmetries, as found by the two methods, were of the same order of magnitude. Lowering the sample temperature results in a decrease in the asymmetry suggesting that as the temperature decreases the glasses begin to resist changes to their structure.

All of the above results are important when considering these glasses for potential optical devices. Even though much more is understood concerning the formation of the grating, the exact structure of the glass host is still unclear. Knowledge of this structure will lead to a better understanding of the processes involved.

ACKNOWLEDGMENTS

This research was supported by the U.S. Army Research Office.
Characteristics of laser-induced gratings in Pr\(^{3+}\) - and Eu\(^{3+}\)-doped silicate glasses

Edward G. Behrens and Richard C. Powell

Center for Laser Research, Oklahoma State University, Stillwater, Oklahoma 74078

Douglas H. Blackburn

National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Received October 18, 1989; accepted February 23, 1990

Four-wave mixing techniques are used to produce laser-induced gratings in Pr\(^{3+}\)-doped silicate glasses for the first time to our knowledge. The characteristics of the laser-induced grating are investigated and compared with those found in Eu\(^{3+}\)-doped silicate glasses. An attempt to form a laser-induced grating in an Er\(^{3+}\)-doped silicate glass was made. Under excitation conditions similar to those in previous experiments, no laser-induced grating could be produced. Differences between the samples are discussed in terms of high-energy phonons, which are emitted when the rare-earth ion relaxes nonradiatively. Temperature dependences of the laser-induced grating signal intensity are investigated in Eu\(^{3+}\)-doped silicate glasses, and the results are compared with theoretical predictions.

1. INTRODUCTION

Recently we employed four-wave mixing techniques to produce superimposed permanent and transient laser-induced gratings (LIG's) in a variety of Eu\(^{3+}\)-doped glasses. Laser-induced holographic gratings of this type are of significant interest to technologies such as optical data processing, medical imaging, and fiber-optic communication, for which holographic information storage and retrieval are important. The glasses used to write LIG's in these experiments are common silicate and phosphate glasses. So far we have attempted to write LIG's in Eu\(^{3+}\)- and Nd\(^{3+}\)-doped glasses, with success being achieved only in Eu\(^{3+}\)-doped samples. In this paper we report the results obtained from attempts to write LIG's in Pr\(^{3+}\)- and Er\(^{3+}\)-doped silicate glasses and extend our previous research on Eu\(^{3+}\)-doped silicate glasses to include measurements of the energies of grating formation. Grating formation was accomplished in the Pr\(^{3+}\)-silicate glass, and various properties of the LIG in this sample are presented. No permanent gratings were observed in the Er\(^{3+}\)-doped sample.

The experimental configuration used to produce LIG's and measure their properties was described previously. The output from a Spectra-Physics cw argon-ion laser is tuned to resonance with a preselected absorption transition of the rare-earth ion. The values of the argon-ion laser wavelengths used in these experiments are 488.0 nm for the Pr\(^{3+}\)- and Er\(^{3+}\)-doped samples and 465.8 nm for the Eu\(^{3+}\)-doped sample. This laser beam is split into two write beams, which are focused to a 500-μm beam waist and crossed inside the sample. The path lengths of the two write beams are maintained equal to within the coherence length of the laser. In the region in which the write beams overlap, a sinusoidal interference pattern is created. The interference pattern from the crossed write beams creates a change in the optical properties of the sample with the same shape. This is the LIG whose wavelength, λ, depends on the write-beam wavelength, λ\(_{w}\), and on the write-beam crossing angle, 2θ, through the condition

\[
\lambda = \frac{n \lambda_{w}}{2 \sin \theta}.
\]

The LIG is probed by a third beam with wavelength λ\(_{p}\), which scatters off the grating. In these experiments a He-Ne laser is used as a probe beam. The maximum scattered signal beam is obtained at the Bragg condition for the incident probe beam:

\[
n \lambda_{p} = 2 \lambda \sin \Phi,
\]

where Φ is the Bragg angle. A mirror is used to pick off the signal beam and direct it through a cut-off filter to eliminate sample fluorescence. A photomultiplier tube is then used to detect the signal and the output processed by a PAR-EG&G boxcar averager, and a hard copy is recorded. To separate the permanent and the transient portions of the LIG a chopper is inserted between the write beams and the sample. When the write beams are chopped off, the permanent portion of the LIG is the only visible signal. When the write beams are on, the visible signal consists of a superposition of the permanent and transient portions of the LIG signal. Thus the permanent and transient portions of the LIG signal can be separated and measured. For measurements of the erase time of the permanent LIG a single beam, tuned to the same absorption transition as used to write the grating, illuminates the grating region. Owing to the length of the erase time the output from the photomultiplier tube is sent directly to a strip-chart recorder. To measure the temperature dependence of the permanent LIG the sample is mounted in a resistance-heated furnace that can control the temperature between 300 and 775 K.

© 1990 Optical Society of America
2. EXPERIMENTAL RESULTS

Permanent changes in the refractive index of a material can be induced by lasers as a result of several physical processes. However, most of these processes are not consistent with the experimental observations reported previously. For example, the photoionization of defects can cause a change in the refractive index.3,4 However, the energy-level scheme for Eu3+ in these glass hosts is not compatible with an ionization transition at the laser wavelength and powers used in these experiments. Also, no spectral evidence was observed for the presence of Eu ions in valence states other than trivalent. In addition, the fact that optical erasure occurs only when Eu3+ ions are resonantly excited is not consistent with the photoionization mechanism.

Thermal processes can directly produce refractive-index changes and laser-induced stress-optic changes. Among these changes are permanent effects that have been seen in rare-earth-doped glasses.5,7 However, these effects occur at higher laser powers than those used in our experiments. For the laser powers used in these experiments, the thermal properties of the glass hosts produce a rise in the temperature of the sample of only a few degrees, which is too small to give a measurable effect.

The mechanism that is consistent with the observed results is a change in the local structure of the glass caused by the vibrational energy released during the radiationless relaxation of the rare-earth ions. The radiationless relaxation transitions of rare-earth ions in glasses have been shown to be multiphonon emission processes, each of which generates several high-energy phonons of the order of 1000 cm-1.7,8 Here the term "phonon" is used to refer to any vibrational mode of the host material. Figure 1 displays the relevant energy levels of several trivalent rare-earth ions. Since these phonons are generated by the rare-earth ions and the thermal diffusion in glasses is slow, they remain localized, thus creating a high level of nonthermalized vibrational energy around each ion. This can produce a local effective temperature that is extremely high, depending on the energy gap that is being crossed in the relaxation process. For the excitation conditions in the Eu3+-doped-glass experiments, effective local temperatures of several thousand kelvins can be produced. This is easily hot enough to permit ionic motion over short ranges and thus produce a local structural modification of the host glass. The energy associated with this local temperature rise is consistent with the measured activation energies for the formation and erasure of permanent gratings. In addition, the time scale of several minutes for grating formation and erasure is consistent with the time scale for producing structural changes.

The rare-earth ion plays a key role in the formation and erasure of permanent LIG's in these glasses since these ions are the source of the high-energy phonons. To study this role we conducted experiments on silicate-glass samples doped with Pr3+, Er3+, and Eu3+.

A. LIG Characteristics in Pr3+-Doped Glass

The characteristics of the LIG in the Pr3+ silicate glass (70 SiO\textsubscript{2}, 15 Na\textsubscript{2}O, 5 ZnO, 5 BaO, and 5 Pr\textsubscript{2}O\textsubscript{3} in units of mol.) were investigated as functions of the laser power and write-beam crossing angle. The same qualitative behavior was observed in the Pr3+-doped sample as was seen in the Eu3+-doped glasses.1,2 When the Pr3+-doped sample was illuminated by the crossed write beams tuned to resonance with the \(3H_{4} \rightarrow P_{6}\) absorption transition, a small signal was observed immediately. This was followed by a gradual buildup of signal intensity. The time required to reach the maximum LIG signal intensity is of the order of tens of seconds, with the exact time depending on the laser power. If the laser write beams are not tuned in resonance with the \(3H_{4} \rightarrow P_{6}\) absorption transition, no signal is observed. When the write beams are blocked, the LIG signal intensity rapidly decreases. However, it decreases not back to the baseline but rather to a value of approximately 90% of the maximum LIG signal, where it remains indefinitely. The remaining portion is referred to as the permanent signal and can be erased by illuminating the grating with a single laser beam tuned to resonance with the same Pr3+ absorption transition used to write the grating. It should be noted that no erasure occurs if the single beam is not tuned to the \(3H_{4} \rightarrow P_{6}\) absorption transition. The erase time is of the order of tens of seconds, with the exact time depending on laser power.
This permanent signal can also be erased thermally. The important thing to note is that the build-up and erase times in the Pr$^{3+}$-doped glass are all of the order of seconds, whereas in the Eu$^{3+}$-doped glass these time scales were of the order of tens of minutes.

The lifetime of the transient part of the LIG was measured to be 200 μsec, which is approximately the same as the fluorescence lifetime of the 1D_2 level of the Pr$^{3+}$ ion, which was measured to be 194 μsec. For a population grating the signal intensity is proportional to the square of the modulation of the index of refraction, Δn:

$$I_s = |n|^2. \quad (3)$$

Δn will decay with the decay of the excited-state population, leading to a time dependence of the signal intensity of

$$I_s(t) = I_s \exp(-2t/\tau_f), \quad (4)$$

where τ_f is the fluorescence lifetime. Thus the grating decays with a lifetime of half of the fluorescence lifetime. However, in these samples there is an interference effect between the permanent and transient LIG's that leads to a signal intensity given by

$$I_s = |\Delta n|\exp(-2t/\tau_f) + 2|\Delta n|\exp(-t/\tau_f), \quad (5)$$

where Δn_P and Δn_T are the changes in the index of refraction due to the transient and permanent gratings, respectively, and $1/\tau_f$ is the fluorescence decay rate. The first term is much smaller than the last two and can be neglected. Thus the lifetime of the transient grating will be equal to the fluorescence lifetime of the excited state responsible for the population grating. Therefore the transient grating is associated with an excited-state population grating that is due to the difference in susceptibility of the ions in the $3H_4$ ground state and the $1D_2$ metastable state.

Figure 2 displays the normalized intensities of the permanent and transient LIG signals as a function of the total write-beam crossing angle, 2θ. It is seen that both the transient and permanent signals have the strongest intensity at the smallest write-beam crossing angle, which corresponds to the largest value of grating spacing. As the write-beam crossing angle is increased, and the grating spacing decreases, the intensities of both the permanent and the transient signals decrease. This is typical behavior for FWM signals with the exact form depending on the coupling mechanism for the beams.\(^{10}\)

The LIG signal intensity, build-up times, and erase times were also measured for different values of the total power of the laser write beams. The absolute value of the scattering efficiency, which is defined as

$$\eta = P_s/P_p, \quad (6)$$

where P_s is the power of the signal beam and P_p is the power of the probe beam, was measured to be 1.33 × 10^{-4}. This is of similar magnitude to values consistently found in Eu$^{3+}$-doped samples.

Figure 3 shows the normalized intensity of the permanent and transient signals as a function of the laser power. As in the case of the Eu$^{3+}$-doped samples the transient signal intensity varies linearly with laser power throughout the range of write-beam powers available in these experiments. The permanent signal displays nonlinear behavior up to approximately 200 mW, where saturation occurs. Equation (5) predicts the power dependence of the LIG signal intensity. Since Δn_P and Δn_T depend on the difference in population between the ground and excited states, they will vary linearly with laser power. The permanent part of the LIG signal intensity, which is proportional to $|\Delta n_P|^2$, is predicted to display a quadratic power dependence. This is demonstrated by the solid curve in Fig. 3, where the expression $a \lambda^2$ was fitted to the data below 200 mW. Above 200 mW saturation of the LIG occurs, which is represented by the solid horizontal line. Since $\Delta n_P \ll \Delta n_T$, Δn_T can be neglected in the middle term of Eq. (5), leaving a transient LIG signal intensity proportional to Δn_T, and displaying a linear type behavior as observed. The dashed line represents a linear-regression fit to the transient grating values.

The measurements of the transient and permanent signal intensities took place after the permanent signal had reached its maximum value. Thus the variation of the
transient grating signal intensity is measured in the presence of a strong permanent grating. The observed saturation in the permanent signal shows that there is a limit to the structural modification of the glass.

The build-up and erase times of the permanent grating as a function of laser write-beam power are displayed in Fig. 4. It is seen that as the laser power is increased both the erase time and the build-up time decrease. The erase time decreases linearly as the laser power is increased, but the build-up time decreases almost exponentially with increasing laser power. The general trend in both cases of decreasing times with increasing power is consistent with the model proposed previously and is discussed further below.

The final measurement performed on the Pr$^{3+}$ sample was of the effect of temperature on the formation of the permanent LIG. The sample was placed in a temperature-controlled furnace and the temperature increased to the desired level. A LIG was then written and the scattering intensity of the permanent portion measured. This procedure was repeated as the temperature was increased from 300 to approximately 600 K. Figure 5 shows the results of these measurements. These results display a behavior that is nonexponential. There seems to be an inflection at approximately 415 K. Fitting the regions above and below 415 K separately with single exponential equations leads to the solid lines displayed in Fig. 5. The activation energies measured for the high- and low-temperature regions are 2.825×10^3 and 9.28×10^3 cm$^{-1}$, respectively. This behavior is also seen in the Eu$^{3+}$-doped glasses and is discussed in more detail below.

B. Fluorescence Characteristics of Pr$^{3+}$- and Er$^{3+}$-Doped Glasses

To characterize the relaxation process of the Pr$^{3+}$ and Er$^{3+}$ ions, which is important to the formation or lack of formation of the LIG, fluorescence spectra were measured. To form the permanent LIG in the Pr$^{3+}$-doped glass sample the Pr$^{3+}$ ion is excited from the 2H_6 ground state to the 2P_0 excited state. Figure 6 shows the room-temperature fluorescence of the Pr$^{3+}$-doped glass. The fluorescence spectrum displays peaks at 540, 620, 645, 715, and 735 nm, which correspond to radiative transitions from the 2H_6 state to the 2H_4, H_6, $^2F_{5/2}$, $^2F_{7/2}$, and $^2F_{1/2}$ states, respectively. These levels then relax nonradiatively to the ground state. There is also a peak at 690 nm, which corresponds to the $^1D_2-^2H_4$ transition. A transition from 1D_2 to 2H_4 should also be present at 605 nm; however, in this case it is buried in the shoulder of the $^2P_0-^2H_6$ transition. The nonradiative relaxation occurring in this sample produces phonons with energies of the order of 1000 cm$^{-1}$ and will produce the structural modification needed to form the permanent LIG. The same type of relaxation behavior is observed in Eu$^{3+}$-doped glasses, which produce permanent LIG's.

In the case of a Nd$^{3+}$-doped glass sample (Nd$_2$PO$_4$) the Nd$^{3+}$ ion is excited from the $^4I_{92}$ ground state to the $^2G_{92}$ excited state. Relaxation occurs through the emission of phonons; however, in the Nd$^{3+}$ ion the energy levels are much closer than in the Eu$^{3+}$ or Pr$^{3+}$ ions. Thus, when the Nd$^{3+}$ ion relaxes, the phonons emitted are of much lower energy than those from Eu$^{3+}$ or Pr$^{3+}$, and as a result no permanent LIG is formed.

The silicate glass doped with Er$^{3+}$ (70 SiO$_2$, 15 Na$_2$O, 5 ZnO, 5 BaO, and 5 Er$_2$O$_3$ in units of mol %) is an interesting case. From Fig. 1 it is seen that overall the spacing between the energy levels is much greater than in Nd$^{3+}$
but not quite so large as in Eu$^{3+}$ or Pr$^{3+}$. Write-beam wavelengths of 4880 and 5145 Å, which correspond to absorption transitions of the Er$^{3+}$ ion from the $^4I_{15/2}$ ground state to the $^4I_{15/2}$ and $^4H_{15/2}$ excited states, respectively, were utilized in an attempt to create a permanent LIG in this sample. Under both excitation conditions no grating was observed. The explanation for this is found in the fluorescence spectrum of the Er$^{3+}$ sample obtained with the 4880-Å wavelength as the excitation source and is displayed in Fig. 7. A large peak is observed near 540 nm, which corresponds to a radiative transition from the $^4S_{3/2}$ excited state to the $^4I_{15/2}$ ground state. This shows that the Er$^{3+}$ ion relaxes nonradiatively from the $^4S_{3/2}$ level down to the $^4I_{15/2}$ level by the emission of phonons before relaxing radiatively to the ground state. These phonons have small energies, comparable with those in the Nd$^{3+}$ sample, which are insufficient to create the changes necessary to produce a permanent LIG. Notice that there is a broad peak at 630 nm, which corresponds to a radiative transition from the $^4I_{15/2}$ excited state to the ground state. For the Er$^{3+}$ ions to relax nonradiatively from the $^4S_{3/2}$ level to the $^4I_{15/2}$ level they must cross an energy gap comparable with those seen in the Eu$^{3+}$ and Pr$^{3+}$ samples, suggesting the existence of high-energy phonons. However, from the size of the fluorescence peak it appears that only a few of these phonons are available for the formation of the permanent LIG. No transient grating is observed in the Er$^{3+}$-doped sample. Since no permanent grating is present, only the first term in Eq. (5) survives. If a transient grating occurs it will have an intensity proportional to $|\Delta n|^2$. In the Eu$^{3+}$- and Pr$^{3+}$-doped samples no gratings associated with this term are observed. Therefore it is not surprising that no transient grating is seen in the Er$^{3+}$-doped sample.

These results confirm the previous conclusion that, to create the type of permanent LIG described here, it is necessary to have a high concentration of rare-earth ions that have a relatively large energy gap between excited electronic energy levels and that this gap should be crossed by radiationless relaxation.

C. Activation Energies for LIGs in Eu$^{3+}$-Doped Glasses

Previously a model was developed to describe the effect of the network modifier ions on the permanent LIG signal intensity in Eu$^{3+}$-doped alkali-metal silicate glasses. The compositions of these glasses are listed in Table 1. One parameter predicted by this model was the activation energy for grating formation. To verify the predicted value, the temperature dependence of the scattering intensity was measured and is displayed in Fig. 8. The same procedure as reported for the Pr$^{3+}$-doped glass was used here. For the samples with the heavier modifier ions, KS5, RS5, and CS5, the intensity varies exponentially with temperature. This leads to the straight lines in Fig. 8(a) with a single slope on the semilog plot. However, as the mass of the modifier ion of the sample decreases, to NS5 and LS5, the intensity no longer displays a single exponential behavior but rather has two regions with differing slopes. These are displayed, by the solid and dashed lines in Fig. 8(b). The intersection of the lines occurs at approximately 455 K for both samples. An identical type of behavior was observed in a Eu$^{3+}$-doped phosphate glass, where the temperature at the intersection of the slopes was 263 K.

That a structural modification of the host is responsible for the permanent LIG suggests that there are two processes responsible for this modification in the rare-earth-doped glasses. Remember that this behavior was also seen in the Pr$^{3+}$ sample. One process dominates at low temperature, and the other at high temperature. In the high-temperature region the temperature dependence of the intensity is controlled by the network-modifier ion of the host. This is displayed in Fig. 8 by the variation of the slopes in this region. In the low-temperature region the temperature dependence of the intensity must be controlled by a common element among the different rare-earth-doped samples, such as other network-former or network-modifier ions, in order to produce roughly the same activation energy for each sample. It would also appear that the temperature at which crossover occurs depends on the host glass.

Table 2 lists the measured activation energies, where ΔE_1 and ΔE_2 refer to these low- and high-temperature regions. Since the two-level system model was concerned only with the effect of the alkali-metal network modifier
ion, only the high-temperature region will be discussed. More investigations need to be undertaken to determine the source of the low-temperature activation energy.

3. DISCUSSION AND CONCLUSIONS

The results obtained on the Pr3+-doped silicate glass are consistent with the double-minima potential well model proposed previously.1,2,11 In this model the possibility of two different structures of the glass host in the local environment of the rare-earth ion leads to double-minima potential wells for the rare-earth-ion electronic energy levels. It is assumed that the index of refraction is different for each well and that the total index of refraction of the material is \(n = n_1 N_1 + n_2 N_2 \), where \(n_1 \) and \(n_2 \) are the indices of refraction of the different wells and \(N_1 \) and \(N_2 \) are the populations of these wells. The ions move from well I to well II when they receive energy from the nonradiative relaxation of the rare-earth ion.

In Subsection 2C measurements of the activation energy for grating formation, \(\Delta E \), were presented for Eu3+-doped alkali-metal glasses. These values can be compared with those predicted from the two-level system model proposed previously. In the two-level system model the LIG signal intensity is given by11

\[
I = |N_{\text{II}}(\infty)\Delta n_{\text{II}}|^2, \tag{7}
\]

where \(N_{\text{II}}(\infty) \) is the population of well II in the peak of the grating at long times and \(\Delta n_{\text{II}} \) is the difference in index of refraction between wells I and II. \(N_{\text{II}}(\infty) \) can be expressed as

\[
N_{\text{II}}(\infty) = N_{\text{II}}(\infty) (\nu_I/\nu_H) \exp(\Delta_s/kT), \tag{8}
\]

where \(N_{\text{II}}(\infty) \) is the population of well I at long times, \(\nu_I \) and \(\nu_H \) are the attack frequencies of wells I and II, respectively, \(\Delta_s \) is the asymmetry of the two-level system, \(k \) is Boltzmann's constant, and \(T \) is the temperature. This gives the temperature-dependent LIG signal intensity as

\[
I = N_{\text{II}}^2(\infty)\Delta^2 n_{\text{II}}(\nu_I/\nu_H)^2 \exp(2\Delta_s/kT). \tag{9}
\]

For the measurements here the prefactors are11 \(\Delta n_{\text{II}}^2 = 2.8 \times 10^{-3} \) and \((\nu_I/\nu_H)^2 = 1.77. N_{\text{II}}^2(\infty) \) depends on the host and varies from 0 to 2.04 \(\times 10^{15}. \) The values for the parameters of Eq. (9) were obtained previously by fitting the equation describing the effective scattering efficiency,

\[
\eta_{\text{eff}} = [\Delta n_{\text{II}}^2(1 + (\nu_I/\nu_H) \exp[-h (k/m) \Delta_s/kT] T \tan \theta)^{-1} \times \exp(-d(2mV_0/h^2))]^{-2}. \tag{10}
\]

to the experimental values of the effective scattering efficiency as a function of the network modifier ion mass. \(\Delta n_{\text{II}}, \nu_I/\nu_H, \) \(h k/2 k_\text{B} T \) \(\tan \theta, \) and \(d(2V_0/h^2) \) were treated as adjustable parameters. \(\Delta_s \) is related to the adjustable parameters through the equation

\[
\Delta_s = (hk/\tan \theta m^{1/2}) \exp(-d(2mV_0/h^2)^{1/2}). \tag{11}
\]

However, the main concern is with the exponential term in Eq. (9). In order to relate this term to the experimental data we compared it with an Arrhenius-type behavior, \(I = I_0 \exp(\Delta E/kT). \) From this it is seen that the measured value of the activation energy \(\Delta E \) is equal to twice the asymmetry of the two-level system model \(\Delta_s. \)

The values obtained for \(\Delta_s \) for all the samples along with the measured activation energies found in Subsection 2C are presented in Table 3. It is seen that the agreement among the values is quite good considering the simplicity of the model, all values are within an order of magnitude of one another. It should also be pointed out that the equation derived for the permanent LIG signal intensity is applicable to any rare-earth ion and depends only on the

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\Delta E_{\text{II}}) (x 10(^2) cm(^{-1}))</th>
<th>(\Delta E_{\text{I}}) (x 10(^2) cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS5</td>
<td>3.87</td>
<td>8.16</td>
</tr>
<tr>
<td>NS5</td>
<td>3.02</td>
<td>7.93</td>
</tr>
<tr>
<td>KS5</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>RS5</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>CS5</td>
<td>0.47</td>
<td>0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\Delta E) (x 10(^2) cm(^{-1}))</th>
<th>2(\Delta_s) (x 10(^2) cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS5</td>
<td>3.87</td>
<td>12.14</td>
</tr>
<tr>
<td>NS5</td>
<td>3.02</td>
<td>3.43</td>
</tr>
<tr>
<td>KS5</td>
<td>0.89</td>
<td>1.68</td>
</tr>
<tr>
<td>RS5</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>CS5</td>
<td>0.47</td>
<td>0.18</td>
</tr>
</tbody>
</table>
glass host. Therefore the activation energy from the Pr$^{3+}$-doped silicate glass should be the same as that in the NSS sample. This activation energy for the Pr$^{3+}$ sample was found to be 2.825 \times 103 cm$^{-1}$, compared with 3.428 \times 103 cm$^{-1}$ for the NSS sample, in excellent agreement with the two-level system model.

It is found that in the Pr$^{3+}$-doped glass the LIG build-up and erase times are faster than those found previously for Eu$^{3+}$-doped glasses. To compare the ability to form LIG's in the Pr$^{3+}$- and Eu$^{3+}$-doped glasses, a quantum efficiency for grating formation is defined as the fractional amount of refractive-index change created per phonon emitted. A theoretical expression for this is derived below.

The wavelengths used to write the LIG's are different in each sample. In the Pr$^{3+}$-doped sample an excitation wavelength of 468.0 nm was used, which had a power density of 62.5 W/cm2 when focused inside the sample. The Eu$^{3+}$-doped sample was excited with a wavelength of 465.8 nm and a power density of 62.5 W/cm2. The absorption coefficients were 5.4 cm$^{-1}$ for the Pr$^{3+}$-doped sample and 3.78 cm$^{-1}$ for the Eu$^{3+}$-doped sample. The number of photons absorbed per unit time can then be calculated for each sample. These are 1.53 \times 107 sec$^{-1}$ for the Eu$^{3+}$-doped sample and 1.08 \times 108 sec$^{-1}$ for the Pr$^{3+}$-doped sample. These values are far below those needed to produce a saturation of the absorption of the rare-earth ions in the interaction region.

To calculate the number of phonons produced for each rare-earth ion that is excited, several assumptions need to be made. First, it has been reported that in these types of silicate glass the highest-energy phonons available have energies of approximately 1000 cm$^{-1}$. Thus the assumption is made that the nonradiative energy emitted when the rare-earth ion relaxes will be in the form of 1000 cm$^{-1}$ phonons. The second assumption concerns the relaxation channel followed by the rare-earth ion. In the case of the Eu$^{3+}$ ion, measurements have shown that no radiative relaxation occurs from the 5D_4 or 5D_0 levels. Thus the Eu$^{3+}$ ion, which is excited into the 5D_2 level, is assumed to relax nonradiatively to the 5D_0 metastable state. From this level the Eu$^{3+}$ ion relaxes radiatively to the 5F_1 level. The final step occurs nonradiatively with the relaxation from the 5F_1 state to the 5F_0 ground state. The nonradiative relaxation mentioned in the above process generates approximately 4000 cm$^{-1}$ of energy, which is emitted in the form of four high-energy phonons.

For the Pr$^{3+}$ ion, which is excited into the 3P_2 state, fluorescence measurements show that the majority of the fluorescence occurs from the 3P_0-3P_2 transition. Relaxation then occurs by nonradiative relaxation from the 3P_2 state to the 1H_4 ground state. Thus it is assumed that on average every ion produces an amount of nonradiative energy equivalent to the energy gap between these two states. The energy of this gap is approximately 5000 cm$^{-1}$, so that five high-energy phonons are produced for each Pr$^{3+}$ ion excited.

Using the above assumptions, we found that there are 6.12 \times 104 phonons/sec produced in the Eu$^{3+}$-doped sample and 5.40 \times 104 phonons/sec produced in the Pr$^{3+}$-doped sample at these power levels.

The scattering efficiency for the two samples is 2.53 \times 10$^{-5}$ and 1.33 \times 10$^{-4}$ for the Eu$^{3+}$-doped sample and the Pr$^{3+}$-doped sample, respectively. The build-up time for the Eu$^{3+}$-doped sample is 900 sec and for the Pr$^{3+}$-doped sample 60 sec. This gives a change in scattering efficiency per unit time of 2.81 \times 10$^{-3}$ sec$^{-1}$ for the Eu$^{3+}$-doped sample and 2.22 \times 10$^{-3}$ sec$^{-1}$ for the Pr$^{3+}$-doped sample. Defining a quantum efficiency for grating formation as the change is scattering efficiency per phonon,

$$\eta_{QE} = \Delta \eta/\phi,$$

where $\Delta \eta$ is the change in scattering efficiency per unit time and ϕ is the number of phonons emitted per unit time, we find that η_{QE} for the Eu$^{3+}$-doped sample is 4.59 \times 10$^{-26}$ and for the Pr$^{3+}$-doped sample 4.10 \times 10$^{-26}$.

Thus in the Pr$^{3+}$-doped sample the change in LIG scattering efficiency per phonon is 10 times stronger than in the Eu$^{3+}$-doped sample.

This difference in ability to form the LIG was unexpected in terms of the two-level system model. One parameter that affects grating formation is the asymmetry, given in Eq. (11), which is a measure of the difference in energy between the two wells. The asymmetry was predicted to be the same for the two samples, and measurements confirmed this prediction. Therefore the difference in grating-forming ability does not seem to be attributable to the asymmetry. Another parameter involved in grating formation is the barrier height between the two wells. The barrier height, V_b in Eq. (11), is part of an adjustable parameter, which also contains d, the configuration coordinate distance. However, it seems that both of these parameters, like the asymmetry, should be related to the glass host and not to the rare-earth ion. The final possibility is that the origin of the refractive-index change in the two potential wells is associated with differences in the polarizabilities of the rare-earth ions in different local environments. In this case the Pr$^{3+}$ and Eu$^{3+}$ ions would need to experience different changes in polarizabilities when they move between the two wells. This would create a difference in grating-forming ability.

The variation of the polarizability of Nd$^{3+}$ ions from host to host was recently investigated by four-wave mixing. The observed change in polarizability that is due to optical pumping is significantly greater than the well-to-well change observed here. Thus it appears that this difference in polarizability might be the origin of the refractive-index difference of the two potential wells observed in these experiments. This possibility will be investigated in future experiments.

In conclusion, we have presented results on the formation of laser-induced holographic gratings in Pr$^{3+}$- and Eu$^{3+}$-doped glasses. Characteristics of the LIG in Pr$^{3+}$-doped silicate glass were discussed and found to be similar to those seen in Eu$^{3+}$-doped glasses. Explanations have been presented for the lack of grating formation in Er$^{3+}$- and Nd$^{3+}$-doped glasses based on the absence of high-energy phonons. Comparisons between experimental values of the activation energy for grating formation and those predicted by the two-level system model were conducted, and it was found that the two-level system model is quite accurate in predicting these values.

ACKNOWLEDGMENT

This research was supported by the U.S. Army Research Office.
REFERENCES

6. L. G. DeShazer, Solidlite, Suite 224, 18150 NE 85th Street, Redmond, Washington 98052-3529 (personal communication).
7. C. L. Sauer, PhD dissertation (University of Southern California, Los Angeles, Calif., 1980).
Optical applications of laser-induced gratings in Eu doped glasses

Edward G. Behrens, Richard C. Powell, and Douglas H. Blackburn

Laser-induced changes in the refractive index are used to create superimposed transient population gratings and permanent structural gratings in Eu" doped silicate and phosphate glasses. Potential uses for these laser-induced gratings (LIGs) are investigated. First, the structural gratings are shown to be permanent at room temperature and their use as a holographic storage medium is discussed. Second, a permanent LIG of this type is used to demultiplex multifrequency laser beams, demonstrating its use as a tunable line filter. Third, the transient LIG is used to modulate the amplitude of a laser beam which is passed through the sample and scatters off the permanent LIG. This results in information being transferred from one beam to another beam. It was found that thermal lensing plays an important role in the formation of this type of permanent LIG and a procedure for determining the tilt angle of the fringes of the LIG is discussed.

I. Introduction

In the past decade there has been a dramatic increase in interest in optical devices resulting from the emerging applications of optical technology. These devices rely on the interaction of light with matter and some of them are created by optical interference methods. Examples of this type include photooptical switches, narrowband waveguide reflection filters, and opto-optical deflectors. We have studied the interaction of laser light with Eu" doped glasses and reported the formation of superimposed permanent and transient laser-induced refractive index gratings (LIGs). We suggest several uses for these types of grating in glasses.

In Sec. II the experimental configuration used to write the LIGs is discussed. The formation of the LIGs is the same regardless of the planned application. Section III discusses three of the possible applications of LIGs in these glasses. The characteristics of these LIGs relevant to their use for holographic information storage, frequency selective filtering, and beam-to-beam information transfer through amplitude modulation are described.

II. Experimental Configuration

The experimental configuration used to form the LIGs has been reported previously. The output of a cw Ar-ion laser tuned to 4658 Å is split into two write beams and crossed inside the sample at an angle 20°. In the region where the beams overlap a sinusoidal interference pattern of the light intensity is created. This produces a modulation of the optical properties of the sample which will have the same sinusoidal pattern as that of the light intensity. This region is then probed with a third beam which sees the variation in the optical properties as a refractive index grating. A mirror mounted on a translational base which can move parallel to the sample is placed between the probe laser and the sample. This facilitates proper alignment of the probe beam and allows the angle between the probe beam and the perpendicular to the sample to be monitored. The probe beam, with a wavelength in the sample λm, is reflected off this mirror and onto the sample at an angle φs from the perpendicular to the sample. When this probe beam is properly aligned, a fourth beam, the signal beam, will be diffracted from the LIG. This signal beam carries information regarding the LIG and is monitored with a photomultiplier tube and recorded on a strip-chart recorder.

The samples used in these experiments are ordinary phosphate and silicate glasses which have been doped with Eu" ions. In the information storage and demultiplexing experiments a phosphate glass with composition 10 Eu(PO4)2 and 90 La(PO4)3 was used. In the signal modulation experiment the sample was a
silicate glass with composition 70 SiO₂, 15 Li₂O, 5 ZnO, 5 BaO, and 5 Eu₂O₃. All compositions are in mol %.

For convenience these samples will be referred to as EP and I.S, respectively. Both samples display the same LIG characteristics so either one could have been used for any of the experiments. The laser wavelength used for writing the gratings is in resonance with the ⁷F₅→⁷D₂ absorption transition of the Eu²⁺ ions.

III. Results

A. Holographic Information Storage

The time evolution of a LIG is reflected in the intensity of the signal beam and for the type of gratings of interest here this time dependence is displayed in Fig. 1. When the write beams are turned off the grating decays with a rate equal to the decay rate of the ⁵D₃ excited state of the Eu³⁺ ion. However, the signal does not return to zero but rather to approximately 60% of its original value due to the formation of a permanent grating. The permanent grating can then be erased thermally by heating the sample to temperatures above room temperature or it can be erased optically by illuminating the grating with a single beam tuned in resonance with the ⁷F₅→⁷D₂ absorption transition of the Eu³⁺ ion. No grating formation or erasure occurs if the beams are not in resonance with the ⁷F₅→⁷D₂ absorption transition.

A model was proposed to explain these gratings in which the network former and network modifier ions of the glass host can arrange themselves into two different configurations in the local environment of the Eu²⁺ ion. This leads to a double-minima potential well for the Eu²⁺ electronic energy levels. It is assumed that the material possesses a different index of refraction depending on which configuration is present. When the Eu³⁺ ion relaxes nonradiatively from the ⁷D₂ level to the ⁵D₃ level several high energy phonons are created. The local heating produced by the vibrational modes can produce a change in the structure of the local environment of the Eu³⁺ ion by causing the ions to move from one equilibrium configuration to the other.

The results demonstrate that permanent holographic images can be written in rare earth doped phosphate and silicate glasses using this technique. Since the mechanism responsible for the formation of the permanent LIG involves structural changes which are stable at room temperature, these images have an infinite fading time. These holograms have many applications in areas such as optical information processing and medical imaging where long time information storage is important. Even though the response time of the material is too slow for real time processing the room temperature stability makes it important for read only applications. This is a significant advantage over many photorefractive crystals which are currently being used in these applications.

To contrast the advantages and disadvantages of these rare earth doped glasses over photorefractive crystals consider the required properties of photorefractive crystals for holographic applications as proposed by Gunter and Huignard. The properties are:

1. sensitivity,
2. dynamic range,
3. recording and erasure time,
4. laser wavelength for inducing refractive index change,
5. resolution, and
6. room temperature operation.

There are two figures of merit used to determine the photorefractive sensitivity. In the first case the photorefractive sensitivity is given by

$$S_{\text{P}} = \frac{dn}{dw}$$

which is defined as the change in refractive index per absorbed energy and volume. Values between roughly 5 × 10⁻⁴ J/cm³ and 20 × 10⁻⁴ J/cm³ have been found for S₉ in photorefractive crystals. Although the refractive index change in rare earth doped glasses using low power laser beams is of the order of 10⁻³ to 10⁻⁴, which is roughly the same as in LiNbO₃, the long time needed to produce this change drastically reduces the sensitivity. Rough calculations give S₉ for rare earth doped glasses to be 9600 × 10⁻³ J/cm³, which is 3 orders of magnitude larger than in photorefractive crystals. However, the second definition, which is more practical in characterizing the holographic recording potential, defines the photorefractive sensitivity as

$$S_{\text{H}} = \frac{d(\eta \phi/\gamma)}{dw} \times \frac{1}{d}$$

where η is the diffraction efficiency and d is the sample thickness. This equation states that the sensitivity is the change in diffraction efficiency per unit absorbed energy and volume. Since diffraction efficiencies as high as 25% have been observed in these glasses, a value of 19.2 ml/cm² is calculated for S₉ as compared to values which range from 2.5–1000 ml/cm² for photorefractive crystals. In this case the rare earth doped glasses compare favorably to photorefractive crystals.
As mentioned in the above paragraph the maximum change in the refractive index in the rare earth doped glasses has been measured to range from 10^{-3} to 10^{-2}. This is identical to the results reported for LiNbO$_3$ and is in the range of values reported for numerous other photorefractive crystals.

Perhaps the main differences between photorefractive crystals and rare earth doped glasses occur in the recording and erase time of the grating. In photorefractive crystals, the refractive index changes are due to electrooptic effects driven by space charge fields and the time to record a grating depends on the efficiency of the charge generation and transport process. However, in the rare earth doped glass the refractive index change is due to a rearrangement of the structure in the local environment of the rare earth ion. This requires a large amount of vibrational energy and a long time is needed for the grating buildup. Thus, the time required to produce the refractive index change mentioned above is several orders of magnitude larger in rare earth doped glasses than in photorefractive crystals. The same time scales are also observed for grating erasure.

In most cases the laser wavelengths required to produce the refractive index changes range from the near UV to the near infrared for photorefractive crystals. For the rare earth doped glasses investigated up to this time, the required laser wavelengths are in the visible region of the spectrum and have been accessible using a common Ar-ion laser. A unique wavelength is required for the rare earth doped glasses, whereas a range of wavelengths can generally be used for photorefractive crystals.

Finally, the most important difference between these materials occurs in their room temperature operation. Photorefractive crystals possess a volatile memory at room temperature and must undergo fixing methods to avoid dark erasure at room temperature. On the other hand, the memory in rare earth doped glasses is permanent at room temperature because of the structural phase change responsible for the refractive index change. Also, as long as the probe beam is not in resonance with a rare earth absorption transition no erasure will occur during read out of holograms.

From the above comparisons it can be seen that the rare earth doped glasses have certain advantages over photorefractive crystals in applications that require long term storage, room temperature operation, and multiple readings of holographic gratings. For applications that require a relatively fast response time, the photorefractive crystals possess the advantage. As will be mentioned below, the response time of rare earth doped glasses depends on the decay kinetics of the rare earth ion. Finding a rare earth ion that displays faster decay parameters will increase the response time and may become comparable to those in photorefractive crystals.

B. Demultiplexing Results

To investigate the demultiplexing properties of the LIG in these types of glasses a permanent grating was written in the EP glass sample. The angle between the write beams, $2\theta_w$ was measured to be 2.22° in air or, with an index of refraction of 1.5 for the glass, 1.48° inside the sample, which is defined as $2\theta_w$. The grating spacing, which is the distance between the fringes of the LIG, is designated as Λ_g. The definition of these parameters is displayed in Fig. 2.

The LIG was probed with both a He-Ne laser and several different lines of an Ar-ion laser. The strength of the probe beam was kept under 15 mW and out of resonance with the $^7F_{0} - ^5D_{2}$ Eu$^{2+}$ absorption transition to insure no erasure of the LIG. The geometry of the probe portion of the experiment is presented in Fig. 3. The alignment of the probe beam for maximum scattering efficiency is determined by the probe beam wavelength and the wavelength of the LIG.

To determine the spatial displacement of the probe beam, its intensity was measured as a function of its angle of incidence Φ_p. This measurement was performed with probe beam wavelengths in air of 632.8, 514.5, 501.7, 496.5, 488.0, and 476.5 nm. Figure 4 displays the results where Φ_p has been converted to Φ_p'.
and, for clarity only, the results from probe beam wavelengths of 632.8 and 514.5 nm are displayed. It should be pointed out that the same type of behavior was observed for all probe beam wavelengths with a shift in the angle for maximum scattering. It is seen that as \(\Phi \) is varied, the signal intensity increases from zero to a maximum then decreases back to zero as would be expected for Bragg scattering.

Figure 5 displays the probe beam wavelength in the sample, \(\lambda_p \), vs the angle \(\Phi_N \) at which maximum signal intensity occurs. As the probe beam wavelength decreases, the angle at which maximum signal intensity occurs also decreases. This is described by the Bragg scattering equation

\[
n\lambda_p = 2\Delta N \sin \Phi_N \quad (3)
\]

where \(\lambda_p \) is the probe beam wavelength, \(\Delta \) is the wavelength of the LIG grating, and \(\Phi_N \) is the Bragg angle. For the experiments performed here, the values of \(\Phi_N \) plotted in Fig. 5 may not represent the Bragg angle \(\Phi_N \). If the fringes of the LIG are not perpendicular to the sample surface, \(\Phi_N \) will not be equal to \(\Phi_0 \). If the fringes of the LIG make an angle \(\Psi \) to the perpendicular to the sample surface, the Bragg angle will be \(\Phi_N = \Phi_N - \Psi \) as is displayed in Fig. 6. The slope of the solid line in Fig. 5 was found to be 0.0214 \(\hbar \) corresponding to a grating spacing of 23.364 \(\mu \)m. It is unlikely that \(\Psi \) will be found accurately, thus consider the case of two probe beams \(\lambda_{p1} \) and \(\lambda_{p2} \) which have two separate Bragg angles \(\Phi_{N1} \) and \(\Phi_{N2} \). Since only \(\Phi_N \) is changing, \(\Phi \) will remain the same for both beams so that

\[
\lambda_{p1} = 2\Delta \sin (\Phi_N - \Phi) \quad (4)
\]

\[
\lambda_{p2} = 2\Delta \sin (\Phi_N - \Phi) \quad (5)
\]

For small angles \(\sin (\Phi_N - \Phi) = (\Phi_N - \Phi) \). Taking the difference between these two equations gives

\[
\Delta \lambda_p = 2\Delta \Phi_N \Delta \lambda_p \quad (6)
\]

Thus, the grating spacing is given by

\[
\Delta \lambda_p = \frac{\Delta \lambda_p}{2\Delta \Phi_N} \quad (7)
\]

The solid line in Fig. 5 represents the best fit to the data and the slope of the line gives

\[
m = \frac{\Delta \Phi_N}{\Delta \lambda_p} \quad (8)
\]

so that the wavelength of the permanent grating is

\[
\lambda_p = \frac{1}{2m} \quad (9)
\]

The slope of the solid line in Fig. 5 was found to be 0.0214 \(\hbar \) corresponding to a grating spacing of 23.364 \(\mu \)m. To check this value the grating spacing of the sinusoidal light interference pattern was calculated. This is also given by Bragg's law and will exhibit a wavelength of

\[
\lambda_G = \frac{\lambda_w}{2\Delta \lambda_p} \quad (10)
\]

where \(\lambda_w \) is the write beam wavelength. For a write beam wavelength of 0.3105 \(\mu \)m and crossing angle of 0.0258 radians the wavelength of the sinusoidal interference pattern should be 12.022 \(\mu \)m. It is seen that the LIG apparently displays a wavelength approximately twice that of the sinusoidal laser interference pattern.
It has been shown that the Eu$^{3+}$-doped phosphate glasses exhibit thermal lensing. When illuminated with a single beam tuned in resonance with the $^7F_{0} - ^5D_{1}$ Eu$^{3+}$ absorption transition, a permanent change is produced in the refractive index of these glasses. The change in the refractive index is proportional to the change in the temperature of the glass. This temperature profile can be approximated by a parabola, producing an effective thin lens with a positive focal length. In the crossed beam configuration, each beam will produce its own thermal lens. This will result in a new crossing angle $2\theta_{S}$ as shown in Fig. 7 and produce a change in the wavelength of the laser interference pattern.

We can predict the change in the crossing angle of the write beams by considering the thermal lens to act as an effective positive focal length lens placed in the path of each beam. The focal length can be calculated by using a method similar to that used in Durville's experiments.

In the long time limit the focal length of the effective lens is given by

$$f = \frac{\pi w_{0}^{2} \alpha n}{0.533 \alpha A},$$

where k = thermal conductivity

ω = beam waist

P = beam power

α = absorbance of sample, and

$\frac{\alpha n}{\alpha T}$ = change in refractive index per change in temperature.

Here k, α, and $(\alpha n)/(\alpha T)$ are properties of the sample and will be the same in both experiments. This leads to a focal length of

$$f_{n} = \frac{I_{0} P_{n} \omega_{n}^{2}}{P_{n} \omega_{n}^{2}},$$

where the D subscripts refer to the values quoted in and the B subscripts refer to the values in this experiment. With $\omega_{H} = 0.5 \text{ mm}$ and $P_{H} = 0.07 \text{ W}$, a focal length of 38.563 mm is found. From this, the change in Δ_{S} can be calculated and a new value for the wavelength of the laser interference pattern of 24.109 μm is calculated. This is in good agreement with the wavelength of the LIG found from Eq. (7).

It is also possible to calculate the tilt angle Φ' shown in Fig. 6. From

$$\lambda_{s} = 2\lambda_{c} \sin(\Phi_{s} - \Phi')$$

and with the small angle approximation, the tilt angle will be given by

$$\Phi' = \Phi_{s} - \frac{\lambda_{s}}{2\lambda_{c}}.$$

For this experiment a tilt angle of 5.860×10^{-3} rad is found. Notice that if Φ_{s} is measured from a reference other than the perpendicular to the sample, this will give the angle between the fringes and the reference.

The demultiplexing of the various frequencies of laser beams by the LIG demonstrates the ability of using these holographic gratings as frequency selective notch filters. The filter can be tuned to different frequencies by rotating the sample to different angles. By stacking different holographic gratings in the same material, several laser beams of different frequencies can be filtered simultaneously at the same angle of incidence. The limiting factor to the resolution of such a device is the fringe spacing of the LIG and gratings can be formed with spacings more than an order of magnitude smaller than that of the gratings used in these experiments.

C. Signal Modulation

The final experiment performed was to demonstrate amplitude modulation of the LIG signal. After writing the LIG as described in Sec. II, the write beams were turned on and off randomly. The result was an amplitude modulation of the signal beam as shown in Fig. 8. The top portion of the figure displays the time dependence of the write beams. The time scale of the experiment was approximately two minutes. The middle section depicts the intensity of the probe beam. As can be seen, the probe beam is stable at a constant amplitude before interacting with the LIG. The bottom section of Fig. 8 displays the time dependence of the intensity of the signal beam, which is an amplitude modulation of a constant beam.

The time dependence of the intensity has been discussed previously and is given by

$$I(t) = I_{1}(t) + I_{2},$$

where I_{1} and I_{2} represent the transient and permanent contributions to the intensity. Thus, when the write beams are on a total signal intensity of $I = I_{1} + I_{2}$ will be measured; however, when the write beams are turned off the transient signal will decay leaving a total intensity of $I = I_{2}$. The decay will be exponential with the decay time of the transient grating.

Fig. 7. Definition of angles involved in thermal lensing process. $2\theta_{S}$ is the write beam crossing angle in the sample without thermal lensing; θ_{S} is written beam angle with thermal lensing.
The rate at which the signal amplitude can be modulated is limited by the decay time of the transient component of the signal intensity. The decay time of the transient component has been associated with a population grating of the Eu$^{3+}$ ions in the 3D_0 metastable state. This limits the amplitude modulation by a decay time of 2.7 ms in this sample.

These results establish that the superimposition of transient and permanent LIGs generated by the mechanism described here can be utilized to allow one light beam to modulate the intensity of another light beam. This provides a means of transferring information from one beam to the other. The speed at which information can be transferred will depend on the modulation rate, which is limited by the lifetime of the metastable state of the rare earth ion and can vary between a kilohertz and a megahertz for different rare earth transitions.

IV. Conclusions

Three potential uses of LIGs have been demonstrated in Eu$^{3+}$ doped glasses which have the ability to produce superimposed permanent and transient gratings. These include holographic storage, demultiplexing multifrequency laser beams, and beam-to-beam information transfer. The LIGs can be written at room temperature with low laser power, have exhibited scattering efficiencies as high as 25%, and remain stable at room temperature indefinitely.

These same type of LIGs have been formed in a Pr$^{3+}$ doped silicate glass with composition 70 SiO$_2$, 15 Na$_2$O, 5 ZnO, 5 BaO, and 5 Pr$_2$O$_3$ mol %. The transient component of the signal in this glass is associated with the relaxation of the 3D_0 metastable state which has a lifetime of the order of microseconds. This will produce an increase of 3 orders of magnitude in the response time of the transient grating compared with the Eu$^{3+}$ doped glasses. This will allow for a faster amplitude modulation rate of light beams passing through the sample. However, the response time of the permanent holographic grating is still very slow in Pr$^{3+}$ doped glasses.

The above results are important when considering these glasses for potential optical devices. The type of glasses used in this work include common silicate glasses which can be made into fibers, and thus these LIG devices can be used in fiber optic systems. A better knowledge of the microscopic structural change associated with the permanent LIG in these glasses will allow for optimization of these materials for specific use.

This research was supported by the U.S. Army Research Office.

References
Refractive index gratings in rare-earth-doped alkaline earth glasses
Valentina A. French and Richard C. Powell
Center for Laser Research, Oklahoma State University, Stillwater, Oklahoma 74078-0444
Douglas H. Blackburn and David C. Cranmer
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

(Received 27 June 1990; accepted for publication 1 October 1990)

Four-wave-mixing techniques were used to produce permanent laser-induced refractive index gratings in Eu³⁺-doped silicate glasses. These gratings are associated with a thermally induced change in the local glass structure at the site of the Eu³⁺ ions, leading to a double-minimum potential well for the electronic energy levels of the Eu³⁺ ions. The effects on the characteristics of the permanent laser-induced gratings produced by changing the divalent modifier ions of the glass host are reported and a theoretical model is presented to explain the physical origin of the change in the refractive index of the material.

I. INTRODUCTION

The observation of permanent laser-induced gratings in Eu³⁺-doped glasses using four-wave-mixing (FWM) techniques was reported previously.¹ These gratings were produced by resonant excitation of the Eu³⁺ ions into the "D₂" level. A model was proposed² to explain the formation of these gratings based on a thermally induced change in the local glass structure at the site of the Eu³⁺ ions. This results in the description of each electronic level of the Eu³⁺ ions in terms of a double-minimum potential well. The model assumes that the index of refraction of the material changes, depending on which potential well is occupied by the Eu³⁺ ions.

Laser-induced refractive index gratings in Eu³⁺-doped glasses are important when considering such glasses for optical devices. Several potential uses of these types of gratings have been demonstrated² including holographic storage, demultiplexing of multilevel laser beams, and beam-to-beam information transfer. In addition, silicate glasses can be made into fibers and thus devices based on laser-induced gratings in Eu³⁺-doped silicate glasses can be used in fiber optics systems.

In the work reported here we extend the previous investigations¹,² by describing the variation of the FWM signal intensity of a series of Eu³⁺-doped silicate glasses with different divalent alkaline network modifier ions. The temperature dependence of the signal from one of the samples was measured and a theoretical explanation for the change in the refractive index associated with the double-minimum potential well model is developed.

II. EXPERIMENTAL RESULTS

The effect of different divalent network modifier ions on the characteristics of permanent laser-induced gratings was studied in five Eu³⁺-doped silicate glasses with identical compositions except for one modifier ion which was changed through a series of divalent alkaline elements: Mg, Ca, Zn, Sr, and Ba. The compositions of these glasses are listed in Table I.

Permanent laser-induced gratings were written in each sample at room temperature using crossed write beams from a cw argon-ion laser tuned to the 465.8 nm line in order to resonantly excite the "D₂" level of the Eu³⁺ ions. The two write beams, each having a power of 30 mW, were focused to beam waists of 400 μm and superimposed inside the sample at a crossing angle of about 3°. The scattering efficiency of these gratings was measured using a He-Ne laser at 632.8 nm as the probe beam, which was focused to a waist of 200 μm and had a power of 5 mW. The experimental setup was the same as reported previously.¹ The writing time of the grating was about 15 min.

It was found that the scattering efficiency of the laser-induced gratings decreased as the mass of the modifier ion increased. Figure 1 displays a plot of the experimental values of the scattering efficiency versus the reduced mass of the modifier and the rare earth ion. The solid line represents the theoretical fit to the experimental data as explained in Sec III.

The temperature dependence of the laser-induced signal intensity in the Mg glass sample was measured at temperatures below and above room temperature. For low temperature measurements the sample was mounted in a cryostat and the temperature was controlled using a CTI-Cryogenics.
closed cycle helium refrigerator and a Lake Shore Cryotronics model 805 temperature controller. For high temperature measurements the sample was mounted in a resistance heated furnace with a Chromel-Alumel thermocouple. The laser-induced signal intensity is plotted versus temperature in Fig. 2. As can be seen from the graph, the signal intensity increases as the temperature decreases. There is a change in slope between high and low temperature regions. The solid lines in Fig. 2 correspond to an exponential variation of the signal intensity given by

\[I = I_0 \exp(\Delta/k_B T), \]

where \(\Delta \) is an activation energy. The experimental values obtained for \(\Delta \) are \(2.72 \times 10^{14} \text{ cm}^{-1} \) for the high temperature region and about \(0.25 \times 10^{13} \text{ cm}^{-1} \) for the low temperature region.

III. INTERPRETATION OF RESULTS

The model proposed previously to explain laser-induced permanent gratings is based on thermally induced changes in the local glass structure at the site of the Eu\(^{3+} \) ions. This model assumes that the network forming and modifier ions can arrange themselves in two possible configurations leading to different local environments surrounding the Eu\(^{3+} \) ions. Each structural arrangement has a different refractive index. This results in double-minima potential wells for the electronic energy levels of the Eu\(^{3+} \) ions. It is also assumed that the heat generated through radiationless decay of the excited Eu\(^{3+} \) ions is responsible for the laser-induced change in the local structure of the glass host. This can be pictured as the Eu\(^{3+} \) ions moving from one potential well minimum to the other.

Using the double-minimum potential well model to explain permanent laser-induced gratings in the Eu\(^{3+} \)-doped glasses investigated here, the effective scattering efficiency of these gratings is given by

\[\eta \propto \left(\frac{1}{\Delta n_{\text{eff}}} \right)^2 \left[1 + \left(\frac{v_A}{v_B} \right) \exp \left(\frac{-\hbar k / m}{k_B T \tan \Theta} \right) \right]^{-1} \exp \left[-d \left(\frac{2 \lambda n A / R}{\pi} \right)^{1/2} \right] \tag{2} \]

where \(\Delta n_{\text{eff}} \) is the change in refractive index per ion, \(v_A \) is the attack frequency (the number of attempts an ion in well I (11) makes to surmount the potential height of that well), \(\tan \Theta = \Delta_A / \Delta_b \), \(\Delta_b \) being the coupling energy\(^2 \) and \(\Delta_A \) the asymmetry (the difference in the minima of the two potential wells), \(k \) is the force constant of the initial configuration, \(m \) the mass of the ion populating the well, \(d \) is the distance between the minima of well I and well II and \(v_B \) the potential barrier between the two wells.\(^1\) The value used for \(m \) in Eq. (2) was the reduced mass of the divalent modifier ion and rare earth ion for each of the samples investigated. Although, realistically there are many ions moving and thus contributing to the formation of the two equilibrium configurations, we consider in this model that the main source of the double-minimum potential well is the change in position of the divalent modifier ion and the rare-earth ion. The change in position of all other ions is considered to be very small, so that their contribution to the double-minimum potential well is negligible. Equation (2) was fit to the experimental values of the scattering efficiency treating \(|\Delta n_{\text{eff}}| \), \(v_A/v_B, \hbar k/(k_B T \tan \Theta) \), and \(d(2 \lambda n A / R)^{1/2} \) as adjustable parameters. The solid line in Fig. 1 represents the best fit to the experimental data where the values found for the adjustable parameters are:

- \(|\Delta n_{\text{eff}}| = (1.58 \pm 0.05) \times 10^{-44} \),
- \(v_A/v_B = 15.6 \pm 0.5 \),
- \(\hbar k/(k_B T \tan \Theta) = (2.25 \pm 0.10) \times 10^{-60} \text{ g}^{-1/2} \),
- \(d(2 \lambda n A / R)^{1/2} = (2.55 \pm 0.10) \times 10^{15} \text{ g}^{-1/2} \).

The sensitivity of the fit to these values of the adjustable parameters is expressed by the \(\pm \) error bars given above.

The constant of proportionality in Eq. (2) was calculated using the fact that the scattering efficiency of the FWM signal is given, to a first approximation, by

\[\eta = \exp \left(-2 \pi n_0 / \Gamma \right) \pi \Gamma (|\Delta n_{\text{eff}}|^2 / \lambda)^2 \tag{3} \]

here \(\Gamma = D / \cos 20 \), where \(D \) = grating thickness, \(20 \) = angle between the write beams in the sample, \(\lambda \) = wavelength.
of the write beams, $\Delta n_{\text{mod}} = \text{modulation coefficient of the refractive index of the sample}$, $\alpha_p = \text{absorption coefficient of the sample at the write beam frequency}$.

The values of the adjustable parameters were used in Eqs. (7) and (24) from Ref. 2 to calculate the difference in the minima of the two wells, Δ, the population of well I before excitation, $N_i(0)$ (initially all ions are assumed to be in well I), and the population of each well after the system has reached equilibrium, $N_{i\text{eq}}(\infty)$, for each of the samples investigated in this work. The values of these parameters are listed in Table II. It is observed that the asymmetry decreases as the mass of the divalent modifier ion increases. This same trend was reported in a series of silicate glasses with different monovalent modifier ions and was attributed to the fact that the glass becomes more ordered as the radius of the modifier ion increases and therefore the possibility for multiple configurations decreases.

The decrease in the difference between the two potential minima in the samples with heavier modifier ions is an indication of the fact that there is less thermally induced change in the local glass structure. Because of this, it is more difficult to trap ions in well II in these samples. This is shown in Table II by the decrease in the ratio $N_{\text{II}}(\infty)/N_i(0)$ as the mass of the modifier ion increases.

Using the value obtained for the last adjustable parameter, it is possible to approximate the distance, d, between the two potential minima, which is a measure of the average distance the ions move. This distance varies from 0.04 Å for the Mg glass sample to 0.12 Å for the Ba glass sample, as listed in Table II. These small values for d indicate that, as individual ions or groups of ions move between the two possible equilibrium configurations, I and II, the effect on the average configuration coordinate is very small.

The change in refractive index per ion is 1.26×10^{-22}, and considering the number of ions that accumulate in well II, which is of the order of 1×10^{16}, the total change in the refractive index of the material is 1.26×10^{-14}. This is consistent with the results obtained for silicate glasses with monovalent modifier ions in an earlier paper, where the values for $[\Delta n_{\text{II}}]^{2}$ and $\beta k^{1/2}/(k_p T \tan \theta)$ were found to be 1.69×10^{-14} and 2.25×10^{-19} Å, respectively. (These values were reported incorrectly in the earlier paper.)

From Sec. II the activation energy for the Mg glass sample for the high temperature region was found to be 2.72×10^{4} cm$^{-1}$ and since the activation energy is twice the asymmetry, this would give an asymmetry of 1.36×10^{-3} cm$^{-1}$. This value is slightly lower than the calculated value for Δ, listed in Table II. However, considering the simplicity of the model used here to describe a complex physical system, the experimental and calculated values for Δ, are close enough. Similar results were obtained for the glasses with monovalent modifier ions. In that work it was demonstrated that the measured activation energy decreased with increasing mass of the modifier ion in the same way as the asymmetry factor. Since this dependence is already established, we did not repeat temperature dependence measurements on all of the samples with divalent modifier ions but only used one sample to again demonstrate the equivalence of ΔE_{II} and 2Δ, in this set of samples.

IV. THEORETICAL MODEL

One important assumption made in the double-minimum potential well model is that the refractive index of the material is different for the two possible local configurations, that is n depends on which potential minimum is occupied by the Eu$^{3+}$ ions. This change in the refractive index needs to be theoretically explained and evaluated.

Starting from the Clausius–Mossotti equation, the change in refractive index, Δn_{mod}, between the two configurations can be related to the change in the polariability, $\Delta \alpha$, of the Eu$^{3+}$ ions in configuration II as compared to configuration I by

$$\Delta n_{\text{mod}} = (2\pi/\lambda)f_f' \frac{\alpha_n}{\Delta \alpha}. $$

where $f_f = (n^2 + 2)/3$ is the Lorentz field correction and α_n is the number density of the Eu$^{3+}$ ions in configuration II. Using the numerical values calculated from our experimental data for the change in refractive index per ion, Δn_{II}, the number of ions that have moved to well II, $N_{\text{II}}(\infty)$, and the volume of interaction of the laser beams inside the sample, the change in polariability, $\Delta \alpha_n$, is calculated to be 0.0134 Å$^{-3}$.

For a theoretical evaluation of the change in polariability we used the model developed by Powell et al., to calculate the change in polariability of the $4f^{2}$, excited state of Nd$^{3+}$ compared to that of the $4f^{2}$ ground state for a variety of host materials. They considered that the Nd$^{3+}$ ion was a multilevel system and that the laser beams could interact with all possible transitions between those levels. Having recognized that the $4f/4f$ transitions "borrow" intensity from the $4f/5d$ and $4f/4g$ transitions, they estimated that the main contribution to the change in the polariability of the Nd$^{3+}$ ion was due to the $4f/5d$ interactions.

Here we consider that the change in polariability of the
Eu$^{3+}$ ions in configuration II as compared to configuration I is mainly due to the $4f$-$5d$ transitions which are far from resonance and given by

$$
\Delta \nu \propto \left(\frac{1}{\nu_{c}^{(0)} - \nu_{c}^{(1)}} \right) \left(\frac{1}{(4f/r5d)^{2}} \right),
$$

where $\nu_{c}^{(0)}$ is the average energy of the $4f$-$5d$ states, ν_{c} is the energy of the free photons, ν_{e} is the energy difference between the two equilibrium configurations I and II, and α_{d} is the fine structure constant.

Figure 3 shows the relevant energy levels of the Eu$^{3+}$ ions with the two possible local configurations of the glass host, I and II. The numerical values used in Eq. (5) were the free-ion values. The lowest $4f$-$5d$ level of the Eu$^{3+}$ free ion is known to be at 85,500 cm$^{-1}$ and, due to the 20,000 cm$^{-1}$ splitting of the $5d$ level, the energy of the $4f$-$5d$ manifold is at about 95,500 cm$^{-1}$. The value of the radial integral $(4f/r5d)$ for the Eu$^{3+}$ free ion is 0.41 Å and α_{d} = 1/137. Using the value of $\Delta \nu_{p}$ calculated from the experimental results and Eq. (4) in Eq. (5), the energy difference between the two configurations is found to be $\nu_{e} = 3.14 \times 10^{4}$ cm$^{-1}$.

Since the difference between the ground state energy of the Eu$^{3+}$ ion in configuration II as compared to configuration I was calculated to be 1.72 × 104 cm$^{-1}$ for the Mg glass sample, as listed in Table II, the remaining energy difference between the two configurations is accounted for by a shift of 1.42 × 104 cm$^{-1}$ in the $5d$ levels of configuration II as compared to configuration I. From Table II, it is seen that the shift in the ground state energy becomes smaller as the mass of the modifier ion increases. This would lead to an increasing shift in the $5d$ levels, from 1.42 × 104 cm$^{-1}$ for the Mg glass sample to 2.88 × 104 cm$^{-1}$ for the Ba glass sample.

The energy difference between the two equilibrium configurations was calculated based on the free-ion value of the radial integral $(4f/r5d)$. The value of this integral will be smaller for the Eu$^{3+}$ ions incorporated into a host environment. This, in turn, would mean that the energy shifts from one configuration to the other may be somewhat larger than those calculated using the free-ion value for the radial integral. Even then, the results predicted by this model are reasonable, since site-selective spectroscopy has shown energy shifts in the $5d$ level of about 6,000 cm$^{-1}$ from one site of the impurity ion to another in a glass host. However, it is also true that the value of the radial integral can change significantly due to a change in local environment. It is impossible to tell from these results whether the change in the radial integral or the change in the position of the $5d$ level makes the dominant contribution to the change in the polarizability. Both types of changes will contribute to the observed results.

V. CONCLUSIONS

Using the double-minimum potential well model to explain permanent laser-induced gratings in Eu$^{3+}$-doped glasses, a theoretical explanation was developed for the change in the refractive index for different local structural configurations of the material. The change in the refractive index was related to the change in the polarizability of the Eu$^{3+}$ ions in the two types of configurations, which in turn, was calculated from the experimental data to be $\Delta n_{p} = 0.0134$ Å$^{-1}$. The change in refractive index per ion was obtained as an adjustable parameter from fitting Eq. (2) to the experimental data and therefore has the same value for all glass samples investigated here. The total change in refractive index varies from host to host due to the fact that the number of ions moving from configuration I to configuration II is host dependent as shown in Table II. However, the actual value of Δn_{p} may also change a little from one glass host to another. The theoretical model used here can accurately explain all of the observed results by assuming that this change is very small so that its contribution to the change in total refractive index is negligible.

On the basis of free-ion wave-functions and the assumption that the $4f$-$5d$ transitions make the dominant contribution to the change in polarizability between the two configurations, we calculated a shift in transition energy from configuration I to configuration II of 3.14 × 104 cm$^{-1}$. This is a physically reasonable energy level shift but the actual value may be different due to the change in the value of the radial integral between the two configurations. Previous results on other types of samples indicate that this latter effect makes the dominant contribution to the polarizability change in different host environments. It is interesting to note that the value of Δn_{p} found for Pr$^{3+}$-doped glasses is the same as that found for Eu$^{3+}$ in the same hosts. Since the $5d$ levels for Pr$^{3+}$ are at lower energies than those of Eu$^{3+}$, these results imply that the change in radial integral is more important than the change in the position of the $5d$ levels in determining the polarizability of the rare-earth ions in glass hosts.

Unfortunately, there is still very little known on the atomic scale concerning the local environment of rare-earth ions doped into glass hosts. It is thought that ions such as Eu$^{3+}$ in silicate glasses occupy interstitial sites and distort...
the local environment of the host by their Coulomb attraction of the nonbridging oxygen ions. This results in local environments with high nearest neighbor coordination numbers caused by the distortion of the rare earth ion on its surroundings. In producing this distortion, the trivalent rare-earth ion is in competition with the modifier ions of the host in attracting the nonbridging oxygen ions. Modifier cations in the second coordination sphere increase the rigidity of the host, thus hindering the free formation of the rare-earth ion environment. The success of this competition for attracting the nonbridging oxygen ions is determined by the relative field strengths of the rare earth and modifier ions. Thus, the larger the charge-to-radius ratio is for the rare earth ion compared to that of the modifier ions, the more the rare earth ion will be able to distort its environment. Making the glass melts of the samples used in the experiments with similar local environment at each site resulting in a small value for the asymmetry parameter. This is reflected in Table II which shows that the hosts with large modifier ions and thus low electric fields have small values for \(\Delta \), whereas the hosts having small modifier ions with high electric fields have large values of \(\Delta \). This is also consistent with the results published previously for hosts with monovalent modifier ions. The \(\Delta \) values are larger for the glasses with divalent modifier ions compared to those found in similar glasses with monovalent modifier ions due to the higher local field strength of the former.

Although the results described here extend our understanding of the formation of laser-induced permanent gratings in rare-earth-doped glasses, there are still several aspects of this phenomenon that require further investigation. The exact nature of the local surroundings of the rare earth ion on the atomic scale is still not known and finding the right rare-earth-host glass combination to optimize this effect is still an important area of research. Further experiments are currently being performed using fluorescence line narrowing and micro-Raman spectroscopy.

ACKNOWLEDGMENTS

This research was supported by the U.S. Army Research Office. The authors benefited greatly by discussions with E. G. Behrens. We wish to thank Dale Kaufman for making the glass melts of the samples used in the experiments.

IV.5

A comparison of the spectroscopic properties of Eu$^{3+}$-doped fluoride and oxide glasses under high-power, picosecond-pulse excitation

Gregory J. Quarles, Andrzej Suchocki,* and Richard C. Powell
Physics Department, Oklahoma State University, Stillwater, Oklahoma 74078-0444

(Received 24 October 1986; accepted for publication 5 October 1987)

The frequency harmonic outputs of a Nd:YAG laser were used to excite Eu$^{3+}$ ions in fluoride and oxide glasses with high-power, picosecond pulses. Time-resolved fluorescence spectra, fluorescence lifetimes, and rise times were measured on the fluoride glass to obtain information about the two-photon absorption transitions and the radiative and radiationless decay processes. The results show the importance of coherence in the intermediate state of the two-photon transition observed with 332.0-nm pumping. Multiphoton pumping with 345.7-nm excitation results in spectral shifts and lifetime changes which are attributed to local polarization effects. Similar experiments were performed on the oxide glass, and the results were found to be significantly different because of the more efficient radiationless decay processes in the oxide host compared to the fluoride host.

I. INTRODUCTION

Time-resolved spectroscopy, with the use of high-power, picosecond-pulse excitation, has been shown to be an important technique for studying the spectral dynamics of trivalent rare-earth ions in solids. We report the results of a detailed investigation of the spectroscopic properties of BZLT fluoride glass doped with Eu$^{3+}$ ions with the use of the picosecond pulses from the primary and various harmonics of the output of a Nd:YAG laser as the source of excitation. In addition, similar measurements were made on Eu$^{3+}$-doped lithium phosphate (LP) oxide glass to determine the effects of the host lattice on the spectroscopic properties with this type of excitation. The time-resolved fluorescence spectra, fluorescence lifetimes, and rise times were measured as a function of laser power for the various excitation frequencies. The spectral properties are analyzed in terms of single- and two-photon absorption processes and fluorescence from four different metastable states. These results are especially interesting, since little spectroscopic work has been reported on rare-earth ions in this type of oxide glass. The results obtained on the oxide glass differ greatly from those obtained on the fluoride glass because of higher efficiency of radiationless decay in the former type of material. These results on two-photon absorption processes in Eu$^{3+}$ ions are significantly different than those reported previously for Nd$^{3+}$. This is due to the fact that the initial and final states of the transition are of the same parity in the latter case, but not in the former one, and thus different types of intermediate states play an important role.

The nomenclature for different types of multiphoton absorption processes has become somewhat confusing. In this work we use STEP to refer to a sequential two-photon excitation process in which the first photon causes a transition to a real intermediate state, and before relaxation can occur, the second photon excites the ion from this state to a higher state. VTEP is used for virtual two-photon excitation processes in which the intermediate state is a virtual state of the system. Finally, ESA is used to refer to excited-state absorption, which occurs when the first photon excites the ion to a real level, but relaxation to a metastable state occurs before the second photon is absorbed. All three types of processes have been observed in trivalent rare-earth ions in solids, and it is important to identify the specific type of process in order to determine the cross section for two-photon absorption (TPA).

The cross section for TPA processes can be expressed through second-order perturbation theory as

$$\sigma = \sum_{\alpha, \beta} \left| \sum_{i} \frac{C}{\omega_{i}} \langle \beta | p_{\alpha} | j \rangle \langle j | p_{\beta} | 0 \rangle / \left[\Delta \omega_{i} - i \Gamma_{i} \right] \right|^{2},$$

where C contains various constant parameters and the density of final states, ρ is the electron momentum operator, α, β represent the states of polarization, $\Delta \omega_{i}$ is the detuning of the laser frequency from the peak of the transition from the ground state $|0\rangle$ to the intermediate state $|j\rangle$, and Γ_{i} is the natural linewidth of the intermediate state. The absolute magnitude of the denominator represents the upper limit of the interaction time for the TPA process. The type of process involved in TPA to a specific final state is determined by the matrix elements and interaction times involved with the different possible intermediate states included in the sum over $|j\rangle$. For trivalent rare-earth ions, the initial state has a $4f$ electron configuration, and the final state can either be another state of the same configuration or a state of the $4f^{n-1}5d$ configuration. For the former case, parity selection rules strongly favor virtual transitions to $5d$ intermediate states, despite close resonances of real transitions to $4f$ intermediate states. However, if the final state is part of the $4f^{n-1}5d$ configuration, real transitions to resonant $4f$ intermediate states or virtual transitions to $4f$ intermediate states with small detuning parameters can be important in the sum over $|j\rangle$. In this case the matrix elements are approximately the same for the different types of intermediate states, and the dominant terms in the sum depend on the interaction times. For virtual intermediate states, this is determined by
the detuning from resonance and is typically of the order of 10^{-14} to 10^{-15} s. For real resonant intermediate states, the maximum interaction time can range between 10^{-5} and 10^{-3}s. If coherence is important in the overall TPA process, it is the dephasing time of the intermediate state that determines the maximum interaction time instead of the fluorescence lifetime of the level. Finally, if the laser excitation pulse is shorter than the maximum interaction, then the interaction time of the TPA process is given by the temporal pulse width of the laser. Each of these possibilities must be considered in determining the specific type of process involved in a TPA transition.

The experimental apparatus used for this work has been described previously. A passively mode-locked Nd:YAG oscillator/amplifier laser with a pulse selector provided single excitation pulses with widths selectable between 25 and 200 ps in duration. The energy per pulse was approximately 25 mJ, and the appropriate frequency-doubling, -tripling, or -quadrupling crystals were used to obtain output at the various harmonic frequencies. The time-resolved spectroscopy measurements were made with two different experimental arrangements. One involved a combination of a monochromator, photomultiplier tube, and boxcar-signal averager combination, with the output sent to a strip-chart recorder. The second arrangement involved a monochromator, reticon detector, and an optical multichannel analyzer (OMA). All measurements were performed at room temperature.

The fluoride glass sample investigated in this work had dimensions of $1.82 \times 1.25 \times 0.18$ cm3. Its composition in mole percent was 27 ZnF$_2$, 19 BaF$_2$, 26 LuF$_3$, 27 ThF$_4$, and 1 EuF$_4$. The common designation for this glass is BZLT:Eu$^{3+}$. The oxide glass sample used for comparative studies had the dimensions $1.46 \times 1.25 \times 0.36$ cm3. The composition of this sample in mole percent is 30 Li$_2$O, 52.3 P$_2$O$_5$, 10 CaO, 4.7 Al$_2$O$_3$, and 3.0 Eu$_2$O$_3$. It is designated as LP:Eu$^{3+}$.

II. EXPERIMENTAL RESULTS

Figures 1 and 2 show the energy levels and absorption spectrum for Eu$^{3+}$ ions in BZLT glass along with the positions of the various laser frequencies used for pumping. The lower, sharp levels are associated with states of the 4f2 electron configuration. The broad, overlapping bands above 27000 cm$^{-1}$ may either be due to states of the 4f35d electron configuration or to charge transfer states. For the fluoride glass host, the former seems more likely. The charge transfer bands should be very close to the band edge, while the 5d bands have been previously identified in Eu$^{3+}$-doped crystals with their peaks near 200 and 240 nm. The latter is in agreement with the bands observed in this fluoride glass, and thus we refer to these bands as 5d bands, although the charge transfer assignment cannot be ruled out on this point. The absorption spectra for Eu$^{3+}$ in the oxide glass in the visible region of the spectrum is similar to the fluoride glass. However, in this case the host band edge is at lower energy, and thus the charge transfer bands are shifted below the 5d bands and appear as bands above 24500 cm$^{-1}$.

The formulation of crystal-field-induced electric dipole transitions in the 4fn configurations, as developed by Judd and Ofelt, was applied to the room-temperature absorption spectrum of the BZLT sample to determine parameters useful in the modeling of multiphoton spectroscopy. These parameters include the branching ratios, oscillator strengths, and radiative decay rates. The oscillator strength of a given transition of average frequency \tilde{v} from a level J to a level J' is expressed as

$$f(aJ,bJ') = (8\pi^2mc/3h)(\tilde{v}/2J + 1)|Xs_{ad}(aJ,bJ')|^2 + X'S_{ad}(aJ,bJ')^2,$$ \hspace{1cm} (2)

where the electric dipole and magnetic dipole line strength are

$$s_{ad}(aJ,bJ') = \sum_{2s,0} \Omega_{ab} |\langle f^a J || a^f || f^s J' \rangle|^2$$ \hspace{1cm} (3)

and

$$s_{md}(aJ,bJ') = (h/2mc)^2 |\langle f^a J || a^f || f^s J' \rangle|^2,$$ \hspace{1cm} (4)

respectively. a and b represent other quantum numbers designating the states, f^a represents the electronic configuration, $U^{(a)}$ is the tensor operator for electric dipole transitions, $L + 2S$ is the operator for magnetic dipole transitions, and the Ω_{ab} are the Judd–Ofelt parameters that are associated with the crystal-field environment of the ion in the host lattice, which are determined by the analysis of the absorption spectrum. X and X' are the correction terms for the effective field in the crystal for electric and magnetic dipole transitions, defined, respectively, as...
\[X = \frac{(n^2 + 2)^2}{9n} \]

and

\[X' = n^3, \]

with \(n \) being the index of refraction of the host at the associated transition frequency. The reduced matrix elements in Eqs. (3) and (4) have been calculated previously \(^{13,15}\) and are essentially invariant from host to host.

It is extremely difficult to make use of the Judd–Ofelt treatment for Eu\(^{3+}\) ions because of the exceedingly weak absorption and number of bands associated with totally forbidden and electric dipole forbidden transitions. Because of the limited number of weak absorption peaks in the fluoride glass sample, the Judd–Ofelt parameters for a very similar Eu\(^{3+}\)-doped fluoride glass were used in this evaluation. \(^{16}\) These were found to be \(\Omega_2 = 0.93 \times 10^{-20} \text{ cm}^2 \), \(\Omega_4 = 2.61 \times 10^{-20} \text{ cm}^2 \), and \(\Omega_6 = 2.17 \times 10^{-20} \text{ cm}^2 \). By using these results, the spontaneous emission probability can be obtained for each transition from

\[A(\alpha_j; \beta_j') = \frac{(64\pi^2\gamma)}{3hc(2J + 1)} \times [X_{\alpha\alpha}(\alpha_j; \beta_j') + X_{\beta\beta}(\alpha_j; \beta_j')]. \]

The branching ratios for transitions from each emitting level can then be related to the spontaneous emission coefficient through

\[\beta_j = A_{\alpha_j}/\Sigma A_{\alpha_j}, \]

where the summation is over electric and magnetic dipole transitions to the final states \(j \). The radiative lifetime for each emitting level can then be determined from

\[(\tau_{\text{rad}})^{-1} = \Sigma A_{\alpha_j}. \]

Table I lists the branching ratios, spontaneous emission coefficients, and radiative lifetimes of the excited states of Eu\(^{3+}\) ions in the fluoride glass.

FIG. 2. Absorption spectrum of Eu\(^{3+}\) with the positions of the various laser excitation wavelengths shown. The BZLT sample used was 0.18 cm thick with a composition of 1.0 mol \% of EuF\(_3\).
Attempts to excite fluorescence of the BZLT:Eu	extsuperscript{3+} glass with multiphoton absorption of the primary 1064-nm radiation were unsuccessful. The doubled output at 532.0 nm resulted in single-photon absorption to the \(^5D_1 \) level and two-photon absorption into the \(5d \) configuration band for this sample. The quadrupled output at 266.0 nm results in single-photon absorption into the \(5d \) configuration band of this sample and no observed two-photon absorption. The tripled output at 354.7 nm gives a single-photon absorption into the \(5d \) configuration band followed by multiphoton absorption above the band edge of the fluoride sample. For the oxide host, essentially no multiphoton processes were detected for any of the different excitation conditions. For the excitation energy cascades to the \(^2D_0 \) metastable state with very little higher-energy emission, even for the UV pumping. The fluorescence spectra and lifetimes observed with the various pumping wavelengths are described below.

A. Results for 266.0-nm pumping

Figure 3 shows the BZLT:Eu	extsuperscript{3+} fluorescence spectra obtained at two different times after the 25-ps excitation pulse for quadrupled Nd-YAG laser pumping at 266.0 nm. The spectral resolution of the laser lines used for excitation is approximately \(\pm 1 \text{ cm}^{-1} \). Observation of the emission intensity for all lines shows a linear dependence with pump power, thus indicating that single-photon absorption is responsible for exciting all of these transitions. The fluorescence emission includes transitions originating from all the various \(^3D_j \) levels, as well as from the \(5d \) configuration level. Each of the five groups of lines in Fig. 3, corresponding to the five different fluorescing states, has its own characteristic lifetime.

Figures 1 and 2 show that the 266.0-nm excitation directly pumps the \(5d \) configuration level. Part of the excitation energy decays radiatively from the \(5d \) level to the various \(^1F_j \) multiplets of the ground-state term, while the rest of the excitation energy cascades down to the \(^3D_j \) levels by fast radiationless relaxation processes. The fluorescence lifetime of the \(5d \) level is measured to be 70 ns. The \(^3D_{1,2,3} \) levels all have radiative transitions to the ground-state multiplets with fluorescence lifetimes of 1.57, 1.42, and 1.24 \(\mu \text{s} \), and 5.94 ms, respectively. All of the lifetimes plotted were single exponential over two decades and have maximum error bars of \(\pm 2\% \). The fast nonradiative decay rate from \(^3D_0 \) to \(^3D_1 \) is determined from the rate equations described below to be \(6.1 \times 10^7 \text{ s}^{-1} \). This value is almost identical to the rate of \(6.3 \times 10^7 \text{ s}^{-1} \) given by the Judd–Ofelt analysis. For 266.0-nm pumping, a rise time of approximately 2 \(\mu \text{s} \) occurs when observing the \(^3D_0 \rightarrow ^1F_2 \) emission transitions. With the use of Weber’s model10 for a cascading decay process, the theoretical estimate of this rise time should be \(< 10 \mu \text{s} \), which is consistent with the observed result. Fluorescence from the \(^3D_{2,3,1,0} \) levels of Eu	extsuperscript{3+} is well known in other hosts, but the observation of fluorescence from the \(^3D_2 \) and \(5d \) levels is unusual. The fluorescence lifetimes and rise times for each of the metastable states are listed in Table II for these pumping conditions.

The time evolution of the fluorescence spectra shown in Fig. 3 can be described by the rate model shown in Fig. 1. The rate equations describing the time evolution of the excited-state populations are given by:

\[
\frac{dn_d}{dt} = \mathcal{W}_d - \beta_d n_d, \tag{8}
\]

\[
\frac{dn_2}{dt} = \beta_2'' n_d - \beta_2 n_2, \tag{9}
\]

\[
\frac{dn_3}{dt} = \beta_3'' n_d - \beta_3 n_3, \tag{10}
\]

\[
\frac{dn_4}{dt} = \beta_4'' n_d - \beta_4 n_4, \tag{11}
\]

\[
\frac{dn_1}{dt} = \beta_1'' n_2 - \beta_1 n_1. \tag{12}
\]

The \(n_i \)'s represent the concentrations of ions in the various excited states, the \(\beta_j \)'s are the fluorescence decay rates of these levels, the \(\beta_i'' \)'s refer to the nonradiative decay rates, and \(\mathcal{W}_d \) is the pumping rate of the \(5d \) configuration level. Table I shows from the Judd–Ofelt analysis that nonradiative decay is dominant between the \(^3D_0 \), \(^3D_2 \), and \(^3D_1 \) metastable states, whereas radiative decay is the dominant process from the \(^3D_2 \) state to the ground-state components.

With the assumption of a delta function excitation pulse, these equations can be solved to give the time evolu-

![Fluorescence spectra of BZLT:Eu	extsuperscript{3+} glass at two times after the excitation pulse at 266.0 nm. (a) 50 ns and (b) 1.0 \(\mu \text{s} \).](image-url)
Determination of the excited-state populations. The observed fluorescence intensities from the \(i\)th level can be expressed as the product of the population of the level and its radiative decay rate \(\beta_i^\prime\). The solution of Eqs. (8) and (9) gives the ratio of intensities of the \(5d\) and \(3^2D_J\) levels as

\[
I_2(t)/I_4(t) = K(\beta_4 - \beta_2)\left[1 - \exp\left(-\beta_2 t\right)\right]^{-1},
\]

where \(K = \beta_4^\prime/\beta_2^\prime\). Figure 4 shows the ratios of the integrated fluorescence intensities of all of the \(5d\) transitions to the ground state and the visible transitions from the \(3^2D_J\) metastable state. By fitting Eq. (12) to the measured time evolution of the ratios of the fluorescence intensities, after correcting for quantum efficiencies, branching ratios, and the spectral sensitivity of the equipment, the value of \(K\) can be determined. The best fit shown by a solid line in Fig. 4 was obtained with a value of \(K = 3.4 \times 10^{-6}\) s.

From the value of \(K\) obtained from the TRS results, it is possible to obtain the radiative decay rate from the \(5d\) configuration level. The values needed for evaluation are the branching ratios for the \(3^2D_J\) metastable state, and these are available through the Judd–Oelof analysis of the absorption spectrum. Use of the branching ratios, along with the measured value of the fluorescence lifetime of the \(5d^0\) level, gives an estimate for the radiative decay rate for the \(5d^0\) level of 9.72 ± 2.14 × 10^6 s⁻¹.

Figure 5(a) shows the LP:Eu³⁺ fluorescence spectrum at 50 \(\mu\)s after the 266.0-nm excitation pulse. The fluorescence from the \(3^2D_0\) metastable state to the \(7F_{0,1,2,3,4}\) multiplets of the ground term is much stronger in the oxide glass than in the fluoride glass. The measured fluorescence lifetime of the \(3^2D_0\) level is 3.15 ms for this sample and is also purely single exponential. There is some very weak fluorescence from the \(3^2D_2\) and \(3^2D_4\) metastable states, as well as some weak broadband fluorescence at higher energies, which may be associated with charge transfer transitions. The signal from the weak fluorescence transitions was too small to obtain accurate fluorescence lifetime measurements. A comparison of the Eu³⁺ fluorescence in the oxide and fluoride glass hosts for this type of excitation shows that radiationless relaxation processes are more efficient in the oxide glass, which is consistent with previous results obtained by using other types of excitation.²⁻¹⁹

TABLE II. Characteristics of metastable states of Eu³⁺ in BZLT (Δt = 25 ps; \(T = 300\) K).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(3^2D_0)</th>
<th>(3^2D_1)</th>
<th>(3^2D_2)</th>
<th>(3^2D_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence lifetimes (\tau_f(\mu s))</td>
<td>(\lambda_{av} = 266) nm</td>
<td>5940</td>
<td>1.24</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(\lambda_{av} = 354.7) nm</td>
<td>0.57</td>
<td>0.71</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>(\tau_{f}(\mu s))</td>
<td>0.26</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td>Fluorescence rise times (t_r(\mu s))</td>
<td>(\lambda_{av} = 266)</td>
<td>1.8</td>
<td><0.35</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(\lambda_{av} = 532) nm</td>
<td>2100</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\lambda_{av} = 354.7) nm</td>
<td>...</td>
<td>0.05</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The fluorescence consists of the superposition of sharp lines and a broadband.
B. Results for 532.0-nm pumping

Figure 6 shows the fluorescence spectra at two different times after the laser excitation pulse for doubled Nd-YAG laser pumping at 532.0 nm. The same lines appear in the spectra as seen in Fig. 3, but their relative intensities are different and change with excitation power. Figure 7 shows the variation in the integrated fluorescence intensity of the emission line near 515.0 nm as a function of excitation energy per pulse. The observed quadratic dependence indicates that this fluorescence transition is excited under these pumping conditions by two-photon absorption terminating on a level of the 5d configuration. The fluorescence transitions from all of the metastable states are the same as those discussed in the preceding section following single-photon pumping of the 5d level. As seen in Fig. 1, the intermediate state for this two-photon transition is one of the Stark components of the 3D, level, which can be directly pumped through one-photon absorption processes at this excitation wavelength. Only part of the ions excited to this intermediate state will absorb a second photon, while the rest will decay either radiatively to the ground state or radiationlessly to the 1D, level from which fluorescence emission occurs to the ground-state multiplets.

As shown in Table II, the rise time of the fluorescence decay profiles for the 3D, 5F, transition is measured to be 2.1 ms, with a 5.9-ms decay time. The decays occurring after the initial rise were observed to be single exponential. The observed rise time is much longer than expected for a direct nonradiative transition from the 3D, level. Longer than normal rise times of fluorescence from the 3D, level have been observed previously and have been attributed to intersite energy transfer. Similar processes could also be important for the glass host. The laser excitation in resonance with the absorption transition to the 3D, level can selectively excite ions in specific host environments. This is possible since the laser linewidth (< 0.5 Å) is much less than the widths of the excited electronic levels (approximately 100 Å). The long rise time was found to be independent of the power of the laser excitation, indicating that it is not specifically associated with multiphoton processes.

Figure 5(b) shows the LP:Eu³⁺ fluorescence spectrum at 50 µs after the 532.0-nm excitation pulse. As with 266.0-nm excitation, there is a strong fluorescence from the 3D, level and only weak emission from the 5D, level. No fluorescence can be observed from any of the higher levels, indicating that no multiphoton absorption processes are occurring. The fluorescence lifetime of the 3D, levels is 3.15 ms, also found to be single exponential, and the rise time is 600 µs. The latter is again anomalously long for simple radiationless relaxation processes. The LP glass and a similar Eu³⁺-doped fluoride glass were studied previously under different excitation conditions. The results indicated that the lifetimes remained single exponential and fairly constant across the fluorescence band. The energy transfer among the Eu³⁺ ions was measured to be weak and thus did not strongly affect the observed decay kinetics, although it can contribute to the initial rise of the fluorescence.

A simplified rate diagram for describing the pumping and decay dynamics under these excitation conditions is similar to that shown for 266.0-nm pumping in Fig. 1. The parameters are the same as those previously used, except there are the additional parameters W, to describe the initial
single-photon pumping rate of the 2D_1 level and the second photon rate of the $5d$ level given by W'_n. Thus Eqs. (8) and (11) now become

$$\frac{dn_d}{dt} = W'_d - n_2n_d,$$

$$\frac{dn_2}{dt} = W_2 + n'_2n_2 - n_2n_2.$$

A simplified expression describing the ratio of the initial populations of the $5d$ and 2D_1 levels is given by evaluating Eq. (16) at long times after the excitation pulse. This evaluation is made possible with a few minor assumptions. Since it is experimentally determined that $\beta_3 \approx \beta_2 \approx \beta_4 \approx \beta_3$, then as $t \to \infty$, the exponentials involving β_2 will become negligible, and we can assume that $\beta_3 = \beta_4 = \beta_3$. Likewise, since $\beta_3 \approx \beta_4$ and the Judd-Oelft analysis shows that $\beta_3^* \approx \beta_4^*$, our expression simplifies to

$$A = n_2(0)\beta_4^* \exp(-\beta_4 t),$$

$$B = n_3(0)\beta_4^* \exp(-\beta_4 t),$$

$$C = n_2(0)\beta_4^* \exp(-\beta_4 t),$$

$$\frac{A}{B} = \frac{n_2(0)}{n_3(0)} - \alpha \beta_4^*,$$

where $\gamma = 3.9 \times 10^{-13} s^{-1}$ and $\alpha = 3.7 \times 10^{-2} s^{-1}$. We may then use the values of the intensity ratios at long times after the pulse to find the initial populations of the levels.

Figure 8 shows the ratios of the integrated fluorescence intensities of all of the $5d$ transitions and the visible transitions from the 2D_1 level in the fluoride glass for two different pulse widths. The data indicate that the relative values of the initial populations of the $5d$ and 2D_1 levels are approximately independent of the excitation pulse width. This indicates either that the maximum possible interaction time for the TPA process is much longer than the laser pulse width, so that no change in the intermediate state occurs during the time of the experiment, or that any transient changes in the properties of the intermediate state occur very rapidly with respect to the excitation pulse width.

By using the measured asymptotic values for the intensity ratios and Eq. (20), the initial population ratios are determined. These values of the initial population ratios can then be used to calculate the cross section for the second part of the TPA transition. The expression for this is

$$\sigma_{5d} (cm^2) = \left[\frac{n_2(0)}{n_3(0)} \right] \frac{\hbar \nu_2}{\hbar \nu_3} \left[\Delta t / (0.375) I_p \right] (\xi),$$

where Δt is the laser pulse width, and I_p is the photon flux per pulse. A major simplification used in Eq. (21) is the use of the simplified expression $P(t) = (0.375/\Delta t)$ for the pulse-time dependence, instead of the full Gaussian expression with Eqs. (9)-(11) remaining the same. Once again, the solutions of Eqs. (14) and (15) for δ-function excitation can be related to the measured relative fluorescence intensity ratios through

$$\frac{I_3(t)}{I_2(t)} = \frac{A}{B + C},$$

where the variables A, B, and C are given by

$$P(t) = (0.375/\Delta t) \exp\left(-2.77(t-t_0)/\Delta t \right)^2.$$

In order to evaluate the cross section for the second step in the TPA process, it is necessary to estimate a value for the rate of interaction in the intermediate state, ξ. The fluorescence lifetimes of the 2D_1 metastable states are all much greater than the laser pulse widths. Use of either of these lifetimes or the time of the laser pulse as the effective interaction time gives values for the cross sections which are several orders of magnitude smaller than the values expected for f/f transitions. Thus ESA and STEP transitions with incoherent intermediate states can be eliminated as the type of TPA transition.
process. For a transition involving a virtual intermediate or coherent TPA process with a real resonant intermediate state, the coherence times have been found to be in the range 10^{-13} to 10^{-15} s. This can be estimated by considering the spectral line shape of the absorption transition from the ground state to the possible intermediate states. According to Eq. (1), the dephasing time will then be the maximum time for TPA involving a real intermediate state. For transitions involving virtual intermediate states, the maximum interaction time is less than the coherence time by an amount determined by the detuning from resonance. In our case the single-photon absorption terminates on the edge of an absorption band due to a transition terminating on one of the Stark-split components of the 2D_1 metastable state. However, there are other levels with small detuning parameters, such as the other Stark components of 2D_1, which can have interaction times equal to or greater than that of the resonant interaction and thus cannot be neglected in the sum over intermediate states in Eq. (1). The measured transition linewidths in the absorption spectrum were used to estimate the coherence times.

This analysis gives a value of $\gamma = 4.6 \times 10^{13}$ Hz for the resonant transition, which provides an upper limit for the interaction time, since at room temperature the linewidths should be a combination of homogeneous broadening due to phonon processes and inhomogeneous broadening due to the disorder in the glass host. For nearby off-resonance transitions, the measured coherence time is somewhat greater, but inclusion of the detuning parameter leads to similar interaction times. Thus the value found for γ is used as an estimate of the coherence time. By using this value along with the values of the population ratios obtained from Eq. (20) and the excitation pulse intensity and width, Eq. (21) gives the values of the cross sections for the second transitions in the TPA processes. The magnitudes are somewhat larger than those of ground-state absorption transitions, because they are parity allowed. This indicates that the TPA processes are either VTEP processes or a coherent STEP process in which fast photon depleting processes that broaden the intermediate level without shortening its lifetime are important in determining the cross section of the second step in the TPA processes.

Figure 9 shows the variation of σ_{2d} with excitation pulse width for the BZLT sample. The linear relationship between the cross section and laser pulse width is consistent with Eq. (21), and the magnitude is consistent with having a fast interaction time compared to the pulse width.

C. Results for 354.7-nm pumping

Figure 10 shows the fluorescence spectra at two different times after the excitation pulse for tripled Nd:YAG laser pumping at 354.7 nm. The lifetimes of the transitions are listed in Table II. This emission is quite different from that observed with 532.0- or 266.0-nm pumping. The wavelengths of the emission transitions are at different positions, and the lifetimes are different. Each of the three sets of fluorescence peaks involves a double exponential decay with a very fast rise time. For example, the 410-nm peaks have a longer decay component of 819 ns, a faster component of 179 ns, and a rise time of approximately 30 ns. The other two sets of peaks show similar lifetimes and rise times, which are listed in Table II.
The double exponential decays, rise times, shift in transition wavelengths, and reduction in the number of emission peaks indicate there is a change in the configuration coordinates describing the energy levels for these pumping conditions. This may be associated with a multiphoton excitation process terminating at an energy far above the band edge. During the time the electron is in this highly excited state, the interaction of the ion with its surroundings will change through local polarization effects. The electron decays back down to the various metastable states, and fluorescence occurs before the surrounding lattice has time to relax back to its equilibrium condition. It appears that in this polarized state of the local site of the ion, the 5d configuration level is shifted, so that the bottom of its potential well falls below that of the 2D5 metastable state. With these conditions, no fluorescence comes from the latter level. Likewise, it is possible that multiphoton excitation with 354.7 nm lifts the electron into the charge transfer band located above 200 nm. Following this excitation, radiative transitions come from either the charge transfer states of the 5d band, in addition to the 2D5 levels. If there is a combination of radiative relaxation from both the charge transfer states and 5d bands, this could account for the double exponential decay curves observed with each transition. Single-photon excitation by 354.7-nm light in the LP:Eu3+ glass directly pumps the charge transfer state and gives a similar spectra to that seen in the fluoride glass. This spectrum, shown in Fig. 5(c), is taken at 50 μs after the 25-ps pulse. One difference is that the lifetimes in the oxide glass remain single exponential, indicating that there is no transfer or overlap between the 5d and charge transfer states. A schematic drawing of this model describing the change in the configuration coordinates is shown in Fig. 11. This model is a qualitative model for describing the changes after 354.7-nm excitation. More work needs to be done to better understand the shift in emission and changes in lifetimes. Future work is planned when the addition of a picosecond dye laser attachment is completed.

III. DISCUSSION AND CONCLUSIONS

Picosecond-pulse excitation is an important experimental method for characterizing the spectral dynamics of ions in solids. The time-resolved spectroscopy technique provides a useful means through which two-photon absorption cross sections can be determined. These results, coupled with measurements of the excitation pulse-width dependence of the cross section, allow the mechanism of two-photon absorption to be identified.

The results show that Eu3+ ions in BZLT fluoride glass emit fluorescence from higher metastable states of the 4f configuration and from the lowest level of the 5d configuration. This implies weak electron-phonon interaction in BZLT:Eu3+ compared to many oxide glass hosts that exhibit fluorescence only from the 2D5 level, or the 2D7 and 2D9 levels of any radiationless relaxation from higher excited states. Characterizing the properties of the 4f55d-4f6 inter-configuration transition is especially interesting, since this has not been extensively studied, whereas the CTS of oxide glasses similar to the LP glass have typically been more closely studied. High-power, picosecond-pulse excitation produces two-photon absorption in the BZLT glass, which was shown to take place through a mechanism involving a coherent intermediate state. The cross section for the second photon absorption in the TPA process is found to be significantly greater than that of the first photon absorption. This is because the former involves an f-d transition with a large density of final states, while the latter is an f-f transition with a small density of final states. The results obtained on Eu3+ in the oxide glass provide less information on the spectral dynamics associated with high-power, picosecond pumping. This is due to the fact that the faster radiationless decay processes in the oxide host result in strong fluorescence emission only in the lowest metastable state. This demonstrates one limiting aspect of the time-resolved spectroscopy technique used here: it depends on having fluorescence emission from levels pumped only by two-photon absorption transitions as well as emission from levels pumped by one-photon absorption.

No evidence of ESA processes was found for the fluoride glasses under these excitation conditions, and no VTEP were observed when the excitation wavelength was not very close to resonance with a real single-photon transition. Multiphoton excitation to energies well above the band gap of the host allows a local distortion of the lattice to occur which leads to...
Eu$^{3+}$ fluorescence from a distorted crystal-field environment, giving rise to very different spectral properties. These types of spectral shifts and lifetime changes have been observed in other types of materials under conditions of high-energy excitation.25

Comparison of the results obtained on Eu$^{3+}$ with those reported previously on Nd$^{3+}$ shows that the type of TPA process taking place in trivalent rare-earth ions under similar excitation conditions can be quite different, depending on the nature of the final state of the transition. The latter case involved f/f transitions, and a resonant transition to a real f intermediate state was found to dominate the sum over intermediate states. The former case involves $f-d$ transitions, and virtual or coherent real f intermediate states were found to be important in the TPA transition.

ACKNOWLEDGMENTS

This work was sponsored by Rome Air Development Center and the U.S. Army Research Office. The fluoride glass sample was provided by Rome Air Development Center, and the oxide sample was provided by Lawrence Livermore National Laboratory. G. J. Quarles was supported by a fellowship provided by the Air Force Weapons Laboratory. The authors gratefully acknowledge helpful discussions concerning this work with G. Boulou.

10R. Reisfeld, Struct. Bonding 13, 10 (1973).

23Yu. V. Denisov, I. V. Kovaleva, V. P. Koloskov, and V. V. Rastovskiej, Spectrosc. 38, 54 (1975).

24J. D. Axe, Jr., Phys. Rev. 136, A42 (1964).

Displacive ferroelectric crystals have the electro-optic properties necessary for producing photorefractive effects (PRE's). These light-induced changes in the refractive index of the material are the basis for many important devices in optical technology involving holographic storage, optical data processing, and phase conjugation. KNbO₃ is predicted to have a high photorefractive sensitivity for materials of this class, but its properties have not been fully characterized. The purpose of the research described here is to present new information about the photorefractive response of KNbO₃ crystals. The two most important aspects of this work are determining how the material properties change with different types of dopants and showing how the nonlinear-optical response of the material evolves with time after picosecond pulse excitation.

The material properties associated with the PRE's are characterized using a spatial light intensity grating generated by the interference of two coherent laser beams. The photorefractive response is associated with mobile charge carriers which are produced by photoionization of trap levels in the bright regions and through drift and diffusion are subsequently retrapped at new regions in the crystal. This leads to the buildup of a space-charge field in the material which modulates the refractive index through the electro-optic effect. Since the magnitude of the index change is proportional to the absorbed energy, the PRE can be generated with weak light sources on long-time scales, but it requires very high fluences to produce the PRE's with fast laser pulses. Other mechanisms associated with free carriers, bound charges, absorption changes, and vibrational properties can produce competing nonlinear-optical responses. To understand the PRE response of a material, it is necessary to characterize the charge generation, relocation, and trapping processes as well as the effects of the competing nonlinear-optical processes. This can be accomplished by using a variety of experimental techniques which provide information over a wide range of response times and for samples with several different trap compositions. The results of this type of comprehensive investigation of KNbO₃ are described in the following sections.

Potassium niobate is a ferroelectric material with the perovskite type of crystal structure. At room temperature it has orthorhombic crystal symmetry of point group mm2, and the electro-optic coefficients of this material have been determined. The various structural phases of KNbO₃ can be thought of as being derived from the cubic paraelectric phase by a series of distortions of the original cubic cell. For example, the orthorhombic distortion consists of a stretch of the original cube along one of the face diagonals (the cubic [110] direction). The [110] direction suffering a slight elongation is the direction of spontaneous polarization and is designated as the c axis of the principal cell. The remaining principal axes coincide with the other twofold rotation axes. Using the convention of previous work, we label the orthorhombic b axis as the direction parallel to the [010] axis of the original cubic cell. This is the only axis conserved through the phase transitions of the material.

Single crystals of high-optical-quality KNbO₃ were grown from high-temperature solutions using established techniques. Both undoped crystals and crystals containing up to 1 mol % of Ta⁺⁵, Na⁺, Rb⁺, or Fe⁺⁺ were grown and cut into samples of approximate dimensions 3 × 3 × 5 mm. A discolorization was observed in all doped samples with the exception of Na:KNbO₃. Preliminary studies indicate that each dopant was uniformly incorporated in the crystal lattice at concentrations up to the 1 mol % level used in this study. The crystals were...
Laser-induced photorefractive gratings were written in undoped and doped KNbO$_3$ crystals using the 514.5-nm emission of a continuous-wave (cw) argon-ion laser. The photorefractive characteristics of the samples were studied using two types of experimental measurements: two-beam coupling and transient four-wave mixing (FWM).

A. Experimental

The experimental setup used for the beam coupling experiments is shown in Fig. 1(a). In these experiments one of the two beams used to write the grating is reduced in intensity and is designated as the probe beam. The pump- and probe-beam intensities were 820 mW/cm2 and 5.3 mW/cm2, respectively, and the pump beam was expanded to eliminate problems associated with nonuniformities of the light interference pattern. This experimental arrangement results in a grating thickness that is always equal to the crystal thickness independent of the crossing angle between the two beams. The intensity of the transmitted probe beam was measured with a photomultiplier tube and recorded on a strip chart recorder. The photorefractive gain was determined by recording the intensity change of the transmitted probe beam as the pump beam was cycled on and off.

In the four-wave mixing arrangement [Fig. 1(b)], the laser-induced grating was produced by two equal intensity pump beams with the same beam diameters. The grating properties were determined by using a weak (50 μW/cm2) HeNe laser for the probe beam. The probe beam enters the sample in the opposite direction from the pump beams and is aligned for Bragg diffraction off the grating. A photomultiplier tube was used to detect the intensity of the diffracted probe beam and the signal was recorded on a digital oscilloscope. By chopping the pump beams on and off, the dynamics of grating formation were studied.

B. Results of two-beam coupling measurements

For some samples and experimental conditions, the charge relocation properties cause the refractive index grating to be out of phase with the incident light pattern.
material parameters as
\[\Gamma = 2\pi n^4 r_{\text{eff}} E_{\text{SC}} / \lambda, \]
(4)
where \(n \) is the effective refractive index, \(r_{\text{eff}} \) is an effective electro-optic tensor component, and \(E_{\text{SC}} \) is the space-charge field. By including factors that account for the relative contributions of electrons and holes to the photorefractive effect, \(r_{\text{eff}} \) can be related to the electro-optic tensor component of a fully poled crystal as
\[r_{\text{eff}} = F r_{\text{ang}} \sigma'. \]
(5)

\(F \) is a fractional poling factor, \(\sigma' \) is a normalized conductivity, and \(r_{\text{ang}} \) is the appropriate combination of electro-optic tensor components and angular and polarization factors for a fully poled crystal. For the two cases of only one type of charge carrier, \(\sigma' = 1 \) for holes and \(\sigma' = -1 \) for electrons. In the experiments performed here the two input beams were incident on the \((a)\) surface of the crystal and were p-polarized so that \(r_{\text{ang}} \) can then be written as
\[r_{\text{ang}} = (n^2 r_{13} \cos^2 \theta - n^2 r_{15} \sin^2 \theta) / n^4, \]
(6)
where
\[n = [(\cos^2 \theta / n_1^2) + (\sin^2 \theta / n_2^2)]^{-1/2}. \]
(7)
The space-charge field takes the form
\[E_{\text{SC}} = \left[2\pi k_B T / e \right] \left[\Lambda_y / (\Lambda_y^2 + \Lambda_z^2) \right], \]
(8)
where \(\Lambda_y \) is the grating spacing and
\[\Lambda_0 = \left[4\pi^3 e^2 / k_B T / (e^2 N_e) \right]^{1/2}. \]
(9)
is the Debye screening length. Substituting for \(E_{\text{SC}} \) in Eq. (4) yields the expression for the photorefractive gain
\[\Gamma = \left[2\pi n^4 k_B T r_{\text{eff}} / \omega \lambda \right] \left[(K_y^2 / (K_y^2 + K_z^2)) \right], \]
(10)
where \(K_y = 2\pi / \Lambda_y \) and \(K_z = 2\pi / \Lambda_0 \). By measuring the beam gain \(\Gamma \) as a function of grating spacing \(\Lambda_y \) and applying Eq. (10), two material properties can be determined: \(r_{\text{eff}} \) and \(N_e = N/N_1 + (N/N_2) \), the effective density of empty traps.

In all the beam coupling experiments on undoped and doped KNbO₃, the grating normal was aligned parallel to the \(c \) axis and the crystal and beam geometry were arranged to give gain to the signal beam. At each angle of the input beams, the effective gain \(\gamma_0 \) was measured and the photorefractive gain \(\Gamma \) determined using Eq. (5). The experimental values for \(\Gamma \) were fit to a straight line form of Eq. (10),
\[K_y / \Gamma = \left[c \lambda / (2\pi n^4 k_B T r_{\text{eff}}) \right] \left[1 + (K_y^2 / K_z^2) \right], \]
(11)
with \(K_y / \Gamma \) plotted versus \(K_y^2 \). This presupposes that \(r_{\text{eff}} \) is independent of \(K_y \). Examination of Eq. (5) shows that this assumption implies that \(\sigma' \) is independent of \(K_y \), a situation that exists only if one type of photocarrier is dominant. When displayed in this manner, a value for \(r_{\text{eff}} \) can be obtained from the intercept and a value for \(K_y \) can be obtained from the slope and intercept of the straight-line plots. The experimental points are shown in Fig. 2(a) for the five crystals studied and the values of \(r_{\text{eff}} \) and \(N_e \) obtained from these results are summarized in Table I. Figure 2(b) shows theoretical curves of the photorefractive gain \(\Gamma \) as a function of grating spacing calculated using the values of \(r_{\text{eff}} \) and \(N_e \) in Table I. In calculating \(N_e \) from \(K_y \) and Eq. (9) a value of \(\epsilon = 55 \) was used. Using a value of \(r_{\text{ang}} = r_{13} = 64 \text{ pm/V} \), estimates of \(F \) can be obtained giving some idea of the relative contributions of electrons and holes.

The direction of the photorefractive coupling is determined by the sign of the dominant photocarrier and the crystal and beam geometry. For each of the crystals studied the polarity of the \(c \) axis was determined in a pyroelectric cooling experiment and the sign of the photocarrier determined from the results is listed in Table I.

C. Results of transient response measurements

Another important parameter of a photorefractive crystal is the time required to build up the refractive index grating. Reduced KNbO₃ has been shown to have a microsecond response time which greatly enhances its
TABLE I. Material parameters obtained from two-beam coupling measurements on KNbO₃ crystals.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Sign of dominant photo-carrier</th>
<th>(\Lambda_0) ((\mu)m)</th>
<th>(N_F) ((10^{16}) cm(^{-3}))</th>
<th>(r_{\Phi}) (pm/V)</th>
<th>(F_{\sigma} = r_{\Phi}/r_{33})</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNbO₃ (undoped)</td>
<td>+</td>
<td>1.05</td>
<td>0.28</td>
<td>10.0</td>
<td>+0.20</td>
</tr>
<tr>
<td>KNbO₃:Ta</td>
<td>+</td>
<td>0.94</td>
<td>0.35</td>
<td>16.7</td>
<td>+0.33</td>
</tr>
<tr>
<td>KNbO₃:Rb</td>
<td>+</td>
<td>1.22</td>
<td>0.21</td>
<td>27.6</td>
<td>+0.55</td>
</tr>
<tr>
<td>KNbO₃:Fe</td>
<td>-</td>
<td>2.15</td>
<td>0.07</td>
<td>16.4</td>
<td>-0.33</td>
</tr>
<tr>
<td>KNbO₃:Na</td>
<td>+</td>
<td>1.69</td>
<td>0.11</td>
<td>25.3</td>
<td>+0.15</td>
</tr>
</tbody>
</table>

potential for real time applications.\(^5\)

Kukhtarev and co-workers\(^6,7\) developed a mathematical analysis of the time evolution of the grating formation. This analysis has recently been extended for the case of dual charge carriers.\(^8,9\) For fringe spacings large compared to both the charge diffusion length and the Debye screening length, the dielectric relaxation time

\[
r_{\Phi} = \frac{\varepsilon_0 \alpha}{(\tau_d + \alpha_{\Phi})}
\]

is a good approximation to the grating buildup time.\(^1\) In Eq. (12) \(\tau_d \) is the dark conductivity and \(\alpha_{\Phi} \) is the photoconductivity given by

\[
\alpha_{\Phi} = e \mu \Phi I / (h \nu)
\]

\(e \) is the electronic charge, \(\alpha \) is the absorption coefficient, \(\Phi \) is the quantum efficiency for exciting a charge carrier, \(\mu \) is the mobility, \(I \) is the optical intensity, and \(h \nu \) is the photon energy. Inverting Eq. (12) to give the grating buildup rate

\[
\delta = (1/r_{\Phi}) = (\tau_d + \alpha_{\Phi}) / (\varepsilon_0 \alpha)
\]

provides a linear relationship between \(I \) and \(\delta \). Using this approximation for the grating formation rate allows \(\alpha_{\Phi} \) to be determined from the slope of the fit of Eq. (14) to the data.

The grating buildup time was measured for all five crystals at one angle as a function of incident intensity. The buildup rate is plotted against light intensity in Fig. 3 for each crystal and the results are observed to qualitatively follow the straight-line model predicted by Eq. (14). The values of the product \(\Phi_{\mu \tau} \) obtained from the slopes are listed in Table II.

A useful figure of merit for characterizing the photorefractive sensitivity of a given material is how much optical energy is needed to produce a given refractive index change. Expressed in mathematical terms the sensitivity is

\[
S = \frac{d n}{d (\alpha W_0)}
\]

where \(n \) is the refractive index, \(\alpha \) is the absorption coefficient, and \(W_0 \) the incident optical energy. For a phase grating the diffraction efficiency is given by

\[
\eta = e^{-\alpha d / \cos \theta} \sin^2 (d \tau \Delta n / \lambda \cos \theta)
\]

and the induced refractive index change can be determined by measuring the absolute diffraction efficiency. The intensity of the scattered HeNe beam was calibrated to yield the absolute diffraction efficiency for all five crystals and combined with the grating buildup times to give the photorefractive sensitivity. The results obtained are given in Table II.

The results from the cw laser experiments show that doping KNbO₃ with Na\(^+\), Rb\(^+\), or Ta\(^{5+}\) at the 1 mol. % level enhances the photorefractive performances of the crystal. The maximum beam coupling gain and photorefractive sensitivity increases for these crystals over an

![Figure 3. Photorefractive grating buildup rate as a function of input light intensity for the five KNbO₃ crystals studied.](image)
undoped sample. The iron-doped crystal used in this study was observed to have an inferior photorefractive performance when compared to an undoped crystal. Also the predominant charge carrier was determined to be electrons in contrast to holes observed in the other crystals. Medrano et al. found that the charge carriers in their iron-doped samples were holes and that there was an increase in photorefractive gain over a pure crystal that had been reduced and contained electrons as photocarriers. It is expected that it is the same Fe$^{2+}$-Fe$^{3+}$ donor-trap system that produces the photorefractive effect in pure and iron-doped samples. Taken together, the results above suggest that it is the Fe$^{2+}$-Fe$^{3+}$ ratio rather than absolute amounts that is important in predicting the photorefractive performance of a particular crystal.

III. RESULTS FOR PICOSECOND PULSE EXCITATION

The nonlinear optical response of KNbO$_3$ was investigated using picosecond pulses to establish laser-induced gratings. These gratings were probed using both picosecond and cw probe beams and the measurements obtained provide information on the time evolution of the gratings from a time scale of picoseconds out to many minutes.

A. Experimental

Single pulses with durations of 30 psec full width at half maximum (FWHM) at 532 nm were produced by a frequency-doubled, mode-locked Nd:YAG laser. After being split into two pump beams, the pulses were recombined in the crystal with an external crossing angle of 20°. This angle could be varied from 16° to 44° corresponding to grating spacings varying from 1.91 to 0.71 μm. Typical incident energies of the two pump beams were 0.11 and 0.06 mJ giving an intensity modulation index of

$$m = 2(E_1 E_2)^{1/2} / (E_1 + E_2) = 0.95.$$ (17)

The diameter of each of the two pump beams was measured with a traveling knife edge and found to be 0.54 mm at the 1/e2 points of the on-axis peak intensity. The Gaussian radius of each beam is 0.27 mm and the incident fluences are 39 and 21 mJ/cm2 for the two pulses. The temporal overlap of the two pump pulses was achieved with an optical delay line in one beam path.

A degenerate four-wave-mixing experiment was used to investigate the fast grating formation and decay. The experimental arrangement is shown in Fig. 4. A less intense, third picosecond pulse that was exactly counterpropagating to one of the pump beams acts as a probe beam. This probe pulse was s-polarized to be orthogonal to the pump-pulse polarization and was focused to the same diameter in the crystal. From phase matching considerations the diffracted signal is counterpropagating to the other pump beam and was extracted with a beam splitter. The arrival of the probe pulse in the crystal could be varied by an optical delay line. Delay times ranging from several hundred picoseconds before to several nanoseconds after the arrival of the pump pulses could be obtained. The diffracted signal was detected by the photodiode, recorded on a signal averager, and averaged over several thousand laser pulses.

In order to follow the signal to longer times, the probe pulse was replaced by a 1-mW cw He-Ne laser beam. The intensity of this laser was attenuated by three orders of magnitude to keep its influence below that required for grating erasure. The incident angle of the probe beam was adjusted to satisfy the Bragg scattering condition.

B. Results of pulse-probe measurements

The absolute diffraction efficiency was measured for gratings produced in KNbO$_3$ as a function of probe-pulse delay with the crystal in a photorefractive and in a nonphotorefractive geometry. The results are shown in Fig. 5 for a grating spacing that is 1.9 μm. In the pho-
The photorefractive effect will cause the crystal to be oriented with the grating wave vector \(\mathbf{K}_g \) aligned parallel to the \(c \) axis of the crystal so the write beams produce an internal space-charge field that is also parallel to the \(c \) axis and the \(s \) polarized probe pulse senses the photorefractive effect through the \(r_{21} \) electro-optic tensor component. In the other geometry the crystal is rotated \(90^\circ \) (\(\mathbf{K}_g || c \)) and any space-charge field produced will be in the direction of the crystallographic \(b \) axis. Due to the symmetry elements of the electro-optic tensor any index change produced will not be detected by an \(s \)-polarized probe pulse.

Two features are apparent in the data of Fig. 5 and they appear to be similar to results recently reported for BaTiO\(_3\).16,17 First a sharp peak is observed centered at a probe delay of \(t = 0 \) psec. The real time width of this peak is close to the expected autocorrelation width of our three pulses. The origin of this signal is the fast physical processes contributing to the third-order susceptibility \(g^{(3)} \) associated with the FWM of the two pump beams, probe beam, and signal beam. Possible contributions to the susceptibility include nonlinearities associated with bound electrons, free carriers, and any phonon or thermal effects with characteristic relaxation times comparable or less than the optical pulse width. In BaTiO\(_3\), free carriers generated by single-photon absorption were thought to be the dominant contribution to the nonlinear susceptibility.16,17

The second feature apparent in Fig. 5 is a long-lived signal lasting for probe-pulse delays of several nanoseconds. It is more pronounced in the \(\mathbf{K}_g || c \) orientation than in the \(\mathbf{K}_g || e \) orientation. This suggests that it may be photorefractive in origin. For this interpretation to be correct, impurity donor centers would have to be photoinnizated to produce free charge carriers that migrate far enough to establish a significant space-charge field during the time of the pump pulses. However, the small free carrier mobilities and fast trapping times that are typical of the ferroelectric oxides would allow the free carriers to diffuse only a small fraction of a grating spacing before being trapped. Thus there is some question about the origin of this component of the signal.

The intensity of the conjugate peak shows little change with grating spacing which is not the case for the signal at long probe-pulse delays. Figure 6 shows the intensity of the diffracted signal for four grating spacings. As the spacing decreases, the intensity of the nanosecond time component decreases. Such a decrease in a photorefractive grating is expected in high-mobility, long-trapping-time materials where the free carriers are able to destroy the grating by diffusing over a full grating period at small spacings before being trapped. However, in ferroelectric oxides the low mobilities coupled with the fast trapping times for charge carriers make this process unlikely. For the grating periods used in Fig. 6 the charge migration is expected to be diffusion dominated and the space-charge fields will be limited by the diffusion field

\[
E_D = 2\pi k_B T / (\tau \Lambda_q). \tag{18}
\]

Thus the photorefractive effect will cause the intensity of the scattered signal to increase as the grating spacing decreases, which is exactly opposite to the results observed in Fig. 6. This casts further doubt on attributing this signal contribution to a photorefractive effect.

In the results from the nonphotorefractive orientation shown in Fig. 5 there is a nonzero scattering background for long probe delays. This component may be associated with scattering from an absorption or photochromic grating generated by the photoexcitation and subsequent trapping of charge carriers. The diffraction efficiency for an absorption grating is given by

\[
\eta_\alpha = (1 - e^{-\alpha t}) \sinh^2[(\Delta \alpha d) / (2 \cos \theta)]. \tag{19}
\]

The change in absorption coefficient \(\Delta \alpha \) is just

\[
\Delta \alpha = N s, \tag{20}
\]

where \(N \) is the density of displaced charges and \(s \) is the absorption cross section of the defect centers. The cw photorefractive beam coupling experiments showed that the concentration of donor centers in the crystal used here is \(N_F = 3 \times 10^{15} \text{ cm}^{-3} \). Since the input photon rate is somewhat greater than this, we can approximate \(N = N_F \). The absorption cross section of the donor levels is not known in KNbO\(_3\), but some idea of its magnitude can be obtained from results in the literature. It is known that the most common defect center leading to photorefractive effects in as-grown ferroelectrics is the Fe\(^{2+}\)-Fe\(^{3+}\) system where the deep-level donor is Fe\(^{2+}\) and the acceptor is Fe\(^{3+}\). The deep-level absorption cross section has been measured for this defect in InP:Fe and found to be18 \(s = 1 \times 10^{-17} \text{ cm}^2 \). Using this value of \(s \) for KNbO\(_3\) we obtain \(\Delta \alpha = 0.03 \text{ cm}^{-1} \). Substituting for \(\Delta \alpha \) in Eq. (19) yields a diffraction efficiency of \(\eta_\alpha = 10^{-3} \) which is in good agreement with the observed scattering efficiency of about \(\eta = 2 \times 10^{-5} \) for this signal component. The consistency of this interpretation of the \(\mathbf{K}_g || c \) results suggests that the \(\mathbf{K}_g || e \) results might be associated with a directional-dependent change in the absorption coefficient.

Figure 7(a) shows the results of measuring the scatter-
the intensity of the transmitted probe beam with the pump beam. A reasonable explanation of these results is a power-law dependence of F_2 with fluences below 10^{-7}, where F_2 is the ratio of function T/T_0 as a function of incident fluence, where T is the intensity of the transmitted probe beam with the pump beam on and T_0 is the intensity with the pump beam off. Energy transfer through photorefractive gain will increase the intensity of the probe beam in the presence of the pump beam. The points represented by closed and open squares correspond to the two photorefractive crystal orientations that are related by a 180° rotation about a line bisecting the two input beams.

In conjunction with these two-beam coupling measurements, the probe-pulse transmission was recorded as a function of the arrival time of the pump pulse. The results obtained are shown in Fig. 9 where the ratio T/T_0 is plotted against probe-pulse delay for the two crystal orientations $K_x||e$ and $K_x\perp e$. This experiment was performed at the same crossing angle as the beam coupling experiment and the intensity of the pump beam was 80μm/cm². For negative probe-pulse delays, i.e., the probe pulse arrives before the pump pulse, the ratio T/T_0 is close to unity and there is no interaction between the beams. As the pulses start to overlap in time the probe is attenuated through two-photon absorption which peaks at zero delay. For both crystal orientations the probe pulse continues to be attenuated at long delay times after the pump pulse. The extend of the attenuation is significantly greater in the $K_x||e$ orientation than in the perpendicular $K_x\perp e$ orientation. At these long-time scales there is no temporal overlap of the pulses and the effects are not grating or photorefractive in origin. A reasonable explanation of these results is the anisotropy of the absorption coefficient relative to the crystal c axis. Thus we conclude from these results that the contribu-

FIG. 7. Absolute scattering efficiency as a function of the fluence of two 30-ps writing pulses at (a) probe delays of 0 and 350 ps after the writing pulses and (b) at a time of 1.0 msec after the writing pulses as measured by a cw probe beam.
the pulse-probe experiments described in the previous section is lost, but the evolution of the signal can be followed to very long times. The transient signals obtained show the decay of the fast nonlinear responses and the buildup and dark decay of the photorefractive grating. The crystal a axis and the polarization of the probe beam were aligned in the plane of incidence (p polarization) so the effective electro-optic coefficient is given in Eq. (6). The signal was followed in time after a single 30-psec pulse of excitation from the crossed write beams.

Figure 10 shows the time evolution of the scattering efficiency for different excitation fluences. The intensities of the fast- and long-time components of the signal change differently with fluence and the buildup time of the long-time signal decreases as fluence is increased. Figure 7(b) shows the results of measuring the signal strength at 1 msec after the write pulses as a function of write-beam fluence. The data show a very different behavior than the signals measured at faster times shown in Fig. 7(a). The observed behavior does not fit a single power-law dependence but is close to linear below 50 mJ/cm2 at which point the scattering efficiency is observed to saturate.

Figure 11 shows the dark decay of photorefractive
gratings written by single laser pulses in the doped and undoped KNbO$_3$ crystals. The signal for the undoped crystal has at least two decay components with very different relaxation times. Nonexponential erasure decays have been observed in Bi$_2$SiO$_5$ (Ref. 19) and LiNbO$_3$ (Ref. 20) and were explained by the participation of several trapping centers in the photorefractive charge migration. Steady-state beam coupling results presented earlier show that both electrons and holes are involved in the photorefractive processes in the crystals used here. The decay results observed demonstrate that the trapping mechanism involves two types of acceptors that have two distinct relaxation times. One trap may be associated with the creation of holes in the valence band by photexcitation of electrons to midgap impurity levels, while the other may be associated with photexcitation of electrons to the conduction band. It is well known that mobilities of electrons and holes are different in these types of materials and multiple components to the decay of a grating involving both electrons and holes should be expected.

The doped KNbO$_3$ crystals show more complicated dark decays. In some cases the intensity of the scattered beam is observed to undergo several dips where one component of the grating decays while another component with a longer relaxation time still contributes to the intensity. Theoretical modeling of these features will require incorporation of multiple trapping levels in describing the dynamics of charge relocation.

Figure 12 shows the dark decay of the photorefractive grating in undoped KNbO$_3$ for five different grating spacings. The decay time decreases with grating spacing reflecting the shorter time charge carrier requires to diffuse a half grating period. The nonexponential nature of the decay is more pronounced for the smaller grating spacings. For the larger spacings the decay is expected to be dominated by the carrier with the highest mobility and a single exponential decay would result. As the spacing decreases both carriers and their respective trapping centers are able to contribute to the decay and nonexponential transients appear.

IV. DISCUSSION AND CONCLUSIONS

Characterization of the photorefractive effect using cw excitation has been reported previously for KNbO$_3$ crystals where the response time for reduced KNbO$_3$ was measured to be 100 μsec. Also, doping with iron has been shown to result in a substantial increase in the photorefractive efficiency over that of undoped samples. The results described here using cw excitation give a further understanding of the photorefractive effect in doped and undoped KNbO$_3$ by determining various material parameters associated with laser-induced charge relocation. The mobility-lifetime products given in Table II show that doping KNbO$_3$ with either Ta, Rb, or Na decreases the time required to form a photorefractive grating by a factor of 2 over an undoped crystal. This increase in the buildup rates carries over to an enhancement in the photorefractive sensitivity for these crystals with the Rb dopant producing the highest. In the Fe-doped sample electrons were found to be the dominant charge carrier while holes were the dominant carriers in all other samples.

It is only recently that picosecond pulses have been used to study nonlinear responses of materials such as Bi$_2$SiO$_5$, BaTiO$_3$, GaAs, and CdTe. In the picosecond work reported here on KNbO$_3$, three different types of nonlinear effects were identified due to their different time responses. Utilizing both pulsed and cw probe beams, picosecond laser-induced grating techniques were used to follow the evolution of the nonlinear response from the picosecond time scale out to times of many minutes. On the time scale of milliseconds and longer, the photorefractive response which was observed with cw excitation is seen. This is associated with the space-charge field built up by photoinduced charge relaxation and the interaction of this field with the electrooptic tensor components of the material. The dark decay of the signal is highly nonuniform indicating that different types of traps are taking part in the charge relaxation back to an equilibrium configuration.

On the time scale of 100 psec out to nanoseconds, the nonlinear response has properties that are better described by a laser-induced change in the absorption coefficient associated with two-photon absorption. The time scale and magnitude of this signal are consistent with a relocation of charge carriers. For example, since the dominant photoinduced charge carriers are holes, the first photon might create a hole by promoting an electron in the valence band into a midgap acceptor. The second photon might promote this electron into the conduction band. The electrons and holes created in this way will migrate to different types of traps before finally recombining.

The variation of the signal in this time regime for different crystal orientations is associated with the anisotropy of the absorption coefficient. The absorption coefficient for KNbO$_3$ is a tensor quantity with different values for different propagation and polarization direc-
tions. If a, b, and c are the crystallographic axes, then the absorption coefficient can be represented by the tensor

$$
\alpha = \begin{bmatrix}
0 & \alpha_{ab} & \alpha_{ac} \\
\alpha_{ba} & 0 & \alpha_{bc} \\
\alpha_{ca} & \alpha_{cb} & 0
\end{bmatrix},
$$

(21)

where α_{ij} is the absorption coefficient for a beam propagating in the ith direction with polarization along the j axis. If the crystal is oriented with $K_p \parallel c$, the probe-pulse polarization is always perpendicular to the c axis and the apparent absorption coefficient is given by the linear combination

$$
\alpha = \alpha_{ac} \cos \theta + \alpha_{ac} \sin \theta,
$$

(22)

where θ is the half-angle between the intersecting pump and probe beams. In the orthogonal orientation $K_p \perp c$, the appropriate combination for the absorption coefficient is

$$
\alpha = \alpha_{ac} \cos \theta + \alpha_{ac} \sin \theta.
$$

(23)

For the data in Fig. 9, $\theta = 8^\circ$ and the attenuation of the probe in the $K_p \parallel c$ orientation is due mainly to the first term in Eq. (22). The first term in Eq. (22) is expected to be of the same magnitude and the extra attenuation of the probe in the $K_p \perp c$ orientation is due to the component $\alpha_{ac} \sin \theta$. As the angle θ increases the probe beam in both the two-beam coupling experiment and in the FWM experiment will undergo an increasing absorption as it propagates more along the c axis. This is consistent with the results shown in Fig. 5. Based on this analysis, the longer-lived signal in the picosecond pulse-probe FWM experiments is the scattered beam from an absorption grating. The photoexcited charge carriers are trapped on a time scale comparable with the optical pulse width but their redistribution among different trapping levels sets up an absorption grating that is anisotropic with crystallographic directions.

The physical origin of the fast conjugate peak observed in the picosecond FWM experiments is difficult to determine unambiguously because its time response cannot be resolved with 30-ps pulses used here. This signal is associated with the third-order susceptibility of the material and can have contributions from electronic and vibrational mechanisms that respond on a picosecond time scale. The extend of each contribution can be estimated from the nonlinear refractive index for the effect. If the induced change in the refractive index is Δn, the nonlinear refractive index n_3 is defined as

$$
\Delta n = n_3 \langle E^2 \rangle,
$$

(24)

where E is the electric field of the optical wave. n_3 is related to the third-order susceptibility by

$$
n_3 = (12\pi/n_0)^2 \chi^{(3)},
$$

(25)

where n_0 is the background refractive index which equals 2.35 for KNbO$_3$. For a refractive index grating, the theory of Kogelnik can be used to obtain the refractive index change induced from the absolute scattering intensity by

$$
\Delta n = (\lambda \cos \theta / \pi d) \sqrt{\eta}.
$$

(26)

The maximum diffraction efficiency recorded in these experiments at $\Delta t = 0$ was $\eta = 5.5 \times 10^{-3}$ obtained at an intensity of 100 mJ/cm2. The electric-field intensity of the incident wave is related to the fluence F by

$$
\langle E^2 \rangle = (8\pi/c\hbar) F = 1.19 \times 10^7
$$

(27)

for the above fluence, in cgs units. The value of $\chi^{(3)}$ measured in this case is calculated to be 2.3×10^{-13} esu.

Two of the electronic contributions to the conjugate peak will be scattering from a free-carrier index grating that is generated by single-photon absorption and scattering from the induced polarization of bound charges in the material. The change in the refractive index associated with scattering from a free-carrier grating is given in the Drude model by

$$
\Delta n = 2\pi N_c e^2/(m_e^* n_e^2),
$$

(28)

where N_c is the density of free carriers of effective mass m_e^*. N_c (in cm$^{-3}$) can be approximated by the absorbed photon flux

$$
N_c = (\lambda \alpha / \hbar c) I = 5.4 \times 10^{16}.
$$

(29)

Using this value in Eq. (28) predicts the free-carrier grating index change and third-order susceptibility contribution to be $\Delta n = 3.0 \times 10^{-6}$ and $\chi^{(3)} = 1.5 \times 10^{-14}$ esu. These are an order of magnitude smaller than the measured values.

The value of $n_3 = 29 \times 10^{-13}$ esu measured for KTaO$_3$ can be used as an approximation for the bound-charge contribution to $\chi^{(3)}$ for KNbO$_3$. Using Eq. (25) the third-order nonlinear susceptibility from this effect is calculated to be 1.8×10^{-13} esu, which is the same order of magnitude as the measured value.

Recent Raman-scattering experiments on KNbO$_3$ have shown central peaks in the scattering spectrum that are associated with relaxation modes involved in the successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions. While there is some question about an additional contribution to the signal from a soft phonon mode, this is not relevant to the results described here. It is beyond the scope of our experiments to resolve the specific contributions due to the relaxation modes and soft modes. However, it is clear that the Nb$^{4+}$ relaxation modes are responsible for a contribution to the dielectric constant of the material and thus will contribute to the nonlinear refractive index measured as a conjugate peak signal in our FWM experiments.

The multiwell potential surface involved with the hopping modes is the eight-site order-disorder model used to describe the successive phase transitions in displacive ferroelectric crystals. This model has the Nb$^{4+}$ ions located in one of eight potential wells which have potential minima displaced from the cubic unit cell center along the (1 1 1) directions. The different structural phases of the crystal are a consequence of the preferential occupation by the Nb$^{4+}$ ion of a certain set of potential wells.
At 300 K Δn is approximately 0.18 and it decreases to about 0.15 at 500 K. Substituting for the measured Raman peak linewidth and the calculated value of Δn the contribution to $\chi^{(3)}$ is 9×10^{-12} esu. Stimulated hopping between two of the equivalent potential wells will make a similar contribution to $\chi^{(3)}$.

The intensity of the diffracted signal was measured as a function of temperature for undoped KNbO$_3$ and the results are shown in Fig. 13. The signal was measured at two delay times of the probe pulse, 0 and 150 psec. The results at zero delay show the signal strength to decrease as temperature is increased while the signal at 150 psec increases very slightly. A larger temperature range could not be studied because of the phase transitions of the crystal at 250 K. The intensity of the Raman-scattering peak was observed to increase with temperature. This peak is associated with relaxations from the higher-energy potential well to the lower well which will become more probable as the upper well is thermally activated. In terms of the zero-delay signal observed in our laser-induced grating experiment where the light pattern is driving the modes in the bright regions, the detected signal intensity depends on the contrast in the refractive index between the bright and dark regions of the sample. As the temperature is increased this contrast decreases as the Nb$^{5+}$-phonon modes become more occupied in the dark regions. Also the linear birefringence between the two phases decreases as the temperature increases. The decrease in Δn is about 17% over the temperature range between 300 and 500 K while the signal decrease in the same range is close to 28%.

Thus from the above discussion it appears that the bound electron and Nb-hopping modes both contribute to the observed FWM signals at zero time delay in KNbO$_3$. Further experiments using different samples and faster excitation pulses will be done to separate these contributions.

ACKNOWLEDGMENTS

This work was sponsored by the Army Research Office. The authors benefited greatly from discussions with G. C. Valley and with L. L. Chase concerning the Nb-hopping modes and his Raman-scattering results.

32L. L. Chase (private communication).